Technical note: Effects of uncertainties and number of data points on line fitting – a case study on new particle formation

Fitting a line to two measured variables is considered one of the simplest statistical procedures researchers can carry out. However, this simplicity is deceptive as the line-fitting procedure is actually quite a complex problem. Atmospheric measurement data never come without some measurement error...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 19; no. 19; pp. 12531 - 12543
Main Authors Mikkonen, Santtu, Pitkänen, Mikko R. A., Nieminen, Tuomo, Lipponen, Antti, Isokääntä, Sini, Arola, Antti, Lehtinen, Kari E. J.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 09.10.2019
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fitting a line to two measured variables is considered one of the simplest statistical procedures researchers can carry out. However, this simplicity is deceptive as the line-fitting procedure is actually quite a complex problem. Atmospheric measurement data never come without some measurement error. Too often, these errors are neglected when researchers make inferences from their data. To demonstrate the problem, we simulated datasets with different numbers of data points and different amounts of error, mimicking the dependence of the atmospheric new particle formation rate (J1.7) on the sulfuric acid concentration (H2SO4). Both variables have substantial measurement error and, thus, are good test variables for our study. We show that ordinary least squares (OLS) regression results in strongly biased slope values compared with six error-in-variables (EIV) regression methods (Deming regression, principal component analysis, orthogonal regression, Bayesian EIV and two different bivariate regression methods) that are known to take errors in the variables into account.
AbstractList Fitting a line to two measured variables is considered one of the simplest statistical procedures researchers can carry out. However, this simplicity is deceptive as the line-fitting procedure is actually quite a complex problem. Atmospheric measurement data never come without some measurement error. Too often, these errors are neglected when researchers make inferences from their data. To demonstrate the problem, we simulated datasets with different numbers of data points and different amounts of error, mimicking the dependence of the atmospheric new particle formation rate ( J1.7 ) on the sulfuric acid concentration ( H2SO4 ). Both variables have substantial measurement error and, thus, are good test variables for our study. We show that ordinary least squares (OLS) regression results in strongly biased slope values compared with six error-in-variables (EIV) regression methods (Deming regression, principal component analysis, orthogonal regression, Bayesian EIV and two different bivariate regression methods) that are known to take errors in the variables into account.
Fitting a line to two measured variables is considered one of the simplest statistical procedures researchers can carry out. However, this simplicity is deceptive as the line-fitting procedure is actually quite a complex problem. Atmospheric measurement data never come without some measurement error. Too often, these errors are neglected when researchers make inferences from their data. To demonstrate the problem, we simulated datasets with different numbers of data points and different amounts of error, mimicking the dependence of the atmospheric new particle formation rate (J1.7) on the sulfuric acid concentration (H2SO4). Both variables have substantial measurement error and, thus, are good test variables for our study. We show that ordinary least squares (OLS) regression results in strongly biased slope values compared with six error-in-variables (EIV) regression methods (Deming regression, principal component analysis, orthogonal regression, Bayesian EIV and two different bivariate regression methods) that are known to take errors in the variables into account.
Author Lehtinen, Kari E. J.
Arola, Antti
Mikkonen, Santtu
Lipponen, Antti
Isokääntä, Sini
Nieminen, Tuomo
Pitkänen, Mikko R. A.
Author_xml – sequence: 1
  givenname: Santtu
  orcidid: 0000-0003-0595-0657
  surname: Mikkonen
  fullname: Mikkonen, Santtu
– sequence: 2
  givenname: Mikko R. A.
  orcidid: 0000-0002-5330-1662
  surname: Pitkänen
  fullname: Pitkänen, Mikko R. A.
– sequence: 3
  givenname: Tuomo
  orcidid: 0000-0002-2713-715X
  surname: Nieminen
  fullname: Nieminen, Tuomo
– sequence: 4
  givenname: Antti
  orcidid: 0000-0002-6902-9974
  surname: Lipponen
  fullname: Lipponen, Antti
– sequence: 5
  givenname: Sini
  orcidid: 0000-0001-6307-7206
  surname: Isokääntä
  fullname: Isokääntä, Sini
– sequence: 6
  givenname: Antti
  orcidid: 0000-0002-9220-0194
  surname: Arola
  fullname: Arola, Antti
– sequence: 7
  givenname: Kari E. J.
  surname: Lehtinen
  fullname: Lehtinen, Kari E. J.
BookMark eNp9kcFu1DAQhiNUJNrCA3CzxDkwtuM45oaqApUqcSlna-KMi1dZO9iOUA9IvANvyJOQ3a0Q4sDJI8_3_zOa_6I5iylS07zk8Fpx071Bt7TctFwoyVsB3Dxpznk_QKul6M7-qp81F6XsAIQC3p033-_IfYnB4cxiqvSWXXtPrhaWPFujo1wxxBqoMIwTi-t-pHzoTViRLWnrbWhkc4jEfKg1xHv268dPhsxhIVbqOj0cgEjf2IK5BjdvYMp7rCHF581Tj3OhF4_vZfP5_fXd1cf29tOHm6t3t62Tg6itMq530tDgpNSjIvCGuBvHyUlAMHIkBRr4BBx67qdu5LAx0Ak3jb3ouLxsbk6-U8KdXXLYY36wCYM9fqR8bx93s6ANovZKk1Yd9J0Rmgz1fNhOhtoNm9erk9eS09eVSrW7tOa4rW-FBKUknCbyE-VyKiWT_zOVgz0kZrfELDf2mJg9JLZp9D8aF-rxTjVjmP-j_A2uDp42
CitedBy_id crossref_primary_10_5194_amt_14_355_2021
crossref_primary_10_1016_j_chemosphere_2025_144269
crossref_primary_10_3390_ijgi10020086
crossref_primary_10_1038_s41596_019_0274_z
crossref_primary_10_5194_acp_20_15079_2020
crossref_primary_10_1038_s41467_020_18424_6
crossref_primary_10_5194_acp_25_1175_2025
crossref_primary_10_1021_acs_est_2c08198
crossref_primary_10_1016_j_gca_2024_11_009
crossref_primary_10_1038_s41467_021_25850_7
crossref_primary_10_5194_amt_16_5075_2023
crossref_primary_10_5194_acp_21_1683_2021
crossref_primary_10_5194_amt_13_3061_2020
crossref_primary_10_1016_j_atmosenv_2022_119315
Cites_doi 10.5194/acp-11-11319-2011
10.1126/science.1243527
10.1111/j.2044-8317.1957.tb00179.x
10.1038/nature17953
10.32614/CRAN.package.BivRegBLS
10.5194/amt-11-1233-2018
10.1080/00224065.1984.11978881
10.1073/pnas.0911330107
10.5194/acp-8-1577-2008
10.1002/2016GL070852
10.1007/b138659
10.1201/9781420010138
10.5194/acp-6-4079-2006
10.1126/science.aaf2649
10.1038/nature12663
10.1029/96JD03656
10.1119/1.1632486
10.1145/76909.76913
10.5194/acp-8-5477-2008
10.1029/2010JD014186
10.3402/tellusa.v11i4.9324
10.1139/p66-090
10.1111/j.1468-0262.2004.00477.x
10.5194/acp-6-787-2006
10.5194/acp-7-1899-2007
10.1080/00031305.1996.10473533
10.1137/0908085
10.1016/j.chemolab.2014.03.006
10.1002/2015JD023908
10.5194/acp-10-11223-2010
10.1007/BFb0067700
10.1198/004017006000000237
10.1038/nature10343
10.5194/acp-6-5631-2006
10.1038/nature18271
10.1029/2007JD009253
ContentType Journal Article
Copyright 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-19-12531-2019
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 12543
ExternalDocumentID oai_doaj_org_article_079aa7f57e754064927e9e618002a7c8
10_5194_acp_19_12531_2019
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c382t-59c6c39e8c337b5e0f9e1cbbdc30a093be50701d01061fd4b10e0f042cdb62413
IEDL.DBID DOA
ISSN 1680-7324
1680-7316
IngestDate Wed Aug 27 01:30:42 EDT 2025
Tue Aug 05 13:42:03 EDT 2025
Tue Jul 01 03:43:02 EDT 2025
Thu Apr 24 23:09:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-59c6c39e8c337b5e0f9e1cbbdc30a093be50701d01061fd4b10e0f042cdb62413
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0002-2713-715X
0000-0002-5330-1662
0000-0003-0595-0657
0000-0001-6307-7206
0000-0002-9220-0194
0000-0002-6902-9974
OpenAccessLink https://doaj.org/article/079aa7f57e754064927e9e618002a7c8
PQID 2305530241
PQPubID 105744
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_079aa7f57e754064927e9e618002a7c8
proquest_journals_2305530241
crossref_primary_10_5194_acp_19_12531_2019
crossref_citationtrail_10_5194_acp_19_12531_2019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-09
PublicationDateYYYYMMDD 2019-10-09
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-09
  day: 09
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2019
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref37
– ident: ref24
  doi: 10.5194/acp-11-11319-2011
– ident: ref30
  doi: 10.1126/science.1243527
– ident: ref14
  doi: 10.1111/j.2044-8317.1957.tb00179.x
– ident: ref18
  doi: 10.1038/nature17953
– ident: ref11
  doi: 10.32614/CRAN.package.BivRegBLS
– ident: ref43
  doi: 10.5194/amt-11-1233-2018
– ident: ref29
– ident: ref41
– ident: ref22
  doi: 10.1080/00224065.1984.11978881
– ident: ref23
  doi: 10.1073/pnas.0911330107
– ident: ref4
  doi: 10.5194/acp-8-1577-2008
– ident: ref27
  doi: 10.1002/2016GL070852
– ident: ref16
  doi: 10.1007/b138659
– ident: ref7
  doi: 10.1201/9781420010138
– ident: ref9
– ident: ref34
  doi: 10.5194/acp-6-4079-2006
– ident: ref10
  doi: 10.1126/science.aaf2649
– ident: ref1
  doi: 10.1038/nature12663
– ident: ref15
– ident: ref42
  doi: 10.1029/96JD03656
– ident: ref45
  doi: 10.1119/1.1632486
– ident: ref38
– ident: ref3
  doi: 10.1145/76909.76913
– ident: ref5
  doi: 10.5194/acp-8-5477-2008
– ident: ref13
  doi: 10.1029/2010JD014186
– ident: ref39
  doi: 10.3402/tellusa.v11i4.9324
– ident: ref44
  doi: 10.1139/p66-090
– ident: ref32
  doi: 10.1111/j.1468-0262.2004.00477.x
– ident: ref28
– ident: ref20
  doi: 10.5194/acp-6-787-2006
– ident: ref31
  doi: 10.5194/acp-7-1899-2007
– ident: ref6
  doi: 10.1080/00031305.1996.10473533
– ident: ref2
  doi: 10.1137/0908085
– ident: ref12
  doi: 10.1016/j.chemolab.2014.03.006
– ident: ref21
  doi: 10.1002/2015JD023908
– ident: ref26
  doi: 10.5194/acp-10-11223-2010
– ident: ref25
  doi: 10.1007/BFb0067700
– ident: ref8
  doi: 10.1198/004017006000000237
– ident: ref17
  doi: 10.1038/nature10343
– ident: ref36
  doi: 10.5194/acp-6-5631-2006
– ident: ref40
  doi: 10.1038/nature18271
– ident: ref35
– ident: ref19
  doi: 10.1029/2007JD009253
– ident: ref33
SSID ssj0025014
Score 2.3962278
Snippet Fitting a line to two measured variables is considered one of the simplest statistical procedures researchers can carry out. However, this simplicity is...
Fitting a line to two measured variables is considered one of the simplest statistical procedures researchers can carry out. However, this simplicity is...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 12531
SubjectTerms Bayesian analysis
Bivariate analysis
Data
Data points
Dependence
Economic models
Errors
Measurement
Methods
Mimicry
Particle formation
Principal components analysis
Probability theory
Procedures
Regression analysis
Researchers
Statistical analysis
Sulfuric acid
Sulphuric acid
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NatwwEBbt5tJLSf_oNmmYQ-mhIGJZWlvKJTQhIRQSSmkgN2H9lUCw3d3tsdB36Bv2SToja7eBQo62xiA0I803M_I3jL1TrpauFoqnVldcBRe57rTjjfIY4dYOTYbyHZdXzcW1-nSzuCkJt1W5Vrk5E_NBHQZPOfLDmqipJHoUcTx-59Q1iqqrpYXGY7aDR7DWM7Zzcnb1-cs25KKqGYVcDU6EejRNdU1ELeqw8yMX1AoArRBthah27nmmTOD_3_mcnc75Lnta0CJ8nNT7jD2K_XM2v0SgOyxzPhzew-ndLaLO_PSC_cypclp46Id1PIKJnXgFQwL0YFP9nzhUoesDTO1AaIwuisI44BiK9kDYE9JtvhMNf379hg48ujvIZLQkgGAcxmJ1sP0B8iW7Pj_7enrBS4cF7qWu13xhfOOlidpL2bpFrJKJwjsXvKy6ykgXES5WIuTAMQXlRIUyuM99cA1V5F6xWT_08TWDFIxCT6c8QiSqBeoWkVBSKCyDEiLNWbVZXesL_Th1wbizGIaQQiwqxApjs0IsKWTOPmw_GSfujYeET0hlW0Gizc4vhuU3W9bDVq3pujYt2tgiUm2UqdtoYiMINXet13O2v1G4LXt5Zf9Z3puHh_fYE5pJvupn9tlsvfwR3yJkWbuDYpd_AX-q6U0
  priority: 102
  providerName: ProQuest
Title Technical note: Effects of uncertainties and number of data points on line fitting – a case study on new particle formation
URI https://www.proquest.com/docview/2305530241
https://doaj.org/article/079aa7f57e754064927e9e618002a7c8
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swEBZd-9KXsbYrS9eGeyh9KJhYlmJZe1tC01BIaMvC-iYsWYJCsUObPhb6H_oP90t2JzuhMNhe9mRsnbG4O_u-08nfMXYqbSZsxmUSVJEmsrI-KcrCJrl0mOFmFl2G1jtm83y6kFd3w7t3rb5oT1hLD9wqbpAqXZYqDJVXCC5yqTPltc85AZ1SufibL8a8dTLVpVpULaNUK8cJUG-mtp6JaEUOSrdMOLUAQO9DHyGKnXcRKRL3__FdjsFm8ol97FAifG9nt8e2fL3PejMEuM1jXAeHMxg_3CPajGcH7CUukZPCoW5W_hu0rMRP0ATAyNXW_Yk7Fcq6grYNCI3RBlFYNjiGojUQ5oRwH_dCw6_XNyjBYZiDSEJLAgjCYdkpDTY_Pn5mi8nFj_E06TorJE4U2SoZapc7oX3hhFB26NOgPXfWVk6kZaqF9QgTU17FhDFU0vIUZfD9dpXNqRJ3yLbrpvZfGIRKS4xw0iE0ohpgoRABBYnCopKchx5L19o1rqMdp-4XDwbTDzKIQYMYrk00iCGD9Nj55pZly7nxN-ERmWwjSHTZ8QI6ken0Yf7lRD12vDa46d7hJ5MRGZpADMOP_sczvrJdmm_cCKiP2fbq8dmfIKBZ2T77UEwu-2xndDG_vqXjZHbzsx89-jdDbfNj
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoAL4lcstDAH4IAUNY69cVKpQlBYtrTbUyv1ZmLHqSpVSdjdquJQiXfgPXgonoQZJ1mQkHrrceNJtPF88XzjGc8AvFI2kTYRKqp0FkeqtD7KisxGqXLk4SaWIMP7HbPDdHqsvpyMT9bg13AWhtMqhzUxLNRl43iPfCvh0lSSLIp4136LuGsUR1eHFhodLPb990ty2RY7ex9Jv6-TZPLpaHca9V0FIiezZBmNc5c6mfvMSant2MdV7oWztnQyLsi_t54oUizK4CxVpbIiJhnCtittylEoeu4tuK0kWXI-mT75vHLwOEbHDl5Kr80dobooKnEktVW4NhLceIAwT8jkwj7_2MHQLuA_axBM3OQ-3Ou5Kb7vwPQA1nz9EEYzotXNPOy-4xvcPT8jjht-PYKrsDHPasa6Wfpt7GohL7CpkOxll23AFVuxqEvsmo_wGKelYtvQGInWyEwXq7OQgY2_f_zEAh0ZVwylb1mAqD-2PcZxddzyMRzfyMw_gfW6qf1TwKrMFdlV5YiQceQx08S7KkXCslRCVCOIh9k1ri92zj03zg05PawQQwoxIjdBIYYVMoK3q1vartLHdcIfWGUrQS7SHS4081PTz4eJdV4Uuhprr4kXpypPtM99KpijF9plI9gYFG76lWNh_uL82fXDL-HO9Gh2YA72Dvefw13-VyHJMN-A9eX8wm8SWVraFwGhCF9v-pP4A3oPJK4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_qFcQX8S-eVp0H9UEIl032sokgYv8crbVHEQt9W7Ob3VIoSbw7ER8Ev4Pfxo_jJ3Fmk5yC0Lc-JjsJYWd25_fbmcwAPJMmSU0iZORVHkeyMi7Ky9xEmbTEcBNDJsPnHUfzbP9Evjudnm7Ar-FfGE6rHPbEsFFXjeUz8knCpalS8ihi4vu0iOPd2Zv2c8QdpDjSOrTT6Ezk0H37SvRt-fpgl3T9PElmex939qO-w0Bk0zxZRdPCZjYtXG7TVJmpi33hhDWmsmlcEtc3juBSLKpAnHwljYhJhuzcVibjiBS99xpsKmZFI9jc3psff1jTPY7YMd3LaBK4P1QXUyXEJCelbSPBbQhoBZCdcpmff7xiaB7wn28IDm92C272SBXfdqZ1GzZcfQfGRwSym0U4i8cXuHNxTog3XN2F7-GYnpWOdbNyr7CrjLzExiN5zy73gOu3YllX2LUi4TFOUsW2oTESrZFxL_rzkI-Nv3_8xBItuVoMhXBZgIgAtr3F4_rny3twciVzfx9GdVO7B4C-KiR5WWkJnnEcMleEwrwk4bSSQvgxxMPsatuXPucOHBeaKBArRJNCtCh0UIhmhYzh5fqRtqv7cZnwNqtsLcglu8ONZnGm-_nQsSrKUvmpcopQciaLRLnCZYIRe6lsPoatQeG630eW-q_VP7x8-Clcp-Wg3x_MDx_BDf6okHFYbMFotfjiHhNyWpknvYkifLrqVfEHAGIqQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+note%3A+Effects+of+uncertainties+and+number+of+data+points+on+line+fitting+%E2%80%93+a+case+study+on+new+particle+formation&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Mikkonen%2C+Santtu&rft.au=Pitk%C3%A4nen%2C+Mikko+R.+A.&rft.au=Nieminen%2C+Tuomo&rft.au=Lipponen%2C+Antti&rft.date=2019-10-09&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=19&rft.issue=19&rft.spage=12531&rft.epage=12543&rft_id=info:doi/10.5194%2Facp-19-12531-2019&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_19_12531_2019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon