Optimization design of magnetorheological damper based on multi-objective whale algorithm

An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is explored in this study. The structural parameters of the double-rod MR damper, which significantly influence dynamic performance, were systemati...

Full description

Saved in:
Bibliographic Details
Published inDiscover applied sciences Vol. 7; no. 6; pp. 531 - 23
Main Authors Zhao, Yuliang, Chen, Xiaoning, Huang, Xuhong, Liu, Caiwei, Liu, Wenfeng, Xu, Yanwei
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 23.05.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is explored in this study. The structural parameters of the double-rod MR damper, which significantly influence dynamic performance, were systematically analyzed and determined through Sobol Sensitivity Analysis. On this basis, the critical parameters were automatically optimized using Non-Dominated Sorting Whale Optimization Algorithm. By analyzing the unified Pareto front, the optimal structural parameters of the MR damper are determined and verified through numerical simulations and experimental comparisons. The results show that the key parameters affecting the mechanical performance of MR dampers can be reduced to five. The MR damper designed with these optimal parameters demonstrated a 17.1% increase in the adjustable coefficient and a 1.6-fold increase in damping force. Additionally, the optimization design method exhibited notable computational efficiency with superior global convergence characteristics, effectively solving the challenges in the optimization design of MR dampers. This study further deepens the optimization design theory of MR dampers and broadens the potential for diverse engineering applications. Article Highlights Sobol sensitivity analysis pinpoints critical parameters to boost optimization efficiency; Integrated Sobol-NSWOA methodology advances MR damper optimization; High-precision rapid-response method enables scalable MR damper production and applications.
AbstractList An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is explored in this study. The structural parameters of the double-rod MR damper, which significantly influence dynamic performance, were systematically analyzed and determined through Sobol Sensitivity Analysis. On this basis, the critical parameters were automatically optimized using Non-Dominated Sorting Whale Optimization Algorithm. By analyzing the unified Pareto front, the optimal structural parameters of the MR damper are determined and verified through numerical simulations and experimental comparisons. The results show that the key parameters affecting the mechanical performance of MR dampers can be reduced to five. The MR damper designed with these optimal parameters demonstrated a 17.1% increase in the adjustable coefficient and a 1.6-fold increase in damping force. Additionally, the optimization design method exhibited notable computational efficiency with superior global convergence characteristics, effectively solving the challenges in the optimization design of MR dampers. This study further deepens the optimization design theory of MR dampers and broadens the potential for diverse engineering applications. Article Highlights Sobol sensitivity analysis pinpoints critical parameters to boost optimization efficiency; Integrated Sobol-NSWOA methodology advances MR damper optimization; High-precision rapid-response method enables scalable MR damper production and applications.
An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is explored in this study. The structural parameters of the double-rod MR damper, which significantly influence dynamic performance, were systematically analyzed and determined through Sobol Sensitivity Analysis. On this basis, the critical parameters were automatically optimized using Non-Dominated Sorting Whale Optimization Algorithm. By analyzing the unified Pareto front, the optimal structural parameters of the MR damper are determined and verified through numerical simulations and experimental comparisons. The results show that the key parameters affecting the mechanical performance of MR dampers can be reduced to five. The MR damper designed with these optimal parameters demonstrated a 17.1% increase in the adjustable coefficient and a 1.6-fold increase in damping force. Additionally, the optimization design method exhibited notable computational efficiency with superior global convergence characteristics, effectively solving the challenges in the optimization design of MR dampers. This study further deepens the optimization design theory of MR dampers and broadens the potential for diverse engineering applications.Article HighlightsSobol sensitivity analysis pinpoints critical parameters to boost optimization efficiency;Integrated Sobol-NSWOA methodology advances MR damper optimization;High-precision rapid-response method enables scalable MR damper production and applications.
Abstract An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is explored in this study. The structural parameters of the double-rod MR damper, which significantly influence dynamic performance, were systematically analyzed and determined through Sobol Sensitivity Analysis. On this basis, the critical parameters were automatically optimized using Non-Dominated Sorting Whale Optimization Algorithm. By analyzing the unified Pareto front, the optimal structural parameters of the MR damper are determined and verified through numerical simulations and experimental comparisons. The results show that the key parameters affecting the mechanical performance of MR dampers can be reduced to five. The MR damper designed with these optimal parameters demonstrated a 17.1% increase in the adjustable coefficient and a 1.6-fold increase in damping force. Additionally, the optimization design method exhibited notable computational efficiency with superior global convergence characteristics, effectively solving the challenges in the optimization design of MR dampers. This study further deepens the optimization design theory of MR dampers and broadens the potential for diverse engineering applications.
ArticleNumber 531
Author Zhao, Yuliang
Xu, Yanwei
Liu, Wenfeng
Huang, Xuhong
Chen, Xiaoning
Liu, Caiwei
Author_xml – sequence: 1
  givenname: Yuliang
  surname: Zhao
  fullname: Zhao, Yuliang
  email: yliangzh@163.com
  organization: Department of Civil Engineering, Qingdao University of Technology
– sequence: 2
  givenname: Xiaoning
  surname: Chen
  fullname: Chen, Xiaoning
  organization: The Second Construction Limited Company, China Construction Eighth Engineering Division
– sequence: 3
  givenname: Xuhong
  surname: Huang
  fullname: Huang, Xuhong
  organization: Department of Civil Engineering, Qingdao University of Technology
– sequence: 4
  givenname: Caiwei
  surname: Liu
  fullname: Liu, Caiwei
  email: liucaiwei@qtech.edu.cn
  organization: Department of Civil Engineering, Qingdao University of Technology
– sequence: 5
  givenname: Wenfeng
  surname: Liu
  fullname: Liu, Wenfeng
  organization: Department of Civil Engineering, Qingdao University of Technology
– sequence: 6
  givenname: Yanwei
  surname: Xu
  fullname: Xu, Yanwei
  organization: School of Civil Engineering and Communication, North China University of Water Resources and Electric Power
BookMark eNp9kc1u1TAQRi1UJErpC7CKxDow_ontLFEFtFKlbmDByprY41xfJfHFzgXB0xMaBKxYeWSd78xI33N2seSFGHvJ4TUHMG-qEqoTLYiuBQMSWnjCLiWAanuh-cU_8zN2XesRAKQEY7r-kn1-OK1pTj9wTXlpAtU0Lk2OzYzjQmsuB8pTHpPHqQk4n6g0A1YKzQbP52lNbR6O5Nf0lZpvB5yowWnMJa2H-QV7GnGqdP37vWKf3r_7eHPb3j98uLt5e996acXamoGj8LyHEJX3FjRZoVSMBL3WFoyIIg68A-z7TgYbbUexj5203AZtIsordrd7Q8ajO5U0Y_nuMib3-JHL6LCsyU_ktOKakwIOISgaEG3YnMJwjX4Imm-uV7vrVPKXM9XVHfO5LNv5TgqwojNS9hsldsqXXGuh-GcrB_erEbc34rZG3GMjDraQ3EN1g5eRyl_1f1I_ARX3kBs
Cites_doi 10.1177/1045389X211006907
10.1016/j.chaos.2025.116026
10.1177/1045389X18798947
10.1177/1045389X09343789
10.1088/1361-665X/aa5494
10.1016/j.eswa.2015.10.039
10.1007/s12206-019-0828-6
10.1007/s12206-020-0627-0
10.1007/s42417-024-01498-7
10.1016/j.jsv.2018.12.016
10.1061/(ASCE)ST.1943-541X.0000691
10.1016/j.chaos.2019.07.005
10.1088/1361-665X/ab45fd
10.1007/s00477-022-02238-7
10.1002/mawe.202000175
10.1088/1361-665X/ad287c
10.1007/s00521-022-07557-y
10.3390/app12178584
10.1016/j.cma.2024.116840
10.1177/1045389X231195835
10.1016/j.asej.2021.01.035
10.1016/j.aej.2024.05.035
10.1061/(ASCE)MT.1943-5533.0001473
10.3390/pr10061074
10.1007/s12206-021-0726-6
10.1007/s40435-024-01401-y
10.1177/1077546320959290
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Jun 2025
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOA
DOI 10.1007/s42452-025-07030-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 3004-9261
2523-3971
EndPage 23
ExternalDocumentID oai_doaj_org_article_64161e4010dd4ebaa8d53d2716acbd61
10_1007_s42452_025_07030_0
GroupedDBID AAJSJ
AASML
ADMLS
ALMA_UNASSIGNED_HOLDINGS
C6C
GROUPED_DOAJ
M~E
SOJ
AAYXX
BGNMA
CITATION
M4Y
NU0
0R~
3V.
7XB
88I
8FE
8FG
8FK
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACSTC
ACULB
ADKNI
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BHPHI
BKSAR
C24
CCPQU
D1I
DWQXO
EBLON
EBS
FNLPD
GNUQQ
GNWQR
HCIFZ
J-C
KB.
KOV
L6V
M2P
M7S
NQJWS
OK1
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
ID FETCH-LOGICAL-c382t-7b1a2c190df4cc806e8244ffe09668072f2fb150a9953d8f85ef9f53818d67fa3
IEDL.DBID C6C
ISSN 3004-9261
2523-3963
IngestDate Wed Aug 27 01:21:05 EDT 2025
Wed Aug 13 11:24:57 EDT 2025
Sun Jul 06 05:08:16 EDT 2025
Sat May 24 01:16:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Magnetorheological damper
Sensitivity analysis
Whale algorithm
Parameter optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-7b1a2c190df4cc806e8244ffe09668072f2fb150a9953d8f85ef9f53818d67fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s42452-025-07030-0
PQID 3208257339
PQPubID 5758472
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_64161e4010dd4ebaa8d53d2716acbd61
proquest_journals_3208257339
crossref_primary_10_1007_s42452_025_07030_0
springer_journals_10_1007_s42452_025_07030_0
PublicationCentury 2000
PublicationDate 2025-05-23
PublicationDateYYYYMMDD 2025-05-23
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-23
  day: 23
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle Discover applied sciences
PublicationTitleAbbrev Discov Appl Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References S Hou (7030_CR19) 2020; 2020
XF Kang (7030_CR3) 2024; 100
M Boreiry (7030_CR17) 2019; 127
G Shanmugasundar (7030_CR29) 2022; 10
P Jangir (7030_CR32) 2017; 17
MM Naserimojarad (7030_CR10) 2018; 29
ZD Xu (7030_CR30) 2015; 28
S Mirjalili (7030_CR27) 2016; 47
G Hu (7030_CR9) 2021; 67
X Wei (7030_CR23) 2024; 35
N Khodadadi (7030_CR26) 2022; 34
M Olivier (7030_CR24) 2021; 35
YL Zhao (7030_CR12) 2024; 12
L Liu (7030_CR20) 2022; 12
J Langstaff (7030_CR31) 2022; 36
X Xue (7030_CR15) 2009; 20
M Jiang (7030_CR11) 2022; 33
X Zhang (7030_CR13) 2024; 12
M Jameel (7030_CR25) 2024; 422
F Gao (7030_CR8) 2017; 26
M Olivier (7030_CR6) 2020; 34
M Jiang (7030_CR16) 2021; 27
Z Dong (7030_CR7) 2020; 2020
Y Chae (7030_CR4) 2013; 139
QNU Islam (7030_CR28) 2021; 12
ZD Xu (7030_CR1) 2019; 28
AJD Nanthakumar (7030_CR18) 2019; 33
X Chen (7030_CR14) 2022; 69
H Liang (7030_CR22) 2024; 33
HN Hu (7030_CR21) 2021; 52
YL Zhao (7030_CR5) 2019; 443
XZ Wang (7030_CR2) 2025; 192
References_xml – volume: 33
  start-page: 33
  issue: 1
  year: 2022
  ident: 7030_CR11
  publication-title: J Intel Mat Sys Str
  doi: 10.1177/1045389X211006907
– volume: 192
  year: 2025
  ident: 7030_CR2
  publication-title: Chaos Solitons Fract
  doi: 10.1016/j.chaos.2025.116026
– volume: 29
  start-page: 3648
  issue: 18
  year: 2018
  ident: 7030_CR10
  publication-title: J Intel Mat Syst Str
  doi: 10.1177/1045389X18798947
– volume: 20
  start-page: 2089
  issue: 17
  year: 2009
  ident: 7030_CR15
  publication-title: J Intel Mat Sys Str
  doi: 10.1177/1045389X09343789
– volume: 26
  issue: 3
  year: 2017
  ident: 7030_CR8
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aa5494
– volume: 47
  start-page: 106
  year: 2016
  ident: 7030_CR27
  publication-title: Expert syst Appl
  doi: 10.1016/j.eswa.2015.10.039
– volume: 33
  start-page: 4319
  year: 2019
  ident: 7030_CR18
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-019-0828-6
– volume: 67
  start-page: 339
  issue: 3
  year: 2021
  ident: 7030_CR9
  publication-title: Int J Appl Electro
– volume: 34
  start-page: 2953
  year: 2020
  ident: 7030_CR6
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-020-0627-0
– volume: 12
  start-page: 1707
  year: 2024
  ident: 7030_CR13
  publication-title: J Vib Eng Technol
  doi: 10.1007/s42417-024-01498-7
– volume: 443
  start-page: 732
  year: 2019
  ident: 7030_CR5
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.12.016
– volume: 139
  start-page: 1215
  issue: 7
  year: 2013
  ident: 7030_CR4
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000691
– volume: 127
  start-page: 428
  year: 2019
  ident: 7030_CR17
  publication-title: Chaos Soliton Fract
  doi: 10.1016/j.chaos.2019.07.005
– volume: 17
  start-page: 15
  year: 2017
  ident: 7030_CR32
  publication-title: Glob J Res Eng
– volume: 28
  issue: 11
  year: 2019
  ident: 7030_CR1
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/ab45fd
– volume: 36
  start-page: 3945
  issue: 11
  year: 2022
  ident: 7030_CR31
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-022-02238-7
– volume: 52
  start-page: 540
  issue: 5
  year: 2021
  ident: 7030_CR21
  publication-title: Materialwiss Werkst
  doi: 10.1002/mawe.202000175
– volume: 33
  issue: 3
  year: 2024
  ident: 7030_CR22
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/ad287c
– volume: 34
  start-page: 20791
  issue: 23
  year: 2022
  ident: 7030_CR26
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07557-y
– volume: 12
  start-page: 8584
  issue: 17
  year: 2022
  ident: 7030_CR20
  publication-title: App Sci
  doi: 10.3390/app12178584
– volume: 422
  year: 2024
  ident: 7030_CR25
  publication-title: Comput Method Appl M
  doi: 10.1016/j.cma.2024.116840
– volume: 35
  start-page: 206
  issue: 2
  year: 2024
  ident: 7030_CR23
  publication-title: J Intel Mat Sys Str
  doi: 10.1177/1045389X231195835
– volume: 12
  start-page: 3677
  issue: 4
  year: 2021
  ident: 7030_CR28
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2021.01.035
– volume: 100
  start-page: 92
  year: 2024
  ident: 7030_CR3
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2024.05.035
– volume: 28
  start-page: 04015198
  issue: 5
  year: 2015
  ident: 7030_CR30
  publication-title: J Mater Civil Eng
  doi: 10.1061/(ASCE)MT.1943-5533.0001473
– volume: 10
  start-page: 1074
  issue: 6
  year: 2022
  ident: 7030_CR29
  publication-title: Processes
  doi: 10.3390/pr10061074
– volume: 35
  start-page: 3549
  issue: 8
  year: 2021
  ident: 7030_CR24
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-021-0726-6
– volume: 69
  start-page: 513
  issue: 4
  year: 2022
  ident: 7030_CR14
  publication-title: Int J Appl Electrom
– volume: 2020
  start-page: 7050356
  issue: 1
  year: 2020
  ident: 7030_CR7
  publication-title: Shock Vib
– volume: 12
  start-page: 2717
  issue: 8
  year: 2024
  ident: 7030_CR12
  publication-title: Int J Dyna Control
  doi: 10.1007/s40435-024-01401-y
– volume: 2020
  start-page: 5489896
  issue: 1
  year: 2020
  ident: 7030_CR19
  publication-title: Math Probl Eng
– volume: 27
  start-page: 2291
  issue: 19–20
  year: 2021
  ident: 7030_CR16
  publication-title: J Vib Control
  doi: 10.1177/1077546320959290
SSID ssj0003307759
ssj0002793483
ssib051670015
Score 2.2929413
Snippet An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable coefficient, is...
Abstract An efficient optimization design method for magnetorheological (MR) dampers, aimed at enhancing the damping force output and the adjustable...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 531
SubjectTerms Algorithms
Applied and Technical Physics
Chemistry/Food Science
Control algorithms
Dampers
Damping
Design
Design optimization
Earth Sciences
Efficiency
Energy consumption
Engineering
Environment
Genetic algorithms
Magnetorheological damper
Materials Science
Mechanical properties
Neural networks
Optimization algorithms
Optimization techniques
Parameter estimation
Parameter identification
Parameter optimization
Parameter sensitivity
Sensitivity analysis
Sorting algorithms
Vibration
Whale algorithm
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3SkxdRVKxWycGbBrdJNskeVSxFUC8W6ilk89EqtpVa8e87ye7WVhAvHnc3LGEmmfceycwgdGq5A5zkXWI8twSipCCFEYyobhBKCJoZGxOc7-5Ff8Bvh_lwpdVXvBNWlQeuDHchIgP3oAIy57gvjVEuZ44CzTe2dJXwAcxbEVMxBoNKlzIv6iyZlCsXj_goid1b0yon2RoSpYL9ayzzx8FowpveNtqqiSK-rCa4gzb8dBc9PcAOn9Spk9il2xd4FvDEjKYe1PPYN7EMOwOEeI4jSjkMg9PNQTIrX6oIhz_HAA3YvI5m8-fFeLKHBr2bx-s-qZsjEMsUXRBZdg21AOcucGtVJrwCpA7BgyYRKpM00FAC2zNFAfZSQeU-FCGPAO2EDIbto9Z0NvUHCEspCl5EZ-WGm9jjzzKeGybgScIf2-isMZR-q2pg6GW142RWDWbVyaw6a6OraMvlyFi_Or0Ar-raq_ovr7ZRp_GErjfVu2Y06lnJWNFG5413vj__PqXD_5jSEdqkafXkhLIOai3mH_4YCMmiPElr7wvHLNuL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxwxDLZgucABUR7qAq1y6K1EzCaZTOZUQQVCSAVUgQSnKJPHrhC7A8si_n6dbIaXVI6TiaLIdvzZcWwD_LDCIU6KATVeWIpaUtLaSE7VIEglJSuMjQnOf87kyZU4vS6v84XbY35W2enEpKhda-Md-T5n0ZmpOK9_3T_Q2DUqRldzC41FWEIVrFQPlg6Pzi7-dhJVDmIWSga82xRmq7lItTkZemCUo_jlTJqUTxfDgIzGDq_pJNDiHVqlov7vLNEPwdOEScdrsJqNSXIw5_4XWPCTdVh5U2JwA27OUSeMc7Ilcem9BmkDGZvhxKO_PfKd9iPOoAk9JRHXHMHJ6a0hbZvbuU4kzyMEE2LuhkiW2Wi8CVfHR5e_T2hup0AtV2xGq2ZgmEUDwAVhrSqkV4jtIXj0YqQqKhZYaNA-NHVdcqeCKn2oQxkh3ckqGL4FvUk78V-BVJWsRR3ZWxphYldAy0VpuMSvClfsw8-ObPp-XjVDv9RHTkTWSGSdiKyLPhxGyr7MjBWv00A7Hep8gLSMnphHb7BwTvjGGOVwlwzdPWMblLc-7HZ80fkYPupXoenDXser19__39L256vtwDJLUlJSxnehN5s--W9onMya71kC_wH3FN4d
  priority: 102
  providerName: ProQuest
Title Optimization design of magnetorheological damper based on multi-objective whale algorithm
URI https://link.springer.com/article/10.1007/s42452-025-07030-0
https://www.proquest.com/docview/3208257339
https://doaj.org/article/64161e4010dd4ebaa8d53d2716acbd61
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4VuMChoi2ItBD50Bu12Pi9xxIlRZWgFSoSPVlePwioSaokiFt_e8fOJi2oHHpZaXe9K2tm7G8-2zMD8N6LgDgpetRF4SnOkorWTnFqekkZpVjlfA5wPr9QZ1fi87W8btPk5FiYJ_v3J_O8M8doLrpajJMiPd-SPa5zmYa-6q_XU5CXay3rNi7m358-wp6Sov-RX_lkK7QgzHAXXrauIfm41OUreBEnr2Hnr4SBb-D7Fxzh4zZ0koRy-oJMExm7m0lE9jyKq7mMBIcO8YxklAoEG5eTg3Ta3C1nOPIwQmgg7sfNdHa7GI334Go4-NY_o21xBOq5YQuqm55jHuE8JOG9qVQ0iNQpReQkylSaJZYa9PZcXUseTDIypjrJDNBB6eT4PmxOppN4AERrVYs6K0s64XKNP8-FdFzhncY_duB4JTb7c5kDw66zHRchWxSyLUK2VQdOs2TXLXP-6vIA1Wrb4WBV5lURuV0VgoiNcyZgLxmSN-cbtJ4OHK70YttBNbecZT6rOa878GGlqz-vn-_S2_9r_g62WbEaSRk_hM3F7D4eoeuxaLqwYYafurB1Orj4etktFtgtNB6v578GvwGvKtSj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMAHOIFF1nYc54AQr2VLH1xaqZyM48euKnZTtosq_hS_kRlv0lIkuPWYxLKsmc_zzcSeGYCnXgXkSTXkLirP0UpqXjstuRkmbbQWhfOU4Ly7p8cH6tNhebgGv_pcGLpW2dvEbKhD6-kf-UspKJippKxfH3_n1DWKTlf7FhorWGzHn6cYsp282nqP-n0mxOjD_rsx77oKcC-NWPKqGTrhkQdDUt6bQkeDFJdSRGdem6ISSaQG3SRX16UMJpkypjqVxGxBV8lJnPcKXFW4Egr2zOhjj99ySDkvHb0e5UO9WqpcCVRgvMclgr3L28nZe3ToKDj1k837jhcXuDG3ELjg9_51VJsZcHQLbnauK3uzwtptWIvzO3Djj4KGd-HLZ7RAsy61k4V8O4S1ic3cZB4xup_G3tay4NBhXzBi0cBwcL7ZyNvmaGWB2ekUqYu5bxNUwnI6uwcHlyLm-7A-b-dxA1hV6VrVBKbSKUc9CL1UpZManyqccQDPe7HZ41WNDntWjTkL2aKQbRayLQbwliR7NpLqa-cX7WJiu-1qNcV9EWPPIgQVG-dMwFUKDC6dbxDdA9js9WK7TX9izyE6gBe9rs4__3tJD_4_2xO4Nt7f3bE7W3vbD-G6yIgpuZCbsL5c_IiP0C1aNo8zFhl8vWzw_wYj_xlU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFaAEf4ARWN7bX6z0gRGmjlkKoEJXKyfX6kagi2TYNqvhr_DrGjrelSHDrcXctyxp_nm9mPQ-AF1Y45EkxoMYLS1FLSlobyakaBKmkZIWxMcH500juHIgPh-XhCvzqcmFiWGWnE5Oidq2N_8g3OIvOTMV5vRFyWMT-1vDtySmNHaTiTWvXTmMJkT3_8xzdt7M3u1u41y8ZG25_fb9Dc4cBarliC1o1A8MscqILwlpVSK-Q7kLwaNhLVVQssNCgyWTquuROBVX6UIcyspyTVTAc570Bq1X0inqwurk92v_SobkcxAyYTLbH6Yqv5iLVBWXo_VGO0M9ZPCmXL15BMhq7y6ZTSIsrTJkaClyxgv-6uE18OLwLd7IhS94tkXcPVvzsPtz-o7zhA_j2GfXRNCd6EpdiRUgbyNSMZx59_YnvNC9xBs33OYmc6ggOTnGOtG2Ol_qYnE-QyIj5PsZtWEymD-HgWgT9CHqzduYfA6kqWYs6Qqs0wsSOhJaL0nCJTxXO2IdXndj0ybJih76ozZyErFHIOglZF33YjJK9GBmrbacX7Xys8-HVMnqBHj3RwjnhG2OUw1UydDWNbRDrfVjv9kVnFXCmLwHbh9fdXl1-_veSnvx_tudwE4GvP-6O9tbgFkuAKSnj69BbzH_4p2gjLZpnGYwEjq4b_78BLBse5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+design+of+magnetorheological+damper+based+on+multi-objective+whale+algorithm&rft.jtitle=Discover+applied+sciences&rft.au=Zhao%2C+Yuliang&rft.au=Chen%2C+Xiaoning&rft.au=Huang%2C+Xuhong&rft.au=Liu%2C+Caiwei&rft.date=2025-05-23&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1007%2Fs42452-025-07030-0&rft.externalDocID=10_1007_s42452_025_07030_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon