Unsupervised Generative Modeling Using Matrix Product States

Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product stat...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 8; no. 3; p. 031012
Main Authors Han, Zhao-Yu, Wang, Jun, Fan, Heng, Wang, Lei, Zhang, Pan
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product states, which is a tensor network originally proposed for describing (particularly one-dimensional) entangled quantum states. Our model enjoys efficient learning analogous to the density matrix renormalization group method, which allows dynamically adjusting dimensions of the tensors and offers an efficient direct sampling approach for generative tasks. We apply our method to generative modeling of several standard data sets including the Bars and Stripes random binary patterns and the MNIST handwritten digits to illustrate the abilities, features, and drawbacks of our model over popular generative models such as the Hopfield model, Boltzmann machines, and generative adversarial networks. Our work sheds light on many interesting directions of future exploration in the development of quantum-inspired algorithms for unsupervised machine learning, which are promisingly possible to realize on quantum devices.
AbstractList Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product states, which is a tensor network originally proposed for describing (particularly one-dimensional) entangled quantum states. Our model enjoys efficient learning analogous to the density matrix renormalization group method, which allows dynamically adjusting dimensions of the tensors and offers an efficient direct sampling approach for generative tasks. We apply our method to generative modeling of several standard data sets including the Bars and Stripes random binary patterns and the MNIST handwritten digits to illustrate the abilities, features, and drawbacks of our model over popular generative models such as the Hopfield model, Boltzmann machines, and generative adversarial networks. Our work sheds light on many interesting directions of future exploration in the development of quantum-inspired algorithms for unsupervised machine learning, which are promisingly possible to realize on quantum devices.
ArticleNumber 031012
Author Zhang, Pan
Wang, Lei
Han, Zhao-Yu
Wang, Jun
Fan, Heng
Author_xml – sequence: 1
  givenname: Zhao-Yu
  surname: Han
  fullname: Han, Zhao-Yu
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
– sequence: 3
  givenname: Heng
  surname: Fan
  fullname: Fan, Heng
– sequence: 4
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 5
  givenname: Pan
  surname: Zhang
  fullname: Zhang, Pan
BookMark eNp1UMFKAzEQDVLBWv0AbwueWzPJJrsLXqRoFVosasFbSJOpptRNTdJi_97VtSCCc5gZhvceb94x6dS-RkLOgA4AKL-Yvu7iA26fB-WAcqDADkiXgaR9zmnZ-bUfkdMYl7QpSSEvii65nNVxs8awdRFtNsIag05ui9nEW1y5-iWbxa8-0Sm4j2wavN2YlD0mnTCekMOFXkU8_Zk9Mru5fhre9sf3o7vh1bhveMlSX3AuNQOhbWWZprwCxnJgHCsDxoIoZSGZ5UJKwJIvSmRzAXMjqMlRmIXhPXLX6lqvl2od3JsOO-W1U98HH16UDsmZFapijmAABae6yplAXQjKbannRQUFtaLROm-11sG_bzAmtfSbUDf2FROCSpA5lQ2qaFEm-BgDLpRxzcvO1ylot1JA1Vfyap-8KlWbfMOEP8y93_85n9QUiMM
CitedBy_id crossref_primary_10_1080_23746149_2023_2165452
crossref_primary_10_1088_2058_9565_ab4eb5
crossref_primary_10_1103_PhysRevResearch_6_043202
crossref_primary_10_1103_PhysRevLett_125_060503
crossref_primary_10_1103_PhysRevResearch_2_043442
crossref_primary_10_1103_PhysRevA_107_012406
crossref_primary_10_1007_s10994_022_06164_1
crossref_primary_10_1103_PhysRevA_105_052424
crossref_primary_10_1103_PhysRevB_103_125117
crossref_primary_10_1360_SST_2020_0459
crossref_primary_10_1103_PhysRevB_110_214402
crossref_primary_10_1103_PhysRevE_98_042114
crossref_primary_10_1103_PhysRevB_99_155131
crossref_primary_10_1088_0256_307X_40_2_020501
crossref_primary_10_1103_PhysRevE_101_062137
crossref_primary_10_1162_neco_a_01202
crossref_primary_10_1103_PhysRevLett_127_200503
crossref_primary_10_1088_2632_2153_ac104d
crossref_primary_10_1103_PhysRevB_104_075155
crossref_primary_10_7498_aps_70_20210985
crossref_primary_10_1088_2058_9565_adaede
crossref_primary_10_21468_SciPostPhys_14_6_142
crossref_primary_10_1103_PhysRevResearch_6_043041
crossref_primary_10_1103_PhysRevB_110_045140
crossref_primary_10_18267_j_aip_235
crossref_primary_10_1088_0256_307X_41_12_120701
crossref_primary_10_1109_TPAMI_2024_3396386
crossref_primary_10_1007_JHEP08_2021_112
crossref_primary_10_1007_s41365_023_01222_2
crossref_primary_10_1088_1367_2630_ab31ef
crossref_primary_10_1103_PhysRevD_103_116023
crossref_primary_10_1103_PhysRevC_106_L051901
crossref_primary_10_1103_PhysRevResearch_2_033293
crossref_primary_10_1103_PhysRevLett_131_106501
crossref_primary_10_1103_PhysRevE_99_063315
crossref_primary_10_1103_PhysRevLett_133_260404
crossref_primary_10_1103_PhysRevApplied_16_044057
crossref_primary_10_1103_PhysRevE_108_044128
crossref_primary_10_1016_j_neunet_2020_05_034
crossref_primary_10_1088_2058_9565_aaea94
crossref_primary_10_1103_PhysRevLett_126_090506
crossref_primary_10_1016_j_iswa_2024_200346
crossref_primary_10_1109_ACCESS_2020_2986279
crossref_primary_10_1177_02783649231217527
crossref_primary_10_1103_PhysRevResearch_2_023300
crossref_primary_10_1063_5_0020014
crossref_primary_10_1103_PhysRevB_107_165127
crossref_primary_10_1103_PhysRevX_9_031041
crossref_primary_10_1103_PhysRevApplied_18_024013
crossref_primary_10_22331_q_2020_10_11_341
crossref_primary_10_1103_PhysRevD_100_011501
crossref_primary_10_1088_2632_2153_ac4559
crossref_primary_10_1103_PhysRevX_12_021037
crossref_primary_10_1103_PhysRevB_103_235155
crossref_primary_10_22331_q_2024_05_27_1362
crossref_primary_10_1088_2053_1583_ad9d59
crossref_primary_10_3389_fphy_2022_858388
crossref_primary_10_1103_PhysRevResearch_5_L032001
crossref_primary_10_1103_PhysRevB_107_L041106
crossref_primary_10_1109_TAI_2022_3194132
crossref_primary_10_20535_ibb_2024_8_2_298201
crossref_primary_10_1103_PhysRevE_107_L012103
crossref_primary_10_1103_PhysRevE_104_025308
crossref_primary_10_1088_0256_307X_39_5_050701
crossref_primary_10_1088_2632_2153_ad7571
crossref_primary_10_1080_23746149_2020_1797528
crossref_primary_10_1088_2632_2153_abffe8
crossref_primary_10_1103_PhysRevA_102_062414
crossref_primary_10_1088_0256_307X_39_10_100701
crossref_primary_10_1103_PhysRevA_104_042408
crossref_primary_10_1103_RevModPhys_91_045002
crossref_primary_10_1103_PhysRevResearch_4_043111
crossref_primary_10_1103_PhysRevLett_121_260602
crossref_primary_10_1103_PhysRevX_10_011069
crossref_primary_10_1103_PhysRevResearch_6_033291
crossref_primary_10_1103_PhysRevB_101_075135
crossref_primary_10_1109_TQE_2023_3319254
crossref_primary_10_1088_0256_307X_38_9_097502
crossref_primary_10_1103_PhysRevA_101_032321
crossref_primary_10_1038_s41534_019_0157_8
crossref_primary_10_1103_PhysRevB_101_220409
crossref_primary_10_22331_q_2021_06_04_466
crossref_primary_10_1364_PRJ_434217
crossref_primary_10_1080_13658816_2022_2041643
crossref_primary_10_1103_PhysRevResearch_3_023010
crossref_primary_10_1103_PhysRevB_104_235141
crossref_primary_10_1103_PhysRevApplied_21_044032
crossref_primary_10_1103_PhysRevB_107_075146
crossref_primary_10_1145_3547334
crossref_primary_10_1103_PhysRevA_111_032409
crossref_primary_10_1103_PhysRevResearch_6_033261
crossref_primary_10_1088_2632_2153_ac48a2
crossref_primary_10_1109_ACCESS_2021_3112397
crossref_primary_10_1103_PhysRevLett_132_190801
crossref_primary_10_1103_PhysRevA_105_032439
crossref_primary_10_21105_joss_05700
crossref_primary_10_1103_PhysRevA_101_032310
crossref_primary_10_1103_PhysRevLett_129_270501
crossref_primary_10_1103_PhysRevA_105_062439
crossref_primary_10_1109_TQE_2024_3447875
crossref_primary_10_1103_PhysRevB_105_184418
crossref_primary_10_21468_SciPostPhys_18_3_096
crossref_primary_10_22331_q_2023_01_26_909
crossref_primary_10_1088_2058_9565_ad04e6
crossref_primary_10_3390_e20080583
crossref_primary_10_1088_2632_2153_ace0f5
crossref_primary_10_1103_PhysRevB_101_075111
crossref_primary_10_1103_PRXQuantum_4_010317
crossref_primary_10_1103_PhysRevB_106_115133
crossref_primary_10_1103_PhysRevLett_132_197301
crossref_primary_10_21468_SciPostPhys_15_6_222
crossref_primary_10_1103_PhysRevA_99_052306
crossref_primary_10_1103_PhysRevE_102_012152
crossref_primary_10_1103_PRXQuantum_5_037001
crossref_primary_10_1088_2058_9565_acd578
crossref_primary_10_1103_PhysRevA_98_062324
crossref_primary_10_1103_PhysRevB_105_195152
Cites_doi 10.1207/s15516709cog0901_7
10.1103/PhysRevLett.115.180405
10.1038/nphys3345
10.1016/j.aop.2014.06.013
10.26421/QIC7.5-6-1
10.1126/science.aag2302
10.1103/PhysRevA.32.1007
10.1214/aoms/1177732360
10.1103/PhysRevE.79.051915
10.1038/nature14539
10.1103/PhysRevLett.69.2863
10.1007/BF01397477
10.1016/j.aop.2010.09.012
10.1103/PhysRevLett.99.120601
10.1103/PhysRevLett.104.210502
10.1103/PhysRevB.85.165146
10.1103/PhysRevLett.103.160601
10.1073/pnas.79.8.2554
10.1561/2200000059
10.1103/PhysRevLett.108.110502
10.1103/PhysRevB.90.174201
10.1162/neco.2010.03-09-983
10.1103/PhysRevB.97.085104
10.1103/PhysRevLett.98.140506
10.1103/RevModPhys.82.277
10.1137/090752286
10.1088/2058-9565/aaba1a
10.1103/PhysRevLett.107.067202
10.1088/1742-5468/2007/08/P08024
10.1103/RevModPhys.73.33
10.1214/aoms/1177729694
10.1146/annurev-statistics-010814-020120
10.1146/annurev-conmatphys-020911-125018
10.1561/2200000001
10.1162/neco.2006.18.10.2283
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.8.031012
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_7be1c1e530a9425ea7503d8ab79170d5
10_1103_PhysRevX_8_031012
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c382t-5336a215ad9d2a0391224123e9c1cd1586762d35661e83f8e2b51bc50c4e5cfc3
IEDL.DBID DOA
ISSN 2160-3308
IngestDate Wed Aug 27 01:25:30 EDT 2025
Fri Jul 25 11:53:38 EDT 2025
Tue Jul 01 01:33:18 EDT 2025
Thu Apr 24 23:01:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-5336a215ad9d2a0391224123e9c1cd1586762d35661e83f8e2b51bc50c4e5cfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/7be1c1e530a9425ea7503d8ab79170d5
PQID 2550616406
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_7be1c1e530a9425ea7503d8ab79170d5
proquest_journals_2550616406
crossref_citationtrail_10_1103_PhysRevX_8_031012
crossref_primary_10_1103_PhysRevX_8_031012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 20180701
  day: 01
PublicationDecade 2010
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2018
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References A. Van Oord (PhysRevX.8.031012Cc7R1) 2016
G. E. Hinton (PhysRevX.8.031012Cc44R1) 2012
PhysRevX.8.031012Cc31R1
P. Smolensky (PhysRevX.8.031012Cc3R1) 1986
PhysRevX.8.031012Cc50R1
PhysRevX.8.031012Cc28R1
D. J. C. MacKay (PhysRevX.8.031012Cc48R1) 2003
PhysRevX.8.031012Cc49R1
PhysRevX.8.031012Cc1R1
M. J. Wainwright (PhysRevX.8.031012Cc46R1) 2008; 1
M. Gabrie (PhysRevX.8.031012Cc45R1) 2015
PhysRevX.8.031012Cc42R1
B. Uria (PhysRevX.8.031012Cc6R1) 2016; 17
PhysRevX.8.031012Cc40R1
PhysRevX.8.031012Cc61R1
PhysRevX.8.031012Cc14R1
D. Rezende (PhysRevX.8.031012Cc10R1) 2015
I. Goodfellow (PhysRevX.8.031012Cc11R1) 2014
PhysRevX.8.031012Cc12R1
PhysRevX.8.031012Cc18R1
PhysRevX.8.031012Cc35R1
PhysRevX.8.031012Cc56R1
PhysRevX.8.031012Cc16R1
PhysRevX.8.031012Cc58R1
R. Bailly (PhysRevX.8.031012Cc41R1) 2011; 20
I. Goodfellow (PhysRevX.8.031012Cc37R1) 2016
PhysRevX.8.031012Cc30R1
PhysRevX.8.031012Cc53R1
PhysRevX.8.031012Cc55R1
PhysRevX.8.031012Cc4R1
PhysRevX.8.031012Cc2R1
PhysRevX.8.031012Cc29R1
D. Perez-Garcia (PhysRevX.8.031012Cc27R1) 2007; 7
PhysRevX.8.031012Cc67R1
PhysRevX.8.031012Cc25R1
E. M. Stoudenmire (PhysRevX.8.031012Cc32R1) 2016
A. Novikov (PhysRevX.8.031012Cc22R1) 2014
A. Novikov (PhysRevX.8.031012Cc23R1) 2015
PhysRevX.8.031012Cc64R1
PhysRevX.8.031012Cc20R1
H. J. Kappen (PhysRevX.8.031012Cc13R1) 1998
PhysRevX.8.031012Cc60R1
PhysRevX.8.031012Cc62R1
PhysRevX.8.031012Cc15R1
PhysRevX.8.031012Cc38R1
PhysRevX.8.031012Cc19R1
D. Krotov (PhysRevX.8.031012Cc52R1) 2016
PhysRevX.8.031012Cc17R1
PhysRevX.8.031012Cc36R1
PhysRevX.8.031012Cc59R1
D. Koller (PhysRevX.8.031012Cc47R1) 2009
References_xml – ident: PhysRevX.8.031012Cc2R1
  doi: 10.1207/s15516709cog0901_7
– ident: PhysRevX.8.031012Cc62R1
  doi: 10.1103/PhysRevLett.115.180405
– volume-title: Neural Networks: Tricks of the Trade
  year: 2012
  ident: PhysRevX.8.031012Cc44R1
– ident: PhysRevX.8.031012Cc29R1
  doi: 10.1038/nphys3345
– volume-title: Proceedings of The 33rd International Conference on Machine Learning
  year: 2016
  ident: PhysRevX.8.031012Cc7R1
– ident: PhysRevX.8.031012Cc18R1
  doi: 10.1016/j.aop.2014.06.013
– volume: 7
  start-page: 401
  issn: 1533-7146
  year: 2007
  ident: PhysRevX.8.031012Cc27R1
  publication-title: Quantum Inf. Comput.
  doi: 10.26421/QIC7.5-6-1
– ident: PhysRevX.8.031012Cc16R1
  doi: 10.1126/science.aag2302
– ident: PhysRevX.8.031012Cc50R1
  doi: 10.1103/PhysRevA.32.1007
– volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: PhysRevX.8.031012Cc23R1
– ident: PhysRevX.8.031012Cc49R1
  doi: 10.1214/aoms/1177732360
– volume-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition
  year: 1986
  ident: PhysRevX.8.031012Cc3R1
– ident: PhysRevX.8.031012Cc14R1
  doi: 10.1103/PhysRevE.79.051915
– ident: PhysRevX.8.031012Cc1R1
  doi: 10.1038/nature14539
– volume-title: International Conference on Machine Learning
  year: 2014
  ident: PhysRevX.8.031012Cc22R1
– ident: PhysRevX.8.031012Cc30R1
  doi: 10.1103/PhysRevLett.69.2863
– ident: PhysRevX.8.031012Cc38R1
  doi: 10.1007/BF01397477
– volume-title: Proceedings of the 32nd International Conference on Machine Learning
  year: 2015
  ident: PhysRevX.8.031012Cc10R1
– ident: PhysRevX.8.031012Cc17R1
  doi: 10.1016/j.aop.2010.09.012
– ident: PhysRevX.8.031012Cc59R1
  doi: 10.1103/PhysRevLett.99.120601
– ident: PhysRevX.8.031012Cc55R1
  doi: 10.1103/PhysRevLett.104.210502
– ident: PhysRevX.8.031012Cc36R1
  doi: 10.1103/PhysRevB.85.165146
– volume-title: Advances in Neural Information Processing Systems 27
  year: 2014
  ident: PhysRevX.8.031012Cc11R1
– ident: PhysRevX.8.031012Cc60R1
  doi: 10.1103/PhysRevLett.103.160601
– ident: PhysRevX.8.031012Cc12R1
  doi: 10.1073/pnas.79.8.2554
– ident: PhysRevX.8.031012Cc25R1
  doi: 10.1561/2200000059
– ident: PhysRevX.8.031012Cc64R1
  doi: 10.1103/PhysRevLett.108.110502
– volume-title: Advances in Neural Information Processing Systems 28
  year: 2015
  ident: PhysRevX.8.031012Cc45R1
– volume: 20
  start-page: 147
  issn: 1532-4435
  year: 2011
  ident: PhysRevX.8.031012Cc41R1
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 1
  year: 2016
  ident: PhysRevX.8.031012Cc6R1
  publication-title: J. Mach. Learn. Res.
– ident: PhysRevX.8.031012Cc61R1
  doi: 10.1103/PhysRevB.90.174201
– ident: PhysRevX.8.031012Cc40R1
  doi: 10.1162/neco.2010.03-09-983
– volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: PhysRevX.8.031012Cc52R1
– ident: PhysRevX.8.031012Cc35R1
  doi: 10.1103/PhysRevB.97.085104
– ident: PhysRevX.8.031012Cc58R1
  doi: 10.1103/PhysRevLett.98.140506
– volume-title: Probabilistic Graphical Models, Principles and Techniques
  year: 2009
  ident: PhysRevX.8.031012Cc47R1
– ident: PhysRevX.8.031012Cc20R1
  doi: 10.1103/RevModPhys.82.277
– volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: PhysRevX.8.031012Cc32R1
– ident: PhysRevX.8.031012Cc28R1
  doi: 10.1137/090752286
– ident: PhysRevX.8.031012Cc56R1
  doi: 10.1088/2058-9565/aaba1a
– volume-title: Advances in Neural Information Processing Systems 10
  year: 1998
  ident: PhysRevX.8.031012Cc13R1
– ident: PhysRevX.8.031012Cc53R1
  doi: 10.1103/PhysRevLett.107.067202
– ident: PhysRevX.8.031012Cc19R1
  doi: 10.1088/1742-5468/2007/08/P08024
– ident: PhysRevX.8.031012Cc15R1
  doi: 10.1103/RevModPhys.73.33
– ident: PhysRevX.8.031012Cc42R1
  doi: 10.1214/aoms/1177729694
– ident: PhysRevX.8.031012Cc4R1
  doi: 10.1146/annurev-statistics-010814-020120
– ident: PhysRevX.8.031012Cc31R1
  doi: 10.1146/annurev-conmatphys-020911-125018
– volume: 1
  start-page: 1
  year: 2008
  ident: PhysRevX.8.031012Cc46R1
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000001
– volume-title: Information Theory, Inference and Learning Algorithms
  year: 2003
  ident: PhysRevX.8.031012Cc48R1
– ident: PhysRevX.8.031012Cc67R1
  doi: 10.1162/neco.2006.18.10.2283
– volume-title: Deep Learning
  year: 2016
  ident: PhysRevX.8.031012Cc37R1
SSID ssj0000601477
Score 2.6095414
Snippet Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 031012
SubjectTerms Algorithms
Allocations
Artificial intelligence
Datasets
Entangled states
Generative adversarial networks
Handwriting
Machine learning
Mathematical models
Modelling
Parameters
Probability distribution
Probability theory
Quantum computing
Quantum phenomena
Quantum physics
Quantum theory
Representations
Samples
Sampling
Standard data
Statistical analysis
Statistical methods
Tensors
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66IXgRf-J0Sg-ehGxt06QpCOJkYwgbYzjYLeRXvcg21038881r04kIXtvk8vLyvS95L99D6C5TnOS54lhKwnBCFcNK8RBT5aDQUhKnHN47j8ZsOEte5nTuL9wKX1ZZY2IJ1Gap4Y6866ivCz3MxZ_H1QeGrlGQXfUtNPZR00Ew5w3U7PXHk-nulgXURpI09enMKCRdKKyc2s95h3dAFTOKfwWkUrf_DyyXsWZwjI48SQyeqlU9QXt2cYoOymJNXZyhh9mi2K5gkxfWBJVwNKBWAI3N4Hl5UBYCBCOQ3_8KJpWoa1DxynM0G_Rfn4fYd0HAmvB4gx0fY9IFZmkyE0sQdIeoGxOb6UibiHLm8MwQR8si6-zObaxopDQNdWKpzjW5QI3FcmEvUaC0zQznLM8MS3Iis1gRqxOjubVShqaFwtoUQnuJcOhU8S7Ko0JIRG09wUVlvRa6301ZVfoY_w3ugX13A0HauvywXL8Jv1NEqmykI-cmocwcoFgJmVbDpUrdyTI0tIXa9eoIv98K8eMdV___vkaHjvLwquC2jRqb9dbeOFqxUbfed74BzvrN3Q
  priority: 102
  providerName: ProQuest
Title Unsupervised Generative Modeling Using Matrix Product States
URI https://www.proquest.com/docview/2550616406
https://doaj.org/article/7be1c1e530a9425ea7503d8ab79170d5
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1aEbyIn1itZQ-ehG13N5tsFrxYaS1CSykWegv5mD1JLW4r_nwnm61UBL14XRKyvElm3pDJG0Juci1oUWgRKkV5mDLNQ61FFDKNrhAYTTLh3juPxnw4S5_mbL7V6svVhHl5YA9cN9MQmxhnRSrH_QXKXbxZoXSGiUZkK_VSjHlbyZT3wUj9s6y-xowj2nUFlVN4n3dEx6lhxsm3QFTp9f9wx1WMGRyRw5ocBvf-p47JDixOyH5VpGnKU3I3W5TrpTvcJdjAC0Y7bxW4hmbuWXlQFQAEIye7_xFMvJhr4PnkGZkN-s8Pw7DufhAaKpJViDyMKwzIyuY2UU7I3UXbhEJuYmNjJjj6MUuRjsWAeAtINIu1YZFJgZnC0HPSWLwu4IIE2kBuheBFbnlaUJUnmoJJrREASkW2SaINFNLU0uCuQ8WLrFKEiMoNelJIj16T3H5NWXpdjN8G9xy-XwOdpHX1AQ0ta0PLvwzdJK2NdWR9zkqJCRESEo6s5PI_1rgiB0iIhC_HbZHG6m0N10g6VrpNdsXgsU32ev3xZNqudtsn6XrXLQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNsKeADXJDSJnacOBII8Vq2tFsh1JX2ZvyYcKl2l2bL40_xG5nJYxFC6q3XxImU8Xi-z_HMNwBPK29UXXuTOKeKJNe-SLw3aaI9hULUSpaG652nx8Vkln-c6_kW_B5qYTitcoiJbaCOy8D_yPeJ-hL0FIQ_r1bfEu4axaerQwuNzi0O8dcP2rI1Lw_e0fw-k3L8_uTtJOm7CiRBGblOiN8UjoDOxSpKxwLpjGJSYRWyEDNtCooPURHNyZC-w6D0OvNBpyFHHeqg6L1X4GquCMm5Mn38YfNPh7VN8rLsD0-zVO1zGudn_D7fM3uswZnJf-Cv7RLwHwi0yDa-BTd7Sipedz50G7ZwcQeutamhobkLL2aL5nzFIaXBKDqZao6RgtuocTG7aNMOxJTF_n-KT52ErOhY7D2YXYp17sP2YrnAByB8wCoaU9RVLPJauUp6hSGPwSA6l8YRpIMpbOgFybkvxqltNyapsoP1rLGd9UbwfPPIqlPjuGjwG7bvZiALabcXlmdfbb8ubekxCxk5ZeoqCl_o-Fw3GudL2semUY9gd5gd26_uxv71xZ2Lbz-B65OT6ZE9Ojg-fAg3iGyZLtV3F7bXZ-f4iAjN2j9uvUjAl8t22z_QVwfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Generative+Modeling+Using+Matrix+Product+States&rft.jtitle=Physical+review.+X&rft.au=Zhao-Yu+Han&rft.au=Jun+Wang&rft.au=Heng+Fan&rft.au=Lei+Wang&rft.date=2018-07-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=8&rft.issue=3&rft.spage=031012&rft_id=info:doi/10.1103%2FPhysRevX.8.031012&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7be1c1e530a9425ea7503d8ab79170d5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon