Reconstruction of high order derivatives by new mollification methods

In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L generalized solution regularization methods is proposed. A specific algorithm for the first three derivatives is presented in the paper, in which...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and mechanics Vol. 29; no. 6; pp. 769 - 778
Main Author 赵振宇 贺国强
Format Journal Article
LanguageEnglish
Published Heidelberg Shanghai University Press 01.06.2008
College of Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong Province, P. R. China%College of Sciences, Shanghai University, Shanghai 200444, P. R. China
College of Sciences, Shanghai University, Shanghai 200444, P. R. China
Subjects
Online AccessGet full text
ISSN0253-4827
1573-2754
DOI10.1007/s10483-008-0608-y

Cover

Abstract In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L generalized solution regularization methods is proposed. A specific algorithm for the first three derivatives is presented in the paper, in which a modification of TSVD, termed cTSVD is chosen as the regularization technique. Numerical examples given in the paper verify the theoretical results and show efficiency of the new method.
AbstractList In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L generalized solution regularization methods is proposed. A specific algorithm for the first three derivatives is presented in the paper, in which a modification of TSVD, termed cTSVD is chosen as the regularization technique. Numerical examples given in the paper verify the theoretical results and show efficiency of the new method.
O241; In this paper,the problem of reconstructing numerical derivatives from noisy data is considered.A new framework of mollification methods based on the L generalized solution regularization methods is proposed.A specific algorithm for the first three derivatives is presented in the paper,in which a modification of TSVD,termed cTSVD is chosen as the regularization technique.Numerical examples given in the paper verify the theoreticai results and show efficiency of the new method.
In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L generalized solution regularization methods is proposed. A specific algorithm for the first three derivatives is presented in the paper, in which a modification of TSVD, termed cTSVD is chosen as the regularization technique. Numerical examples given in the paper verify the theoretical results and show efficiency of the new method.
Author 赵振宇 贺国强
AuthorAffiliation College of Sciences, Shanghai University, Shanghai 200444, P. R. China College of Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong Province, P. R. China
AuthorAffiliation_xml – name: College of Sciences, Shanghai University, Shanghai 200444, P. R. China; College of Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong Province, P. R. China%College of Sciences, Shanghai University, Shanghai 200444, P. R. China
Author_xml – sequence: 1
  fullname: 赵振宇 贺国强
BookMark eNp9kMtKxDAUhoMoOF4ewF1xIwjVk1vTWYp4A0EQXYdMejqNdhJNOmrf3mgFwYWLnGy-71z-HbLpg0dCDiicUAB1miiImpcAdQlVLuMGmVGpeMmUFJtkBkzyUtRMbZOdlJ4AQCghZuTiHm3waYhrO7jgi9AWnVt2RYgNxiI_92YG94apWIyFx_diFfretc6ab3yFQxeatEe2WtMn3P_5d8nj5cXD-XV5e3d1c352W1pes6GUfC4q1vKqNY1sqprmpW0zlyClnKNorLCVpVDnzZSk1DLDRNMglZQJgWrBd8nx1Pfd-Nb4pX4K6-jzRD2O6aPrPzSyHEFOAOoMH03wSwyva0yDXrlkse-Nx7BOupayUhXlkEk1kTaGlCK22rrh-8AhGtdrCvorZD2FrHNz_RWyHrNJ_5gv0a1MHP912OSkzPolxt8r_pMOfwZ1wS9fs6cXxj63rkfNlKg4UM4_AQuDnFQ
CitedBy_id crossref_primary_10_1016_j_apnum_2011_09_006
crossref_primary_10_1080_00207160902974404
Cites_doi 10.1137/S1064827597331394
10.1515/156939406777571085
10.1016/0022-247X(80)90145-6
10.1007/BFb0084665
10.1002/9781118033210
10.1007/s002110050073
10.1016/S0898-1221(98)00001-7
10.1007/BF01796543
10.1080/00029890.2001.11919778
10.1016/j.amc.2005.09.018
10.1016/S0377-0427(99)00358-1
ClassificationCodes O241
ContentType Journal Article
Copyright Shanghai University and Springer-Verlag GmbH 2008
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Shanghai University and Springer-Verlag GmbH 2008
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TB
8FD
FR3
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s10483-008-0608-y
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database



DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Reconstruction of high order derivatives by new mollification methods
EISSN 1573-2754
EndPage 778
ExternalDocumentID yysxhlx_e200806008
10_1007_s10483_008_0608_y
27463013
GroupedDBID -01
-0A
-52
-5D
-5G
-BR
-EM
-SA
-S~
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
1SB
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
67Z
6NX
8RM
8TC
8UJ
92E
92I
92L
92M
92Q
93N
95-
95.
95~
96X
9D9
9DA
AAAVM
AABHQ
AACDK
AAEOY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEARS
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CAJEA
CCEZO
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IWAJR
IXD
IZIGR
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P9R
PF0
PT4
PT5
Q--
Q-0
QOK
QOS
R-A
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RT1
RZC
RZE
RZK
S..
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T8Q
TCJ
TEORI
TGP
TSG
TSK
TSV
TUC
TUS
U1F
U1G
U2A
U5A
U5K
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
ZMTXR
ZWQNP
~8M
~A9
~L9
~LB
~WA
ABJNI
ACPIV
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
AMVHM
ATHPR
AYFIA
CITATION
7TB
8FD
ABRTQ
FR3
4A8
PSX
ID FETCH-LOGICAL-c382t-539462f36fad5d681104cd9505559e4dc4c6c1087447511c2a24dde151244e7b3
IEDL.DBID AGYKE
ISSN 0253-4827
IngestDate Thu May 29 03:56:05 EDT 2025
Thu Sep 04 16:44:37 EDT 2025
Tue Jul 01 02:11:01 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Fri Feb 21 02:26:46 EST 2025
Tue Jan 07 06:24:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords numerical differentiation
O241
cTSVD method
65D25
47A52
ill-posed problem
mollification method
generalized solution
L generalized solution
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-539462f36fad5d681104cd9505559e4dc4c6c1087447511c2a24dde151244e7b3
Notes O241
31-1650/O1
ill-posed problem, numerical differentiation, mollification method, L generalized solution, cTSVD method
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 855676130
PQPubID 23500
PageCount 10
ParticipantIDs wanfang_journals_yysxhlx_e200806008
proquest_miscellaneous_855676130
crossref_citationtrail_10_1007_s10483_008_0608_y
crossref_primary_10_1007_s10483_008_0608_y
springer_journals_10_1007_s10483_008_0608_y
chongqing_backfile_27463013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Applied mathematics and mechanics
PublicationTitleAbbrev Appl. Math. Mech.-Engl. Ed
PublicationTitleAlternate Applied Mathematics and Mechanics(English Edition)
PublicationTitle_FL APPLIED MATHEMATICS AND MECHANICS(ENGLISH EDITION)
PublicationYear 2008
Publisher Shanghai University Press
College of Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong Province, P. R. China%College of Sciences, Shanghai University, Shanghai 200444, P. R. China
College of Sciences, Shanghai University, Shanghai 200444, P. R. China
Publisher_xml – name: Shanghai University Press
– name: College of Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong Province, P. R. China%College of Sciences, Shanghai University, Shanghai 200444, P. R. China
– name: College of Sciences, Shanghai University, Shanghai 200444, P. R. China
References GorenfloR.VessellaS.Abel integral equations, analysis and application, lecture notes in mathematics[M]1991BerlinSpringer-Verlag
LockerJ.PrenterP. M.Regularization with differential operators I, general theory[J]J Math Anal and Appl19807425045290447.6502310.1016/0022-247X(80)90145-6572669
WeiT.LiM.High order numerical derivatives for one-dimensional scattered noisy data[J]Appl Math Comput20061752174417591096.6502710.1016/j.amc.2005.09.0182225621
HeG. Q.A TSVD form for ill-posed equations leading to optimal convergence rates ICM 2002, Abstracts of Short Communication and Poster Sessions[C]2002BeijingHigher Education Press328
KhanI. R.OhbaR.New finite difference formulas for numerical differentiation[J]J Compu Appl Math20001261/22692760971.6501410.1016/S0377-0427(99)00358-11806120
MurioD. A.MejiaC. E.ZhanS.Discrete mollification and automatic numerical differentiation[J]Computers Math Applic199835511610.1016/S0898-1221(98)00001-71612285
EldenL.BerntssonF.ReginskaT.Wavelet and Fourier method for solving the sideways heat equation[J]SIAM J Scient Comp2000216218722050959.6510710.1137/S10648275973313941762037
MurioD. A.The mollification method and the numerical solution of ill-posed problems[M]1993New YorkA Wiley-Interscience Publication, John Wiley & Sons Inc
HankeM.ScherzerO.Inverse problems light: numerical differentiation[J]Amer Math Monthly200110865125211002.6502910.2307/26957051840657
HeinzW.HankeM.NeubauerA.Regularization of inverse problems[M]1996DordrechtKluwer Academic Publishers
H’aoD. N.A mollification method for ill-posed problems[J]Numer Math199468446950610.1007/s0021100500731301742
WangY. B.HonY. C.ChengJ.Reconstruction of high order derivatives from input data[J]J Inverse Ill-Posed Probl2006142052181115.6502210.1515/1569394067775710852242305
ManselliP.MillerK.Calculation of the surface temperature and heat flux on one side of a wall from measurements on the opposite side[J]Ann Mat Pura Appl198012341611830434.3504810.1007/BF01796543581928
AdamsR. A.Sobolev spaces[M]Pure and Applied Mathematics1975New York/LondonAcademic Press
DeansS. R.Radon transform and its applications[M]1983New YorkA Wiley-Interscience Publication, John Wiley & Sons Inc
MurioD. A.Numerical method for inverse transient heat conduction problems[J]Revista de la Union Mathematic Argentina198130125360528.65048634023
P. Manselli (608_CR10) 1980; 123
I. R. Khan (608_CR7) 2000; 126
W. Heinz (608_CR6) 1996
Y. B. Wang (608_CR8) 2006; 14
S. R. Deans (608_CR2) 1983
T. Wei (608_CR9) 2006; 175
D. A. Murio (608_CR11) 1981; 30
L. Elden (608_CR13) 2000; 21
D. A. Murio (608_CR4) 1993
D. A. Murio (608_CR5) 1998; 35
M. Hanke (608_CR3) 2001; 108
G. Q. He (608_CR14) 2002
J. Locker (608_CR15) 1980; 74
D. N. H’ao (608_CR12) 1994; 68
R. A. Adams (608_CR16) 1975
R. Gorenflo (608_CR1) 1991
References_xml – reference: MurioD. A.The mollification method and the numerical solution of ill-posed problems[M]1993New YorkA Wiley-Interscience Publication, John Wiley & Sons Inc
– reference: KhanI. R.OhbaR.New finite difference formulas for numerical differentiation[J]J Compu Appl Math20001261/22692760971.6501410.1016/S0377-0427(99)00358-11806120
– reference: AdamsR. A.Sobolev spaces[M]Pure and Applied Mathematics1975New York/LondonAcademic Press
– reference: HankeM.ScherzerO.Inverse problems light: numerical differentiation[J]Amer Math Monthly200110865125211002.6502910.2307/26957051840657
– reference: WeiT.LiM.High order numerical derivatives for one-dimensional scattered noisy data[J]Appl Math Comput20061752174417591096.6502710.1016/j.amc.2005.09.0182225621
– reference: HeG. Q.A TSVD form for ill-posed equations leading to optimal convergence rates ICM 2002, Abstracts of Short Communication and Poster Sessions[C]2002BeijingHigher Education Press328
– reference: HeinzW.HankeM.NeubauerA.Regularization of inverse problems[M]1996DordrechtKluwer Academic Publishers
– reference: H’aoD. N.A mollification method for ill-posed problems[J]Numer Math199468446950610.1007/s0021100500731301742
– reference: GorenfloR.VessellaS.Abel integral equations, analysis and application, lecture notes in mathematics[M]1991BerlinSpringer-Verlag
– reference: MurioD. A.Numerical method for inverse transient heat conduction problems[J]Revista de la Union Mathematic Argentina198130125360528.65048634023
– reference: WangY. B.HonY. C.ChengJ.Reconstruction of high order derivatives from input data[J]J Inverse Ill-Posed Probl2006142052181115.6502210.1515/1569394067775710852242305
– reference: ManselliP.MillerK.Calculation of the surface temperature and heat flux on one side of a wall from measurements on the opposite side[J]Ann Mat Pura Appl198012341611830434.3504810.1007/BF01796543581928
– reference: DeansS. R.Radon transform and its applications[M]1983New YorkA Wiley-Interscience Publication, John Wiley & Sons Inc
– reference: EldenL.BerntssonF.ReginskaT.Wavelet and Fourier method for solving the sideways heat equation[J]SIAM J Scient Comp2000216218722050959.6510710.1137/S10648275973313941762037
– reference: MurioD. A.MejiaC. E.ZhanS.Discrete mollification and automatic numerical differentiation[J]Computers Math Applic199835511610.1016/S0898-1221(98)00001-71612285
– reference: LockerJ.PrenterP. M.Regularization with differential operators I, general theory[J]J Math Anal and Appl19807425045290447.6502310.1016/0022-247X(80)90145-6572669
– volume: 30
  start-page: 25
  issue: 1
  year: 1981
  ident: 608_CR11
  publication-title: Revista de la Union Mathematic Argentina
– volume: 21
  start-page: 2187
  issue: 6
  year: 2000
  ident: 608_CR13
  publication-title: SIAM J Scient Comp
  doi: 10.1137/S1064827597331394
– volume-title: Regularization of inverse problems[M]
  year: 1996
  ident: 608_CR6
– volume: 14
  start-page: 205
  year: 2006
  ident: 608_CR8
  publication-title: J Inverse Ill-Posed Probl
  doi: 10.1515/156939406777571085
– volume: 74
  start-page: 504
  issue: 2
  year: 1980
  ident: 608_CR15
  publication-title: J Math Anal and Appl
  doi: 10.1016/0022-247X(80)90145-6
– start-page: 328
  volume-title: A TSVD form for ill-posed equations leading to optimal convergence rates ICM 2002, Abstracts of Short Communication and Poster Sessions[C]
  year: 2002
  ident: 608_CR14
– volume-title: Pure and Applied Mathematics
  year: 1975
  ident: 608_CR16
– volume-title: Abel integral equations, analysis and application, lecture notes in mathematics[M]
  year: 1991
  ident: 608_CR1
  doi: 10.1007/BFb0084665
– volume-title: The mollification method and the numerical solution of ill-posed problems[M]
  year: 1993
  ident: 608_CR4
  doi: 10.1002/9781118033210
– volume: 68
  start-page: 469
  issue: 4
  year: 1994
  ident: 608_CR12
  publication-title: Numer Math
  doi: 10.1007/s002110050073
– volume: 35
  start-page: 1
  issue: 5
  year: 1998
  ident: 608_CR5
  publication-title: Computers Math Applic
  doi: 10.1016/S0898-1221(98)00001-7
– volume: 123
  start-page: 161
  issue: 4
  year: 1980
  ident: 608_CR10
  publication-title: Ann Mat Pura Appl
  doi: 10.1007/BF01796543
– volume-title: Radon transform and its applications[M]
  year: 1983
  ident: 608_CR2
– volume: 108
  start-page: 512
  issue: 6
  year: 2001
  ident: 608_CR3
  publication-title: Amer Math Monthly
  doi: 10.1080/00029890.2001.11919778
– volume: 175
  start-page: 1744
  issue: 2
  year: 2006
  ident: 608_CR9
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2005.09.018
– volume: 126
  start-page: 269
  issue: 1/2
  year: 2000
  ident: 608_CR7
  publication-title: J Compu Appl Math
  doi: 10.1016/S0377-0427(99)00358-1
SSID ssj0004744
Score 1.7939842
Snippet In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L...
In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L...
O241; In this paper,the problem of reconstructing numerical derivatives from noisy data is considered.A new framework of mollification methods based on the L...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 769
SubjectTerms Algorithms
Applications of Mathematics
Classical Mechanics
Derivatives
Fluid- and Aerodynamics
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Partial Differential Equations
Reconstruction
Regularization
数值分化
数值分析
求解方法
软化作用
Title Reconstruction of high order derivatives by new mollification methods
URI http://lib.cqvip.com/qk/86647X/20086/27463013.html
https://link.springer.com/article/10.1007/s10483-008-0608-y
https://www.proquest.com/docview/855676130
https://d.wanfangdata.com.cn/periodical/yysxhlx-e200806008
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB616QUOpeUhQmm0EpxArmzvw-tjCglVq3BqpHKy1ut1KyU4IKcV7q_vjB9xQKhSD_ZpvbZ3dh47j28APopAO5kr35OOXDeCW08rY7wg4IHMTCRkSq6B2Xd1NhfnV_KqreMuu2z3LiRZS-qtYjehuVeH6xXeql3Yk4GO9QD2xt9-XEz6csio7uGK2px7hHLZBTP_NwlBKtysiuvf-MK_VVNvb25CpHVhT5Gb4npLB01fwGX39U3qyeLkdp2e2Pt_gB2f-HsHsN_apGzcbKJD2HHFS3g-2wC6lq9gQsfUHmyWrXJGQMesRu5keNVN0u5cydKKoaXOfhLYd946BFnTp7p8DfPp5PLLmdd2YPAs1-HakzwWKsy5yk0mM6XRVhA2iyWhhMVOZFZYZQOfIPQjtNxsaEKB8pKsCCFclPI3MChWhXsLTKRZRDhKZCGh0DAGKaNiF1o_TwNroiEcbQiBGtwuCJcqwTOzQhHEh-B3pElsC15OPTSWSQ-7TOuX1E01cf2SagifNo_8apA7HhvMOnonyF8UNDGFW92WiZZSRXTIGsLnjnBJy-flYxN-aLdKP7iqyj83S5RHlHOCw3z97klzHsGzJluFfEDvYYA0d8doEq3TEbLA6dfT6ahlhRHszsPxA_JZAt4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5VA4lL4QWx611J5AQUn8SPaI0MK2sJwWCU6W4zggAVlQlqrh1zOTxwYQQuKQnBwn8djznm8AfosgdjJTvicduW4Et16sjPGCgAcyNZGQCbkGxidqdCr-nsmzpo67aLPd25BkxamfFLuJmHtVuF7hrVyARYEmuN-Dxb3D86NhVw4ZVT1cUZpzj1Au22Dma5MQpMLlNL-4wxc-F02dvjkPkVaFPXlm8osnMuhgBSbt19epJ1e797Nk1z68AHZ85-99hk-NTsr26k30BT64_Cssj-eArsU3GJKZ2oHNsmnGCOiYVcidDK-qSdo_V7CkZKipsxsC-84ahyCr-1QX3-H0YDjZH3lNBwbP8jiceZIPhAozrjKTylTFqCsImw4koYQNnEitsMoGPkHoR6i52dCEAvklaRFCuCjhq9DLp7lbAyaSNCIcJdKQkGkYg5RRAxdaP0sCa6I-rM8JgRLcXhEulUabWSEL4n3wW9Jo24CXUw-Na93BLtP66aqpJq6fLvuwPX_ktkbueGswa-mt8XxR0MTkbnpf6FhKFZGR1YedlnC6OefFWxP-arZKN7gsi_-X18iPKOcEh_nxj3fN-RM-jibjY3385-RoHZbqzBXyB21AD-nvNlE9miVbzXF4BNmpA2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dT9swEMBPrEjTeJiAbaKUDUvb06aoSfyR9BExqgJrxcMq8WY5jgMSJS1KmZb_fnf5aECakHhInhxH8tl3Z5_vdwDfRBA7mSnfk46ObgS3XqyM8YKABzI1kZAJHQ1MZ2oyFxfX8rqpc1q0t93bkGSd00CUpnw9XKXZ8Enim4i5V4XuFb7KN7CN2jigiT4PT7rEyKiq5op2nXvEu2zDmv_rguAKt8v85gF__dxIdZ7nJlhapfjkmclvnlij8S68b9xIdlLLfQ-2XL4PO9MNg7X4AGe0s-z4sGyZMWITswq2yfCp6pr9cQVLSobONbsnPnfWnOGxurR08RHm47PfpxOvKZrgWR6Ha0_ykVBhxlVmUpmqGM27sOlIEthr5ERqhVU28Il6H6GzZUMTClRxZPiFcFHCP0EvX-buAJhI0ojQR-TU4Do3BodQjVxo_SwJrIn6MNiMGBpde0coKY3bXIVag_fBb8dQ24Y3TmUvFrojJZMIdFUHE0Wgyz5833yyqmEbLzVmrWA0LgmKc5jcLR8LHUupItoX9eFHKzDdLM3ipQ6_NjLtGpdl8fd2gSqErolgMz8-fFWfx_D26udY_zqfXQ7gXX3XhE5wjqCH4nef0aFZJ1-qSfsPQ7rqhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+high+order+derivatives+by+new+mollification+methods&rft.jtitle=Applied+mathematics+and+mechanics&rft.au=Zhao%2C+Zhen-yu&rft.au=He%2C+Guo-qiang&rft.date=2008-06-01&rft.pub=Shanghai+University+Press&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=29&rft.issue=6&rft.spage=769&rft.epage=778&rft_id=info:doi/10.1007%2Fs10483-008-0608-y&rft.externalDocID=10_1007_s10483_008_0608_y
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86647X%2F86647X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyysxhlx-e%2Fyysxhlx-e.jpg