Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes

Tellurium can form nanowires of helical atomic chains. With their unique one-dimensional van der Waals structure, these nanowires are expected to show physical and electronic properties that are remarkably different from those of bulk tellurium. Here, we show that few-chain and single-chain van der...

Full description

Saved in:
Bibliographic Details
Published inNature electronics Vol. 3; no. 3; pp. 141 - 147
Main Authors Qin, Jing-Kai, Liao, Pai-Ying, Si, Mengwei, Gao, Shiyuan, Qiu, Gang, Jian, Jie, Wang, Qingxiao, Zhang, Si-Qi, Huang, Shouyuan, Charnas, Adam, Wang, Yixiu, Kim, Moon J, Wu, Wenzhuo, Xu, Xianfan, Wang, Hai-Yan, Yang, Li, Khin Yap, Yoke, Ye, Peide D
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 01.03.2020
Subjects
Online AccessGet full text
ISSN2520-1131
DOI10.1038/s41928-020-0365-4

Cover

Loading…
Abstract Tellurium can form nanowires of helical atomic chains. With their unique one-dimensional van der Waals structure, these nanowires are expected to show physical and electronic properties that are remarkably different from those of bulk tellurium. Here, we show that few-chain and single-chain van der Waals tellurium nanowires can be isolated using carbon nanotube and boron nitride nanotube encapsulation. With this approach, the number of atomic chains can be controlled by the inner diameter of the nanotube. The Raman response of the structures suggests that the interaction between a single-atomic tellurium chain and a carbon nanotube is weak, and that the inter-chain interaction becomes stronger as the number of chains increases. Compared with bare tellurium nanowires on SiO2, nanowires encapsulated in boron nitride nanotubes exhibit a dramatically enhanced current-carrying capacity, with a current density of 1.5 × 108 A cm−2 that exceeds that of most semiconducting nanowires. We also use our tellurium nanowires encapsulated in boron nitride nanotubes to create field-effect transistors with a diameter of only 2 nm.By isolating one-dimensional tellurium nanowires in boron nitride nanotubes, the electronic properties of the atomic chains can be measured and the structures used to create field-effect transistors.
AbstractList Tellurium can form nanowires of helical atomic chains. With their unique one-dimensional van der Waals structure, these nanowires are expected to show physical and electronic properties that are remarkably different from those of bulk tellurium. Here, we show that few-chain and single-chain van der Waals tellurium nanowires can be isolated using carbon nanotube and boron nitride nanotube encapsulation. With this approach, the number of atomic chains can be controlled by the inner diameter of the nanotube. The Raman response of the structures suggests that the interaction between a single-atomic tellurium chain and a carbon nanotube is weak, and that the inter-chain interaction becomes stronger as the number of chains increases. Compared with bare tellurium nanowires on SiO2, nanowires encapsulated in boron nitride nanotubes exhibit a dramatically enhanced current-carrying capacity, with a current density of 1.5 × 108 A cm−2 that exceeds that of most semiconducting nanowires. We also use our tellurium nanowires encapsulated in boron nitride nanotubes to create field-effect transistors with a diameter of only 2 nm.By isolating one-dimensional tellurium nanowires in boron nitride nanotubes, the electronic properties of the atomic chains can be measured and the structures used to create field-effect transistors.
Author Charnas, Adam
Si, Mengwei
Wu, Wenzhuo
Wang, Hai-Yan
Yang, Li
Zhang, Si-Qi
Wang, Yixiu
Qiu, Gang
Khin Yap, Yoke
Jian, Jie
Wang, Qingxiao
Xu, Xianfan
Qin, Jing-Kai
Liao, Pai-Ying
Kim, Moon J
Gao, Shiyuan
Huang, Shouyuan
Ye, Peide D
Author_xml – sequence: 1
  givenname: Jing-Kai
  surname: Qin
  fullname: Qin, Jing-Kai
– sequence: 2
  givenname: Pai-Ying
  surname: Liao
  fullname: Liao, Pai-Ying
– sequence: 3
  givenname: Mengwei
  surname: Si
  fullname: Si, Mengwei
– sequence: 4
  givenname: Shiyuan
  surname: Gao
  fullname: Gao, Shiyuan
– sequence: 5
  givenname: Gang
  surname: Qiu
  fullname: Qiu, Gang
– sequence: 6
  givenname: Jie
  surname: Jian
  fullname: Jian, Jie
– sequence: 7
  givenname: Qingxiao
  surname: Wang
  fullname: Wang, Qingxiao
– sequence: 8
  givenname: Si-Qi
  surname: Zhang
  fullname: Zhang, Si-Qi
– sequence: 9
  givenname: Shouyuan
  surname: Huang
  fullname: Huang, Shouyuan
– sequence: 10
  givenname: Adam
  surname: Charnas
  fullname: Charnas, Adam
– sequence: 11
  givenname: Yixiu
  surname: Wang
  fullname: Wang, Yixiu
– sequence: 12
  givenname: Moon J
  surname: Kim
  fullname: Kim, Moon J
– sequence: 13
  givenname: Wenzhuo
  surname: Wu
  fullname: Wu, Wenzhuo
– sequence: 14
  givenname: Xianfan
  surname: Xu
  fullname: Xu, Xianfan
– sequence: 15
  givenname: Hai-Yan
  surname: Wang
  fullname: Wang, Hai-Yan
– sequence: 16
  givenname: Li
  surname: Yang
  fullname: Yang, Li
– sequence: 17
  givenname: Yoke
  surname: Khin Yap
  fullname: Khin Yap, Yoke
– sequence: 18
  givenname: Peide D
  surname: Ye
  fullname: Ye, Peide D
BookMark eNotjk9LxDAUxIMouK77AbwFPFfz8po0PcriP1gQRG_C8pq-xS7dpCbp97egp-HHDDNzJc5DDCzEDag7UOjucw2tdpXSqlJoTVWfiZU2CwEgXIpNzkelFhewacxKfL3TiYJMnKcYMksKvSyJwoKpyCnFiVMZOMt4kIXHcU7DfJJU4mnw0n_TELLk4GnK80iFezkEGSjEMnecr8XFgcbMm39di8-nx4_tS7V7e37dPuwqj06XqvaouOUGHbjWK7Bd1xuv-tpgC-Br2xO4prPOYO_Igq2XDHXUaGoPHhyuxe1f7_L3Z-Zc9sc4p7BM7lFrq6DRaPAXlBNWtw
CitedBy_id crossref_primary_10_1002_adfm_202421140
crossref_primary_10_1021_acs_nanolett_4c06553
crossref_primary_10_1016_j_physleta_2021_127668
crossref_primary_10_1039_D1NH00253H
crossref_primary_10_1021_acsanm_2c05266
crossref_primary_10_1039_D2NA00590E
crossref_primary_10_1021_acs_inorgchem_0c03791
crossref_primary_10_1039_D2NR02822K
crossref_primary_10_3390_mi15030349
crossref_primary_10_1021_acsnano_3c01968
crossref_primary_10_1088_2752_5724_acf9ba
crossref_primary_10_1103_PhysRevB_104_035431
crossref_primary_10_1002_adma_202210446
crossref_primary_10_1002_adfm_202113052
crossref_primary_10_1109_JFLEX_2025_3526083
crossref_primary_10_3762_bjnano_13_106
crossref_primary_10_1021_acsami_0c21675
crossref_primary_10_1016_j_ceramint_2025_03_066
crossref_primary_10_1016_j_pmatsci_2021_100856
crossref_primary_10_1021_acsami_3c17204
crossref_primary_10_1002_smll_202310013
crossref_primary_10_1021_acs_chemrev_2c00220
crossref_primary_10_1021_acs_jpcc_2c06728
crossref_primary_10_1021_acsnano_2c01647
crossref_primary_10_1021_acsomega_3c10217
crossref_primary_10_1038_s41586_024_07484_z
crossref_primary_10_1039_D4NR05266H
crossref_primary_10_3390_nano13142057
crossref_primary_10_1109_MPULS_2020_2993685
crossref_primary_10_1002_adfm_202423333
crossref_primary_10_1088_2053_1583_ad7ed0
crossref_primary_10_1021_acsnano_4c03729
crossref_primary_10_1016_j_saa_2021_120285
crossref_primary_10_1109_LED_2022_3230705
crossref_primary_10_1007_s40843_024_3205_7
crossref_primary_10_1016_j_cartre_2024_100439
crossref_primary_10_1038_s41699_022_00293_w
crossref_primary_10_1038_s41467_024_52062_6
crossref_primary_10_1557_s43578_022_00737_5
crossref_primary_10_1016_j_cej_2024_150183
crossref_primary_10_1016_j_jpcs_2023_111737
crossref_primary_10_1021_jacs_3c14188
crossref_primary_10_1002_aelm_202101331
crossref_primary_10_1038_s41699_020_0143_1
crossref_primary_10_1002_adma_202306631
crossref_primary_10_1016_j_apsusc_2023_157801
crossref_primary_10_1002_smtd_202000501
crossref_primary_10_1021_acs_jpclett_2c02854
crossref_primary_10_1002_advs_202103873
crossref_primary_10_1038_s41467_023_38090_8
crossref_primary_10_1166_mex_2022_2172
crossref_primary_10_1002_smll_202401216
crossref_primary_10_1021_acs_jpcb_3c00586
crossref_primary_10_3390_c7020035
crossref_primary_10_1016_j_mtcomm_2025_111773
crossref_primary_10_1016_j_physrep_2021_07_006
crossref_primary_10_1016_j_ssc_2021_114620
crossref_primary_10_1038_s41467_023_43634_z
crossref_primary_10_1063_5_0226011
crossref_primary_10_1016_j_mtphys_2023_101313
crossref_primary_10_1039_D2MA00318J
crossref_primary_10_1039_D2TA09517C
crossref_primary_10_1002_adfm_202411472
crossref_primary_10_1021_acs_jpcc_4c05942
crossref_primary_10_1063_5_0152814
crossref_primary_10_1021_acsomega_1c02586
crossref_primary_10_1002_adfm_202301864
crossref_primary_10_59717_j_xinn_mater_2024_100113
crossref_primary_10_1007_s12274_022_4330_6
crossref_primary_10_1021_jacs_4c18128
crossref_primary_10_1021_acsanm_1c03132
crossref_primary_10_1021_acs_nanolett_3c04298
crossref_primary_10_1007_s12274_022_4188_7
crossref_primary_10_1016_j_matt_2022_01_021
crossref_primary_10_1016_j_nanoen_2023_108462
crossref_primary_10_1021_acsnanoscienceau_1c00023
crossref_primary_10_1016_j_cplett_2024_141846
crossref_primary_10_1016_j_matpr_2023_02_014
crossref_primary_10_1039_D2NA00543C
crossref_primary_10_1021_acsnano_3c03559
crossref_primary_10_1002_smll_202407830
crossref_primary_10_1002_adsu_202400100
crossref_primary_10_1063_5_0069569
crossref_primary_10_1002_adma_202419653
crossref_primary_10_1002_smll_202300557
crossref_primary_10_1016_j_mtbio_2022_100271
crossref_primary_10_1021_acs_nanolett_1c00564
crossref_primary_10_1038_s41699_021_00280_7
crossref_primary_10_1039_D4MA00572D
crossref_primary_10_1002_adfm_202315058
crossref_primary_10_1039_D4CE00352G
crossref_primary_10_1002_adfm_202211527
crossref_primary_10_1002_adfm_202108104
crossref_primary_10_1364_OE_497186
crossref_primary_10_1038_s41427_021_00314_y
crossref_primary_10_1021_acsphotonics_2c00993
crossref_primary_10_1002_adfm_202006278
crossref_primary_10_1038_s41928_020_0381_4
crossref_primary_10_1039_D4SC01477D
crossref_primary_10_1021_acsami_2c15131
crossref_primary_10_1557_s43578_022_00841_6
crossref_primary_10_1186_s40580_024_00460_3
crossref_primary_10_1007_s11801_021_1065_7
crossref_primary_10_1016_j_nanoen_2021_106177
crossref_primary_10_1016_j_matpr_2022_06_356
crossref_primary_10_1021_acs_cgd_1c00969
crossref_primary_10_1103_PhysRevB_110_014311
crossref_primary_10_1557_s43578_022_00696_x
crossref_primary_10_1002_aenm_202200849
crossref_primary_10_1021_acs_chemmater_4c00275
crossref_primary_10_1002_advs_202400018
crossref_primary_10_1021_acs_jpcc_0c08506
crossref_primary_10_1021_acsnano_4c04184
crossref_primary_10_1103_PhysRevB_109_195413
crossref_primary_10_1002_lpor_202402069
crossref_primary_10_1021_acsnano_4c09474
crossref_primary_10_1021_jacs_4c03730
crossref_primary_10_1038_s41377_024_01496_0
crossref_primary_10_1088_1361_648X_ac2388
crossref_primary_10_1038_s41467_021_25104_6
crossref_primary_10_1021_acsnano_2c06067
crossref_primary_10_1038_s41598_022_06750_2
crossref_primary_10_1002_adma_202207901
crossref_primary_10_1021_acsaelm_4c00866
crossref_primary_10_1021_acsami_3c10049
crossref_primary_10_1002_adma_202211562
crossref_primary_10_1002_adma_202309023
crossref_primary_10_1007_s12209_022_00353_8
crossref_primary_10_1039_D1NR05419H
crossref_primary_10_1103_PhysRevMaterials_9_034412
crossref_primary_10_1016_j_xcrp_2022_101124
crossref_primary_10_1039_D1MH01987B
crossref_primary_10_1088_1361_6463_ac38e0
crossref_primary_10_1002_admi_202400317
crossref_primary_10_1021_acs_nanolett_0c03897
crossref_primary_10_1002_adma_202204697
crossref_primary_10_1007_s12274_023_5995_1
crossref_primary_10_1039_D3MA00336A
crossref_primary_10_1002_adma_202100978
crossref_primary_10_1039_D4CE01136H
crossref_primary_10_1016_j_jpcs_2023_111806
crossref_primary_10_1021_acsnano_2c06359
crossref_primary_10_1016_j_cej_2021_134118
crossref_primary_10_1063_5_0245526
crossref_primary_10_1021_acsanm_2c03382
crossref_primary_10_1039_D3TC00517H
crossref_primary_10_1016_j_mtphys_2022_100776
crossref_primary_10_1039_D1NR01442K
crossref_primary_10_7498_aps_71_20220646
crossref_primary_10_1002_adfm_202401347
crossref_primary_10_1002_adma_202408320
crossref_primary_10_1088_1361_648X_adb11a
crossref_primary_10_1002_adma_202307942
crossref_primary_10_1007_s12274_022_5190_9
crossref_primary_10_1007_s11467_022_1231_9
crossref_primary_10_1021_acs_nanolett_4c04363
crossref_primary_10_1063_5_0228402
crossref_primary_10_1021_acsaelm_3c00620
crossref_primary_10_1088_2058_8585_adb595
crossref_primary_10_1002_adma_202209346
crossref_primary_10_1021_acsnano_3c05819
crossref_primary_10_1039_D2CP05132J
crossref_primary_10_3389_fchem_2022_1027554
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122908
crossref_primary_10_1038_s43246_020_00110_1
crossref_primary_10_1038_s41467_023_39071_7
crossref_primary_10_1039_D2NR01630C
crossref_primary_10_1063_5_0090179
crossref_primary_10_1002_adma_202306290
crossref_primary_10_1002_smll_202104401
crossref_primary_10_1109_TED_2023_3269737
crossref_primary_10_1016_j_commt_2024_100008
crossref_primary_10_1002_aelm_202001066
ContentType Journal Article
Copyright Copyright Nature Publishing Group Mar 2020
Copyright_xml – notice: Copyright Nature Publishing Group Mar 2020
DBID 8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/s41928-020-0365-4
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-1131
EndPage 147
GroupedDBID 0R~
8FE
8FG
AARCD
AAYZH
ABJNI
ACBWK
ACGFS
AFANA
AFKRA
AFSHS
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ATHPR
AXYYD
BENPR
BGLVJ
BKKNO
CCPQU
DWQXO
EBS
FSGXE
FZEXT
HCIFZ
NNMJJ
O9-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
ID FETCH-LOGICAL-c382t-4c30e9e738189c016bbd5c0d453911c46da187b6853d8a6164016aba72a9fc183
IEDL.DBID BENPR
IngestDate Sat Aug 23 13:11:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-4c30e9e738189c016bbd5c0d453911c46da187b6853d8a6164016aba72a9fc183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3226017235
PQPubID 7343582
PageCount 7
ParticipantIDs proquest_journals_3226017235
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature electronics
PublicationYear 2020
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
SSID ssj0002013775
Score 2.5363896
Snippet Tellurium can form nanowires of helical atomic chains. With their unique one-dimensional van der Waals structure, these nanowires are expected to show physical...
SourceID proquest
SourceType Aggregation Database
StartPage 141
SubjectTerms Atomic properties
Boron nitride
Carbon nanotubes
Carrying capacity
Diameters
Electrons
Encapsulation
Field effect transistors
Nanowires
Physical properties
Semiconductor devices
Silicon dioxide
Spectrum analysis
Symmetry
Tellurium
Transport properties
Title Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes
URI https://www.proquest.com/docview/3226017235
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF5se9GD-MRHLXvwGlqzj2xOotJaBIsUCz0IZV_Fgt3UPP6_s-lGBcFzcpqZfDPfN5MZhK6NlEJCqQs0lbCIag04yLwSRyilekmIrQW35wkfz-jTnM2D4FaEscoGE2ugNpn2GnkfAo97vkLY7eYz8lejfHc1nNBooQ5AsADy1bkfTl6m3ypLXG_UY007k4h-4dueIvKsaeAnvOgfEK4zy-gA7YeSEN9tfXiIdqw7Qnu_FgUeo7epXEuH8-1Aq8VA_3HZrCXHGy-o534zKs6W2P8WUuWrao2BT69XGut3YP8FhnCUQIk_oLg0eOWwky4rK2WLEzQbDV8fxlG4ixBpIuISLEoGNrWJT7aphppNKcP0wFBGALo05UbeiERxyMRGSA6ECN6RSiaxTJcavuFT1HaZs2cIA_mSPJVCgWeotakwgggqlDWK8ljxc9RtjLMIwV0sflxx8f_jS7Qbbw0NodBF7TKv7BXk8FL1UEuMHnvBXV_qLZ41
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF60HtSD-MRH1T3oMbRmN-nmICJqbe3jIC30INR9FQN2U_NA_FP-RmeTRgXBW88JIcx88_hmdmcQOlOcMw6pLtBU4jlUSvCDnq3EEUqpnBCi84Jbr--3hvRh5I2W0Gd5F8Yeqyx9Yu6oVSRtjbwGwPMtXyHe1ezNsVujbHe1XKFRwKKjP96BsiWX7VvQ77nrNu8GNy1nvlXAkYS5KfwPqetAN2yoCiRkPEIoT9YV9QgYvqS-4hesIXyIY4pxH-gEvMMFb7g8mEiwAPjuMlqhhATWoljz_rum4-bz-7yyeUpYLbFNVuZYjla358noH5efx7HmJtqYJ6D4ukDMFlrSZhut_xpLuIOeHvmUGxwXx2c15kbhtByCjme2fB_bOaw4mmB7CSWLw2yKgb1PQ4nlCw9NggH8HAj4K6SyCocGG26iNBM62UXDhchrD1VMZPQ-wkD1uB9wJgAHVOuAKUYYZUIrQX1X-AeoWgpnPDelZPyj-MP_H5-i1dag1x132_3OEVpzC6EDCKuoksaZPobsIRUnucowel40Rr4A7enXaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raman+response+and+transport+properties+of+tellurium+atomic+chains+encapsulated+in+nanotubes&rft.jtitle=Nature+electronics&rft.au=Qin%2C+Jing-Kai&rft.au=Liao%2C+Pai-Ying&rft.au=Si%2C+Mengwei&rft.au=Gao%2C+Shiyuan&rft.date=2020-03-01&rft.pub=Nature+Publishing+Group&rft.eissn=2520-1131&rft.volume=3&rft.issue=3&rft.spage=141&rft.epage=147&rft_id=info:doi/10.1038%2Fs41928-020-0365-4