Technical note: Effects of uncertainties and number of data points on line fitting – a case study on new particle formation
Fitting a line to two measured variables is considered one of the simplest statistical procedures researchers can carry out. However, this simplicity is deceptive as the line-fitting procedure is actually quite a complex problem. Atmospheric measurement data never come without some measurement error...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 19; no. 19; pp. 12531 - 12543 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
09.10.2019
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fitting a line to two measured variables is considered
one of the simplest statistical procedures researchers can carry out. However, this
simplicity is deceptive as the line-fitting procedure is actually quite a
complex problem. Atmospheric measurement data never come without some
measurement error. Too often, these errors are neglected when researchers
make inferences from their data. To demonstrate the problem, we simulated datasets with different numbers of
data points and different amounts of error, mimicking the dependence of the atmospheric new particle
formation rate (J1.7) on the sulfuric acid concentration
(H2SO4). Both variables have substantial measurement error and, thus, are good test variables for our study. We show that ordinary least
squares (OLS) regression results in strongly biased slope values compared
with six error-in-variables (EIV) regression methods (Deming regression, principal component analysis, orthogonal regression, Bayesian EIV and two different bivariate
regression methods) that are known to take errors in the variables into account. |
---|---|
AbstractList | Fitting a line to two measured variables is considered one of the simplest statistical procedures researchers can carry out. However, this simplicity is deceptive as the line-fitting procedure is actually quite a complex problem. Atmospheric measurement data never come without some measurement error. Too often, these errors are neglected when researchers make inferences from their data. To demonstrate the problem, we simulated datasets with different numbers of data points and different amounts of error, mimicking the dependence of the atmospheric new particle formation rate ( J1.7 ) on the sulfuric acid concentration ( H2SO4 ). Both variables have substantial measurement error and, thus, are good test variables for our study. We show that ordinary least squares (OLS) regression results in strongly biased slope values compared with six error-in-variables (EIV) regression methods (Deming regression, principal component analysis, orthogonal regression, Bayesian EIV and two different bivariate regression methods) that are known to take errors in the variables into account. Fitting a line to two measured variables is considered one of the simplest statistical procedures researchers can carry out. However, this simplicity is deceptive as the line-fitting procedure is actually quite a complex problem. Atmospheric measurement data never come without some measurement error. Too often, these errors are neglected when researchers make inferences from their data. To demonstrate the problem, we simulated datasets with different numbers of data points and different amounts of error, mimicking the dependence of the atmospheric new particle formation rate (J1.7) on the sulfuric acid concentration (H2SO4). Both variables have substantial measurement error and, thus, are good test variables for our study. We show that ordinary least squares (OLS) regression results in strongly biased slope values compared with six error-in-variables (EIV) regression methods (Deming regression, principal component analysis, orthogonal regression, Bayesian EIV and two different bivariate regression methods) that are known to take errors in the variables into account. |
Author | Lehtinen, Kari E. J. Arola, Antti Mikkonen, Santtu Lipponen, Antti Isokääntä, Sini Nieminen, Tuomo Pitkänen, Mikko R. A. |
Author_xml | – sequence: 1 givenname: Santtu orcidid: 0000-0003-0595-0657 surname: Mikkonen fullname: Mikkonen, Santtu – sequence: 2 givenname: Mikko R. A. orcidid: 0000-0002-5330-1662 surname: Pitkänen fullname: Pitkänen, Mikko R. A. – sequence: 3 givenname: Tuomo orcidid: 0000-0002-2713-715X surname: Nieminen fullname: Nieminen, Tuomo – sequence: 4 givenname: Antti orcidid: 0000-0002-6902-9974 surname: Lipponen fullname: Lipponen, Antti – sequence: 5 givenname: Sini orcidid: 0000-0001-6307-7206 surname: Isokääntä fullname: Isokääntä, Sini – sequence: 6 givenname: Antti orcidid: 0000-0002-9220-0194 surname: Arola fullname: Arola, Antti – sequence: 7 givenname: Kari E. J. surname: Lehtinen fullname: Lehtinen, Kari E. J. |
BookMark | eNp9kcFu1DAQhiNUJNrCA3CzxDkwtuM45oaqApUqcSlna-KMi1dZO9iOUA9IvANvyJOQ3a0Q4sDJI8_3_zOa_6I5iylS07zk8Fpx071Bt7TctFwoyVsB3Dxpznk_QKul6M7-qp81F6XsAIQC3p033-_IfYnB4cxiqvSWXXtPrhaWPFujo1wxxBqoMIwTi-t-pHzoTViRLWnrbWhkc4jEfKg1xHv268dPhsxhIVbqOj0cgEjf2IK5BjdvYMp7rCHF581Tj3OhF4_vZfP5_fXd1cf29tOHm6t3t62Tg6itMq530tDgpNSjIvCGuBvHyUlAMHIkBRr4BBx67qdu5LAx0Ak3jb3ouLxsbk6-U8KdXXLYY36wCYM9fqR8bx93s6ANovZKk1Yd9J0Rmgz1fNhOhtoNm9erk9eS09eVSrW7tOa4rW-FBKUknCbyE-VyKiWT_zOVgz0kZrfELDf2mJg9JLZp9D8aF-rxTjVjmP-j_A2uDp42 |
CitedBy_id | crossref_primary_10_5194_amt_14_355_2021 crossref_primary_10_1016_j_chemosphere_2025_144269 crossref_primary_10_3390_ijgi10020086 crossref_primary_10_1038_s41596_019_0274_z crossref_primary_10_5194_acp_20_15079_2020 crossref_primary_10_1038_s41467_020_18424_6 crossref_primary_10_5194_acp_25_1175_2025 crossref_primary_10_1021_acs_est_2c08198 crossref_primary_10_1016_j_gca_2024_11_009 crossref_primary_10_1038_s41467_021_25850_7 crossref_primary_10_5194_amt_16_5075_2023 crossref_primary_10_5194_acp_21_1683_2021 crossref_primary_10_5194_amt_13_3061_2020 crossref_primary_10_1016_j_atmosenv_2022_119315 |
Cites_doi | 10.5194/acp-11-11319-2011 10.1126/science.1243527 10.1111/j.2044-8317.1957.tb00179.x 10.1038/nature17953 10.32614/CRAN.package.BivRegBLS 10.5194/amt-11-1233-2018 10.1080/00224065.1984.11978881 10.1073/pnas.0911330107 10.5194/acp-8-1577-2008 10.1002/2016GL070852 10.1007/b138659 10.1201/9781420010138 10.5194/acp-6-4079-2006 10.1126/science.aaf2649 10.1038/nature12663 10.1029/96JD03656 10.1119/1.1632486 10.1145/76909.76913 10.5194/acp-8-5477-2008 10.1029/2010JD014186 10.3402/tellusa.v11i4.9324 10.1139/p66-090 10.1111/j.1468-0262.2004.00477.x 10.5194/acp-6-787-2006 10.5194/acp-7-1899-2007 10.1080/00031305.1996.10473533 10.1137/0908085 10.1016/j.chemolab.2014.03.006 10.1002/2015JD023908 10.5194/acp-10-11223-2010 10.1007/BFb0067700 10.1198/004017006000000237 10.1038/nature10343 10.5194/acp-6-5631-2006 10.1038/nature18271 10.1029/2007JD009253 |
ContentType | Journal Article |
Copyright | 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.5194/acp-19-12531-2019 |
DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1680-7324 |
EndPage | 12543 |
ExternalDocumentID | oai_doaj_org_article_079aa7f57e754064927e9e618002a7c8 10_5194_acp_19_12531_2019 |
GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c382t-59c6c39e8c337b5e0f9e1cbbdc30a093be50701d01061fd4b10e0f042cdb62413 |
IEDL.DBID | DOA |
ISSN | 1680-7324 1680-7316 |
IngestDate | Wed Aug 27 01:30:42 EDT 2025 Tue Aug 05 13:42:03 EDT 2025 Tue Jul 01 03:43:02 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-59c6c39e8c337b5e0f9e1cbbdc30a093be50701d01061fd4b10e0f042cdb62413 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
ORCID | 0000-0002-2713-715X 0000-0002-5330-1662 0000-0003-0595-0657 0000-0001-6307-7206 0000-0002-9220-0194 0000-0002-6902-9974 |
OpenAccessLink | https://doaj.org/article/079aa7f57e754064927e9e618002a7c8 |
PQID | 2305530241 |
PQPubID | 105744 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_079aa7f57e754064927e9e618002a7c8 proquest_journals_2305530241 crossref_primary_10_5194_acp_19_12531_2019 crossref_citationtrail_10_5194_acp_19_12531_2019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-09 |
PublicationDateYYYYMMDD | 2019-10-09 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2019 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref37 – ident: ref24 doi: 10.5194/acp-11-11319-2011 – ident: ref30 doi: 10.1126/science.1243527 – ident: ref14 doi: 10.1111/j.2044-8317.1957.tb00179.x – ident: ref18 doi: 10.1038/nature17953 – ident: ref11 doi: 10.32614/CRAN.package.BivRegBLS – ident: ref43 doi: 10.5194/amt-11-1233-2018 – ident: ref29 – ident: ref41 – ident: ref22 doi: 10.1080/00224065.1984.11978881 – ident: ref23 doi: 10.1073/pnas.0911330107 – ident: ref4 doi: 10.5194/acp-8-1577-2008 – ident: ref27 doi: 10.1002/2016GL070852 – ident: ref16 doi: 10.1007/b138659 – ident: ref7 doi: 10.1201/9781420010138 – ident: ref9 – ident: ref34 doi: 10.5194/acp-6-4079-2006 – ident: ref10 doi: 10.1126/science.aaf2649 – ident: ref1 doi: 10.1038/nature12663 – ident: ref15 – ident: ref42 doi: 10.1029/96JD03656 – ident: ref45 doi: 10.1119/1.1632486 – ident: ref38 – ident: ref3 doi: 10.1145/76909.76913 – ident: ref5 doi: 10.5194/acp-8-5477-2008 – ident: ref13 doi: 10.1029/2010JD014186 – ident: ref39 doi: 10.3402/tellusa.v11i4.9324 – ident: ref44 doi: 10.1139/p66-090 – ident: ref32 doi: 10.1111/j.1468-0262.2004.00477.x – ident: ref28 – ident: ref20 doi: 10.5194/acp-6-787-2006 – ident: ref31 doi: 10.5194/acp-7-1899-2007 – ident: ref6 doi: 10.1080/00031305.1996.10473533 – ident: ref2 doi: 10.1137/0908085 – ident: ref12 doi: 10.1016/j.chemolab.2014.03.006 – ident: ref21 doi: 10.1002/2015JD023908 – ident: ref26 doi: 10.5194/acp-10-11223-2010 – ident: ref25 doi: 10.1007/BFb0067700 – ident: ref8 doi: 10.1198/004017006000000237 – ident: ref17 doi: 10.1038/nature10343 – ident: ref36 doi: 10.5194/acp-6-5631-2006 – ident: ref40 doi: 10.1038/nature18271 – ident: ref35 – ident: ref19 doi: 10.1029/2007JD009253 – ident: ref33 |
SSID | ssj0025014 |
Score | 2.3962278 |
Snippet | Fitting a line to two measured variables is considered
one of the simplest statistical procedures researchers can carry out. However, this
simplicity is... Fitting a line to two measured variables is considered one of the simplest statistical procedures researchers can carry out. However, this simplicity is... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 12531 |
SubjectTerms | Bayesian analysis Bivariate analysis Data Data points Dependence Economic models Errors Measurement Methods Mimicry Particle formation Principal components analysis Probability theory Procedures Regression analysis Researchers Statistical analysis Sulfuric acid Sulphuric acid |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NatwwEBbt5tJLSf_oNmmYQ-mhIGJZWlvKJTQhIRQSSmkgN2H9lUCw3d3tsdB36Bv2SToja7eBQo62xiA0I803M_I3jL1TrpauFoqnVldcBRe57rTjjfIY4dYOTYbyHZdXzcW1-nSzuCkJt1W5Vrk5E_NBHQZPOfLDmqipJHoUcTx-59Q1iqqrpYXGY7aDR7DWM7Zzcnb1-cs25KKqGYVcDU6EejRNdU1ELeqw8yMX1AoArRBthah27nmmTOD_3_mcnc75Lnta0CJ8nNT7jD2K_XM2v0SgOyxzPhzew-ndLaLO_PSC_cypclp46Id1PIKJnXgFQwL0YFP9nzhUoesDTO1AaIwuisI44BiK9kDYE9JtvhMNf379hg48ujvIZLQkgGAcxmJ1sP0B8iW7Pj_7enrBS4cF7qWu13xhfOOlidpL2bpFrJKJwjsXvKy6ykgXES5WIuTAMQXlRIUyuM99cA1V5F6xWT_08TWDFIxCT6c8QiSqBeoWkVBSKCyDEiLNWbVZXesL_Th1wbizGIaQQiwqxApjs0IsKWTOPmw_GSfujYeET0hlW0Gizc4vhuU3W9bDVq3pujYt2tgiUm2UqdtoYiMINXet13O2v1G4LXt5Zf9Z3puHh_fYE5pJvupn9tlsvfwR3yJkWbuDYpd_AX-q6U0 priority: 102 providerName: ProQuest |
Title | Technical note: Effects of uncertainties and number of data points on line fitting – a case study on new particle formation |
URI | https://www.proquest.com/docview/2305530241 https://doaj.org/article/079aa7f57e754064927e9e618002a7c8 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swEBZd-9KXsbYrS9eGeyh9KJhYlmJZe1tC01BIaMvC-iYsWYJCsUObPhb6H_oP90t2JzuhMNhe9mRsnbG4O_u-08nfMXYqbSZsxmUSVJEmsrI-KcrCJrl0mOFmFl2G1jtm83y6kFd3w7t3rb5oT1hLD9wqbpAqXZYqDJVXCC5yqTPltc85AZ1SufibL8a8dTLVpVpULaNUK8cJUG-mtp6JaEUOSrdMOLUAQO9DHyGKnXcRKRL3__FdjsFm8ol97FAifG9nt8e2fL3PejMEuM1jXAeHMxg_3CPajGcH7CUukZPCoW5W_hu0rMRP0ATAyNXW_Yk7Fcq6grYNCI3RBlFYNjiGojUQ5oRwH_dCw6_XNyjBYZiDSEJLAgjCYdkpDTY_Pn5mi8nFj_E06TorJE4U2SoZapc7oX3hhFB26NOgPXfWVk6kZaqF9QgTU17FhDFU0vIUZfD9dpXNqRJ3yLbrpvZfGIRKS4xw0iE0ohpgoRABBYnCopKchx5L19o1rqMdp-4XDwbTDzKIQYMYrk00iCGD9Nj55pZly7nxN-ERmWwjSHTZ8QI6ken0Yf7lRD12vDa46d7hJ5MRGZpADMOP_sczvrJdmm_cCKiP2fbq8dmfIKBZ2T77UEwu-2xndDG_vqXjZHbzsx89-jdDbfNj |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoAL4lcstDAH4IAUNY69cVKpQlBYtrTbUyv1ZmLHqSpVSdjdquJQiXfgPXgonoQZJ1mQkHrrceNJtPF88XzjGc8AvFI2kTYRKqp0FkeqtD7KisxGqXLk4SaWIMP7HbPDdHqsvpyMT9bg13AWhtMqhzUxLNRl43iPfCvh0lSSLIp4136LuGsUR1eHFhodLPb990ty2RY7ex9Jv6-TZPLpaHca9V0FIiezZBmNc5c6mfvMSant2MdV7oWztnQyLsi_t54oUizK4CxVpbIiJhnCtittylEoeu4tuK0kWXI-mT75vHLwOEbHDl5Kr80dobooKnEktVW4NhLceIAwT8jkwj7_2MHQLuA_axBM3OQ-3Ou5Kb7vwPQA1nz9EEYzotXNPOy-4xvcPT8jjht-PYKrsDHPasa6Wfpt7GohL7CpkOxll23AFVuxqEvsmo_wGKelYtvQGInWyEwXq7OQgY2_f_zEAh0ZVwylb1mAqD-2PcZxddzyMRzfyMw_gfW6qf1TwKrMFdlV5YiQceQx08S7KkXCslRCVCOIh9k1ri92zj03zg05PawQQwoxIjdBIYYVMoK3q1vartLHdcIfWGUrQS7SHS4081PTz4eJdV4Uuhprr4kXpypPtM99KpijF9plI9gYFG76lWNh_uL82fXDL-HO9Gh2YA72Dvefw13-VyHJMN-A9eX8wm8SWVraFwGhCF9v-pP4A3oPJK4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_qFcQX8S-eVp0H9UEIl032sokgYv8crbVHEQt9W7Ob3VIoSbw7ER8Ev4Pfxo_jJ3Fmk5yC0Lc-JjsJYWd25_fbmcwAPJMmSU0iZORVHkeyMi7Ky9xEmbTEcBNDJsPnHUfzbP9Evjudnm7Ar-FfGE6rHPbEsFFXjeUz8knCpalS8ihi4vu0iOPd2Zv2c8QdpDjSOrTT6Ezk0H37SvRt-fpgl3T9PElmex939qO-w0Bk0zxZRdPCZjYtXG7TVJmpi33hhDWmsmlcEtc3juBSLKpAnHwljYhJhuzcVibjiBS99xpsKmZFI9jc3psff1jTPY7YMd3LaBK4P1QXUyXEJCelbSPBbQhoBZCdcpmff7xiaB7wn28IDm92C272SBXfdqZ1GzZcfQfGRwSym0U4i8cXuHNxTog3XN2F7-GYnpWOdbNyr7CrjLzExiN5zy73gOu3YllX2LUi4TFOUsW2oTESrZFxL_rzkI-Nv3_8xBItuVoMhXBZgIgAtr3F4_rny3twciVzfx9GdVO7B4C-KiR5WWkJnnEcMleEwrwk4bSSQvgxxMPsatuXPucOHBeaKBArRJNCtCh0UIhmhYzh5fqRtqv7cZnwNqtsLcglu8ONZnGm-_nQsSrKUvmpcopQciaLRLnCZYIRe6lsPoatQeG630eW-q_VP7x8-Clcp-Wg3x_MDx_BDf6okHFYbMFotfjiHhNyWpknvYkifLrqVfEHAGIqQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+note%3A+Effects+of+uncertainties+and+number+of+data+points+on+line+fitting+%E2%80%93+a+case+study+on+new+particle+formation&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Mikkonen%2C+Santtu&rft.au=Pitk%C3%A4nen%2C+Mikko+R.+A.&rft.au=Nieminen%2C+Tuomo&rft.au=Lipponen%2C+Antti&rft.date=2019-10-09&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=19&rft.issue=19&rft.spage=12531&rft.epage=12543&rft_id=info:doi/10.5194%2Facp-19-12531-2019&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_19_12531_2019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |