Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system

We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in Feng and Wise (SIAM J Numer Anal 50:1320–1343, 2012 ), with the weak convergence to...

Full description

Saved in:
Bibliographic Details
Published inNumerische Mathematik Vol. 135; no. 3; pp. 679 - 709
Main Authors Liu, Yuan, Chen, Wenbin, Wang, Cheng, Wise, Steven M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in Feng and Wise (SIAM J Numer Anal 50:1320–1343, 2012 ), with the weak convergence to a weak solution proven. In this article, we provide an optimal rate error analysis. A convex splitting approach is taken in the temporal discretization, which in turn leads to the unique solvability and unconditional energy stability. Instead of the more standard ℓ ∞ ( 0 , T ; L 2 ) ∩ ℓ 2 ( 0 , T ; H 2 ) error estimate, we perform a discrete ℓ ∞ ( 0 , T ; H 1 ) ∩ ℓ 2 ( 0 , T ; H 3 ) error estimate for the phase variable, through an L 2 inner product with the numerical error function associated with the chemical potential. As a result, an unconditional convergence (for the time step τ in terms of the spatial resolution h ) is derived. The nonlinear analysis is accomplished with the help of a discrete Gagliardo–Nirenberg type inequality in the finite element space, gotten by introducing a discrete Laplacian Δ h of the numerical solution, such that Δ h ϕ ∈ S h , for every ϕ ∈ S h , where S h is the finite element space.
AbstractList We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in Feng and Wise (SIAM J Numer Anal 50:1320–1343, 2012), with the weak convergence to a weak solution proven. In this article, we provide an optimal rate error analysis. A convex splitting approach is taken in the temporal discretization, which in turn leads to the unique solvability and unconditional energy stability. Instead of the more standard ℓ ∞ ( 0 , T ; L 2 ) ∩ ℓ 2 ( 0 , T ; H 2 ) error estimate, we perform a discrete ℓ ∞ ( 0 , T ; H 1 ) ∩ ℓ 2 ( 0 , T ; H 3 ) error estimate for the phase variable, through an L 2 inner product with the numerical error function associated with the chemical potential. As a result, an unconditional convergence (for the time step τ in terms of the spatial resolution h) is derived. The nonlinear analysis is accomplished with the help of a discrete Gagliardo–Nirenberg type inequality in the finite element space, gotten by introducing a discrete Laplacian Δ h of the numerical solution, such that Δ h ϕ ∈ S h , for every ϕ ∈ S h , where S h is the finite element space.
We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in Feng and Wise (SIAM J Numer Anal 50:1320–1343, 2012 ), with the weak convergence to a weak solution proven. In this article, we provide an optimal rate error analysis. A convex splitting approach is taken in the temporal discretization, which in turn leads to the unique solvability and unconditional energy stability. Instead of the more standard ℓ ∞ ( 0 , T ; L 2 ) ∩ ℓ 2 ( 0 , T ; H 2 ) error estimate, we perform a discrete ℓ ∞ ( 0 , T ; H 1 ) ∩ ℓ 2 ( 0 , T ; H 3 ) error estimate for the phase variable, through an L 2 inner product with the numerical error function associated with the chemical potential. As a result, an unconditional convergence (for the time step τ in terms of the spatial resolution h ) is derived. The nonlinear analysis is accomplished with the help of a discrete Gagliardo–Nirenberg type inequality in the finite element space, gotten by introducing a discrete Laplacian Δ h of the numerical solution, such that Δ h ϕ ∈ S h , for every ϕ ∈ S h , where S h is the finite element space.
Author Wang, Cheng
Liu, Yuan
Chen, Wenbin
Wise, Steven M.
Author_xml – sequence: 1
  givenname: Yuan
  surname: Liu
  fullname: Liu, Yuan
  organization: School of Mathematical Sciences, Fudan University
– sequence: 2
  givenname: Wenbin
  surname: Chen
  fullname: Chen, Wenbin
  organization: School of Mathematical Sciences, Fudan University
– sequence: 3
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  organization: Mathematics Department, University of Massachusetts
– sequence: 4
  givenname: Steven M.
  surname: Wise
  fullname: Wise, Steven M.
  email: swise1@utk.edu
  organization: Mathematics Department, University of Tennessee
BookMark eNp9kM9KAzEQh4NUsK0-gLeA59VJdrtJjlKqFQoe7EG8hHR31qbsn5qkaG--g2_ok5ilHkTQ0wzD9w0zvxEZtF2LhJwzuGQA4soDcMYSYHkCkqUJPyJDUNkkSXk2GcQeuEomSj2ekJH3GwAm8owNydPMuc5R05p6762nXUUNbewblrSyrQ1IscYG20AbDOsuTnuaTs26_Xz_mNu6tsaVfRu5WB7W5pX6vQ_YnJLjytQez77rmCxvZsvpPFnc395NrxdJkUoeEoF8lSMUSop8AgIqIxiulERRKARVYCVYZkpQlanyTEgGZVYankksWJpCOiYXh7Vb173s0Ae96XYu_uM1kxKEkIqpSIkDVbjOe4eVLmwwwXZtcMbWmoHuc9SHHHXMUfc5ah5N9svcOtsYt__X4QfHR7Z9Rvfjpj-lL5ViiYg
CitedBy_id crossref_primary_10_1007_s00211_017_0887_5
crossref_primary_10_1007_s10915_023_02163_z
crossref_primary_10_1016_j_jcp_2024_113331
crossref_primary_10_1137_22M1486844
crossref_primary_10_1016_j_jcp_2019_109179
crossref_primary_10_1016_j_jcp_2020_109908
crossref_primary_10_1016_j_apnum_2020_06_010
crossref_primary_10_1002_cmm4_1063
crossref_primary_10_1016_j_cam_2021_113875
crossref_primary_10_1016_j_cam_2024_116463
crossref_primary_10_1016_j_cam_2024_116469
crossref_primary_10_1016_j_cnsns_2023_107477
crossref_primary_10_1007_s10915_021_01508_w
crossref_primary_10_1007_s10255_023_1066_3
crossref_primary_10_1016_j_apnum_2019_09_014
crossref_primary_10_1002_num_22829
crossref_primary_10_1016_j_cam_2020_112855
crossref_primary_10_1007_s10915_018_0748_0
crossref_primary_10_1016_j_jcp_2021_110253
crossref_primary_10_1016_j_jcp_2021_110451
crossref_primary_10_1016_j_rinam_2024_100534
crossref_primary_10_1007_s10915_020_01276_z
crossref_primary_10_1016_j_aml_2023_108574
crossref_primary_10_1016_j_apnum_2022_09_018
crossref_primary_10_1155_2022_7104389
crossref_primary_10_12677_AAM_2023_121037
crossref_primary_10_1360_SSM_20223_0014
crossref_primary_10_1016_j_cma_2022_115195
crossref_primary_10_1016_j_cnsns_2021_105923
crossref_primary_10_1093_imanum_drab046
crossref_primary_10_1002_num_23087
crossref_primary_10_1016_j_cnsns_2022_106433
crossref_primary_10_1016_j_cam_2021_113843
crossref_primary_10_1016_j_jcp_2019_109109
crossref_primary_10_1007_s10915_022_01872_1
crossref_primary_10_1016_j_cam_2022_114474
crossref_primary_10_1016_j_cam_2020_113300
crossref_primary_10_1016_j_jcp_2022_110968
crossref_primary_10_1016_j_cma_2020_113600
crossref_primary_10_1016_j_cpc_2023_108763
crossref_primary_10_1090_mcom_3916
crossref_primary_10_1016_j_cam_2020_112846
crossref_primary_10_1016_j_jcp_2020_109782
crossref_primary_10_1016_j_jcp_2022_111695
crossref_primary_10_1016_j_jcpx_2019_100031
crossref_primary_10_1002_zamm_202000308
crossref_primary_10_1007_s10444_020_09835_6
crossref_primary_10_1016_j_cam_2023_115319
crossref_primary_10_1016_j_camwa_2023_06_004
crossref_primary_10_3934_math_2021505
crossref_primary_10_1007_s11425_022_2096_x
crossref_primary_10_1016_j_cnsns_2024_108102
crossref_primary_10_1051_m2an_2022064
crossref_primary_10_1007_s40314_023_02280_3
crossref_primary_10_1016_j_cma_2023_116709
crossref_primary_10_1016_j_cpc_2022_108558
crossref_primary_10_1051_m2an_2021056
crossref_primary_10_1007_s10915_021_01487_y
crossref_primary_10_1016_j_jcp_2022_111444
crossref_primary_10_1016_j_cma_2022_114963
crossref_primary_10_1002_num_22841
crossref_primary_10_1007_s00021_017_0334_5
crossref_primary_10_1093_imanum_draa056
crossref_primary_10_12677_AAM_2020_99164
crossref_primary_10_1016_j_cma_2021_114186
crossref_primary_10_1016_j_camwa_2024_06_018
crossref_primary_10_1016_j_cam_2024_115981
crossref_primary_10_1088_1361_6544_aad52a
crossref_primary_10_1016_j_cam_2021_113788
crossref_primary_10_1007_s41980_019_00342_z
crossref_primary_10_1016_j_apnum_2023_11_012
crossref_primary_10_1016_j_cma_2020_113589
crossref_primary_10_1016_j_jcp_2021_110727
crossref_primary_10_1016_j_apnum_2021_08_012
crossref_primary_10_1016_j_amc_2021_126488
crossref_primary_10_1016_j_cam_2018_05_039
crossref_primary_10_1007_s00211_020_01112_4
crossref_primary_10_1007_s00366_022_01618_5
Cites_doi 10.1016/j.anihpc.2012.06.003
10.1137/1.9780898718904
10.1007/s10915-011-9559-2
10.1016/j.jcp.2009.04.020
10.3934/dcds.2010.28.405
10.1137/080738143
10.4208/cicp.171211.130412a
10.1137/110822839
10.1137/120880677
10.1002/num.20189
10.1016/j.cam.2007.04.030
10.1090/S0025-5718-1992-1122067-1
10.1007/s10915-009-9309-x
10.1137/0727022
10.1137/110827119
10.1007/BF01396363
10.1137/090752675
10.1137/0719018
10.1007/s10915-013-9774-0
10.1093/imamat/38.2.97
10.1016/j.jcp.2013.04.024
10.1137/0728069
10.1137/080726768
10.1007/s00211-014-0608-2
10.1090/S0025-5718-07-01985-0
10.1016/j.jcp.2014.08.001
10.1051/m2an/2009015
10.1051/m2an:1999129
10.1137/130950628
10.1007/978-0-387-75934-0
10.3934/dcds.2010.28.1669
10.1007/s10915-010-9363-4
10.1007/s00211-009-0213-y
10.1090/mcom3052
10.4310/MAA.2010.v17.n2.a4
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s00211-016-0813-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 709
ExternalDocumentID 10_1007_s00211_016_0813_2
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c382t-7e2b6e0c98765070fa71eb98e7c9e09cef714ad09faf647810d4da248ec13303
IEDL.DBID U2A
ISSN 0029-599X
IngestDate Fri Jul 25 11:11:56 EDT 2025
Tue Jul 01 00:36:49 EDT 2025
Thu Apr 24 23:09:37 EDT 2025
Fri Feb 21 02:33:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 65K10
65M60
35K35
65M12
35K55
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-7e2b6e0c98765070fa71eb98e7c9e09cef714ad09faf647810d4da248ec13303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880778919
PQPubID 2043616
PageCount 31
ParticipantIDs proquest_journals_1880778919
crossref_citationtrail_10_1007_s00211_016_0813_2
crossref_primary_10_1007_s00211_016_0813_2
springer_journals_10_1007_s00211_016_0813_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Khiari, Achouri, Ben Mohamed, Omrani (CR29) 2007; 23
Guzmán, Leykekhman, Rossmann, Schatz (CR23) 2009; 112
Shen, Wang, Wang, Wise (CR31) 2012; 50
Elliott, French, Milner (CR16) 1989; 54
Baňas, Nürnberg (CR2) 2009; 43
Wang, Wise (CR35) 2011; 49
Feng, Wise (CR19) 2012; 50
Baskaran, Lowengrub, Wang, Wise (CR5) 2013; 51
Chen, Conde, Wang, Wang, Wise (CR8) 2012; 52
Wang, Wise (CR34) 2010; 17
Wise, Wang, Lowengrub (CR39) 2009; 47
Kay, Styles, Süli (CR28) 2009; 47
Collins, Shen, Wise (CR12) 2013; 13
Feng, Wu (CR20) 2008; 26
Guan, Wang, Wise (CR22) 2014; 128
Chen, Wang, Wang, Wise (CR10) 2014; 59
Du, Nicolaides (CR14) 1991; 28
Wang, Zhang (CR37) 2013; 30
Brenner, Scott (CR6) 2008
Heywood, Rannacher (CR26) 1990; 27
Wang, Wang, Wise (CR33) 2010; 28
Shen, Yang (CR32) 2010; 28
CR9
Heywood, Rannacher (CR25) 1982; 19
Barrett, Blowey (CR3) 1999; 33
Layton (CR30) 2008
He (CR24) 2009; 41
Hu, Wise, Wang, Lowengrub (CR27) 2009; 228
Wise (CR38) 2010; 44
Elliott, French (CR15) 1987; 38
Chen, Huang (CR7) 1975
Wang, Wu (CR36) 2011; 78
Guan, Lowengrub, Wang, Wise (CR21) 2014; 277
Elliott, Larsson (CR17) 1992; 58
Baňas, Nürnberg (CR1) 2008; 218
Ciarlet (CR11) 1978
Baskaran, Hu, Lowengrub, Wang, Wise, Zhou (CR4) 2013; 250
Diegel, Feng, Wise (CR13) 2015; 53
Feng, Karakashian (CR18) 2007; 76
W Layton (813_CR30) 2008
J Shen (813_CR31) 2012; 50
J Guzmán (813_CR23) 2009; 112
SC Brenner (813_CR6) 2008
X Feng (813_CR18) 2007; 76
Z Guan (813_CR21) 2014; 277
CM Elliott (813_CR17) 1992; 58
PG Ciarlet (813_CR11) 1978
JG Heywood (813_CR26) 1990; 27
A Baskaran (813_CR4) 2013; 250
JG Heywood (813_CR25) 1982; 19
CM Chen (813_CR7) 1975
C Wang (813_CR35) 2011; 49
L Baňas (813_CR1) 2008; 218
JW Barrett (813_CR3) 1999; 33
SM Wise (813_CR38) 2010; 44
L He (813_CR24) 2009; 41
Z Guan (813_CR22) 2014; 128
J Shen (813_CR32) 2010; 28
X Feng (813_CR20) 2008; 26
CM Elliott (813_CR16) 1989; 54
A Diegel (813_CR13) 2015; 53
A Baskaran (813_CR5) 2013; 51
D Kay (813_CR28) 2009; 47
C Wang (813_CR34) 2010; 17
Z Hu (813_CR27) 2009; 228
813_CR9
CM Elliott (813_CR15) 1987; 38
W Chen (813_CR10) 2014; 59
C Wang (813_CR33) 2010; 28
L Baňas (813_CR2) 2009; 43
N Khiari (813_CR29) 2007; 23
X Wang (813_CR37) 2013; 30
C Collins (813_CR12) 2013; 13
X Wang (813_CR36) 2011; 78
X Feng (813_CR19) 2012; 50
W Chen (813_CR8) 2012; 52
Q Du (813_CR14) 1991; 28
SM Wise (813_CR39) 2009; 47
References_xml – volume: 30
  start-page: 367
  issue: 3
  year: 2013
  end-page: 384
  ident: CR37
  article-title: Well-posedness of the Hele–Shaw–Cahn–Hilliard system
  publication-title: Ann. I. H. Poincaré CAN.
  doi: 10.1016/j.anihpc.2012.06.003
– year: 2008
  ident: CR30
  publication-title: Introduction to the Numerical Analysis of Incompressible Viscous Flows
  doi: 10.1137/1.9780898718904
– volume: 52
  start-page: 546
  year: 2012
  end-page: 562
  ident: CR8
  article-title: A linear energy stable scheme for a thin film model without slope selection
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-011-9559-2
– volume: 228
  start-page: 5323
  year: 2009
  end-page: 5339
  ident: CR27
  article-title: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.04.020
– volume: 28
  start-page: 405
  year: 2010
  end-page: 423
  ident: CR33
  article-title: Unconditionally stable schemes for equations of thin film epitaxy
  publication-title: Discrete Contin. Dyn. Syst. A
  doi: 10.3934/dcds.2010.28.405
– volume: 47
  start-page: 2269
  year: 2009
  end-page: 2288
  ident: CR39
  article-title: An energy stable and convergent finite-difference scheme for the phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080738143
– volume: 13
  start-page: 929
  year: 2013
  end-page: 957
  ident: CR12
  article-title: Unconditionally stable finite difference multigrid schemes for the Cahn–Hilliard–Brinkman equation
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.171211.130412a
– volume: 50
  start-page: 105
  year: 2012
  end-page: 125
  ident: CR31
  article-title: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110822839
– volume: 17
  start-page: 191
  year: 2010
  end-page: 212
  ident: CR34
  article-title: Global smooth solutions of the modified phase field crystal equation
  publication-title: Methods Appl. Anal.
– volume: 51
  start-page: 2851
  year: 2013
  end-page: 2873
  ident: CR5
  article-title: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120880677
– year: 1978
  ident: CR11
  publication-title: Finite Element Method for Elliptic Problems
– volume: 23
  start-page: 437
  issue: 2
  year: 2007
  end-page: 455
  ident: CR29
  article-title: Finite difference approximate solutions for the Cahn–Hilliard equation
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20189
– volume: 218
  start-page: 2
  issue: 1
  year: 2008
  end-page: 11
  ident: CR1
  article-title: Adaptive finite element methods for the Cahn–Hilliard equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2007.04.030
– volume: 58
  start-page: 603
  year: 1992
  end-page: 630
  ident: CR17
  article-title: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1992-1122067-1
– volume: 41
  start-page: 461
  issue: 3
  year: 2009
  end-page: 482
  ident: CR24
  article-title: Error estimation of a class of stable spectral approximation to the Cahn–Hilliard equation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-009-9309-x
– volume: 27
  start-page: 353
  year: 1990
  end-page: 384
  ident: CR26
  article-title: Finite element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for the second-order time discretization
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0727022
– volume: 50
  start-page: 1320
  year: 2012
  end-page: 1343
  ident: CR19
  article-title: Analysis of a Darcy–Cahn–Hilliard diffuse interface model for the Hele–Shaw flow and its fully discrete finite element approximation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110827119
– volume: 54
  start-page: 575
  year: 1989
  end-page: 590
  ident: CR16
  article-title: A second-order splitting method for the Cahn–Hilliard equation
  publication-title: Numer. Math.
  doi: 10.1007/BF01396363
– volume: 49
  start-page: 945
  year: 2011
  end-page: 969
  ident: CR35
  article-title: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/090752675
– volume: 19
  start-page: 275
  year: 1982
  end-page: 311
  ident: CR25
  article-title: Finite element approximation of the nonstationary Navier–Stokes problem. I. regularity of solutions and second-order error estimates for spatial discretization
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0719018
– volume: 59
  start-page: 574
  issue: 3
  year: 2014
  end-page: 601
  ident: CR10
  article-title: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9774-0
– volume: 38
  start-page: 97
  year: 1987
  end-page: 128
  ident: CR15
  article-title: Numerical studies of the Cahn–Hilliard equation for phase separation
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/38.2.97
– volume: 250
  start-page: 270
  year: 2013
  end-page: 292
  ident: CR4
  article-title: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.04.024
– volume: 26
  start-page: 767
  year: 2008
  end-page: 796
  ident: CR20
  article-title: A posteriori error estimates for finite element approximations of the Cahn–Hilliard equation and the Hele–Shaw flow
  publication-title: J. Comput. Math.
– volume: 28
  start-page: 1310
  year: 1991
  end-page: 1322
  ident: CR14
  article-title: Numerical analysis of a continuum model of a phase transition
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0728069
– volume: 47
  start-page: 2660
  year: 2009
  end-page: 2685
  ident: CR28
  article-title: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation with convection
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080726768
– volume: 128
  start-page: 377
  year: 2014
  end-page: 406
  ident: CR22
  article-title: A convergent convex splitting scheme for the periodic nonlocal Cahn–Hilliard equation
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0608-2
– volume: 76
  start-page: 1093
  year: 2007
  end-page: 1117
  ident: CR18
  article-title: Fully discrete dynamic dynamic mesh discontinuous Galerkin methods for the Cahn–Hilliard equation of phase transition
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-07-01985-0
– ident: CR9
– volume: 277
  start-page: 48
  year: 2014
  end-page: 71
  ident: CR21
  article-title: Second-order convex splitting schemes for nonlocal Cahn–Hilliard and Allen–Cahn equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.001
– volume: 43
  start-page: 1003
  issue: 5
  year: 2009
  end-page: 1026
  ident: CR2
  article-title: A posteriori estimates for the Cahn Hilliard equation with obstacle
  publication-title: M2AN Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2009015
– volume: 33
  start-page: 971
  issue: 5
  year: 1999
  end-page: 987
  ident: CR3
  article-title: An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. M2AN
  publication-title: Math. Model. Numer. Anal.
  doi: 10.1051/m2an:1999129
– volume: 53
  start-page: 127
  year: 2015
  end-page: 152
  ident: CR13
  article-title: Convergence analysis of an unconditionally stable method for a Cahn–Hilliard–Stokes system of equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130950628
– year: 2008
  ident: CR6
  publication-title: The Mathematical Theory of Finite Element Methods
  doi: 10.1007/978-0-387-75934-0
– volume: 28
  start-page: 1669
  year: 2010
  end-page: 1691
  ident: CR32
  article-title: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations
  publication-title: Discrete Contin. Dyn. Syst. A
  doi: 10.3934/dcds.2010.28.1669
– volume: 44
  start-page: 38
  year: 2010
  end-page: 68
  ident: CR38
  article-title: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9363-4
– year: 1975
  ident: CR7
  publication-title: High Accuracy Theory in Finite Element Methods, (in Chinese)
– volume: 78
  start-page: 217
  issue: 4
  year: 2011
  end-page: 245
  ident: CR36
  article-title: Long-time behavior for the Hele–Shaw–Cahn–Hilliard system
  publication-title: Asympt. Anal.
– volume: 112
  start-page: 221
  year: 2009
  end-page: 243
  ident: CR23
  article-title: Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods
  publication-title: Numer. Math.
  doi: 10.1007/s00211-009-0213-y
– volume: 49
  start-page: 945
  year: 2011
  ident: 813_CR35
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/090752675
– volume-title: High Accuracy Theory in Finite Element Methods, (in Chinese)
  year: 1975
  ident: 813_CR7
– volume: 26
  start-page: 767
  year: 2008
  ident: 813_CR20
  publication-title: J. Comput. Math.
– volume: 47
  start-page: 2660
  year: 2009
  ident: 813_CR28
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080726768
– volume: 50
  start-page: 105
  year: 2012
  ident: 813_CR31
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110822839
– volume: 44
  start-page: 38
  year: 2010
  ident: 813_CR38
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9363-4
– volume: 43
  start-page: 1003
  issue: 5
  year: 2009
  ident: 813_CR2
  publication-title: M2AN Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2009015
– volume: 33
  start-page: 971
  issue: 5
  year: 1999
  ident: 813_CR3
  publication-title: Math. Model. Numer. Anal.
  doi: 10.1051/m2an:1999129
– volume-title: Introduction to the Numerical Analysis of Incompressible Viscous Flows
  year: 2008
  ident: 813_CR30
  doi: 10.1137/1.9780898718904
– volume: 52
  start-page: 546
  year: 2012
  ident: 813_CR8
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-011-9559-2
– volume: 59
  start-page: 574
  issue: 3
  year: 2014
  ident: 813_CR10
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9774-0
– volume: 41
  start-page: 461
  issue: 3
  year: 2009
  ident: 813_CR24
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-009-9309-x
– volume: 128
  start-page: 377
  year: 2014
  ident: 813_CR22
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0608-2
– volume: 13
  start-page: 929
  year: 2013
  ident: 813_CR12
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.171211.130412a
– volume: 53
  start-page: 127
  year: 2015
  ident: 813_CR13
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130950628
– volume: 28
  start-page: 1310
  year: 1991
  ident: 813_CR14
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0728069
– volume-title: The Mathematical Theory of Finite Element Methods
  year: 2008
  ident: 813_CR6
  doi: 10.1007/978-0-387-75934-0
– volume-title: Finite Element Method for Elliptic Problems
  year: 1978
  ident: 813_CR11
– volume: 28
  start-page: 1669
  year: 2010
  ident: 813_CR32
  publication-title: Discrete Contin. Dyn. Syst. A
  doi: 10.3934/dcds.2010.28.1669
– volume: 51
  start-page: 2851
  year: 2013
  ident: 813_CR5
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120880677
– ident: 813_CR9
  doi: 10.1090/mcom3052
– volume: 50
  start-page: 1320
  year: 2012
  ident: 813_CR19
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110827119
– volume: 277
  start-page: 48
  year: 2014
  ident: 813_CR21
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.001
– volume: 17
  start-page: 191
  year: 2010
  ident: 813_CR34
  publication-title: Methods Appl. Anal.
  doi: 10.4310/MAA.2010.v17.n2.a4
– volume: 54
  start-page: 575
  year: 1989
  ident: 813_CR16
  publication-title: Numer. Math.
  doi: 10.1007/BF01396363
– volume: 112
  start-page: 221
  year: 2009
  ident: 813_CR23
  publication-title: Numer. Math.
  doi: 10.1007/s00211-009-0213-y
– volume: 47
  start-page: 2269
  year: 2009
  ident: 813_CR39
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080738143
– volume: 78
  start-page: 217
  issue: 4
  year: 2011
  ident: 813_CR36
  publication-title: Asympt. Anal.
– volume: 28
  start-page: 405
  year: 2010
  ident: 813_CR33
  publication-title: Discrete Contin. Dyn. Syst. A
  doi: 10.3934/dcds.2010.28.405
– volume: 218
  start-page: 2
  issue: 1
  year: 2008
  ident: 813_CR1
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2007.04.030
– volume: 30
  start-page: 367
  issue: 3
  year: 2013
  ident: 813_CR37
  publication-title: Ann. I. H. Poincaré CAN.
  doi: 10.1016/j.anihpc.2012.06.003
– volume: 250
  start-page: 270
  year: 2013
  ident: 813_CR4
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.04.024
– volume: 19
  start-page: 275
  year: 1982
  ident: 813_CR25
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0719018
– volume: 228
  start-page: 5323
  year: 2009
  ident: 813_CR27
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.04.020
– volume: 27
  start-page: 353
  year: 1990
  ident: 813_CR26
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0727022
– volume: 23
  start-page: 437
  issue: 2
  year: 2007
  ident: 813_CR29
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20189
– volume: 38
  start-page: 97
  year: 1987
  ident: 813_CR15
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/38.2.97
– volume: 76
  start-page: 1093
  year: 2007
  ident: 813_CR18
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-07-01985-0
– volume: 58
  start-page: 603
  year: 1992
  ident: 813_CR17
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1992-1122067-1
SSID ssj0017641
Score 2.4465072
Snippet We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 679
SubjectTerms Chemical potential
Convergence
Error analysis
Error functions
Finite element method
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Nonlinear analysis
Numerical Analysis
Numerical and Computational Physics
Simulation
Spatial resolution
Theoretical
Title Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system
URI https://link.springer.com/article/10.1007/s00211-016-0813-2
https://www.proquest.com/docview/1880778919
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kvejBR1WsVsnBkxLYzWabzbGU1qLUUwvVy5LNAwu6lW0Fj_4H_6G_xGRfPlDB0y7sJIeZZB47M98AnGpiEpduw9Q3EaZKShxxajANhEML0zYScs3J4-vuaEovZ-Gs7ONeVtXuVUoy19R1s5szRy70tRFw5AfY6t1m6EJ3e4inpFenDliX-lVdR8j5rEpl_rTFV2P04WF-S4rmtma4DZulk4h6hVR3YE2nLdiqBjCg8j62YGNcg64ud-F2kGWLDIkSZgQtDBLoYf6sFTJz51oiXdSKo2JsNDKOGvXFXfr28jrKf7xkyr1aOvtwU9VRgfS8B5PhYNIf4XJ0ApZBRFaYaZJ0tSe5VXbW4_OMYL5OeKSZtPznUhvmU6E8boTJu009RZUgNNLSBq1esA-NdJHqA0DKcBoKI6xilDSUhDNjQzjhSWbZqAhtg1exMJYlrLibbnEf14DIOddjV0rmuB6TNpzVSx4LTI2_iDuVXOLyei1jByLHWMR93obzSlafPv-22eG_qI9gnTgjnlecdaCxyp70sXVBVskJNHsXN1eDk_zovQOjeNUS
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMDAo4AoFPDABIqUOE5tj1XVKkDbqZUqlsjxQ1SCFKVFYuQ_8A_5JdhJHB4CJKZEysXDOb77Lnf3HQDnCunUpts8HGjqYSmERxnWHg65ZQtTJhKyzcnDUTue4OtpNK36uBeu2t2lJAtLXTe7WXdkQ18TAdMg9IzdXTNYgNo6rgnq1KkD0saBq-uIGJu6VOZPS3x1Rh8I81tStPA1_R2wVYFE2Cl3dResqKwBtt0ABlidxwbYHNakq4s9cNvL83kOeUUzAucacvgwe1YS6pmFllCVteKwHBsNtZWGXX6Xvb28xsWPl1zaWyNnLnaqOiyZnvfBuN8bd2OvGp3giZCipUcUStvKF8wYO4P4fM1JoFJGFRFG_0woTQLMpc8010W3qS-x5AhTJUzQ6ocHYDWbZ-oQQKkZjrjmxjAKHAnEiDYhHPcFMWqUCDeB71SYiIpW3E63uE9qQuRC64ktJbNaT1ATXNSvPJacGn8Jt9y-JNXxWiSWRI4QygLWBJdurz49_m2xo39Jn4H1eDwcJIOr0c0x2EDWoRfVZy2wusyf1ImBI8v0tPj83gEiv9Zx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iIHrwURWrVXPwpITuZrPN5lhqS320eGiheFmyeWBBt2W7gkf_g__QX2KyLx-o4GkXdpLDTDKPnZlvADhVWEc23YaIqwNEpBAoYEQj4nGLFqZMJGSbkwfDVn9Mrib-pJhzuiir3cuUZN7TYFGa4rQ5l7pZNb5Z02TDYBMNB66HjA5eMdrYtcd6jNtVGoG2iFvWePiMTcq05k9bfDVMH97mtwRpZnd6W2CjcBhhO5fwNlhScQ1slsMYYHE3a2B9UAGwLnbAXTdJZgnkBeQInGnI4eP0WUmop9bNhCqvG4f5CGmoLTXs8Pv47eW1n_2ESaR9NXTmYSeswxz1eReMet1Rp4-KMQpIeAFOEVU4ailHMKP4jPfnaE5dFbFAUWFkwYTS1CVcOkxznXWeOpJIjkmghAlgHW8PLMezWO0DKDUjPtfcKElBfIEZ1Sac446gho0SkzpwShaGooAYt5MuHsIKHDnjemjLyizXQ1wHZ9WSeY6v8Rdxo5RLWFy1RWgB5SgNmMvq4LyU1afPv2128C_qE7B6e9ELby6H14dgDVvbnhWiNcBymjypI-OZpNFxdvreAZnQ2q0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+analysis+of+a+mixed+finite+element+method+for+a+Cahn%E2%80%93Hilliard%E2%80%93Hele%E2%80%93Shaw+system&rft.jtitle=Numerische+Mathematik&rft.au=Liu%2C+Yuan&rft.au=Chen%2C+Wenbin&rft.au=Wang%2C+Cheng&rft.au=Wise%2C+Steven+M.&rft.date=2017-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=135&rft.issue=3&rft.spage=679&rft.epage=709&rft_id=info:doi/10.1007%2Fs00211-016-0813-2&rft.externalDocID=10_1007_s00211_016_0813_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon