Effective removal of phenol from wastewater by magnetic porous loofah biochar

In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost loofah biochar material with Fe 3 O 4 . The successful synthesis of the material was demonstrated by XRD, FTIR, SEM, VSM, and BET. In additi...

Full description

Saved in:
Bibliographic Details
Published inCarbon Letters Vol. 34; no. 1; pp. 191 - 200
Main Authors Shan, Shirui, Wu, Honglin, Yang, Jian, Jiao, Di, Huang, Mengqin, Li, Fu
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.01.2024
한국탄소학회
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost loofah biochar material with Fe 3 O 4 . The successful synthesis of the material was demonstrated by XRD, FTIR, SEM, VSM, and BET. In addition, the material exhibits outstanding magnetic separation performance (40.01 umg/g) allowing for rapid recovery within just 90 s. The adsorption process of phenol on MPLB was found to be spontaneous and endothermic. The experimental data fit exceptionally well with the pseudo-second-order kinetic model and Langmuir model ( R 2  > 0.99), indicating that the dominant adsorption mechanisms involved monolayer adsorption and chemisorption. These interactions were attributed to host–guest interaction, π–π conjugation, hydrogen bonding, and pore filling. The maximum adsorption capacity calculated using the Langmuir model at 298 K is 39.4 mg/g. Importantly, even after undergoing seven cycles of recycling, MPLB retained 78% of its initial adsorption capacity. In simulated experiments employing MPLB for phenol removal in actual wastewater, an impressive removal rate of 96.4% was achieved. In conclusion, MPLB exhibits significant potential as an effective adsorbent for phenol removal in wastewater. Graphical abstract
AbstractList In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost loofah biochar material with Fe3O4. The successful synthesis of the material was demonstrated by XRD, FTIR, SEM, VSM, and BET. In addition, the material exhibits outstanding magnetic separation performance (40.01 umg/g) allowing for rapid recovery within just 90 s. The adsorption process of phenol on MPLB was found to be spontaneous and endothermic. The experimental data fit exceptionally well with the pseudo-second-order kinetic model and Langmuir model (R2 > 0.99), indicating that the dominant adsorption mechanisms involved monolayer adsorption and chemisorption. These interactions were attributed to host–guest interaction, π–π conjugation, hydrogen bonding, and pore filling. The maximum adsorption capacity calculated using the Langmuir model at 298 K is 39.4 mg/g. Importantly, even after undergoing seven cycles of recycling, MPLB retained 78% of its initial adsorption capacity. In simulated experiments employing MPLB for phenol removal in actual wastewater, an impressive removal rate of 96.4% was achieved. In conclusion, MPLB exhibits significant potential as an effective adsorbent for phenol removal in wastewater. Graphical In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost loofah biochar material with Fe3O4. The successful synthesis of the material was demonstrated by XRD, FTIR, SEM, VSM, and BET. In addition, the material exhibits outstanding magnetic separation performance (40.01 umg/g) allowing for rapid recovery within just 90 s. The adsorption process of phenol on MPLB was found to be spontaneous and endothermic. The experimental data fit exceptionally well with the pseudo-second-order kinetic model and Langmuir model (R2 > 0.99), indicating that the dominant adsorption mechanisms involved monolayer adsorption and chemisorption. These interactions were attributed to host–guest interaction, π–π conjugation, hydrogen bonding, and pore filling. The maximum adsorption capacity calculated using the Langmuir model at 298 K is 39.4 mg/g. Importantly, even after undergoing seven cycles of recycling, MPLB retained 78% of its initial adsorption capacity. In simulated experiments employing MPLB for phenol removal in actual wastewater, an impressive removal rate of 96.4% was achieved. In conclusion, MPLB exhibits significant potential as an effective adsorbent for phenol removal in wastewater. Graphical KCI Citation Count: 0
In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost loofah biochar material with Fe 3 O 4 . The successful synthesis of the material was demonstrated by XRD, FTIR, SEM, VSM, and BET. In addition, the material exhibits outstanding magnetic separation performance (40.01 umg/g) allowing for rapid recovery within just 90 s. The adsorption process of phenol on MPLB was found to be spontaneous and endothermic. The experimental data fit exceptionally well with the pseudo-second-order kinetic model and Langmuir model ( R 2  > 0.99), indicating that the dominant adsorption mechanisms involved monolayer adsorption and chemisorption. These interactions were attributed to host–guest interaction, π–π conjugation, hydrogen bonding, and pore filling. The maximum adsorption capacity calculated using the Langmuir model at 298 K is 39.4 mg/g. Importantly, even after undergoing seven cycles of recycling, MPLB retained 78% of its initial adsorption capacity. In simulated experiments employing MPLB for phenol removal in actual wastewater, an impressive removal rate of 96.4% was achieved. In conclusion, MPLB exhibits significant potential as an effective adsorbent for phenol removal in wastewater. Graphical abstract
In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost loofah biochar material with Fe3O4. The successful synthesis of the material was demonstrated by XRD, FTIR, SEM, VSM, and BET. In addition, the material exhibits outstanding magnetic separation performance (40.01 umg/g) allowing for rapid recovery within just 90 s. The adsorption process of phenol on MPLB was found to be spontaneous and endothermic. The experimental data fit exceptionally well with the pseudo-second-order kinetic model and Langmuir model (R2 > 0.99), indicating that the dominant adsorption mechanisms involved monolayer adsorption and chemisorption. These interactions were attributed to host–guest interaction, π–π conjugation, hydrogen bonding, and pore filling. The maximum adsorption capacity calculated using the Langmuir model at 298 K is 39.4 mg/g. Importantly, even after undergoing seven cycles of recycling, MPLB retained 78% of its initial adsorption capacity. In simulated experiments employing MPLB for phenol removal in actual wastewater, an impressive removal rate of 96.4% was achieved. In conclusion, MPLB exhibits significant potential as an effective adsorbent for phenol removal in wastewater.
Author Huang, Mengqin
Jiao, Di
Wu, Honglin
Li, Fu
Yang, Jian
Shan, Shirui
Author_xml – sequence: 1
  givenname: Shirui
  surname: Shan
  fullname: Shan, Shirui
  email: 15520596990@163.com
  organization: Department of Xuchang Vocational Technical College
– sequence: 2
  givenname: Honglin
  surname: Wu
  fullname: Wu, Honglin
  organization: Department of Guilin Institute of Information Technology
– sequence: 3
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  organization: Guang’an District, Department of Jinghe Town Junior Middle School
– sequence: 4
  givenname: Di
  surname: Jiao
  fullname: Jiao, Di
  organization: Department of Tianjin Branch of CNPC Offshore Engineering Co., Ltd
– sequence: 5
  givenname: Mengqin
  surname: Huang
  fullname: Huang, Mengqin
  organization: Department of Chengdu
– sequence: 6
  givenname: Fu
  surname: Li
  fullname: Li, Fu
  organization: Department of Weihai Jiamei Chemical Co., Ltd
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003060045$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU9r3DAQxUVJoZs0X6AnQW4Ft_prW8cQkjSQEijbsxhrpV11vZ6tpE3It6-9LiTkkMPwLr8385h3Sk4GHDwhXzj7xhlrvmclWiErNg2ra1HpD2QhhJSVMqY9IQtumrpSQvNP5Dzn2DFptG5a0yzIz-sQvCvx0dPkd_gIPcVA9xs_YE9Dwh19glz8ExSfaPdMd7AefImO7jHhIdMeMcCGdhHdBtJn8jFAn_35fz0jv2-ul1c_qvuH27ury_vKyVaUSnvoupXypuV10I0AIY0HpxpYdbzTQjllOu9qsVI8NI4HXTtYNbUK0IIJWp6Rr_PeIQW7ddEixKOu0W6Tvfy1vLOcKWa0MiN8McP7hH8PPhf7Bw9pGPNZYaQUZvyUeKG2mDxkt8Ee0guppGbHXe1MuYQ5Jx-siwVKxKEkiP141E6V2LkSy6aZKrFTZvHGuk9xB-n5fZOcTXmEh7V_legd1z_OOqA-
CitedBy_id crossref_primary_10_1016_j_jcis_2025_137391
crossref_primary_10_1007_s42823_024_00837_8
crossref_primary_10_1007_s42823_024_00766_6
crossref_primary_10_1016_j_jwpe_2025_107137
Cites_doi 10.1016/J.JARE.2014.06.001
10.1016/J.JHAZMAT.2013.11.058
10.1016/J.JALLCOM.2020.154942
10.1016/J.ECOENV.2018.12.043
10.1007/S13738-018-1457-1
10.1016/J.MEMSCI.2020.119043
10.1016/J.PSEP.2021.05.015
10.1007/S11164-023-04958-Z
10.1016/J.JECE.2021.106494
10.1021/ACS.EST.1C07457
10.1111/1556-4029.13106
10.1021/ES801297U
10.1016/J.MATLET.2018.06.117
10.3390/W14203203
10.1016/j.powtec.2017.04.021
10.1016/J.JECE.2020.103790
10.1016/J.SEPPUR.2021.119138
10.1007/S10967-021-07782-0
10.1016/J.CEP.2023.109313
10.1007/S42114-017-0004-3
10.1016/J.ENVPOL.2018.10.071
10.2139/ssrn.4401670
10.1016/j.jenvman.2019.109677
10.1016/j.envpol.2019.113822
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Korean Carbon Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Korean Carbon Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
KROLR
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
ACYCR
DOI 10.1007/s42823-023-00662-5
DatabaseName CrossRef
코리아스칼라
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Korean Citation Index
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList


ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2233-4998
EndPage 200
ExternalDocumentID oai_kci_go_kr_ARTI_10409549
435049
10_1007_s42823_023_00662_5
GroupedDBID .UV
0R~
406
88I
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
ABAKF
ABECU
ABFTV
ABJCF
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABUWG
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADMLS
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AEUYN
AFKRA
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
ATCPS
AXYYD
AZQEC
BENPR
BGLVJ
BGNMA
BHPHI
CCPQU
CSCUP
DPUIP
DWQXO
EBLON
EBS
EJD
FIGPU
FNLPD
GNUQQ
H13
HCIFZ
IKXTQ
IWAJR
JDI
JZLTJ
KB.
KOV
KROLR
LLZTM
M2P
M4Y
M7S
NPVJJ
NQJWS
NU0
OK1
P5Y
PATMY
PDBOC
PT4
PTHSS
PYCSY
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
VEKWB
VFIZW
VP7
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
ABRTQ
D1I
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
AAFGU
AAYFA
ABFGW
ABKAS
ABMYL
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
Z5O
ID FETCH-LOGICAL-c382t-5eabbd4e9816f572a239eac47adb1b524c49bec62d41f7c1f56cad764fa8a9f53
IEDL.DBID BENPR
ISSN 1976-4251
IngestDate Fri Mar 15 19:04:02 EDT 2024
Fri Jul 25 11:50:21 EDT 2025
Sun Nov 24 04:16:43 EST 2024
Tue Jul 01 01:14:48 EDT 2025
Thu Apr 24 23:11:43 EDT 2025
Fri Feb 21 02:41:55 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Loofah biochar
Wastewater purification
Adsorbed phenol
Magnetic material loading
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-5eabbd4e9816f572a239eac47adb1b524c49bec62d41f7c1f56cad764fa8a9f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2933292332
PQPubID 6587174
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10409549
proquest_journals_2933292332
koreascholar_journals_435049
crossref_citationtrail_10_1007_s42823_023_00662_5
crossref_primary_10_1007_s42823_023_00662_5
springer_journals_10_1007_s42823_023_00662_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Incheon
PublicationTitle Carbon Letters
PublicationTitleAbbrev Carbon Lett
PublicationYear 2024
Publisher Springer Nature Singapore
한국탄소학회
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: 한국탄소학회
– name: Springer Nature B.V
References Yu, Lu, Guo, Patel, Bafana, Wang, Qiu, Jeffryes, Wei, Guo, Wujcik (CR21) 2018; 1
CR3
Gu, Zhang, Ni, Hu, Qu (CR6) 2022; 56
Abdel-Ghani, El-Chaghaby, Helal (CR1) 2015; 6
CR19
Yu, Tang, Liu, Liu, Ye (CR22) 2023
Lin, Xing (CR11) 2008; 42
CR18
Duman, Özcan, Gürkan Polat, Tunç (CR5) 2019; 244
Cao, Wang, Feng (CR4) 2021
Mo, Hu, Wang, Xie, Nong, Zhang, Zeng (CR14) 2021; 329
Ho (CR7) 2022
Li, Zhang, Li, Byard (CR13) 2016; 61
Parlayici, Pehlivan (CR17) 2017; 317
Bahiraei, Behin (CR2) 2020; 8
Li, Mu, Liu, Wang, Wang, Song (CR10) 2023; 49
Samsnavith (CR20) 2021
Zhou, Ji, Ma, Shao, Zhang, Gao, Li (CR24) 2014; 265
Mohamad Said, Ismail, Abdul Karim, Abdullah, Hafeez (CR15) 2021; 151
Mohammadi, Darijani, Karimi (CR16) 2020
Zarin, Aslam, Zahir, Kamal, Rana, Ahmad, Ahmed (CR23) 2018; 15
Li, Chen, Xu, Pan (CR8) 2019; 170
Li, Li, Feng, Huang, Zhao, Hu, Cai (CR9) 2018; 229
Lin, Zou, Cao, Liang, Li (CR12) 2021; 9
Z Gu (662_CR6) 2022; 56
M Li (662_CR10) 2023; 49
Q Yu (662_CR22) 2023
X Cao (662_CR4) 2021
Z Li (662_CR13) 2016; 61
G Mo (662_CR14) 2021; 329
S Samsnavith (662_CR20) 2021
J Li (662_CR9) 2018; 229
S Parlayici (662_CR17) 2017; 317
L Zhou (662_CR24) 2014; 265
KA Mohamad Said (662_CR15) 2021; 151
NT Abdel-Ghani (662_CR1) 2015; 6
D Lin (662_CR11) 2008; 42
G Yu (662_CR21) 2018; 1
A Bahiraei (662_CR2) 2020; 8
662_CR3
O Duman (662_CR5) 2019; 244
SZ Mohammadi (662_CR16) 2020
662_CR19
S Ho (662_CR7) 2022
J Li (662_CR8) 2019; 170
S Zarin (662_CR23) 2018; 15
S Lin (662_CR12) 2021; 9
662_CR18
References_xml – volume: 6
  start-page: 405
  issue: 3
  year: 2015
  end-page: 415
  ident: CR1
  article-title: Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes
  publication-title: J Adv Res
  doi: 10.1016/J.JARE.2014.06.001
– volume: 265
  start-page: 104
  year: 2014
  end-page: 114
  ident: CR24
  article-title: Development of carbon nanotubes/CoFe O magnetic hybrid material for removal of tetrabromobisphenol A and Pb(II)
  publication-title: J Hazard Mater
  doi: 10.1016/J.JHAZMAT.2013.11.058
– year: 2020
  ident: CR16
  article-title: Fast and efficient removal of phenol by magnetic activated carbon-cobalt nanoparticles
  publication-title: J Alloys Compounds
  doi: 10.1016/J.JALLCOM.2020.154942
– ident: CR19
– ident: CR18
– volume: 170
  start-page: 716
  year: 2019
  end-page: 721
  ident: CR8
  article-title: Immobilization of horseradish peroxidase on electrospun magnetic nanofibers for phenol removal
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/J.ECOENV.2018.12.043
– volume: 15
  start-page: 2689
  issue: 12
  year: 2018
  end-page: 2701
  ident: CR23
  article-title: Synthesis of bimetallic/carbon nanocomposite and its application for phenol removal
  publication-title: J Iran Chem Soc
  doi: 10.1007/S13738-018-1457-1
– year: 2021
  ident: CR4
  article-title: Removal of phenolic contaminants from water by pervaporation
  publication-title: J Membr Sci
  doi: 10.1016/J.MEMSCI.2020.119043
– volume: 151
  start-page: 257
  year: 2021
  end-page: 289
  ident: CR15
  article-title: A review of technologies for the phenolic compounds recovery and phenol removal from wastewater
  publication-title: Process Saf Environ Prot
  doi: 10.1016/J.PSEP.2021.05.015
– ident: CR3
– volume: 49
  start-page: 2209
  issue: 5
  year: 2023
  end-page: 2232
  ident: CR10
  article-title: Removal of phenol by lignin-based activated carbon as an efficient adsorbent for adsorption of phenolic wastewater
  publication-title: Res Chem Intermed
  doi: 10.1007/S11164-023-04958-Z
– volume: 9
  issue: 6
  year: 2021
  ident: CR12
  article-title: One-pot synthesis of β-cyclodextrin magnetic carbon nanotube (β-CD@MMWCNT) for effective removal of phenol from oily wastewater
  publication-title: J Environ Chem Eng
  doi: 10.1016/J.JECE.2021.106494
– volume: 56
  start-page: 4356
  issue: 7
  year: 2022
  end-page: 4366
  ident: CR6
  article-title: Simultaneous phenol removal and resource recovery from phenolic wastewater by electrocatalytic hydrogenation
  publication-title: Environ Sci Technol
  doi: 10.1021/ACS.EST.1C07457
– volume: 61
  start-page: 1143
  issue: 4
  year: 2016
  end-page: 1145
  ident: CR13
  article-title: Fatal phenol toxicity following attempted tattoo removal
  publication-title: J Forens Sci
  doi: 10.1111/1556-4029.13106
– volume: 42
  start-page: 7254
  issue: 19
  year: 2008
  end-page: 7259
  ident: CR11
  article-title: Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups
  publication-title: Environ Sci Technol
  doi: 10.1021/ES801297U
– volume: 229
  start-page: 193
  year: 2018
  end-page: 197
  ident: CR9
  article-title: Octopus-like PtCu nanoframe as peroxidase mimic for phenol removal
  publication-title: Mater Lett
  doi: 10.1016/J.MATLET.2018.06.117
– year: 2022
  ident: CR7
  article-title: Low-cost adsorbents for the removal of phenol/phenolics, pesticides, and dyes from wastewater systems: a review
  publication-title: Water (Switzerland)
  doi: 10.3390/W14203203
– volume: 317
  start-page: 23
  year: 2017
  end-page: 30
  ident: CR17
  article-title: Removal of metals by Fe3O4 loaded activated carbon prepared from plum stone ( ): kinetics and modelling study
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2017.04.021
– volume: 8
  issue: 3
  year: 2020
  ident: CR2
  article-title: Sonochemical immobilization of MnO nanoparticles on NaP-zeolite for enhanced Hg (II) adsorption from water
  publication-title: J Environ Chem Eng
  doi: 10.1016/J.JECE.2020.103790
– year: 2021
  ident: CR20
  article-title: Removal of phenol from aqueous phenol solution using bio-emulsion
  publication-title: Separat Purif Technol
  doi: 10.1016/J.SEPPUR.2021.119138
– volume: 329
  start-page: 225
  issue: 1
  year: 2021
  end-page: 237
  ident: CR14
  article-title: Fe3O4-modified sewage sludge biochar for U(VI) removal from aqueous solution: performance and mechanism
  publication-title: J Radioanal Nucl Chem
  doi: 10.1007/S10967-021-07782-0
– year: 2023
  ident: CR22
  article-title: Phenol removal by activation of persulfate using magnetic carbon generated from sludge and steel converter slag
  publication-title: Chem Eng Process Process Intensif
  doi: 10.1016/J.CEP.2023.109313
– volume: 1
  start-page: 56
  issue: 1
  year: 2018
  end-page: 78
  ident: CR21
  article-title: Carbon nanotubes, graphene, and their derivatives for heavy metal removal
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/S42114-017-0004-3
– volume: 244
  start-page: 723
  year: 2019
  end-page: 732
  ident: CR5
  article-title: Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites
  publication-title: Environ Pollut
  doi: 10.1016/J.ENVPOL.2018.10.071
– volume: 6
  start-page: 405
  issue: 3
  year: 2015
  ident: 662_CR1
  publication-title: J Adv Res
  doi: 10.1016/J.JARE.2014.06.001
– volume: 1
  start-page: 56
  issue: 1
  year: 2018
  ident: 662_CR21
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/S42114-017-0004-3
– volume: 8
  issue: 3
  year: 2020
  ident: 662_CR2
  publication-title: J Environ Chem Eng
  doi: 10.1016/J.JECE.2020.103790
– volume: 9
  issue: 6
  year: 2021
  ident: 662_CR12
  publication-title: J Environ Chem Eng
  doi: 10.1016/J.JECE.2021.106494
– volume: 265
  start-page: 104
  year: 2014
  ident: 662_CR24
  publication-title: J Hazard Mater
  doi: 10.1016/J.JHAZMAT.2013.11.058
– ident: 662_CR3
  doi: 10.2139/ssrn.4401670
– volume: 244
  start-page: 723
  year: 2019
  ident: 662_CR5
  publication-title: Environ Pollut
  doi: 10.1016/J.ENVPOL.2018.10.071
– volume: 15
  start-page: 2689
  issue: 12
  year: 2018
  ident: 662_CR23
  publication-title: J Iran Chem Soc
  doi: 10.1007/S13738-018-1457-1
– volume: 56
  start-page: 4356
  issue: 7
  year: 2022
  ident: 662_CR6
  publication-title: Environ Sci Technol
  doi: 10.1021/ACS.EST.1C07457
– volume: 61
  start-page: 1143
  issue: 4
  year: 2016
  ident: 662_CR13
  publication-title: J Forens Sci
  doi: 10.1111/1556-4029.13106
– volume: 329
  start-page: 225
  issue: 1
  year: 2021
  ident: 662_CR14
  publication-title: J Radioanal Nucl Chem
  doi: 10.1007/S10967-021-07782-0
– volume: 49
  start-page: 2209
  issue: 5
  year: 2023
  ident: 662_CR10
  publication-title: Res Chem Intermed
  doi: 10.1007/S11164-023-04958-Z
– volume: 229
  start-page: 193
  year: 2018
  ident: 662_CR9
  publication-title: Mater Lett
  doi: 10.1016/J.MATLET.2018.06.117
– volume: 42
  start-page: 7254
  issue: 19
  year: 2008
  ident: 662_CR11
  publication-title: Environ Sci Technol
  doi: 10.1021/ES801297U
– ident: 662_CR18
  doi: 10.1016/j.jenvman.2019.109677
– ident: 662_CR19
  doi: 10.1016/j.envpol.2019.113822
– year: 2020
  ident: 662_CR16
  publication-title: J Alloys Compounds
  doi: 10.1016/J.JALLCOM.2020.154942
– volume: 317
  start-page: 23
  year: 2017
  ident: 662_CR17
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2017.04.021
– volume: 151
  start-page: 257
  year: 2021
  ident: 662_CR15
  publication-title: Process Saf Environ Prot
  doi: 10.1016/J.PSEP.2021.05.015
– volume: 170
  start-page: 716
  year: 2019
  ident: 662_CR8
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/J.ECOENV.2018.12.043
– year: 2022
  ident: 662_CR7
  publication-title: Water (Switzerland)
  doi: 10.3390/W14203203
– year: 2021
  ident: 662_CR4
  publication-title: J Membr Sci
  doi: 10.1016/J.MEMSCI.2020.119043
– year: 2021
  ident: 662_CR20
  publication-title: Separat Purif Technol
  doi: 10.1016/J.SEPPUR.2021.119138
– year: 2023
  ident: 662_CR22
  publication-title: Chem Eng Process Process Intensif
  doi: 10.1016/J.CEP.2023.109313
SSID ssib039557897
ssj0002992795
Score 2.2949324
Snippet In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost...
SourceID nrf
proquest
koreascholar
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 191
SubjectTerms Adsorbents
Adsorption
Carbon
Characterization and Evaluation of Materials
Charcoal
Chemisorption
Chemistry and Materials Science
Conjugation
Experiments
Fourier transforms
Hydrogen bonding
Iron oxides
Magnetic separation
Materials Engineering
Materials Science
Nanotechnology
Original Article
Phenols
Wastewater
Wastewater treatment
자연과학일반
TableOfContents Effective removal of phenol from wastewater by magnetic porous loofah biochar Abstract Graphical abstract 1 Introduction 2 Experiment 2.1 Reagents 2.2 Synthesis of MPLB 2.3 Adsorption experiment of phenol 2.4 Cycle experiment 2.5 Actual oily wastewater 2.6 Kinetics and isotherm models 2.7 characterization equipment 3 Results and discussion 3.1 Characterization 3.1.1 XRD 3.1.2 VSM and BET 3.1.3 FTIR 3.1.4 SEM 3.2 Effect of pH 3.3 Effect of adsorption time and temperature 3.4 Kinetic studies 3.5 Study on adsorption thermodynamics and adsorption isotherm 3.6 Reuse performance and performance research in actual oily wastewater 3.7 Discussion on adsorption mechanism 4 Conclusions Acknowledgements References
Title Effective removal of phenol from wastewater by magnetic porous loofah biochar
URI https://link.springer.com/article/10.1007/s42823-023-00662-5
http://db.koreascholar.com/Article/Detail/435049
https://www.proquest.com/docview/2933292332
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003060045
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Carbon Letters, 2024, 34(1), , pp.191-200
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEA9e-yKCKCpWawnomwabr_14kqtcPYUrIh7cW0iyyXm0tznbHuJ_78xuevUE72HZh82GZea385mZIeRNU-ng4lQxK71lChwM5oSrWBW5LJz3QVoscD5ZFMen6suZPssBt00-VrmTiZ2gbpLHGPl7UEtSgDUixYernwynRmF2NY_QOCBDEMFVNSDD2dHi67cdomStAZE5T4ayGYSvKLtRLBz0MAPA8lxJ09XTgS0uMK0JF3ZGZ_qWtnqwTHhQvHc6QRe163jLLv0nldppqPkj8jCblvSwx8Jjci-0T8hJ354YZBpdh8sEuKIpUjzYlVYUa0voL7vBABrQl7rf9NKet1jXSMEuT9cbukop2h_UXSSsz3pKTudH3z8eszxCgXlZiS3TwTrXqFBXvIi6FFbIGkStKm3juNNCeVUDFwvRKB5Lz6MuvG3KQkVb2Tpq-YwM2tSG51jcHeoQhWqwmzB30tUlb2IjpsLXVnA3InxHKuNzf3Ecc7EyN52RO_KaKV5IXqNH5O3NO1d9d407V4__5oDJf9vGgMkHjs6IvAaOmKW_MNgzG-_nySzXBjyDz7AneLIaV413HNtvsAfXiLzbcXH_-P-f9OLu3V6S-0Af1YdsxmSwXV-HV2DEbN2EHFTzTxMyPJzPZotJxu0f6dTuPg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcgAhIRAgAgEsASewiF_7OCCEgJDQpqdW6s3YXrtUSdclSVX1T_EbmdlHQ5HorYfVHtZr7c6M5-HxN0PI66rQwcWRYlZ6yxQEGMwJV7Aicpk574O0CHCe7WWTA_X9UB9ukd89FgaPVfY6sVHUVfK4R_4ezJIU4I1I8fH0F8OuUZhd7VtotGKxEy7OIWRbfZh-Af6-EWL8df_zhHVdBZiXhVgzHaxzlQplwbOoc2GFLEH7qNxWjjstlFcl_FgmKsVj7nnUmbdVnqloC1tG7BIBKv-WkmDJEZk-_tbLryw1yH-XlUNLAKpe5E3jFw5Wn8Hy4B1up0HvgecvMIkKF9ZhZ_qKbbw7T3gsvQ1xwfLVy3jFC_4ncdvYw_F9cq9zZOmnVvIekK1QPySzthgyaFC6DCcJpJimSPEYWVpQRLLQc7vC7TrgJnUX9MQe1YiipBAFpLMVXaQU7U_qjhOiwR6Rgxsh7WOyXac6PEEoeShDFKrC2sXcSVfmvIqVGAlfWsHdgPCeVMZ31cyxqcbCXNZhbshrRngheY0ekLeX75y2tTyuHT38mwOmW9srAw4mhFUD8go4Yub-2GCFbrwfJTNfGohDpjAnxM0aRw17jm0m2IjygLzrubh5_P9Penr9bC_J7cn-bNfsTvd2npE7QCvVbhYNyfZ6eRaeg_u0di8amaXkx00vkj978yl9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+removal+of+phenol+from+wastewater+by+magnetic+porous+loofah+biochar&rft.jtitle=Carbon+Letters&rft.au=Shan%2C+Shirui&rft.au=Wu%2C+Honglin&rft.au=Yang%2C+Jian&rft.au=Jiao%2C+Di&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1976-4251&rft.eissn=2233-4998&rft.volume=34&rft.issue=1&rft.spage=191&rft.epage=200&rft_id=info:doi/10.1007%2Fs42823-023-00662-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-4251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-4251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-4251&client=summon