Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes
Tellurium can form nanowires of helical atomic chains. With their unique one-dimensional van der Waals structure, these nanowires are expected to show physical and electronic properties that are remarkably different from those of bulk tellurium. Here, we show that few-chain and single-chain van der...
Saved in:
Published in | Nature electronics Vol. 3; no. 3; pp. 141 - 147 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2520-1131 |
DOI | 10.1038/s41928-020-0365-4 |
Cover
Loading…
Abstract | Tellurium can form nanowires of helical atomic chains. With their unique one-dimensional van der Waals structure, these nanowires are expected to show physical and electronic properties that are remarkably different from those of bulk tellurium. Here, we show that few-chain and single-chain van der Waals tellurium nanowires can be isolated using carbon nanotube and boron nitride nanotube encapsulation. With this approach, the number of atomic chains can be controlled by the inner diameter of the nanotube. The Raman response of the structures suggests that the interaction between a single-atomic tellurium chain and a carbon nanotube is weak, and that the inter-chain interaction becomes stronger as the number of chains increases. Compared with bare tellurium nanowires on SiO2, nanowires encapsulated in boron nitride nanotubes exhibit a dramatically enhanced current-carrying capacity, with a current density of 1.5 × 108 A cm−2 that exceeds that of most semiconducting nanowires. We also use our tellurium nanowires encapsulated in boron nitride nanotubes to create field-effect transistors with a diameter of only 2 nm.By isolating one-dimensional tellurium nanowires in boron nitride nanotubes, the electronic properties of the atomic chains can be measured and the structures used to create field-effect transistors. |
---|---|
AbstractList | Tellurium can form nanowires of helical atomic chains. With their unique one-dimensional van der Waals structure, these nanowires are expected to show physical and electronic properties that are remarkably different from those of bulk tellurium. Here, we show that few-chain and single-chain van der Waals tellurium nanowires can be isolated using carbon nanotube and boron nitride nanotube encapsulation. With this approach, the number of atomic chains can be controlled by the inner diameter of the nanotube. The Raman response of the structures suggests that the interaction between a single-atomic tellurium chain and a carbon nanotube is weak, and that the inter-chain interaction becomes stronger as the number of chains increases. Compared with bare tellurium nanowires on SiO2, nanowires encapsulated in boron nitride nanotubes exhibit a dramatically enhanced current-carrying capacity, with a current density of 1.5 × 108 A cm−2 that exceeds that of most semiconducting nanowires. We also use our tellurium nanowires encapsulated in boron nitride nanotubes to create field-effect transistors with a diameter of only 2 nm.By isolating one-dimensional tellurium nanowires in boron nitride nanotubes, the electronic properties of the atomic chains can be measured and the structures used to create field-effect transistors. |
Author | Charnas, Adam Si, Mengwei Wu, Wenzhuo Wang, Hai-Yan Yang, Li Zhang, Si-Qi Wang, Yixiu Qiu, Gang Khin Yap, Yoke Jian, Jie Wang, Qingxiao Xu, Xianfan Qin, Jing-Kai Liao, Pai-Ying Kim, Moon J Gao, Shiyuan Huang, Shouyuan Ye, Peide D |
Author_xml | – sequence: 1 givenname: Jing-Kai surname: Qin fullname: Qin, Jing-Kai – sequence: 2 givenname: Pai-Ying surname: Liao fullname: Liao, Pai-Ying – sequence: 3 givenname: Mengwei surname: Si fullname: Si, Mengwei – sequence: 4 givenname: Shiyuan surname: Gao fullname: Gao, Shiyuan – sequence: 5 givenname: Gang surname: Qiu fullname: Qiu, Gang – sequence: 6 givenname: Jie surname: Jian fullname: Jian, Jie – sequence: 7 givenname: Qingxiao surname: Wang fullname: Wang, Qingxiao – sequence: 8 givenname: Si-Qi surname: Zhang fullname: Zhang, Si-Qi – sequence: 9 givenname: Shouyuan surname: Huang fullname: Huang, Shouyuan – sequence: 10 givenname: Adam surname: Charnas fullname: Charnas, Adam – sequence: 11 givenname: Yixiu surname: Wang fullname: Wang, Yixiu – sequence: 12 givenname: Moon J surname: Kim fullname: Kim, Moon J – sequence: 13 givenname: Wenzhuo surname: Wu fullname: Wu, Wenzhuo – sequence: 14 givenname: Xianfan surname: Xu fullname: Xu, Xianfan – sequence: 15 givenname: Hai-Yan surname: Wang fullname: Wang, Hai-Yan – sequence: 16 givenname: Li surname: Yang fullname: Yang, Li – sequence: 17 givenname: Yoke surname: Khin Yap fullname: Khin Yap, Yoke – sequence: 18 givenname: Peide D surname: Ye fullname: Ye, Peide D |
BookMark | eNotjk9LxDAUxIMouK77AbwFPFfz8po0PcriP1gQRG_C8pq-xS7dpCbp97egp-HHDDNzJc5DDCzEDag7UOjucw2tdpXSqlJoTVWfiZU2CwEgXIpNzkelFhewacxKfL3TiYJMnKcYMksKvSyJwoKpyCnFiVMZOMt4kIXHcU7DfJJU4mnw0n_TELLk4GnK80iFezkEGSjEMnecr8XFgcbMm39di8-nx4_tS7V7e37dPuwqj06XqvaouOUGHbjWK7Bd1xuv-tpgC-Br2xO4prPOYO_Igq2XDHXUaGoPHhyuxe1f7_L3Z-Zc9sc4p7BM7lFrq6DRaPAXlBNWtw |
CitedBy_id | crossref_primary_10_1002_adfm_202421140 crossref_primary_10_1021_acs_nanolett_4c06553 crossref_primary_10_1016_j_physleta_2021_127668 crossref_primary_10_1039_D1NH00253H crossref_primary_10_1021_acsanm_2c05266 crossref_primary_10_1039_D2NA00590E crossref_primary_10_1021_acs_inorgchem_0c03791 crossref_primary_10_1039_D2NR02822K crossref_primary_10_3390_mi15030349 crossref_primary_10_1021_acsnano_3c01968 crossref_primary_10_1088_2752_5724_acf9ba crossref_primary_10_1103_PhysRevB_104_035431 crossref_primary_10_1002_adma_202210446 crossref_primary_10_1002_adfm_202113052 crossref_primary_10_1109_JFLEX_2025_3526083 crossref_primary_10_3762_bjnano_13_106 crossref_primary_10_1021_acsami_0c21675 crossref_primary_10_1016_j_ceramint_2025_03_066 crossref_primary_10_1016_j_pmatsci_2021_100856 crossref_primary_10_1021_acsami_3c17204 crossref_primary_10_1002_smll_202310013 crossref_primary_10_1021_acs_chemrev_2c00220 crossref_primary_10_1021_acs_jpcc_2c06728 crossref_primary_10_1021_acsnano_2c01647 crossref_primary_10_1021_acsomega_3c10217 crossref_primary_10_1038_s41586_024_07484_z crossref_primary_10_1039_D4NR05266H crossref_primary_10_3390_nano13142057 crossref_primary_10_1109_MPULS_2020_2993685 crossref_primary_10_1002_adfm_202423333 crossref_primary_10_1088_2053_1583_ad7ed0 crossref_primary_10_1021_acsnano_4c03729 crossref_primary_10_1016_j_saa_2021_120285 crossref_primary_10_1109_LED_2022_3230705 crossref_primary_10_1007_s40843_024_3205_7 crossref_primary_10_1016_j_cartre_2024_100439 crossref_primary_10_1038_s41699_022_00293_w crossref_primary_10_1038_s41467_024_52062_6 crossref_primary_10_1557_s43578_022_00737_5 crossref_primary_10_1016_j_cej_2024_150183 crossref_primary_10_1016_j_jpcs_2023_111737 crossref_primary_10_1021_jacs_3c14188 crossref_primary_10_1002_aelm_202101331 crossref_primary_10_1038_s41699_020_0143_1 crossref_primary_10_1002_adma_202306631 crossref_primary_10_1016_j_apsusc_2023_157801 crossref_primary_10_1002_smtd_202000501 crossref_primary_10_1021_acs_jpclett_2c02854 crossref_primary_10_1002_advs_202103873 crossref_primary_10_1038_s41467_023_38090_8 crossref_primary_10_1166_mex_2022_2172 crossref_primary_10_1002_smll_202401216 crossref_primary_10_1021_acs_jpcb_3c00586 crossref_primary_10_3390_c7020035 crossref_primary_10_1016_j_mtcomm_2025_111773 crossref_primary_10_1016_j_physrep_2021_07_006 crossref_primary_10_1016_j_ssc_2021_114620 crossref_primary_10_1038_s41467_023_43634_z crossref_primary_10_1063_5_0226011 crossref_primary_10_1016_j_mtphys_2023_101313 crossref_primary_10_1039_D2MA00318J crossref_primary_10_1039_D2TA09517C crossref_primary_10_1002_adfm_202411472 crossref_primary_10_1021_acs_jpcc_4c05942 crossref_primary_10_1063_5_0152814 crossref_primary_10_1021_acsomega_1c02586 crossref_primary_10_1002_adfm_202301864 crossref_primary_10_59717_j_xinn_mater_2024_100113 crossref_primary_10_1007_s12274_022_4330_6 crossref_primary_10_1021_jacs_4c18128 crossref_primary_10_1021_acsanm_1c03132 crossref_primary_10_1021_acs_nanolett_3c04298 crossref_primary_10_1007_s12274_022_4188_7 crossref_primary_10_1016_j_matt_2022_01_021 crossref_primary_10_1016_j_nanoen_2023_108462 crossref_primary_10_1021_acsnanoscienceau_1c00023 crossref_primary_10_1016_j_cplett_2024_141846 crossref_primary_10_1016_j_matpr_2023_02_014 crossref_primary_10_1039_D2NA00543C crossref_primary_10_1021_acsnano_3c03559 crossref_primary_10_1002_smll_202407830 crossref_primary_10_1002_adsu_202400100 crossref_primary_10_1063_5_0069569 crossref_primary_10_1002_adma_202419653 crossref_primary_10_1002_smll_202300557 crossref_primary_10_1016_j_mtbio_2022_100271 crossref_primary_10_1021_acs_nanolett_1c00564 crossref_primary_10_1038_s41699_021_00280_7 crossref_primary_10_1039_D4MA00572D crossref_primary_10_1002_adfm_202315058 crossref_primary_10_1039_D4CE00352G crossref_primary_10_1002_adfm_202211527 crossref_primary_10_1002_adfm_202108104 crossref_primary_10_1364_OE_497186 crossref_primary_10_1038_s41427_021_00314_y crossref_primary_10_1021_acsphotonics_2c00993 crossref_primary_10_1002_adfm_202006278 crossref_primary_10_1038_s41928_020_0381_4 crossref_primary_10_1039_D4SC01477D crossref_primary_10_1021_acsami_2c15131 crossref_primary_10_1557_s43578_022_00841_6 crossref_primary_10_1186_s40580_024_00460_3 crossref_primary_10_1007_s11801_021_1065_7 crossref_primary_10_1016_j_nanoen_2021_106177 crossref_primary_10_1016_j_matpr_2022_06_356 crossref_primary_10_1021_acs_cgd_1c00969 crossref_primary_10_1103_PhysRevB_110_014311 crossref_primary_10_1557_s43578_022_00696_x crossref_primary_10_1002_aenm_202200849 crossref_primary_10_1021_acs_chemmater_4c00275 crossref_primary_10_1002_advs_202400018 crossref_primary_10_1021_acs_jpcc_0c08506 crossref_primary_10_1021_acsnano_4c04184 crossref_primary_10_1103_PhysRevB_109_195413 crossref_primary_10_1002_lpor_202402069 crossref_primary_10_1021_acsnano_4c09474 crossref_primary_10_1021_jacs_4c03730 crossref_primary_10_1038_s41377_024_01496_0 crossref_primary_10_1088_1361_648X_ac2388 crossref_primary_10_1038_s41467_021_25104_6 crossref_primary_10_1021_acsnano_2c06067 crossref_primary_10_1038_s41598_022_06750_2 crossref_primary_10_1002_adma_202207901 crossref_primary_10_1021_acsaelm_4c00866 crossref_primary_10_1021_acsami_3c10049 crossref_primary_10_1002_adma_202211562 crossref_primary_10_1002_adma_202309023 crossref_primary_10_1007_s12209_022_00353_8 crossref_primary_10_1039_D1NR05419H crossref_primary_10_1103_PhysRevMaterials_9_034412 crossref_primary_10_1016_j_xcrp_2022_101124 crossref_primary_10_1039_D1MH01987B crossref_primary_10_1088_1361_6463_ac38e0 crossref_primary_10_1002_admi_202400317 crossref_primary_10_1021_acs_nanolett_0c03897 crossref_primary_10_1002_adma_202204697 crossref_primary_10_1007_s12274_023_5995_1 crossref_primary_10_1039_D3MA00336A crossref_primary_10_1002_adma_202100978 crossref_primary_10_1039_D4CE01136H crossref_primary_10_1016_j_jpcs_2023_111806 crossref_primary_10_1021_acsnano_2c06359 crossref_primary_10_1016_j_cej_2021_134118 crossref_primary_10_1063_5_0245526 crossref_primary_10_1021_acsanm_2c03382 crossref_primary_10_1039_D3TC00517H crossref_primary_10_1016_j_mtphys_2022_100776 crossref_primary_10_1039_D1NR01442K crossref_primary_10_7498_aps_71_20220646 crossref_primary_10_1002_adfm_202401347 crossref_primary_10_1002_adma_202408320 crossref_primary_10_1088_1361_648X_adb11a crossref_primary_10_1002_adma_202307942 crossref_primary_10_1007_s12274_022_5190_9 crossref_primary_10_1007_s11467_022_1231_9 crossref_primary_10_1021_acs_nanolett_4c04363 crossref_primary_10_1063_5_0228402 crossref_primary_10_1021_acsaelm_3c00620 crossref_primary_10_1088_2058_8585_adb595 crossref_primary_10_1002_adma_202209346 crossref_primary_10_1021_acsnano_3c05819 crossref_primary_10_1039_D2CP05132J crossref_primary_10_3389_fchem_2022_1027554 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122908 crossref_primary_10_1038_s43246_020_00110_1 crossref_primary_10_1038_s41467_023_39071_7 crossref_primary_10_1039_D2NR01630C crossref_primary_10_1063_5_0090179 crossref_primary_10_1002_adma_202306290 crossref_primary_10_1002_smll_202104401 crossref_primary_10_1109_TED_2023_3269737 crossref_primary_10_1016_j_commt_2024_100008 crossref_primary_10_1002_aelm_202001066 |
ContentType | Journal Article |
Copyright | Copyright Nature Publishing Group Mar 2020 |
Copyright_xml | – notice: Copyright Nature Publishing Group Mar 2020 |
DBID | 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1038/s41928-020-0365-4 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2520-1131 |
EndPage | 147 |
GroupedDBID | 0R~ 8FE 8FG AARCD AAYZH ABJNI ACBWK ACGFS AFANA AFKRA AFSHS AIBTJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ATHPR AXYYD BENPR BGLVJ BKKNO CCPQU DWQXO EBS FSGXE FZEXT HCIFZ NNMJJ O9- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG |
ID | FETCH-LOGICAL-c382t-4c30e9e738189c016bbd5c0d453911c46da187b6853d8a6164016aba72a9fc183 |
IEDL.DBID | BENPR |
IngestDate | Sat Aug 23 13:11:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-4c30e9e738189c016bbd5c0d453911c46da187b6853d8a6164016aba72a9fc183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3226017235 |
PQPubID | 7343582 |
PageCount | 7 |
ParticipantIDs | proquest_journals_3226017235 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature electronics |
PublicationYear | 2020 |
Publisher | Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group |
SSID | ssj0002013775 |
Score | 2.5363896 |
Snippet | Tellurium can form nanowires of helical atomic chains. With their unique one-dimensional van der Waals structure, these nanowires are expected to show physical... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 141 |
SubjectTerms | Atomic properties Boron nitride Carbon nanotubes Carrying capacity Diameters Electrons Encapsulation Field effect transistors Nanowires Physical properties Semiconductor devices Silicon dioxide Spectrum analysis Symmetry Tellurium Transport properties |
Title | Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes |
URI | https://www.proquest.com/docview/3226017235 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF5se9GD-MRHLXvwGlqzj2xOotJaBIsUCz0IZV_Fgt3UPP6_s-lGBcFzcpqZfDPfN5MZhK6NlEJCqQs0lbCIag04yLwSRyilekmIrQW35wkfz-jTnM2D4FaEscoGE2ugNpn2GnkfAo97vkLY7eYz8lejfHc1nNBooQ5AsADy1bkfTl6m3ypLXG_UY007k4h-4dueIvKsaeAnvOgfEK4zy-gA7YeSEN9tfXiIdqw7Qnu_FgUeo7epXEuH8-1Aq8VA_3HZrCXHGy-o534zKs6W2P8WUuWrao2BT69XGut3YP8FhnCUQIk_oLg0eOWwky4rK2WLEzQbDV8fxlG4ixBpIuISLEoGNrWJT7aphppNKcP0wFBGALo05UbeiERxyMRGSA6ECN6RSiaxTJcavuFT1HaZs2cIA_mSPJVCgWeotakwgggqlDWK8ljxc9RtjLMIwV0sflxx8f_jS7Qbbw0NodBF7TKv7BXk8FL1UEuMHnvBXV_qLZ41 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF60HtSD-MRH1T3oMbRmN-nmICJqbe3jIC30INR9FQN2U_NA_FP-RmeTRgXBW88JIcx88_hmdmcQOlOcMw6pLtBU4jlUSvCDnq3EEUqpnBCi84Jbr--3hvRh5I2W0Gd5F8Yeqyx9Yu6oVSRtjbwGwPMtXyHe1ezNsVujbHe1XKFRwKKjP96BsiWX7VvQ77nrNu8GNy1nvlXAkYS5KfwPqetAN2yoCiRkPEIoT9YV9QgYvqS-4hesIXyIY4pxH-gEvMMFb7g8mEiwAPjuMlqhhATWoljz_rum4-bz-7yyeUpYLbFNVuZYjla358noH5efx7HmJtqYJ6D4ukDMFlrSZhut_xpLuIOeHvmUGxwXx2c15kbhtByCjme2fB_bOaw4mmB7CSWLw2yKgb1PQ4nlCw9NggH8HAj4K6SyCocGG26iNBM62UXDhchrD1VMZPQ-wkD1uB9wJgAHVOuAKUYYZUIrQX1X-AeoWgpnPDelZPyj-MP_H5-i1dag1x132_3OEVpzC6EDCKuoksaZPobsIRUnucowel40Rr4A7enXaQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raman+response+and+transport+properties+of+tellurium+atomic+chains+encapsulated+in+nanotubes&rft.jtitle=Nature+electronics&rft.au=Qin%2C+Jing-Kai&rft.au=Liao%2C+Pai-Ying&rft.au=Si%2C+Mengwei&rft.au=Gao%2C+Shiyuan&rft.date=2020-03-01&rft.pub=Nature+Publishing+Group&rft.eissn=2520-1131&rft.volume=3&rft.issue=3&rft.spage=141&rft.epage=147&rft_id=info:doi/10.1038%2Fs41928-020-0365-4 |