Reconstruction of high order derivatives by new mollification methods
In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L generalized solution regularization methods is proposed. A specific algorithm for the first three derivatives is presented in the paper, in which...
Saved in:
Published in | Applied mathematics and mechanics Vol. 29; no. 6; pp. 769 - 778 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Shanghai University Press
01.06.2008
College of Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong Province, P. R. China%College of Sciences, Shanghai University, Shanghai 200444, P. R. China College of Sciences, Shanghai University, Shanghai 200444, P. R. China |
Subjects | |
Online Access | Get full text |
ISSN | 0253-4827 1573-2754 |
DOI | 10.1007/s10483-008-0608-y |
Cover
Abstract | In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L generalized solution regularization methods is proposed. A specific algorithm for the first three derivatives is presented in the paper, in which a modification of TSVD, termed cTSVD is chosen as the regularization technique. Numerical examples given in the paper verify the theoretical results and show efficiency of the new method. |
---|---|
AbstractList | In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L generalized solution regularization methods is proposed. A specific algorithm for the first three derivatives is presented in the paper, in which a modification of TSVD, termed cTSVD is chosen as the regularization technique. Numerical examples given in the paper verify the theoretical results and show efficiency of the new method. O241; In this paper,the problem of reconstructing numerical derivatives from noisy data is considered.A new framework of mollification methods based on the L generalized solution regularization methods is proposed.A specific algorithm for the first three derivatives is presented in the paper,in which a modification of TSVD,termed cTSVD is chosen as the regularization technique.Numerical examples given in the paper verify the theoreticai results and show efficiency of the new method. In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L generalized solution regularization methods is proposed. A specific algorithm for the first three derivatives is presented in the paper, in which a modification of TSVD, termed cTSVD is chosen as the regularization technique. Numerical examples given in the paper verify the theoretical results and show efficiency of the new method. |
Author | 赵振宇 贺国强 |
AuthorAffiliation | College of Sciences, Shanghai University, Shanghai 200444, P. R. China College of Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong Province, P. R. China |
AuthorAffiliation_xml | – name: College of Sciences, Shanghai University, Shanghai 200444, P. R. China; College of Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong Province, P. R. China%College of Sciences, Shanghai University, Shanghai 200444, P. R. China |
Author_xml | – sequence: 1 fullname: 赵振宇 贺国强 |
BookMark | eNp9kMtKxDAUhoMoOF4ewF1xIwjVk1vTWYp4A0EQXYdMejqNdhJNOmrf3mgFwYWLnGy-71z-HbLpg0dCDiicUAB1miiImpcAdQlVLuMGmVGpeMmUFJtkBkzyUtRMbZOdlJ4AQCghZuTiHm3waYhrO7jgi9AWnVt2RYgNxiI_92YG94apWIyFx_diFfretc6ab3yFQxeatEe2WtMn3P_5d8nj5cXD-XV5e3d1c352W1pes6GUfC4q1vKqNY1sqprmpW0zlyClnKNorLCVpVDnzZSk1DLDRNMglZQJgWrBd8nx1Pfd-Nb4pX4K6-jzRD2O6aPrPzSyHEFOAOoMH03wSwyva0yDXrlkse-Nx7BOupayUhXlkEk1kTaGlCK22rrh-8AhGtdrCvorZD2FrHNz_RWyHrNJ_5gv0a1MHP912OSkzPolxt8r_pMOfwZ1wS9fs6cXxj63rkfNlKg4UM4_AQuDnFQ |
CitedBy_id | crossref_primary_10_1016_j_apnum_2011_09_006 crossref_primary_10_1080_00207160902974404 |
Cites_doi | 10.1137/S1064827597331394 10.1515/156939406777571085 10.1016/0022-247X(80)90145-6 10.1007/BFb0084665 10.1002/9781118033210 10.1007/s002110050073 10.1016/S0898-1221(98)00001-7 10.1007/BF01796543 10.1080/00029890.2001.11919778 10.1016/j.amc.2005.09.018 10.1016/S0377-0427(99)00358-1 |
ClassificationCodes | O241 |
ContentType | Journal Article |
Copyright | Shanghai University and Springer-Verlag GmbH 2008 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Shanghai University and Springer-Verlag GmbH 2008 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7TB 8FD FR3 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s10483-008-0608-y |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Reconstruction of high order derivatives by new mollification methods |
EISSN | 1573-2754 |
EndPage | 778 |
ExternalDocumentID | yysxhlx_e200806008 10_1007_s10483_008_0608_y 27463013 |
GroupedDBID | -01 -0A -52 -5D -5G -BR -EM -SA -S~ -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 1SB 2.D 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 67Z 6NX 8RM 8TC 8UJ 92E 92I 92L 92M 92Q 93N 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAEOY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEARS AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LAK LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P9R PF0 PT4 PT5 Q-- Q-0 QOK QOS R-A R89 R9I REI RHV RNI ROL RPX RSV RT1 RZC RZE RZK S.. S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T8Q TCJ TEORI TGP TSG TSK TSV TUC TUS U1F U1G U2A U5A U5K UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W ZMTXR ZWQNP ~8M ~A9 ~L9 ~LB ~WA ABJNI ACPIV AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR AYFIA CITATION 7TB 8FD ABRTQ FR3 4A8 PSX |
ID | FETCH-LOGICAL-c382t-539462f36fad5d681104cd9505559e4dc4c6c1087447511c2a24dde151244e7b3 |
IEDL.DBID | AGYKE |
ISSN | 0253-4827 |
IngestDate | Thu May 29 03:56:05 EDT 2025 Thu Sep 04 16:44:37 EDT 2025 Tue Jul 01 02:11:01 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Fri Feb 21 02:26:46 EST 2025 Tue Jan 07 06:24:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | numerical differentiation O241 cTSVD method 65D25 47A52 ill-posed problem mollification method generalized solution L generalized solution |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-539462f36fad5d681104cd9505559e4dc4c6c1087447511c2a24dde151244e7b3 |
Notes | O241 31-1650/O1 ill-posed problem, numerical differentiation, mollification method, L generalized solution, cTSVD method ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 855676130 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_yysxhlx_e200806008 proquest_miscellaneous_855676130 crossref_citationtrail_10_1007_s10483_008_0608_y crossref_primary_10_1007_s10483_008_0608_y springer_journals_10_1007_s10483_008_0608_y chongqing_backfile_27463013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-01 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Applied mathematics and mechanics |
PublicationTitleAbbrev | Appl. Math. Mech.-Engl. Ed |
PublicationTitleAlternate | Applied Mathematics and Mechanics(English Edition) |
PublicationTitle_FL | APPLIED MATHEMATICS AND MECHANICS(ENGLISH EDITION) |
PublicationYear | 2008 |
Publisher | Shanghai University Press College of Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong Province, P. R. China%College of Sciences, Shanghai University, Shanghai 200444, P. R. China College of Sciences, Shanghai University, Shanghai 200444, P. R. China |
Publisher_xml | – name: Shanghai University Press – name: College of Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong Province, P. R. China%College of Sciences, Shanghai University, Shanghai 200444, P. R. China – name: College of Sciences, Shanghai University, Shanghai 200444, P. R. China |
References | GorenfloR.VessellaS.Abel integral equations, analysis and application, lecture notes in mathematics[M]1991BerlinSpringer-Verlag LockerJ.PrenterP. M.Regularization with differential operators I, general theory[J]J Math Anal and Appl19807425045290447.6502310.1016/0022-247X(80)90145-6572669 WeiT.LiM.High order numerical derivatives for one-dimensional scattered noisy data[J]Appl Math Comput20061752174417591096.6502710.1016/j.amc.2005.09.0182225621 HeG. Q.A TSVD form for ill-posed equations leading to optimal convergence rates ICM 2002, Abstracts of Short Communication and Poster Sessions[C]2002BeijingHigher Education Press328 KhanI. R.OhbaR.New finite difference formulas for numerical differentiation[J]J Compu Appl Math20001261/22692760971.6501410.1016/S0377-0427(99)00358-11806120 MurioD. A.MejiaC. E.ZhanS.Discrete mollification and automatic numerical differentiation[J]Computers Math Applic199835511610.1016/S0898-1221(98)00001-71612285 EldenL.BerntssonF.ReginskaT.Wavelet and Fourier method for solving the sideways heat equation[J]SIAM J Scient Comp2000216218722050959.6510710.1137/S10648275973313941762037 MurioD. A.The mollification method and the numerical solution of ill-posed problems[M]1993New YorkA Wiley-Interscience Publication, John Wiley & Sons Inc HankeM.ScherzerO.Inverse problems light: numerical differentiation[J]Amer Math Monthly200110865125211002.6502910.2307/26957051840657 HeinzW.HankeM.NeubauerA.Regularization of inverse problems[M]1996DordrechtKluwer Academic Publishers H’aoD. N.A mollification method for ill-posed problems[J]Numer Math199468446950610.1007/s0021100500731301742 WangY. B.HonY. C.ChengJ.Reconstruction of high order derivatives from input data[J]J Inverse Ill-Posed Probl2006142052181115.6502210.1515/1569394067775710852242305 ManselliP.MillerK.Calculation of the surface temperature and heat flux on one side of a wall from measurements on the opposite side[J]Ann Mat Pura Appl198012341611830434.3504810.1007/BF01796543581928 AdamsR. A.Sobolev spaces[M]Pure and Applied Mathematics1975New York/LondonAcademic Press DeansS. R.Radon transform and its applications[M]1983New YorkA Wiley-Interscience Publication, John Wiley & Sons Inc MurioD. A.Numerical method for inverse transient heat conduction problems[J]Revista de la Union Mathematic Argentina198130125360528.65048634023 P. Manselli (608_CR10) 1980; 123 I. R. Khan (608_CR7) 2000; 126 W. Heinz (608_CR6) 1996 Y. B. Wang (608_CR8) 2006; 14 S. R. Deans (608_CR2) 1983 T. Wei (608_CR9) 2006; 175 D. A. Murio (608_CR11) 1981; 30 L. Elden (608_CR13) 2000; 21 D. A. Murio (608_CR4) 1993 D. A. Murio (608_CR5) 1998; 35 M. Hanke (608_CR3) 2001; 108 G. Q. He (608_CR14) 2002 J. Locker (608_CR15) 1980; 74 D. N. H’ao (608_CR12) 1994; 68 R. A. Adams (608_CR16) 1975 R. Gorenflo (608_CR1) 1991 |
References_xml | – reference: MurioD. A.The mollification method and the numerical solution of ill-posed problems[M]1993New YorkA Wiley-Interscience Publication, John Wiley & Sons Inc – reference: KhanI. R.OhbaR.New finite difference formulas for numerical differentiation[J]J Compu Appl Math20001261/22692760971.6501410.1016/S0377-0427(99)00358-11806120 – reference: AdamsR. A.Sobolev spaces[M]Pure and Applied Mathematics1975New York/LondonAcademic Press – reference: HankeM.ScherzerO.Inverse problems light: numerical differentiation[J]Amer Math Monthly200110865125211002.6502910.2307/26957051840657 – reference: WeiT.LiM.High order numerical derivatives for one-dimensional scattered noisy data[J]Appl Math Comput20061752174417591096.6502710.1016/j.amc.2005.09.0182225621 – reference: HeG. Q.A TSVD form for ill-posed equations leading to optimal convergence rates ICM 2002, Abstracts of Short Communication and Poster Sessions[C]2002BeijingHigher Education Press328 – reference: HeinzW.HankeM.NeubauerA.Regularization of inverse problems[M]1996DordrechtKluwer Academic Publishers – reference: H’aoD. N.A mollification method for ill-posed problems[J]Numer Math199468446950610.1007/s0021100500731301742 – reference: GorenfloR.VessellaS.Abel integral equations, analysis and application, lecture notes in mathematics[M]1991BerlinSpringer-Verlag – reference: MurioD. A.Numerical method for inverse transient heat conduction problems[J]Revista de la Union Mathematic Argentina198130125360528.65048634023 – reference: WangY. B.HonY. C.ChengJ.Reconstruction of high order derivatives from input data[J]J Inverse Ill-Posed Probl2006142052181115.6502210.1515/1569394067775710852242305 – reference: ManselliP.MillerK.Calculation of the surface temperature and heat flux on one side of a wall from measurements on the opposite side[J]Ann Mat Pura Appl198012341611830434.3504810.1007/BF01796543581928 – reference: DeansS. R.Radon transform and its applications[M]1983New YorkA Wiley-Interscience Publication, John Wiley & Sons Inc – reference: EldenL.BerntssonF.ReginskaT.Wavelet and Fourier method for solving the sideways heat equation[J]SIAM J Scient Comp2000216218722050959.6510710.1137/S10648275973313941762037 – reference: MurioD. A.MejiaC. E.ZhanS.Discrete mollification and automatic numerical differentiation[J]Computers Math Applic199835511610.1016/S0898-1221(98)00001-71612285 – reference: LockerJ.PrenterP. M.Regularization with differential operators I, general theory[J]J Math Anal and Appl19807425045290447.6502310.1016/0022-247X(80)90145-6572669 – volume: 30 start-page: 25 issue: 1 year: 1981 ident: 608_CR11 publication-title: Revista de la Union Mathematic Argentina – volume: 21 start-page: 2187 issue: 6 year: 2000 ident: 608_CR13 publication-title: SIAM J Scient Comp doi: 10.1137/S1064827597331394 – volume-title: Regularization of inverse problems[M] year: 1996 ident: 608_CR6 – volume: 14 start-page: 205 year: 2006 ident: 608_CR8 publication-title: J Inverse Ill-Posed Probl doi: 10.1515/156939406777571085 – volume: 74 start-page: 504 issue: 2 year: 1980 ident: 608_CR15 publication-title: J Math Anal and Appl doi: 10.1016/0022-247X(80)90145-6 – start-page: 328 volume-title: A TSVD form for ill-posed equations leading to optimal convergence rates ICM 2002, Abstracts of Short Communication and Poster Sessions[C] year: 2002 ident: 608_CR14 – volume-title: Pure and Applied Mathematics year: 1975 ident: 608_CR16 – volume-title: Abel integral equations, analysis and application, lecture notes in mathematics[M] year: 1991 ident: 608_CR1 doi: 10.1007/BFb0084665 – volume-title: The mollification method and the numerical solution of ill-posed problems[M] year: 1993 ident: 608_CR4 doi: 10.1002/9781118033210 – volume: 68 start-page: 469 issue: 4 year: 1994 ident: 608_CR12 publication-title: Numer Math doi: 10.1007/s002110050073 – volume: 35 start-page: 1 issue: 5 year: 1998 ident: 608_CR5 publication-title: Computers Math Applic doi: 10.1016/S0898-1221(98)00001-7 – volume: 123 start-page: 161 issue: 4 year: 1980 ident: 608_CR10 publication-title: Ann Mat Pura Appl doi: 10.1007/BF01796543 – volume-title: Radon transform and its applications[M] year: 1983 ident: 608_CR2 – volume: 108 start-page: 512 issue: 6 year: 2001 ident: 608_CR3 publication-title: Amer Math Monthly doi: 10.1080/00029890.2001.11919778 – volume: 175 start-page: 1744 issue: 2 year: 2006 ident: 608_CR9 publication-title: Appl Math Comput doi: 10.1016/j.amc.2005.09.018 – volume: 126 start-page: 269 issue: 1/2 year: 2000 ident: 608_CR7 publication-title: J Compu Appl Math doi: 10.1016/S0377-0427(99)00358-1 |
SSID | ssj0004744 |
Score | 1.7939842 |
Snippet | In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L... In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L... O241; In this paper,the problem of reconstructing numerical derivatives from noisy data is considered.A new framework of mollification methods based on the L... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 769 |
SubjectTerms | Algorithms Applications of Mathematics Classical Mechanics Derivatives Fluid- and Aerodynamics Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Partial Differential Equations Reconstruction Regularization 数值分化 数值分析 求解方法 软化作用 |
Title | Reconstruction of high order derivatives by new mollification methods |
URI | http://lib.cqvip.com/qk/86647X/20086/27463013.html https://link.springer.com/article/10.1007/s10483-008-0608-y https://www.proquest.com/docview/855676130 https://d.wanfangdata.com.cn/periodical/yysxhlx-e200806008 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB616QUOpeUhQmm0EpxArmzvw-tjCglVq3BqpHKy1ut1KyU4IKcV7q_vjB9xQKhSD_ZpvbZ3dh47j28APopAO5kr35OOXDeCW08rY7wg4IHMTCRkSq6B2Xd1NhfnV_KqreMuu2z3LiRZS-qtYjehuVeH6xXeql3Yk4GO9QD2xt9-XEz6csio7uGK2px7hHLZBTP_NwlBKtysiuvf-MK_VVNvb25CpHVhT5Gb4npLB01fwGX39U3qyeLkdp2e2Pt_gB2f-HsHsN_apGzcbKJD2HHFS3g-2wC6lq9gQsfUHmyWrXJGQMesRu5keNVN0u5cydKKoaXOfhLYd946BFnTp7p8DfPp5PLLmdd2YPAs1-HakzwWKsy5yk0mM6XRVhA2iyWhhMVOZFZYZQOfIPQjtNxsaEKB8pKsCCFclPI3MChWhXsLTKRZRDhKZCGh0DAGKaNiF1o_TwNroiEcbQiBGtwuCJcqwTOzQhHEh-B3pElsC15OPTSWSQ-7TOuX1E01cf2SagifNo_8apA7HhvMOnonyF8UNDGFW92WiZZSRXTIGsLnjnBJy-flYxN-aLdKP7iqyj83S5RHlHOCw3z97klzHsGzJluFfEDvYYA0d8doEq3TEbLA6dfT6ahlhRHszsPxA_JZAt4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5VA4lL4QWx611J5AQUn8SPaI0MK2sJwWCU6W4zggAVlQlqrh1zOTxwYQQuKQnBwn8djznm8AfosgdjJTvicduW4Et16sjPGCgAcyNZGQCbkGxidqdCr-nsmzpo67aLPd25BkxamfFLuJmHtVuF7hrVyARYEmuN-Dxb3D86NhVw4ZVT1cUZpzj1Au22Dma5MQpMLlNL-4wxc-F02dvjkPkVaFPXlm8osnMuhgBSbt19epJ1e797Nk1z68AHZ85-99hk-NTsr26k30BT64_Cssj-eArsU3GJKZ2oHNsmnGCOiYVcidDK-qSdo_V7CkZKipsxsC-84ahyCr-1QX3-H0YDjZH3lNBwbP8jiceZIPhAozrjKTylTFqCsImw4koYQNnEitsMoGPkHoR6i52dCEAvklaRFCuCjhq9DLp7lbAyaSNCIcJdKQkGkYg5RRAxdaP0sCa6I-rM8JgRLcXhEulUabWSEL4n3wW9Jo24CXUw-Na93BLtP66aqpJq6fLvuwPX_ktkbueGswa-mt8XxR0MTkbnpf6FhKFZGR1YedlnC6OefFWxP-arZKN7gsi_-X18iPKOcEh_nxj3fN-RM-jibjY3385-RoHZbqzBXyB21AD-nvNlE9miVbzXF4BNmpA2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dT9swEMBPrEjTeJiAbaKUDUvb06aoSfyR9BExqgJrxcMq8WY5jgMSJS1KmZb_fnf5aECakHhInhxH8tl3Z5_vdwDfRBA7mSnfk46ObgS3XqyM8YKABzI1kZAJHQ1MZ2oyFxfX8rqpc1q0t93bkGSd00CUpnw9XKXZ8Enim4i5V4XuFb7KN7CN2jigiT4PT7rEyKiq5op2nXvEu2zDmv_rguAKt8v85gF__dxIdZ7nJlhapfjkmclvnlij8S68b9xIdlLLfQ-2XL4PO9MNg7X4AGe0s-z4sGyZMWITswq2yfCp6pr9cQVLSobONbsnPnfWnOGxurR08RHm47PfpxOvKZrgWR6Ha0_ykVBhxlVmUpmqGM27sOlIEthr5ERqhVU28Il6H6GzZUMTClRxZPiFcFHCP0EvX-buAJhI0ojQR-TU4Do3BodQjVxo_SwJrIn6MNiMGBpde0coKY3bXIVag_fBb8dQ24Y3TmUvFrojJZMIdFUHE0Wgyz5833yyqmEbLzVmrWA0LgmKc5jcLR8LHUupItoX9eFHKzDdLM3ipQ6_NjLtGpdl8fd2gSqErolgMz8-fFWfx_D26udY_zqfXQ7gXX3XhE5wjqCH4nef0aFZJ1-qSfsPQ7rqhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+high+order+derivatives+by+new+mollification+methods&rft.jtitle=Applied+mathematics+and+mechanics&rft.au=Zhao%2C+Zhen-yu&rft.au=He%2C+Guo-qiang&rft.date=2008-06-01&rft.pub=Shanghai+University+Press&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=29&rft.issue=6&rft.spage=769&rft.epage=778&rft_id=info:doi/10.1007%2Fs10483-008-0608-y&rft.externalDocID=10_1007_s10483_008_0608_y |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86647X%2F86647X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyysxhlx-e%2Fyysxhlx-e.jpg |