Optimization design of magnetorheological damper based on multi-objective whale algorithm
An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is explored in this study. The structural parameters of the double-rod MR damper, which significantly influence dynamic performance, were systemati...
Saved in:
Published in | Discover applied sciences Vol. 7; no. 6; pp. 531 - 23 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
23.05.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is explored in this study. The structural parameters of the double-rod MR damper, which significantly influence dynamic performance, were systematically analyzed and determined through Sobol Sensitivity Analysis. On this basis, the critical parameters were automatically optimized using Non-Dominated Sorting Whale Optimization Algorithm. By analyzing the unified Pareto front, the optimal structural parameters of the MR damper are determined and verified through numerical simulations and experimental comparisons. The results show that the key parameters affecting the mechanical performance of MR dampers can be reduced to five. The MR damper designed with these optimal parameters demonstrated a 17.1% increase in the adjustable coefficient and a 1.6-fold increase in damping force. Additionally, the optimization design method exhibited notable computational efficiency with superior global convergence characteristics, effectively solving the challenges in the optimization design of MR dampers. This study further deepens the optimization design theory of MR dampers and broadens the potential for diverse engineering applications.
Article Highlights
Sobol sensitivity analysis pinpoints critical parameters to boost optimization efficiency;
Integrated Sobol-NSWOA methodology advances MR damper optimization;
High-precision rapid-response method enables scalable MR damper production and applications. |
---|---|
AbstractList | An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is explored in this study. The structural parameters of the double-rod MR damper, which significantly influence dynamic performance, were systematically analyzed and determined through Sobol Sensitivity Analysis. On this basis, the critical parameters were automatically optimized using Non-Dominated Sorting Whale Optimization Algorithm. By analyzing the unified Pareto front, the optimal structural parameters of the MR damper are determined and verified through numerical simulations and experimental comparisons. The results show that the key parameters affecting the mechanical performance of MR dampers can be reduced to five. The MR damper designed with these optimal parameters demonstrated a 17.1% increase in the adjustable coefficient and a 1.6-fold increase in damping force. Additionally, the optimization design method exhibited notable computational efficiency with superior global convergence characteristics, effectively solving the challenges in the optimization design of MR dampers. This study further deepens the optimization design theory of MR dampers and broadens the potential for diverse engineering applications.
Article Highlights
Sobol sensitivity analysis pinpoints critical parameters to boost optimization efficiency;
Integrated Sobol-NSWOA methodology advances MR damper optimization;
High-precision rapid-response method enables scalable MR damper production and applications. An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is explored in this study. The structural parameters of the double-rod MR damper, which significantly influence dynamic performance, were systematically analyzed and determined through Sobol Sensitivity Analysis. On this basis, the critical parameters were automatically optimized using Non-Dominated Sorting Whale Optimization Algorithm. By analyzing the unified Pareto front, the optimal structural parameters of the MR damper are determined and verified through numerical simulations and experimental comparisons. The results show that the key parameters affecting the mechanical performance of MR dampers can be reduced to five. The MR damper designed with these optimal parameters demonstrated a 17.1% increase in the adjustable coefficient and a 1.6-fold increase in damping force. Additionally, the optimization design method exhibited notable computational efficiency with superior global convergence characteristics, effectively solving the challenges in the optimization design of MR dampers. This study further deepens the optimization design theory of MR dampers and broadens the potential for diverse engineering applications.Article HighlightsSobol sensitivity analysis pinpoints critical parameters to boost optimization efficiency;Integrated Sobol-NSWOA methodology advances MR damper optimization;High-precision rapid-response method enables scalable MR damper production and applications. Abstract An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is explored in this study. The structural parameters of the double-rod MR damper, which significantly influence dynamic performance, were systematically analyzed and determined through Sobol Sensitivity Analysis. On this basis, the critical parameters were automatically optimized using Non-Dominated Sorting Whale Optimization Algorithm. By analyzing the unified Pareto front, the optimal structural parameters of the MR damper are determined and verified through numerical simulations and experimental comparisons. The results show that the key parameters affecting the mechanical performance of MR dampers can be reduced to five. The MR damper designed with these optimal parameters demonstrated a 17.1% increase in the adjustable coefficient and a 1.6-fold increase in damping force. Additionally, the optimization design method exhibited notable computational efficiency with superior global convergence characteristics, effectively solving the challenges in the optimization design of MR dampers. This study further deepens the optimization design theory of MR dampers and broadens the potential for diverse engineering applications. |
ArticleNumber | 531 |
Author | Zhao, Yuliang Xu, Yanwei Liu, Wenfeng Huang, Xuhong Chen, Xiaoning Liu, Caiwei |
Author_xml | – sequence: 1 givenname: Yuliang surname: Zhao fullname: Zhao, Yuliang email: yliangzh@163.com organization: Department of Civil Engineering, Qingdao University of Technology – sequence: 2 givenname: Xiaoning surname: Chen fullname: Chen, Xiaoning organization: The Second Construction Limited Company, China Construction Eighth Engineering Division – sequence: 3 givenname: Xuhong surname: Huang fullname: Huang, Xuhong organization: Department of Civil Engineering, Qingdao University of Technology – sequence: 4 givenname: Caiwei surname: Liu fullname: Liu, Caiwei email: liucaiwei@qtech.edu.cn organization: Department of Civil Engineering, Qingdao University of Technology – sequence: 5 givenname: Wenfeng surname: Liu fullname: Liu, Wenfeng organization: Department of Civil Engineering, Qingdao University of Technology – sequence: 6 givenname: Yanwei surname: Xu fullname: Xu, Yanwei organization: School of Civil Engineering and Communication, North China University of Water Resources and Electric Power |
BookMark | eNp9kc1u1TAQRi1UJErpC7CKxDow_ontLFEFtFKlbmDByprY41xfJfHFzgXB0xMaBKxYeWSd78xI33N2seSFGHvJ4TUHMG-qEqoTLYiuBQMSWnjCLiWAanuh-cU_8zN2XesRAKQEY7r-kn1-OK1pTj9wTXlpAtU0Lk2OzYzjQmsuB8pTHpPHqQk4n6g0A1YKzQbP52lNbR6O5Nf0lZpvB5yowWnMJa2H-QV7GnGqdP37vWKf3r_7eHPb3j98uLt5e996acXamoGj8LyHEJX3FjRZoVSMBL3WFoyIIg68A-z7TgYbbUexj5203AZtIsordrd7Q8ajO5U0Y_nuMib3-JHL6LCsyU_ktOKakwIOISgaEG3YnMJwjX4Imm-uV7vrVPKXM9XVHfO5LNv5TgqwojNS9hsldsqXXGuh-GcrB_erEbc34rZG3GMjDraQ3EN1g5eRyl_1f1I_ARX3kBs |
Cites_doi | 10.1177/1045389X211006907 10.1016/j.chaos.2025.116026 10.1177/1045389X18798947 10.1177/1045389X09343789 10.1088/1361-665X/aa5494 10.1016/j.eswa.2015.10.039 10.1007/s12206-019-0828-6 10.1007/s12206-020-0627-0 10.1007/s42417-024-01498-7 10.1016/j.jsv.2018.12.016 10.1061/(ASCE)ST.1943-541X.0000691 10.1016/j.chaos.2019.07.005 10.1088/1361-665X/ab45fd 10.1007/s00477-022-02238-7 10.1002/mawe.202000175 10.1088/1361-665X/ad287c 10.1007/s00521-022-07557-y 10.3390/app12178584 10.1016/j.cma.2024.116840 10.1177/1045389X231195835 10.1016/j.asej.2021.01.035 10.1016/j.aej.2024.05.035 10.1061/(ASCE)MT.1943-5533.0001473 10.3390/pr10061074 10.1007/s12206-021-0726-6 10.1007/s40435-024-01401-y 10.1177/1077546320959290 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Jun 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Jun 2025 |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U DOA |
DOI | 10.1007/s42452-025-07030-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 3004-9261 2523-3971 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_64161e4010dd4ebaa8d53d2716acbd61 10_1007_s42452_025_07030_0 |
GroupedDBID | AAJSJ AASML ADMLS ALMA_UNASSIGNED_HOLDINGS C6C GROUPED_DOAJ M~E SOJ AAYXX BGNMA CITATION M4Y NU0 0R~ 3V. 7XB 88I 8FE 8FG 8FK AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACSTC ACULB ADKNI ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BHPHI BKSAR C24 CCPQU D1I DWQXO EBLON EBS FNLPD GNUQQ GNWQR HCIFZ J-C KB. KOV L6V M2P M7S NQJWS OK1 PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR |
ID | FETCH-LOGICAL-c382t-7b1a2c190df4cc806e8244ffe09668072f2fb150a9953d8f85ef9f53818d67fa3 |
IEDL.DBID | C6C |
ISSN | 3004-9261 2523-3963 |
IngestDate | Wed Aug 27 01:21:05 EDT 2025 Wed Aug 13 11:24:57 EDT 2025 Sun Jul 06 05:08:16 EDT 2025 Sat May 24 01:16:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Magnetorheological damper Sensitivity analysis Whale algorithm Parameter optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-7b1a2c190df4cc806e8244ffe09668072f2fb150a9953d8f85ef9f53818d67fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s42452-025-07030-0 |
PQID | 3208257339 |
PQPubID | 5758472 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_64161e4010dd4ebaa8d53d2716acbd61 proquest_journals_3208257339 crossref_primary_10_1007_s42452_025_07030_0 springer_journals_10_1007_s42452_025_07030_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-23 |
PublicationDateYYYYMMDD | 2025-05-23 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | Discover applied sciences |
PublicationTitleAbbrev | Discov Appl Sci |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | S Hou (7030_CR19) 2020; 2020 XF Kang (7030_CR3) 2024; 100 M Boreiry (7030_CR17) 2019; 127 G Shanmugasundar (7030_CR29) 2022; 10 P Jangir (7030_CR32) 2017; 17 MM Naserimojarad (7030_CR10) 2018; 29 ZD Xu (7030_CR30) 2015; 28 S Mirjalili (7030_CR27) 2016; 47 G Hu (7030_CR9) 2021; 67 X Wei (7030_CR23) 2024; 35 N Khodadadi (7030_CR26) 2022; 34 M Olivier (7030_CR24) 2021; 35 YL Zhao (7030_CR12) 2024; 12 L Liu (7030_CR20) 2022; 12 J Langstaff (7030_CR31) 2022; 36 X Xue (7030_CR15) 2009; 20 M Jiang (7030_CR11) 2022; 33 X Zhang (7030_CR13) 2024; 12 M Jameel (7030_CR25) 2024; 422 F Gao (7030_CR8) 2017; 26 M Olivier (7030_CR6) 2020; 34 M Jiang (7030_CR16) 2021; 27 Z Dong (7030_CR7) 2020; 2020 Y Chae (7030_CR4) 2013; 139 QNU Islam (7030_CR28) 2021; 12 ZD Xu (7030_CR1) 2019; 28 AJD Nanthakumar (7030_CR18) 2019; 33 X Chen (7030_CR14) 2022; 69 H Liang (7030_CR22) 2024; 33 HN Hu (7030_CR21) 2021; 52 YL Zhao (7030_CR5) 2019; 443 XZ Wang (7030_CR2) 2025; 192 |
References_xml | – volume: 33 start-page: 33 issue: 1 year: 2022 ident: 7030_CR11 publication-title: J Intel Mat Sys Str doi: 10.1177/1045389X211006907 – volume: 192 year: 2025 ident: 7030_CR2 publication-title: Chaos Solitons Fract doi: 10.1016/j.chaos.2025.116026 – volume: 29 start-page: 3648 issue: 18 year: 2018 ident: 7030_CR10 publication-title: J Intel Mat Syst Str doi: 10.1177/1045389X18798947 – volume: 20 start-page: 2089 issue: 17 year: 2009 ident: 7030_CR15 publication-title: J Intel Mat Sys Str doi: 10.1177/1045389X09343789 – volume: 26 issue: 3 year: 2017 ident: 7030_CR8 publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aa5494 – volume: 47 start-page: 106 year: 2016 ident: 7030_CR27 publication-title: Expert syst Appl doi: 10.1016/j.eswa.2015.10.039 – volume: 33 start-page: 4319 year: 2019 ident: 7030_CR18 publication-title: J Mech Sci Technol doi: 10.1007/s12206-019-0828-6 – volume: 67 start-page: 339 issue: 3 year: 2021 ident: 7030_CR9 publication-title: Int J Appl Electro – volume: 34 start-page: 2953 year: 2020 ident: 7030_CR6 publication-title: J Mech Sci Technol doi: 10.1007/s12206-020-0627-0 – volume: 12 start-page: 1707 year: 2024 ident: 7030_CR13 publication-title: J Vib Eng Technol doi: 10.1007/s42417-024-01498-7 – volume: 443 start-page: 732 year: 2019 ident: 7030_CR5 publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.12.016 – volume: 139 start-page: 1215 issue: 7 year: 2013 ident: 7030_CR4 publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000691 – volume: 127 start-page: 428 year: 2019 ident: 7030_CR17 publication-title: Chaos Soliton Fract doi: 10.1016/j.chaos.2019.07.005 – volume: 17 start-page: 15 year: 2017 ident: 7030_CR32 publication-title: Glob J Res Eng – volume: 28 issue: 11 year: 2019 ident: 7030_CR1 publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ab45fd – volume: 36 start-page: 3945 issue: 11 year: 2022 ident: 7030_CR31 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-022-02238-7 – volume: 52 start-page: 540 issue: 5 year: 2021 ident: 7030_CR21 publication-title: Materialwiss Werkst doi: 10.1002/mawe.202000175 – volume: 33 issue: 3 year: 2024 ident: 7030_CR22 publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ad287c – volume: 34 start-page: 20791 issue: 23 year: 2022 ident: 7030_CR26 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07557-y – volume: 12 start-page: 8584 issue: 17 year: 2022 ident: 7030_CR20 publication-title: App Sci doi: 10.3390/app12178584 – volume: 422 year: 2024 ident: 7030_CR25 publication-title: Comput Method Appl M doi: 10.1016/j.cma.2024.116840 – volume: 35 start-page: 206 issue: 2 year: 2024 ident: 7030_CR23 publication-title: J Intel Mat Sys Str doi: 10.1177/1045389X231195835 – volume: 12 start-page: 3677 issue: 4 year: 2021 ident: 7030_CR28 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.01.035 – volume: 100 start-page: 92 year: 2024 ident: 7030_CR3 publication-title: Alex Eng J doi: 10.1016/j.aej.2024.05.035 – volume: 28 start-page: 04015198 issue: 5 year: 2015 ident: 7030_CR30 publication-title: J Mater Civil Eng doi: 10.1061/(ASCE)MT.1943-5533.0001473 – volume: 10 start-page: 1074 issue: 6 year: 2022 ident: 7030_CR29 publication-title: Processes doi: 10.3390/pr10061074 – volume: 35 start-page: 3549 issue: 8 year: 2021 ident: 7030_CR24 publication-title: J Mech Sci Technol doi: 10.1007/s12206-021-0726-6 – volume: 69 start-page: 513 issue: 4 year: 2022 ident: 7030_CR14 publication-title: Int J Appl Electrom – volume: 2020 start-page: 7050356 issue: 1 year: 2020 ident: 7030_CR7 publication-title: Shock Vib – volume: 12 start-page: 2717 issue: 8 year: 2024 ident: 7030_CR12 publication-title: Int J Dyna Control doi: 10.1007/s40435-024-01401-y – volume: 2020 start-page: 5489896 issue: 1 year: 2020 ident: 7030_CR19 publication-title: Math Probl Eng – volume: 27 start-page: 2291 issue: 19–20 year: 2021 ident: 7030_CR16 publication-title: J Vib Control doi: 10.1177/1077546320959290 |
SSID | ssj0003307759 ssj0002793483 ssib051670015 |
Score | 2.2929413 |
Snippet | An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is... Abstract An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 531 |
SubjectTerms | Algorithms Applied and Technical Physics Chemistry/Food Science Control algorithms Dampers Damping Design Design optimization Earth Sciences Efficiency Energy consumption Engineering Environment Genetic algorithms Magnetorheological damper Materials Science Mechanical properties Neural networks Optimization algorithms Optimization techniques Parameter estimation Parameter identification Parameter optimization Parameter sensitivity Sensitivity analysis Sorting algorithms Vibration Whale algorithm |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3SkxdRVKxWycGbBrdJNskeVSxFUC8W6ilk89EqtpVa8e87ye7WVhAvHnc3LGEmmfceycwgdGq5A5zkXWI8twSipCCFEYyobhBKCJoZGxOc7-5Ff8Bvh_lwpdVXvBNWlQeuDHchIgP3oAIy57gvjVEuZ44CzTe2dJXwAcxbEVMxBoNKlzIv6iyZlCsXj_goid1b0yon2RoSpYL9ayzzx8FowpveNtqqiSK-rCa4gzb8dBc9PcAOn9Spk9il2xd4FvDEjKYe1PPYN7EMOwOEeI4jSjkMg9PNQTIrX6oIhz_HAA3YvI5m8-fFeLKHBr2bx-s-qZsjEMsUXRBZdg21AOcucGtVJrwCpA7BgyYRKpM00FAC2zNFAfZSQeU-FCGPAO2EDIbto9Z0NvUHCEspCl5EZ-WGm9jjzzKeGybgScIf2-isMZR-q2pg6GW142RWDWbVyaw6a6OraMvlyFi_Or0Ar-raq_ovr7ZRp_GErjfVu2Y06lnJWNFG5413vj__PqXD_5jSEdqkafXkhLIOai3mH_4YCMmiPElr7wvHLNuL priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxwxDLZgucABUR7qAq1y6K1EzCaZTOZUQQVCSAVUgQSnKJPHrhC7A8si_n6dbIaXVI6TiaLIdvzZcWwD_LDCIU6KATVeWIpaUtLaSE7VIEglJSuMjQnOf87kyZU4vS6v84XbY35W2enEpKhda-Md-T5n0ZmpOK9_3T_Q2DUqRldzC41FWEIVrFQPlg6Pzi7-dhJVDmIWSga82xRmq7lItTkZemCUo_jlTJqUTxfDgIzGDq_pJNDiHVqlov7vLNEPwdOEScdrsJqNSXIw5_4XWPCTdVh5U2JwA27OUSeMc7Ilcem9BmkDGZvhxKO_PfKd9iPOoAk9JRHXHMHJ6a0hbZvbuU4kzyMEE2LuhkiW2Wi8CVfHR5e_T2hup0AtV2xGq2ZgmEUDwAVhrSqkV4jtIXj0YqQqKhZYaNA-NHVdcqeCKn2oQxkh3ckqGL4FvUk78V-BVJWsRR3ZWxphYldAy0VpuMSvClfsw8-ObPp-XjVDv9RHTkTWSGSdiKyLPhxGyr7MjBWv00A7Hep8gLSMnphHb7BwTvjGGOVwlwzdPWMblLc-7HZ80fkYPupXoenDXser19__39L256vtwDJLUlJSxnehN5s--W9onMya71kC_wH3FN4d priority: 102 providerName: ProQuest |
Title | Optimization design of magnetorheological damper based on multi-objective whale algorithm |
URI | https://link.springer.com/article/10.1007/s42452-025-07030-0 https://www.proquest.com/docview/3208257339 https://doaj.org/article/64161e4010dd4ebaa8d53d2716acbd61 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4VuMChoi2ItBD50Bu12Pi9xxIlRZWgFSoSPVlePwioSaokiFt_e8fOJi2oHHpZaXe9K2tm7G8-2zMD8N6LgDgpetRF4SnOkorWTnFqekkZpVjlfA5wPr9QZ1fi87W8btPk5FiYJ_v3J_O8M8doLrpajJMiPd-SPa5zmYa-6q_XU5CXay3rNi7m358-wp6Sov-RX_lkK7QgzHAXXrauIfm41OUreBEnr2Hnr4SBb-D7Fxzh4zZ0koRy-oJMExm7m0lE9jyKq7mMBIcO8YxklAoEG5eTg3Ta3C1nOPIwQmgg7sfNdHa7GI334Go4-NY_o21xBOq5YQuqm55jHuE8JOG9qVQ0iNQpReQkylSaJZYa9PZcXUseTDIypjrJDNBB6eT4PmxOppN4AERrVYs6K0s64XKNP8-FdFzhncY_duB4JTb7c5kDw66zHRchWxSyLUK2VQdOs2TXLXP-6vIA1Wrb4WBV5lURuV0VgoiNcyZgLxmSN-cbtJ4OHK70YttBNbecZT6rOa878GGlqz-vn-_S2_9r_g62WbEaSRk_hM3F7D4eoeuxaLqwYYafurB1Orj4etktFtgtNB6v578GvwGvKtSj |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMAHOIFF1nYc54AQr2VLH1xaqZyM48euKnZTtosq_hS_kRlv0lIkuPWYxLKsmc_zzcSeGYCnXgXkSTXkLirP0UpqXjstuRkmbbQWhfOU4Ly7p8cH6tNhebgGv_pcGLpW2dvEbKhD6-kf-UspKJippKxfH3_n1DWKTlf7FhorWGzHn6cYsp282nqP-n0mxOjD_rsx77oKcC-NWPKqGTrhkQdDUt6bQkeDFJdSRGdem6ISSaQG3SRX16UMJpkypjqVxGxBV8lJnPcKXFW4Egr2zOhjj99ySDkvHb0e5UO9WqpcCVRgvMclgr3L28nZe3ToKDj1k837jhcXuDG3ELjg9_51VJsZcHQLbnauK3uzwtptWIvzO3Djj4KGd-HLZ7RAsy61k4V8O4S1ic3cZB4xup_G3tay4NBhXzBi0cBwcL7ZyNvmaGWB2ekUqYu5bxNUwnI6uwcHlyLm-7A-b-dxA1hV6VrVBKbSKUc9CL1UpZManyqccQDPe7HZ41WNDntWjTkL2aKQbRayLQbwliR7NpLqa-cX7WJiu-1qNcV9EWPPIgQVG-dMwFUKDC6dbxDdA9js9WK7TX9izyE6gBe9rs4__3tJD_4_2xO4Nt7f3bE7W3vbD-G6yIgpuZCbsL5c_IiP0C1aNo8zFhl8vWzw_wYj_xlU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFaAEf4ARWN7bX6z0gRGmjlkKoEJXKyfX6kagi2TYNqvhr_DrGjrelSHDrcXctyxp_nm9mPQ-AF1Y45EkxoMYLS1FLSlobyakaBKmkZIWxMcH500juHIgPh-XhCvzqcmFiWGWnE5Oidq2N_8g3OIvOTMV5vRFyWMT-1vDtySmNHaTiTWvXTmMJkT3_8xzdt7M3u1u41y8ZG25_fb9Dc4cBarliC1o1A8MscqILwlpVSK-Q7kLwaNhLVVQssNCgyWTquuROBVX6UIcyspyTVTAc570Bq1X0inqwurk92v_SobkcxAyYTLbH6Yqv5iLVBWXo_VGO0M9ZPCmXL15BMhq7y6ZTSIsrTJkaClyxgv-6uE18OLwLd7IhS94tkXcPVvzsPtz-o7zhA_j2GfXRNCd6EpdiRUgbyNSMZx59_YnvNC9xBs33OYmc6ggOTnGOtG2Ol_qYnE-QyIj5PsZtWEymD-HgWgT9CHqzduYfA6kqWYs6Qqs0wsSOhJaL0nCJTxXO2IdXndj0ybJih76ozZyErFHIOglZF33YjJK9GBmrbacX7Xys8-HVMnqBHj3RwjnhG2OUw1UydDWNbRDrfVjv9kVnFXCmLwHbh9fdXl1-_veSnvx_tudwE4GvP-6O9tbgFkuAKSnj69BbzH_4p2gjLZpnGYwEjq4b_78BLBse5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+design+of+magnetorheological+damper+based+on+multi-objective+whale+algorithm&rft.jtitle=Discover+applied+sciences&rft.au=Zhao%2C+Yuliang&rft.au=Chen%2C+Xiaoning&rft.au=Huang%2C+Xuhong&rft.au=Liu%2C+Caiwei&rft.date=2025-05-23&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1007%2Fs42452-025-07030-0&rft.externalDocID=10_1007_s42452_025_07030_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |