Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system
We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in Feng and Wise (SIAM J Numer Anal 50:1320–1343, 2012 ), with the weak convergence to...
Saved in:
Published in | Numerische Mathematik Vol. 135; no. 3; pp. 679 - 709 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in Feng and Wise (SIAM J Numer Anal 50:1320–1343,
2012
), with the weak convergence to a weak solution proven. In this article, we provide an optimal rate error analysis. A convex splitting approach is taken in the temporal discretization, which in turn leads to the unique solvability and unconditional energy stability. Instead of the more standard
ℓ
∞
(
0
,
T
;
L
2
)
∩
ℓ
2
(
0
,
T
;
H
2
)
error estimate, we perform a discrete
ℓ
∞
(
0
,
T
;
H
1
)
∩
ℓ
2
(
0
,
T
;
H
3
)
error estimate for the phase variable, through an
L
2
inner product with the numerical error function associated with the chemical potential. As a result, an unconditional convergence (for the time step
τ
in terms of the spatial resolution
h
) is derived. The nonlinear analysis is accomplished with the help of a discrete Gagliardo–Nirenberg type inequality in the finite element space, gotten by introducing a discrete Laplacian
Δ
h
of the numerical solution, such that
Δ
h
ϕ
∈
S
h
, for every
ϕ
∈
S
h
, where
S
h
is the finite element space. |
---|---|
AbstractList | We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in Feng and Wise (SIAM J Numer Anal 50:1320–1343, 2012), with the weak convergence to a weak solution proven. In this article, we provide an optimal rate error analysis. A convex splitting approach is taken in the temporal discretization, which in turn leads to the unique solvability and unconditional energy stability. Instead of the more standard ℓ ∞ ( 0 , T ; L 2 ) ∩ ℓ 2 ( 0 , T ; H 2 ) error estimate, we perform a discrete ℓ ∞ ( 0 , T ; H 1 ) ∩ ℓ 2 ( 0 , T ; H 3 ) error estimate for the phase variable, through an L 2 inner product with the numerical error function associated with the chemical potential. As a result, an unconditional convergence (for the time step τ in terms of the spatial resolution h) is derived. The nonlinear analysis is accomplished with the help of a discrete Gagliardo–Nirenberg type inequality in the finite element space, gotten by introducing a discrete Laplacian Δ h of the numerical solution, such that Δ h ϕ ∈ S h , for every ϕ ∈ S h , where S h is the finite element space. We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in Feng and Wise (SIAM J Numer Anal 50:1320–1343, 2012 ), with the weak convergence to a weak solution proven. In this article, we provide an optimal rate error analysis. A convex splitting approach is taken in the temporal discretization, which in turn leads to the unique solvability and unconditional energy stability. Instead of the more standard ℓ ∞ ( 0 , T ; L 2 ) ∩ ℓ 2 ( 0 , T ; H 2 ) error estimate, we perform a discrete ℓ ∞ ( 0 , T ; H 1 ) ∩ ℓ 2 ( 0 , T ; H 3 ) error estimate for the phase variable, through an L 2 inner product with the numerical error function associated with the chemical potential. As a result, an unconditional convergence (for the time step τ in terms of the spatial resolution h ) is derived. The nonlinear analysis is accomplished with the help of a discrete Gagliardo–Nirenberg type inequality in the finite element space, gotten by introducing a discrete Laplacian Δ h of the numerical solution, such that Δ h ϕ ∈ S h , for every ϕ ∈ S h , where S h is the finite element space. |
Author | Wang, Cheng Liu, Yuan Chen, Wenbin Wise, Steven M. |
Author_xml | – sequence: 1 givenname: Yuan surname: Liu fullname: Liu, Yuan organization: School of Mathematical Sciences, Fudan University – sequence: 2 givenname: Wenbin surname: Chen fullname: Chen, Wenbin organization: School of Mathematical Sciences, Fudan University – sequence: 3 givenname: Cheng surname: Wang fullname: Wang, Cheng organization: Mathematics Department, University of Massachusetts – sequence: 4 givenname: Steven M. surname: Wise fullname: Wise, Steven M. email: swise1@utk.edu organization: Mathematics Department, University of Tennessee |
BookMark | eNp9kM9KAzEQh4NUsK0-gLeA59VJdrtJjlKqFQoe7EG8hHR31qbsn5qkaG--g2_ok5ilHkTQ0wzD9w0zvxEZtF2LhJwzuGQA4soDcMYSYHkCkqUJPyJDUNkkSXk2GcQeuEomSj2ekJH3GwAm8owNydPMuc5R05p6762nXUUNbewblrSyrQ1IscYG20AbDOsuTnuaTs26_Xz_mNu6tsaVfRu5WB7W5pX6vQ_YnJLjytQez77rmCxvZsvpPFnc395NrxdJkUoeEoF8lSMUSop8AgIqIxiulERRKARVYCVYZkpQlanyTEgGZVYankksWJpCOiYXh7Vb173s0Ae96XYu_uM1kxKEkIqpSIkDVbjOe4eVLmwwwXZtcMbWmoHuc9SHHHXMUfc5ah5N9svcOtsYt__X4QfHR7Z9Rvfjpj-lL5ViiYg |
CitedBy_id | crossref_primary_10_1007_s00211_017_0887_5 crossref_primary_10_1007_s10915_023_02163_z crossref_primary_10_1016_j_jcp_2024_113331 crossref_primary_10_1137_22M1486844 crossref_primary_10_1016_j_jcp_2019_109179 crossref_primary_10_1016_j_jcp_2020_109908 crossref_primary_10_1016_j_apnum_2020_06_010 crossref_primary_10_1002_cmm4_1063 crossref_primary_10_1016_j_cam_2021_113875 crossref_primary_10_1016_j_cam_2024_116463 crossref_primary_10_1016_j_cam_2024_116469 crossref_primary_10_1016_j_cnsns_2023_107477 crossref_primary_10_1007_s10915_021_01508_w crossref_primary_10_1007_s10255_023_1066_3 crossref_primary_10_1016_j_apnum_2019_09_014 crossref_primary_10_1002_num_22829 crossref_primary_10_1016_j_cam_2020_112855 crossref_primary_10_1007_s10915_018_0748_0 crossref_primary_10_1016_j_jcp_2021_110253 crossref_primary_10_1016_j_jcp_2021_110451 crossref_primary_10_1016_j_rinam_2024_100534 crossref_primary_10_1007_s10915_020_01276_z crossref_primary_10_1016_j_aml_2023_108574 crossref_primary_10_1016_j_apnum_2022_09_018 crossref_primary_10_1155_2022_7104389 crossref_primary_10_12677_AAM_2023_121037 crossref_primary_10_1360_SSM_20223_0014 crossref_primary_10_1016_j_cma_2022_115195 crossref_primary_10_1016_j_cnsns_2021_105923 crossref_primary_10_1093_imanum_drab046 crossref_primary_10_1002_num_23087 crossref_primary_10_1016_j_cnsns_2022_106433 crossref_primary_10_1016_j_cam_2021_113843 crossref_primary_10_1016_j_jcp_2019_109109 crossref_primary_10_1007_s10915_022_01872_1 crossref_primary_10_1016_j_cam_2022_114474 crossref_primary_10_1016_j_cam_2020_113300 crossref_primary_10_1016_j_jcp_2022_110968 crossref_primary_10_1016_j_cma_2020_113600 crossref_primary_10_1016_j_cpc_2023_108763 crossref_primary_10_1090_mcom_3916 crossref_primary_10_1016_j_cam_2020_112846 crossref_primary_10_1016_j_jcp_2020_109782 crossref_primary_10_1016_j_jcp_2022_111695 crossref_primary_10_1016_j_jcpx_2019_100031 crossref_primary_10_1002_zamm_202000308 crossref_primary_10_1007_s10444_020_09835_6 crossref_primary_10_1016_j_cam_2023_115319 crossref_primary_10_1016_j_camwa_2023_06_004 crossref_primary_10_3934_math_2021505 crossref_primary_10_1007_s11425_022_2096_x crossref_primary_10_1016_j_cnsns_2024_108102 crossref_primary_10_1051_m2an_2022064 crossref_primary_10_1007_s40314_023_02280_3 crossref_primary_10_1016_j_cma_2023_116709 crossref_primary_10_1016_j_cpc_2022_108558 crossref_primary_10_1051_m2an_2021056 crossref_primary_10_1007_s10915_021_01487_y crossref_primary_10_1016_j_jcp_2022_111444 crossref_primary_10_1016_j_cma_2022_114963 crossref_primary_10_1002_num_22841 crossref_primary_10_1007_s00021_017_0334_5 crossref_primary_10_1093_imanum_draa056 crossref_primary_10_12677_AAM_2020_99164 crossref_primary_10_1016_j_cma_2021_114186 crossref_primary_10_1016_j_camwa_2024_06_018 crossref_primary_10_1016_j_cam_2024_115981 crossref_primary_10_1088_1361_6544_aad52a crossref_primary_10_1016_j_cam_2021_113788 crossref_primary_10_1007_s41980_019_00342_z crossref_primary_10_1016_j_apnum_2023_11_012 crossref_primary_10_1016_j_cma_2020_113589 crossref_primary_10_1016_j_jcp_2021_110727 crossref_primary_10_1016_j_apnum_2021_08_012 crossref_primary_10_1016_j_amc_2021_126488 crossref_primary_10_1016_j_cam_2018_05_039 crossref_primary_10_1007_s00211_020_01112_4 crossref_primary_10_1007_s00366_022_01618_5 |
Cites_doi | 10.1016/j.anihpc.2012.06.003 10.1137/1.9780898718904 10.1007/s10915-011-9559-2 10.1016/j.jcp.2009.04.020 10.3934/dcds.2010.28.405 10.1137/080738143 10.4208/cicp.171211.130412a 10.1137/110822839 10.1137/120880677 10.1002/num.20189 10.1016/j.cam.2007.04.030 10.1090/S0025-5718-1992-1122067-1 10.1007/s10915-009-9309-x 10.1137/0727022 10.1137/110827119 10.1007/BF01396363 10.1137/090752675 10.1137/0719018 10.1007/s10915-013-9774-0 10.1093/imamat/38.2.97 10.1016/j.jcp.2013.04.024 10.1137/0728069 10.1137/080726768 10.1007/s00211-014-0608-2 10.1090/S0025-5718-07-01985-0 10.1016/j.jcp.2014.08.001 10.1051/m2an/2009015 10.1051/m2an:1999129 10.1137/130950628 10.1007/978-0-387-75934-0 10.3934/dcds.2010.28.1669 10.1007/s10915-010-9363-4 10.1007/s00211-009-0213-y 10.1090/mcom3052 10.4310/MAA.2010.v17.n2.a4 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00211-016-0813-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 0945-3245 |
EndPage | 709 |
ExternalDocumentID | 10_1007_s00211_016_0813_2 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YLTOR YNT YQT Z45 Z5O Z7R Z7X Z83 Z86 Z88 Z8M Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c382t-7e2b6e0c98765070fa71eb98e7c9e09cef714ad09faf647810d4da248ec13303 |
IEDL.DBID | U2A |
ISSN | 0029-599X |
IngestDate | Fri Jul 25 11:11:56 EDT 2025 Tue Jul 01 00:36:49 EDT 2025 Thu Apr 24 23:09:37 EDT 2025 Fri Feb 21 02:33:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 65K10 65M60 35K35 65M12 35K55 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-7e2b6e0c98765070fa71eb98e7c9e09cef714ad09faf647810d4da248ec13303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1880778919 |
PQPubID | 2043616 |
PageCount | 31 |
ParticipantIDs | proquest_journals_1880778919 crossref_citationtrail_10_1007_s00211_016_0813_2 crossref_primary_10_1007_s00211_016_0813_2 springer_journals_10_1007_s00211_016_0813_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Numerische Mathematik |
PublicationTitleAbbrev | Numer. Math |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Khiari, Achouri, Ben Mohamed, Omrani (CR29) 2007; 23 Guzmán, Leykekhman, Rossmann, Schatz (CR23) 2009; 112 Shen, Wang, Wang, Wise (CR31) 2012; 50 Elliott, French, Milner (CR16) 1989; 54 Baňas, Nürnberg (CR2) 2009; 43 Wang, Wise (CR35) 2011; 49 Feng, Wise (CR19) 2012; 50 Baskaran, Lowengrub, Wang, Wise (CR5) 2013; 51 Chen, Conde, Wang, Wang, Wise (CR8) 2012; 52 Wang, Wise (CR34) 2010; 17 Wise, Wang, Lowengrub (CR39) 2009; 47 Kay, Styles, Süli (CR28) 2009; 47 Collins, Shen, Wise (CR12) 2013; 13 Feng, Wu (CR20) 2008; 26 Guan, Wang, Wise (CR22) 2014; 128 Chen, Wang, Wang, Wise (CR10) 2014; 59 Du, Nicolaides (CR14) 1991; 28 Wang, Zhang (CR37) 2013; 30 Brenner, Scott (CR6) 2008 Heywood, Rannacher (CR26) 1990; 27 Wang, Wang, Wise (CR33) 2010; 28 Shen, Yang (CR32) 2010; 28 CR9 Heywood, Rannacher (CR25) 1982; 19 Barrett, Blowey (CR3) 1999; 33 Layton (CR30) 2008 He (CR24) 2009; 41 Hu, Wise, Wang, Lowengrub (CR27) 2009; 228 Wise (CR38) 2010; 44 Elliott, French (CR15) 1987; 38 Chen, Huang (CR7) 1975 Wang, Wu (CR36) 2011; 78 Guan, Lowengrub, Wang, Wise (CR21) 2014; 277 Elliott, Larsson (CR17) 1992; 58 Baňas, Nürnberg (CR1) 2008; 218 Ciarlet (CR11) 1978 Baskaran, Hu, Lowengrub, Wang, Wise, Zhou (CR4) 2013; 250 Diegel, Feng, Wise (CR13) 2015; 53 Feng, Karakashian (CR18) 2007; 76 W Layton (813_CR30) 2008 J Shen (813_CR31) 2012; 50 J Guzmán (813_CR23) 2009; 112 SC Brenner (813_CR6) 2008 X Feng (813_CR18) 2007; 76 Z Guan (813_CR21) 2014; 277 CM Elliott (813_CR17) 1992; 58 PG Ciarlet (813_CR11) 1978 JG Heywood (813_CR26) 1990; 27 A Baskaran (813_CR4) 2013; 250 JG Heywood (813_CR25) 1982; 19 CM Chen (813_CR7) 1975 C Wang (813_CR35) 2011; 49 L Baňas (813_CR1) 2008; 218 JW Barrett (813_CR3) 1999; 33 SM Wise (813_CR38) 2010; 44 L He (813_CR24) 2009; 41 Z Guan (813_CR22) 2014; 128 J Shen (813_CR32) 2010; 28 X Feng (813_CR20) 2008; 26 CM Elliott (813_CR16) 1989; 54 A Diegel (813_CR13) 2015; 53 A Baskaran (813_CR5) 2013; 51 D Kay (813_CR28) 2009; 47 C Wang (813_CR34) 2010; 17 Z Hu (813_CR27) 2009; 228 813_CR9 CM Elliott (813_CR15) 1987; 38 W Chen (813_CR10) 2014; 59 C Wang (813_CR33) 2010; 28 L Baňas (813_CR2) 2009; 43 N Khiari (813_CR29) 2007; 23 X Wang (813_CR37) 2013; 30 C Collins (813_CR12) 2013; 13 X Wang (813_CR36) 2011; 78 X Feng (813_CR19) 2012; 50 W Chen (813_CR8) 2012; 52 Q Du (813_CR14) 1991; 28 SM Wise (813_CR39) 2009; 47 |
References_xml | – volume: 30 start-page: 367 issue: 3 year: 2013 end-page: 384 ident: CR37 article-title: Well-posedness of the Hele–Shaw–Cahn–Hilliard system publication-title: Ann. I. H. Poincaré CAN. doi: 10.1016/j.anihpc.2012.06.003 – year: 2008 ident: CR30 publication-title: Introduction to the Numerical Analysis of Incompressible Viscous Flows doi: 10.1137/1.9780898718904 – volume: 52 start-page: 546 year: 2012 end-page: 562 ident: CR8 article-title: A linear energy stable scheme for a thin film model without slope selection publication-title: J. Sci. Comput. doi: 10.1007/s10915-011-9559-2 – volume: 228 start-page: 5323 year: 2009 end-page: 5339 ident: CR27 article-title: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.04.020 – volume: 28 start-page: 405 year: 2010 end-page: 423 ident: CR33 article-title: Unconditionally stable schemes for equations of thin film epitaxy publication-title: Discrete Contin. Dyn. Syst. A doi: 10.3934/dcds.2010.28.405 – volume: 47 start-page: 2269 year: 2009 end-page: 2288 ident: CR39 article-title: An energy stable and convergent finite-difference scheme for the phase field crystal equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/080738143 – volume: 13 start-page: 929 year: 2013 end-page: 957 ident: CR12 article-title: Unconditionally stable finite difference multigrid schemes for the Cahn–Hilliard–Brinkman equation publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.171211.130412a – volume: 50 start-page: 105 year: 2012 end-page: 125 ident: CR31 article-title: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy publication-title: SIAM J. Numer. Anal. doi: 10.1137/110822839 – volume: 17 start-page: 191 year: 2010 end-page: 212 ident: CR34 article-title: Global smooth solutions of the modified phase field crystal equation publication-title: Methods Appl. Anal. – volume: 51 start-page: 2851 year: 2013 end-page: 2873 ident: CR5 article-title: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/120880677 – year: 1978 ident: CR11 publication-title: Finite Element Method for Elliptic Problems – volume: 23 start-page: 437 issue: 2 year: 2007 end-page: 455 ident: CR29 article-title: Finite difference approximate solutions for the Cahn–Hilliard equation publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20189 – volume: 218 start-page: 2 issue: 1 year: 2008 end-page: 11 ident: CR1 article-title: Adaptive finite element methods for the Cahn–Hilliard equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.04.030 – volume: 58 start-page: 603 year: 1992 end-page: 630 ident: CR17 article-title: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation publication-title: Math. Comput. doi: 10.1090/S0025-5718-1992-1122067-1 – volume: 41 start-page: 461 issue: 3 year: 2009 end-page: 482 ident: CR24 article-title: Error estimation of a class of stable spectral approximation to the Cahn–Hilliard equation publication-title: J. Sci. Comput. doi: 10.1007/s10915-009-9309-x – volume: 27 start-page: 353 year: 1990 end-page: 384 ident: CR26 article-title: Finite element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for the second-order time discretization publication-title: SIAM J. Numer. Anal. doi: 10.1137/0727022 – volume: 50 start-page: 1320 year: 2012 end-page: 1343 ident: CR19 article-title: Analysis of a Darcy–Cahn–Hilliard diffuse interface model for the Hele–Shaw flow and its fully discrete finite element approximation publication-title: SIAM J. Numer. Anal. doi: 10.1137/110827119 – volume: 54 start-page: 575 year: 1989 end-page: 590 ident: CR16 article-title: A second-order splitting method for the Cahn–Hilliard equation publication-title: Numer. Math. doi: 10.1007/BF01396363 – volume: 49 start-page: 945 year: 2011 end-page: 969 ident: CR35 article-title: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/090752675 – volume: 19 start-page: 275 year: 1982 end-page: 311 ident: CR25 article-title: Finite element approximation of the nonstationary Navier–Stokes problem. I. regularity of solutions and second-order error estimates for spatial discretization publication-title: SIAM J. Numer. Anal. doi: 10.1137/0719018 – volume: 59 start-page: 574 issue: 3 year: 2014 end-page: 601 ident: CR10 article-title: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection publication-title: J. Sci. Comput. doi: 10.1007/s10915-013-9774-0 – volume: 38 start-page: 97 year: 1987 end-page: 128 ident: CR15 article-title: Numerical studies of the Cahn–Hilliard equation for phase separation publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/38.2.97 – volume: 250 start-page: 270 year: 2013 end-page: 292 ident: CR4 article-title: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.04.024 – volume: 26 start-page: 767 year: 2008 end-page: 796 ident: CR20 article-title: A posteriori error estimates for finite element approximations of the Cahn–Hilliard equation and the Hele–Shaw flow publication-title: J. Comput. Math. – volume: 28 start-page: 1310 year: 1991 end-page: 1322 ident: CR14 article-title: Numerical analysis of a continuum model of a phase transition publication-title: SIAM J. Numer. Anal. doi: 10.1137/0728069 – volume: 47 start-page: 2660 year: 2009 end-page: 2685 ident: CR28 article-title: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation with convection publication-title: SIAM J. Numer. Anal. doi: 10.1137/080726768 – volume: 128 start-page: 377 year: 2014 end-page: 406 ident: CR22 article-title: A convergent convex splitting scheme for the periodic nonlocal Cahn–Hilliard equation publication-title: Numer. Math. doi: 10.1007/s00211-014-0608-2 – volume: 76 start-page: 1093 year: 2007 end-page: 1117 ident: CR18 article-title: Fully discrete dynamic dynamic mesh discontinuous Galerkin methods for the Cahn–Hilliard equation of phase transition publication-title: Math. Comput. doi: 10.1090/S0025-5718-07-01985-0 – ident: CR9 – volume: 277 start-page: 48 year: 2014 end-page: 71 ident: CR21 article-title: Second-order convex splitting schemes for nonlocal Cahn–Hilliard and Allen–Cahn equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.001 – volume: 43 start-page: 1003 issue: 5 year: 2009 end-page: 1026 ident: CR2 article-title: A posteriori estimates for the Cahn Hilliard equation with obstacle publication-title: M2AN Math. Model. Numer. Anal. doi: 10.1051/m2an/2009015 – volume: 33 start-page: 971 issue: 5 year: 1999 end-page: 987 ident: CR3 article-title: An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. M2AN publication-title: Math. Model. Numer. Anal. doi: 10.1051/m2an:1999129 – volume: 53 start-page: 127 year: 2015 end-page: 152 ident: CR13 article-title: Convergence analysis of an unconditionally stable method for a Cahn–Hilliard–Stokes system of equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/130950628 – year: 2008 ident: CR6 publication-title: The Mathematical Theory of Finite Element Methods doi: 10.1007/978-0-387-75934-0 – volume: 28 start-page: 1669 year: 2010 end-page: 1691 ident: CR32 article-title: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations publication-title: Discrete Contin. Dyn. Syst. A doi: 10.3934/dcds.2010.28.1669 – volume: 44 start-page: 38 year: 2010 end-page: 68 ident: CR38 article-title: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9363-4 – year: 1975 ident: CR7 publication-title: High Accuracy Theory in Finite Element Methods, (in Chinese) – volume: 78 start-page: 217 issue: 4 year: 2011 end-page: 245 ident: CR36 article-title: Long-time behavior for the Hele–Shaw–Cahn–Hilliard system publication-title: Asympt. Anal. – volume: 112 start-page: 221 year: 2009 end-page: 243 ident: CR23 article-title: Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods publication-title: Numer. Math. doi: 10.1007/s00211-009-0213-y – volume: 49 start-page: 945 year: 2011 ident: 813_CR35 publication-title: SIAM J. Numer. Anal. doi: 10.1137/090752675 – volume-title: High Accuracy Theory in Finite Element Methods, (in Chinese) year: 1975 ident: 813_CR7 – volume: 26 start-page: 767 year: 2008 ident: 813_CR20 publication-title: J. Comput. Math. – volume: 47 start-page: 2660 year: 2009 ident: 813_CR28 publication-title: SIAM J. Numer. Anal. doi: 10.1137/080726768 – volume: 50 start-page: 105 year: 2012 ident: 813_CR31 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110822839 – volume: 44 start-page: 38 year: 2010 ident: 813_CR38 publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9363-4 – volume: 43 start-page: 1003 issue: 5 year: 2009 ident: 813_CR2 publication-title: M2AN Math. Model. Numer. Anal. doi: 10.1051/m2an/2009015 – volume: 33 start-page: 971 issue: 5 year: 1999 ident: 813_CR3 publication-title: Math. Model. Numer. Anal. doi: 10.1051/m2an:1999129 – volume-title: Introduction to the Numerical Analysis of Incompressible Viscous Flows year: 2008 ident: 813_CR30 doi: 10.1137/1.9780898718904 – volume: 52 start-page: 546 year: 2012 ident: 813_CR8 publication-title: J. Sci. Comput. doi: 10.1007/s10915-011-9559-2 – volume: 59 start-page: 574 issue: 3 year: 2014 ident: 813_CR10 publication-title: J. Sci. Comput. doi: 10.1007/s10915-013-9774-0 – volume: 41 start-page: 461 issue: 3 year: 2009 ident: 813_CR24 publication-title: J. Sci. Comput. doi: 10.1007/s10915-009-9309-x – volume: 128 start-page: 377 year: 2014 ident: 813_CR22 publication-title: Numer. Math. doi: 10.1007/s00211-014-0608-2 – volume: 13 start-page: 929 year: 2013 ident: 813_CR12 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.171211.130412a – volume: 53 start-page: 127 year: 2015 ident: 813_CR13 publication-title: SIAM J. Numer. Anal. doi: 10.1137/130950628 – volume: 28 start-page: 1310 year: 1991 ident: 813_CR14 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0728069 – volume-title: The Mathematical Theory of Finite Element Methods year: 2008 ident: 813_CR6 doi: 10.1007/978-0-387-75934-0 – volume-title: Finite Element Method for Elliptic Problems year: 1978 ident: 813_CR11 – volume: 28 start-page: 1669 year: 2010 ident: 813_CR32 publication-title: Discrete Contin. Dyn. Syst. A doi: 10.3934/dcds.2010.28.1669 – volume: 51 start-page: 2851 year: 2013 ident: 813_CR5 publication-title: SIAM J. Numer. Anal. doi: 10.1137/120880677 – ident: 813_CR9 doi: 10.1090/mcom3052 – volume: 50 start-page: 1320 year: 2012 ident: 813_CR19 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110827119 – volume: 277 start-page: 48 year: 2014 ident: 813_CR21 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.001 – volume: 17 start-page: 191 year: 2010 ident: 813_CR34 publication-title: Methods Appl. Anal. doi: 10.4310/MAA.2010.v17.n2.a4 – volume: 54 start-page: 575 year: 1989 ident: 813_CR16 publication-title: Numer. Math. doi: 10.1007/BF01396363 – volume: 112 start-page: 221 year: 2009 ident: 813_CR23 publication-title: Numer. Math. doi: 10.1007/s00211-009-0213-y – volume: 47 start-page: 2269 year: 2009 ident: 813_CR39 publication-title: SIAM J. Numer. Anal. doi: 10.1137/080738143 – volume: 78 start-page: 217 issue: 4 year: 2011 ident: 813_CR36 publication-title: Asympt. Anal. – volume: 28 start-page: 405 year: 2010 ident: 813_CR33 publication-title: Discrete Contin. Dyn. Syst. A doi: 10.3934/dcds.2010.28.405 – volume: 218 start-page: 2 issue: 1 year: 2008 ident: 813_CR1 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.04.030 – volume: 30 start-page: 367 issue: 3 year: 2013 ident: 813_CR37 publication-title: Ann. I. H. Poincaré CAN. doi: 10.1016/j.anihpc.2012.06.003 – volume: 250 start-page: 270 year: 2013 ident: 813_CR4 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.04.024 – volume: 19 start-page: 275 year: 1982 ident: 813_CR25 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0719018 – volume: 228 start-page: 5323 year: 2009 ident: 813_CR27 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.04.020 – volume: 27 start-page: 353 year: 1990 ident: 813_CR26 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0727022 – volume: 23 start-page: 437 issue: 2 year: 2007 ident: 813_CR29 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20189 – volume: 38 start-page: 97 year: 1987 ident: 813_CR15 publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/38.2.97 – volume: 76 start-page: 1093 year: 2007 ident: 813_CR18 publication-title: Math. Comput. doi: 10.1090/S0025-5718-07-01985-0 – volume: 58 start-page: 603 year: 1992 ident: 813_CR17 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1992-1122067-1 |
SSID | ssj0017641 |
Score | 2.4465072 |
Snippet | We present and analyze a mixed finite element numerical scheme for the Cahn–Hilliard–Hele–Shaw equation, a modified Cahn–Hilliard equation coupled with the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 679 |
SubjectTerms | Chemical potential Convergence Error analysis Error functions Finite element method Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Nonlinear analysis Numerical Analysis Numerical and Computational Physics Simulation Spatial resolution Theoretical |
Title | Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system |
URI | https://link.springer.com/article/10.1007/s00211-016-0813-2 https://www.proquest.com/docview/1880778919 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kvejBR1WsVsnBkxLYzWabzbGU1qLUUwvVy5LNAwu6lW0Fj_4H_6G_xGRfPlDB0y7sJIeZZB47M98AnGpiEpduw9Q3EaZKShxxajANhEML0zYScs3J4-vuaEovZ-Gs7ONeVtXuVUoy19R1s5szRy70tRFw5AfY6t1m6EJ3e4inpFenDliX-lVdR8j5rEpl_rTFV2P04WF-S4rmtma4DZulk4h6hVR3YE2nLdiqBjCg8j62YGNcg64ud-F2kGWLDIkSZgQtDBLoYf6sFTJz51oiXdSKo2JsNDKOGvXFXfr28jrKf7xkyr1aOvtwU9VRgfS8B5PhYNIf4XJ0ApZBRFaYaZJ0tSe5VXbW4_OMYL5OeKSZtPznUhvmU6E8boTJu009RZUgNNLSBq1esA-NdJHqA0DKcBoKI6xilDSUhDNjQzjhSWbZqAhtg1exMJYlrLibbnEf14DIOddjV0rmuB6TNpzVSx4LTI2_iDuVXOLyei1jByLHWMR93obzSlafPv-22eG_qI9gnTgjnlecdaCxyp70sXVBVskJNHsXN1eDk_zovQOjeNUS |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMDAo4AoFPDABIqUOE5tj1XVKkDbqZUqlsjxQ1SCFKVFYuQ_8A_5JdhJHB4CJKZEysXDOb77Lnf3HQDnCunUpts8HGjqYSmERxnWHg65ZQtTJhKyzcnDUTue4OtpNK36uBeu2t2lJAtLXTe7WXdkQ18TAdMg9IzdXTNYgNo6rgnq1KkD0saBq-uIGJu6VOZPS3x1Rh8I81tStPA1_R2wVYFE2Cl3dResqKwBtt0ABlidxwbYHNakq4s9cNvL83kOeUUzAucacvgwe1YS6pmFllCVteKwHBsNtZWGXX6Xvb28xsWPl1zaWyNnLnaqOiyZnvfBuN8bd2OvGp3giZCipUcUStvKF8wYO4P4fM1JoFJGFRFG_0woTQLMpc8010W3qS-x5AhTJUzQ6ocHYDWbZ-oQQKkZjrjmxjAKHAnEiDYhHPcFMWqUCDeB71SYiIpW3E63uE9qQuRC64ktJbNaT1ATXNSvPJacGn8Jt9y-JNXxWiSWRI4QygLWBJdurz49_m2xo39Jn4H1eDwcJIOr0c0x2EDWoRfVZy2wusyf1ImBI8v0tPj83gEiv9Zx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iIHrwURWrVXPwpITuZrPN5lhqS320eGiheFmyeWBBt2W7gkf_g__QX2KyLx-o4GkXdpLDTDKPnZlvADhVWEc23YaIqwNEpBAoYEQj4nGLFqZMJGSbkwfDVn9Mrib-pJhzuiir3cuUZN7TYFGa4rQ5l7pZNb5Z02TDYBMNB66HjA5eMdrYtcd6jNtVGoG2iFvWePiMTcq05k9bfDVMH97mtwRpZnd6W2CjcBhhO5fwNlhScQ1slsMYYHE3a2B9UAGwLnbAXTdJZgnkBeQInGnI4eP0WUmop9bNhCqvG4f5CGmoLTXs8Pv47eW1n_2ESaR9NXTmYSeswxz1eReMet1Rp4-KMQpIeAFOEVU4ailHMKP4jPfnaE5dFbFAUWFkwYTS1CVcOkxznXWeOpJIjkmghAlgHW8PLMezWO0DKDUjPtfcKElBfIEZ1Sac446gho0SkzpwShaGooAYt5MuHsIKHDnjemjLyizXQ1wHZ9WSeY6v8Rdxo5RLWFy1RWgB5SgNmMvq4LyU1afPv2128C_qE7B6e9ELby6H14dgDVvbnhWiNcBymjypI-OZpNFxdvreAZnQ2q0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+analysis+of+a+mixed+finite+element+method+for+a+Cahn%E2%80%93Hilliard%E2%80%93Hele%E2%80%93Shaw+system&rft.jtitle=Numerische+Mathematik&rft.au=Liu%2C+Yuan&rft.au=Chen%2C+Wenbin&rft.au=Wang%2C+Cheng&rft.au=Wise%2C+Steven+M.&rft.date=2017-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=135&rft.issue=3&rft.spage=679&rft.epage=709&rft_id=info:doi/10.1007%2Fs00211-016-0813-2&rft.externalDocID=10_1007_s00211_016_0813_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon |