Unsupervised Generative Modeling Using Matrix Product States
Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product stat...
Saved in:
Published in | Physical review. X Vol. 8; no. 3; p. 031012 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product states, which is a tensor network originally proposed for describing (particularly one-dimensional) entangled quantum states. Our model enjoys efficient learning analogous to the density matrix renormalization group method, which allows dynamically adjusting dimensions of the tensors and offers an efficient direct sampling approach for generative tasks. We apply our method to generative modeling of several standard data sets including the Bars and Stripes random binary patterns and the MNIST handwritten digits to illustrate the abilities, features, and drawbacks of our model over popular generative models such as the Hopfield model, Boltzmann machines, and generative adversarial networks. Our work sheds light on many interesting directions of future exploration in the development of quantum-inspired algorithms for unsupervised machine learning, which are promisingly possible to realize on quantum devices. |
---|---|
AbstractList | Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product states, which is a tensor network originally proposed for describing (particularly one-dimensional) entangled quantum states. Our model enjoys efficient learning analogous to the density matrix renormalization group method, which allows dynamically adjusting dimensions of the tensors and offers an efficient direct sampling approach for generative tasks. We apply our method to generative modeling of several standard data sets including the Bars and Stripes random binary patterns and the MNIST handwritten digits to illustrate the abilities, features, and drawbacks of our model over popular generative models such as the Hopfield model, Boltzmann machines, and generative adversarial networks. Our work sheds light on many interesting directions of future exploration in the development of quantum-inspired algorithms for unsupervised machine learning, which are promisingly possible to realize on quantum devices. |
ArticleNumber | 031012 |
Author | Zhang, Pan Wang, Lei Han, Zhao-Yu Wang, Jun Fan, Heng |
Author_xml | – sequence: 1 givenname: Zhao-Yu surname: Han fullname: Han, Zhao-Yu – sequence: 2 givenname: Jun surname: Wang fullname: Wang, Jun – sequence: 3 givenname: Heng surname: Fan fullname: Fan, Heng – sequence: 4 givenname: Lei surname: Wang fullname: Wang, Lei – sequence: 5 givenname: Pan surname: Zhang fullname: Zhang, Pan |
BookMark | eNp1UMFKAzEQDVLBWv0AbwueWzPJJrsLXqRoFVosasFbSJOpptRNTdJi_97VtSCCc5gZhvceb94x6dS-RkLOgA4AKL-Yvu7iA26fB-WAcqDADkiXgaR9zmnZ-bUfkdMYl7QpSSEvii65nNVxs8awdRFtNsIag05ui9nEW1y5-iWbxa8-0Sm4j2wavN2YlD0mnTCekMOFXkU8_Zk9Mru5fhre9sf3o7vh1bhveMlSX3AuNQOhbWWZprwCxnJgHCsDxoIoZSGZ5UJKwJIvSmRzAXMjqMlRmIXhPXLX6lqvl2od3JsOO-W1U98HH16UDsmZFapijmAABae6yplAXQjKbannRQUFtaLROm-11sG_bzAmtfSbUDf2FROCSpA5lQ2qaFEm-BgDLpRxzcvO1ylot1JA1Vfyap-8KlWbfMOEP8y93_85n9QUiMM |
CitedBy_id | crossref_primary_10_1080_23746149_2023_2165452 crossref_primary_10_1088_2058_9565_ab4eb5 crossref_primary_10_1103_PhysRevResearch_6_043202 crossref_primary_10_1103_PhysRevLett_125_060503 crossref_primary_10_1103_PhysRevResearch_2_043442 crossref_primary_10_1103_PhysRevA_107_012406 crossref_primary_10_1007_s10994_022_06164_1 crossref_primary_10_1103_PhysRevA_105_052424 crossref_primary_10_1103_PhysRevB_103_125117 crossref_primary_10_1360_SST_2020_0459 crossref_primary_10_1103_PhysRevB_110_214402 crossref_primary_10_1103_PhysRevE_98_042114 crossref_primary_10_1103_PhysRevB_99_155131 crossref_primary_10_1088_0256_307X_40_2_020501 crossref_primary_10_1103_PhysRevE_101_062137 crossref_primary_10_1162_neco_a_01202 crossref_primary_10_1103_PhysRevLett_127_200503 crossref_primary_10_1088_2632_2153_ac104d crossref_primary_10_1103_PhysRevB_104_075155 crossref_primary_10_7498_aps_70_20210985 crossref_primary_10_1088_2058_9565_adaede crossref_primary_10_21468_SciPostPhys_14_6_142 crossref_primary_10_1103_PhysRevResearch_6_043041 crossref_primary_10_1103_PhysRevB_110_045140 crossref_primary_10_18267_j_aip_235 crossref_primary_10_1088_0256_307X_41_12_120701 crossref_primary_10_1109_TPAMI_2024_3396386 crossref_primary_10_1007_JHEP08_2021_112 crossref_primary_10_1007_s41365_023_01222_2 crossref_primary_10_1088_1367_2630_ab31ef crossref_primary_10_1103_PhysRevD_103_116023 crossref_primary_10_1103_PhysRevC_106_L051901 crossref_primary_10_1103_PhysRevResearch_2_033293 crossref_primary_10_1103_PhysRevLett_131_106501 crossref_primary_10_1103_PhysRevE_99_063315 crossref_primary_10_1103_PhysRevLett_133_260404 crossref_primary_10_1103_PhysRevApplied_16_044057 crossref_primary_10_1103_PhysRevE_108_044128 crossref_primary_10_1016_j_neunet_2020_05_034 crossref_primary_10_1088_2058_9565_aaea94 crossref_primary_10_1103_PhysRevLett_126_090506 crossref_primary_10_1016_j_iswa_2024_200346 crossref_primary_10_1109_ACCESS_2020_2986279 crossref_primary_10_1177_02783649231217527 crossref_primary_10_1103_PhysRevResearch_2_023300 crossref_primary_10_1063_5_0020014 crossref_primary_10_1103_PhysRevB_107_165127 crossref_primary_10_1103_PhysRevX_9_031041 crossref_primary_10_1103_PhysRevApplied_18_024013 crossref_primary_10_22331_q_2020_10_11_341 crossref_primary_10_1103_PhysRevD_100_011501 crossref_primary_10_1088_2632_2153_ac4559 crossref_primary_10_1103_PhysRevX_12_021037 crossref_primary_10_1103_PhysRevB_103_235155 crossref_primary_10_22331_q_2024_05_27_1362 crossref_primary_10_1088_2053_1583_ad9d59 crossref_primary_10_3389_fphy_2022_858388 crossref_primary_10_1103_PhysRevResearch_5_L032001 crossref_primary_10_1103_PhysRevB_107_L041106 crossref_primary_10_1109_TAI_2022_3194132 crossref_primary_10_20535_ibb_2024_8_2_298201 crossref_primary_10_1103_PhysRevE_107_L012103 crossref_primary_10_1103_PhysRevE_104_025308 crossref_primary_10_1088_0256_307X_39_5_050701 crossref_primary_10_1088_2632_2153_ad7571 crossref_primary_10_1080_23746149_2020_1797528 crossref_primary_10_1088_2632_2153_abffe8 crossref_primary_10_1103_PhysRevA_102_062414 crossref_primary_10_1088_0256_307X_39_10_100701 crossref_primary_10_1103_PhysRevA_104_042408 crossref_primary_10_1103_RevModPhys_91_045002 crossref_primary_10_1103_PhysRevResearch_4_043111 crossref_primary_10_1103_PhysRevLett_121_260602 crossref_primary_10_1103_PhysRevX_10_011069 crossref_primary_10_1103_PhysRevResearch_6_033291 crossref_primary_10_1103_PhysRevB_101_075135 crossref_primary_10_1109_TQE_2023_3319254 crossref_primary_10_1088_0256_307X_38_9_097502 crossref_primary_10_1103_PhysRevA_101_032321 crossref_primary_10_1038_s41534_019_0157_8 crossref_primary_10_1103_PhysRevB_101_220409 crossref_primary_10_22331_q_2021_06_04_466 crossref_primary_10_1364_PRJ_434217 crossref_primary_10_1080_13658816_2022_2041643 crossref_primary_10_1103_PhysRevResearch_3_023010 crossref_primary_10_1103_PhysRevB_104_235141 crossref_primary_10_1103_PhysRevApplied_21_044032 crossref_primary_10_1103_PhysRevB_107_075146 crossref_primary_10_1145_3547334 crossref_primary_10_1103_PhysRevA_111_032409 crossref_primary_10_1103_PhysRevResearch_6_033261 crossref_primary_10_1088_2632_2153_ac48a2 crossref_primary_10_1109_ACCESS_2021_3112397 crossref_primary_10_1103_PhysRevLett_132_190801 crossref_primary_10_1103_PhysRevA_105_032439 crossref_primary_10_21105_joss_05700 crossref_primary_10_1103_PhysRevA_101_032310 crossref_primary_10_1103_PhysRevLett_129_270501 crossref_primary_10_1103_PhysRevA_105_062439 crossref_primary_10_1109_TQE_2024_3447875 crossref_primary_10_1103_PhysRevB_105_184418 crossref_primary_10_21468_SciPostPhys_18_3_096 crossref_primary_10_22331_q_2023_01_26_909 crossref_primary_10_1088_2058_9565_ad04e6 crossref_primary_10_3390_e20080583 crossref_primary_10_1088_2632_2153_ace0f5 crossref_primary_10_1103_PhysRevB_101_075111 crossref_primary_10_1103_PRXQuantum_4_010317 crossref_primary_10_1103_PhysRevB_106_115133 crossref_primary_10_1103_PhysRevLett_132_197301 crossref_primary_10_21468_SciPostPhys_15_6_222 crossref_primary_10_1103_PhysRevA_99_052306 crossref_primary_10_1103_PhysRevE_102_012152 crossref_primary_10_1103_PRXQuantum_5_037001 crossref_primary_10_1088_2058_9565_acd578 crossref_primary_10_1103_PhysRevA_98_062324 crossref_primary_10_1103_PhysRevB_105_195152 |
Cites_doi | 10.1207/s15516709cog0901_7 10.1103/PhysRevLett.115.180405 10.1038/nphys3345 10.1016/j.aop.2014.06.013 10.26421/QIC7.5-6-1 10.1126/science.aag2302 10.1103/PhysRevA.32.1007 10.1214/aoms/1177732360 10.1103/PhysRevE.79.051915 10.1038/nature14539 10.1103/PhysRevLett.69.2863 10.1007/BF01397477 10.1016/j.aop.2010.09.012 10.1103/PhysRevLett.99.120601 10.1103/PhysRevLett.104.210502 10.1103/PhysRevB.85.165146 10.1103/PhysRevLett.103.160601 10.1073/pnas.79.8.2554 10.1561/2200000059 10.1103/PhysRevLett.108.110502 10.1103/PhysRevB.90.174201 10.1162/neco.2010.03-09-983 10.1103/PhysRevB.97.085104 10.1103/PhysRevLett.98.140506 10.1103/RevModPhys.82.277 10.1137/090752286 10.1088/2058-9565/aaba1a 10.1103/PhysRevLett.107.067202 10.1088/1742-5468/2007/08/P08024 10.1103/RevModPhys.73.33 10.1214/aoms/1177729694 10.1146/annurev-statistics-010814-020120 10.1146/annurev-conmatphys-020911-125018 10.1561/2200000001 10.1162/neco.2006.18.10.2283 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1103/PhysRevX.8.031012 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_7be1c1e530a9425ea7503d8ab79170d5 10_1103_PhysRevX_8_031012 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c382t-5336a215ad9d2a0391224123e9c1cd1586762d35661e83f8e2b51bc50c4e5cfc3 |
IEDL.DBID | DOA |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:25:30 EDT 2025 Fri Jul 25 11:53:38 EDT 2025 Tue Jul 01 01:33:18 EDT 2025 Thu Apr 24 23:01:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-5336a215ad9d2a0391224123e9c1cd1586762d35661e83f8e2b51bc50c4e5cfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/7be1c1e530a9425ea7503d8ab79170d5 |
PQID | 2550616406 |
PQPubID | 5161131 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7be1c1e530a9425ea7503d8ab79170d5 proquest_journals_2550616406 crossref_citationtrail_10_1103_PhysRevX_8_031012 crossref_primary_10_1103_PhysRevX_8_031012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 20180701 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2018 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | A. Van Oord (PhysRevX.8.031012Cc7R1) 2016 G. E. Hinton (PhysRevX.8.031012Cc44R1) 2012 PhysRevX.8.031012Cc31R1 P. Smolensky (PhysRevX.8.031012Cc3R1) 1986 PhysRevX.8.031012Cc50R1 PhysRevX.8.031012Cc28R1 D. J. C. MacKay (PhysRevX.8.031012Cc48R1) 2003 PhysRevX.8.031012Cc49R1 PhysRevX.8.031012Cc1R1 M. J. Wainwright (PhysRevX.8.031012Cc46R1) 2008; 1 M. Gabrie (PhysRevX.8.031012Cc45R1) 2015 PhysRevX.8.031012Cc42R1 B. Uria (PhysRevX.8.031012Cc6R1) 2016; 17 PhysRevX.8.031012Cc40R1 PhysRevX.8.031012Cc61R1 PhysRevX.8.031012Cc14R1 D. Rezende (PhysRevX.8.031012Cc10R1) 2015 I. Goodfellow (PhysRevX.8.031012Cc11R1) 2014 PhysRevX.8.031012Cc12R1 PhysRevX.8.031012Cc18R1 PhysRevX.8.031012Cc35R1 PhysRevX.8.031012Cc56R1 PhysRevX.8.031012Cc16R1 PhysRevX.8.031012Cc58R1 R. Bailly (PhysRevX.8.031012Cc41R1) 2011; 20 I. Goodfellow (PhysRevX.8.031012Cc37R1) 2016 PhysRevX.8.031012Cc30R1 PhysRevX.8.031012Cc53R1 PhysRevX.8.031012Cc55R1 PhysRevX.8.031012Cc4R1 PhysRevX.8.031012Cc2R1 PhysRevX.8.031012Cc29R1 D. Perez-Garcia (PhysRevX.8.031012Cc27R1) 2007; 7 PhysRevX.8.031012Cc67R1 PhysRevX.8.031012Cc25R1 E. M. Stoudenmire (PhysRevX.8.031012Cc32R1) 2016 A. Novikov (PhysRevX.8.031012Cc22R1) 2014 A. Novikov (PhysRevX.8.031012Cc23R1) 2015 PhysRevX.8.031012Cc64R1 PhysRevX.8.031012Cc20R1 H. J. Kappen (PhysRevX.8.031012Cc13R1) 1998 PhysRevX.8.031012Cc60R1 PhysRevX.8.031012Cc62R1 PhysRevX.8.031012Cc15R1 PhysRevX.8.031012Cc38R1 PhysRevX.8.031012Cc19R1 D. Krotov (PhysRevX.8.031012Cc52R1) 2016 PhysRevX.8.031012Cc17R1 PhysRevX.8.031012Cc36R1 PhysRevX.8.031012Cc59R1 D. Koller (PhysRevX.8.031012Cc47R1) 2009 |
References_xml | – ident: PhysRevX.8.031012Cc2R1 doi: 10.1207/s15516709cog0901_7 – ident: PhysRevX.8.031012Cc62R1 doi: 10.1103/PhysRevLett.115.180405 – volume-title: Neural Networks: Tricks of the Trade year: 2012 ident: PhysRevX.8.031012Cc44R1 – ident: PhysRevX.8.031012Cc29R1 doi: 10.1038/nphys3345 – volume-title: Proceedings of The 33rd International Conference on Machine Learning year: 2016 ident: PhysRevX.8.031012Cc7R1 – ident: PhysRevX.8.031012Cc18R1 doi: 10.1016/j.aop.2014.06.013 – volume: 7 start-page: 401 issn: 1533-7146 year: 2007 ident: PhysRevX.8.031012Cc27R1 publication-title: Quantum Inf. Comput. doi: 10.26421/QIC7.5-6-1 – ident: PhysRevX.8.031012Cc16R1 doi: 10.1126/science.aag2302 – ident: PhysRevX.8.031012Cc50R1 doi: 10.1103/PhysRevA.32.1007 – volume-title: Advances in Neural Information Processing Systems year: 2015 ident: PhysRevX.8.031012Cc23R1 – ident: PhysRevX.8.031012Cc49R1 doi: 10.1214/aoms/1177732360 – volume-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition year: 1986 ident: PhysRevX.8.031012Cc3R1 – ident: PhysRevX.8.031012Cc14R1 doi: 10.1103/PhysRevE.79.051915 – ident: PhysRevX.8.031012Cc1R1 doi: 10.1038/nature14539 – volume-title: International Conference on Machine Learning year: 2014 ident: PhysRevX.8.031012Cc22R1 – ident: PhysRevX.8.031012Cc30R1 doi: 10.1103/PhysRevLett.69.2863 – ident: PhysRevX.8.031012Cc38R1 doi: 10.1007/BF01397477 – volume-title: Proceedings of the 32nd International Conference on Machine Learning year: 2015 ident: PhysRevX.8.031012Cc10R1 – ident: PhysRevX.8.031012Cc17R1 doi: 10.1016/j.aop.2010.09.012 – ident: PhysRevX.8.031012Cc59R1 doi: 10.1103/PhysRevLett.99.120601 – ident: PhysRevX.8.031012Cc55R1 doi: 10.1103/PhysRevLett.104.210502 – ident: PhysRevX.8.031012Cc36R1 doi: 10.1103/PhysRevB.85.165146 – volume-title: Advances in Neural Information Processing Systems 27 year: 2014 ident: PhysRevX.8.031012Cc11R1 – ident: PhysRevX.8.031012Cc60R1 doi: 10.1103/PhysRevLett.103.160601 – ident: PhysRevX.8.031012Cc12R1 doi: 10.1073/pnas.79.8.2554 – ident: PhysRevX.8.031012Cc25R1 doi: 10.1561/2200000059 – ident: PhysRevX.8.031012Cc64R1 doi: 10.1103/PhysRevLett.108.110502 – volume-title: Advances in Neural Information Processing Systems 28 year: 2015 ident: PhysRevX.8.031012Cc45R1 – volume: 20 start-page: 147 issn: 1532-4435 year: 2011 ident: PhysRevX.8.031012Cc41R1 publication-title: J. Mach. Learn. Res. – volume: 17 start-page: 1 year: 2016 ident: PhysRevX.8.031012Cc6R1 publication-title: J. Mach. Learn. Res. – ident: PhysRevX.8.031012Cc61R1 doi: 10.1103/PhysRevB.90.174201 – ident: PhysRevX.8.031012Cc40R1 doi: 10.1162/neco.2010.03-09-983 – volume-title: Advances in Neural Information Processing Systems year: 2016 ident: PhysRevX.8.031012Cc52R1 – ident: PhysRevX.8.031012Cc35R1 doi: 10.1103/PhysRevB.97.085104 – ident: PhysRevX.8.031012Cc58R1 doi: 10.1103/PhysRevLett.98.140506 – volume-title: Probabilistic Graphical Models, Principles and Techniques year: 2009 ident: PhysRevX.8.031012Cc47R1 – ident: PhysRevX.8.031012Cc20R1 doi: 10.1103/RevModPhys.82.277 – volume-title: Advances in Neural Information Processing Systems year: 2016 ident: PhysRevX.8.031012Cc32R1 – ident: PhysRevX.8.031012Cc28R1 doi: 10.1137/090752286 – ident: PhysRevX.8.031012Cc56R1 doi: 10.1088/2058-9565/aaba1a – volume-title: Advances in Neural Information Processing Systems 10 year: 1998 ident: PhysRevX.8.031012Cc13R1 – ident: PhysRevX.8.031012Cc53R1 doi: 10.1103/PhysRevLett.107.067202 – ident: PhysRevX.8.031012Cc19R1 doi: 10.1088/1742-5468/2007/08/P08024 – ident: PhysRevX.8.031012Cc15R1 doi: 10.1103/RevModPhys.73.33 – ident: PhysRevX.8.031012Cc42R1 doi: 10.1214/aoms/1177729694 – ident: PhysRevX.8.031012Cc4R1 doi: 10.1146/annurev-statistics-010814-020120 – ident: PhysRevX.8.031012Cc31R1 doi: 10.1146/annurev-conmatphys-020911-125018 – volume: 1 start-page: 1 year: 2008 ident: PhysRevX.8.031012Cc46R1 publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000001 – volume-title: Information Theory, Inference and Learning Algorithms year: 2003 ident: PhysRevX.8.031012Cc48R1 – ident: PhysRevX.8.031012Cc67R1 doi: 10.1162/neco.2006.18.10.2283 – volume-title: Deep Learning year: 2016 ident: PhysRevX.8.031012Cc37R1 |
SSID | ssj0000601477 |
Score | 2.6095414 |
Snippet | Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 031012 |
SubjectTerms | Algorithms Allocations Artificial intelligence Datasets Entangled states Generative adversarial networks Handwriting Machine learning Mathematical models Modelling Parameters Probability distribution Probability theory Quantum computing Quantum phenomena Quantum physics Quantum theory Representations Samples Sampling Standard data Statistical analysis Statistical methods Tensors |
SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66IXgRf-J0Sg-ehGxt06QpCOJkYwgbYzjYLeRXvcg21038881r04kIXtvk8vLyvS95L99D6C5TnOS54lhKwnBCFcNK8RBT5aDQUhKnHN47j8ZsOEte5nTuL9wKX1ZZY2IJ1Gap4Y6866ivCz3MxZ_H1QeGrlGQXfUtNPZR00Ew5w3U7PXHk-nulgXURpI09enMKCRdKKyc2s95h3dAFTOKfwWkUrf_DyyXsWZwjI48SQyeqlU9QXt2cYoOymJNXZyhh9mi2K5gkxfWBJVwNKBWAI3N4Hl5UBYCBCOQ3_8KJpWoa1DxynM0G_Rfn4fYd0HAmvB4gx0fY9IFZmkyE0sQdIeoGxOb6UibiHLm8MwQR8si6-zObaxopDQNdWKpzjW5QI3FcmEvUaC0zQznLM8MS3Iis1gRqxOjubVShqaFwtoUQnuJcOhU8S7Ko0JIRG09wUVlvRa6301ZVfoY_w3ugX13A0HauvywXL8Jv1NEqmykI-cmocwcoFgJmVbDpUrdyTI0tIXa9eoIv98K8eMdV___vkaHjvLwquC2jRqb9dbeOFqxUbfed74BzvrN3Q priority: 102 providerName: ProQuest |
Title | Unsupervised Generative Modeling Using Matrix Product States |
URI | https://www.proquest.com/docview/2550616406 https://doaj.org/article/7be1c1e530a9425ea7503d8ab79170d5 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1aEbyIn1itZQ-ehG13N5tsFrxYaS1CSykWegv5mD1JLW4r_nwnm61UBL14XRKyvElm3pDJG0Juci1oUWgRKkV5mDLNQ61FFDKNrhAYTTLh3juPxnw4S5_mbL7V6svVhHl5YA9cN9MQmxhnRSrH_QXKXbxZoXSGiUZkK_VSjHlbyZT3wUj9s6y-xowj2nUFlVN4n3dEx6lhxsm3QFTp9f9wx1WMGRyRw5ocBvf-p47JDixOyH5VpGnKU3I3W5TrpTvcJdjAC0Y7bxW4hmbuWXlQFQAEIye7_xFMvJhr4PnkGZkN-s8Pw7DufhAaKpJViDyMKwzIyuY2UU7I3UXbhEJuYmNjJjj6MUuRjsWAeAtINIu1YZFJgZnC0HPSWLwu4IIE2kBuheBFbnlaUJUnmoJJrREASkW2SaINFNLU0uCuQ8WLrFKEiMoNelJIj16T3H5NWXpdjN8G9xy-XwOdpHX1AQ0ta0PLvwzdJK2NdWR9zkqJCRESEo6s5PI_1rgiB0iIhC_HbZHG6m0N10g6VrpNdsXgsU32ev3xZNqudtsn6XrXLQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNsKeADXJDSJnacOBII8Vq2tFsh1JX2ZvyYcKl2l2bL40_xG5nJYxFC6q3XxImU8Xi-z_HMNwBPK29UXXuTOKeKJNe-SLw3aaI9hULUSpaG652nx8Vkln-c6_kW_B5qYTitcoiJbaCOy8D_yPeJ-hL0FIQ_r1bfEu4axaerQwuNzi0O8dcP2rI1Lw_e0fw-k3L8_uTtJOm7CiRBGblOiN8UjoDOxSpKxwLpjGJSYRWyEDNtCooPURHNyZC-w6D0OvNBpyFHHeqg6L1X4GquCMm5Mn38YfNPh7VN8rLsD0-zVO1zGudn_D7fM3uswZnJf-Cv7RLwHwi0yDa-BTd7Sipedz50G7ZwcQeutamhobkLL2aL5nzFIaXBKDqZao6RgtuocTG7aNMOxJTF_n-KT52ErOhY7D2YXYp17sP2YrnAByB8wCoaU9RVLPJauUp6hSGPwSA6l8YRpIMpbOgFybkvxqltNyapsoP1rLGd9UbwfPPIqlPjuGjwG7bvZiALabcXlmdfbb8ubekxCxk5ZeoqCl_o-Fw3GudL2semUY9gd5gd26_uxv71xZ2Lbz-B65OT6ZE9Ojg-fAg3iGyZLtV3F7bXZ-f4iAjN2j9uvUjAl8t22z_QVwfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Generative+Modeling+Using+Matrix+Product+States&rft.jtitle=Physical+review.+X&rft.au=Zhao-Yu+Han&rft.au=Jun+Wang&rft.au=Heng+Fan&rft.au=Lei+Wang&rft.date=2018-07-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=8&rft.issue=3&rft.spage=031012&rft_id=info:doi/10.1103%2FPhysRevX.8.031012&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7be1c1e530a9425ea7503d8ab79170d5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |