Application-oriented design of machine learning paradigms for battery science
In the development of battery science, machine learning (ML) has been widely employed to predict material properties, monitor morphological variations, learn the underlying physical rules and simplify the material-discovery processes. However, the widespread adoption of ML in battery research has en...
Saved in:
Published in | npj computational materials Vol. 11; no. 1; pp. 89 - 18 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.04.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the development of battery science, machine learning (ML) has been widely employed to predict material properties, monitor morphological variations, learn the underlying physical rules and simplify the material-discovery processes. However, the widespread adoption of ML in battery research has encountered limitations, such as the incomplete and unfocused databases, the low model accuracy and the difficulty in realizing experimental validation. It is significant to construct the dataset containing specific-domain knowledge with suitable ML models for battery research from the application-oriented perspective. We outline five key challenges in the field and highlight potential research directions that can unlock the full potential of ML in advancing battery technologies. |
---|---|
AbstractList | In the development of battery science, machine learning (ML) has been widely employed to predict material properties, monitor morphological variations, learn the underlying physical rules and simplify the material-discovery processes. However, the widespread adoption of ML in battery research has encountered limitations, such as the incomplete and unfocused databases, the low model accuracy and the difficulty in realizing experimental validation. It is significant to construct the dataset containing specific-domain knowledge with suitable ML models for battery research from the application-oriented perspective. We outline five key challenges in the field and highlight potential research directions that can unlock the full potential of ML in advancing battery technologies. Abstract In the development of battery science, machine learning (ML) has been widely employed to predict material properties, monitor morphological variations, learn the underlying physical rules and simplify the material-discovery processes. However, the widespread adoption of ML in battery research has encountered limitations, such as the incomplete and unfocused databases, the low model accuracy and the difficulty in realizing experimental validation. It is significant to construct the dataset containing specific-domain knowledge with suitable ML models for battery research from the application-oriented perspective. We outline five key challenges in the field and highlight potential research directions that can unlock the full potential of ML in advancing battery technologies. |
ArticleNumber | 89 |
Author | Wang, Ying |
Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0002-7459-1152 surname: Wang fullname: Wang, Ying email: wying@fudan.edu.cn organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Research center of AI for Polymer Science, Fudan University |
BookMark | eNp9kU1LxTAQRYMoqE__gKuC6-rks-lSxC9Q3Og6pMm05vFeUpO68N9bragrVxnCPWcG7iHZjSkiIScUzihwfV4ElUzUwGQNVDaybnfIAQPZ1LxVsPtn3ifHpawBgLZMMwEH5OFiHDfB2SmkWKccME7oK48lDLFKfbW17iVErDZocwxxqEabrQ_DtlR9ylVnpwnze1XcTDo8Inu93RQ8_n5X5Pn66unytr5_vLm7vLivHddsqoXmwNtOg_cd7xqwrlGopHCOI3O960Bo6DjjfeesQt9bYa3XwmvP0fUNX5G7xeuTXZsxh63N7ybZYL4-Uh6MzVNwGzS6o04Cp05RIUCh1kpiKxsmqFKUy9l1urjGnF7fsExmnd5ynM83nGopQbX0M8WWlMuplIz9z1YK5rMFs7Rg5hbMVwumnSG-QGUOxwHzr_of6gNJvouF |
Cites_doi | 10.1021/acs.chemrev.6b00504 10.1016/j.joule.2023.03.008 10.1016/j.jpowsour.2024.234272 10.1038/nmat3568 10.1038/s41586-023-06735-9 10.1002/aenm.202401644 10.1002/admi.202101734 10.1038/s41524-024-01470-9 10.1038/s41586-022-04503-9 10.1038/s41586-019-1682-5 10.1016/j.jclepro.2020.124152 10.1038/s41524-022-00951-z 10.1149/2.0521916jes 10.1002/adma.202101474 10.1002/adma.201505183 10.1016/j.rser.2023.114136 10.1038/s41524-022-00858-9 10.1038/s41524-020-0340-7 10.1103/PhysRevB.97.094106 10.1016/j.energy.2024.130764 10.1002/aenm.202400956 10.1109/TII.2023.3257299 10.1021/acsmaterialslett.3c00253 10.1038/s41586-018-0337-2 10.1109/ACCESS.2022.3151975 10.1038/s41586-022-05627-8 10.1038/s41467-023-43883-y 10.1038/srep29356 10.1021/acsenergylett.2c01898 10.1016/j.commatsci.2022.111984 10.1038/s41467-022-29837-w 10.1016/j.commatsci.2012.02.005 10.1038/s41467-019-13214-1 10.1126/sciadv.aba4098 10.1149/2.0142001JES 10.1038/s41560-020-0655-0 10.1021/acsami.4c00624 10.1038/s41467-022-29939-5 10.1021/acs.jpclett.4c00698 10.1038/nmat3602 10.1002/smm2.1183 10.1038/s41467-019-13362-4 10.1016/j.rser.2022.113053 10.1039/D1EE01136G 10.1038/natrevmats.2016.103 10.1038/s42256-020-0156-7 10.1039/D4TA00136B 10.1021/acsami.9b04933 10.1021/acs.accounts.6b00308 10.1002/aenm.202304480 10.1038/s41467-022-30994-1 10.1021/acsami.1c21683 10.1039/D4TA00361F 10.1002/aenm.202102917 10.1007/s11837-016-2001-3 10.1021/acsenergylett.1c02602 10.1038/s41524-023-01039-y 10.1063/5.0015872 10.1038/s41560-023-01194-y 10.1021/acsenergylett.1c00332 10.1126/sciadv.abn4372 10.1038/s41467-022-32422-w 10.1088/2399-6528/ab92d8 10.1016/j.nanoen.2022.107214 10.1016/j.ensm.2022.12.040 10.1016/j.commatsci.2016.02.021 10.1021/acs.chemmater.8b03272 10.1007/s10845-022-01936-x 10.1007/978-3-030-99666-6_123 10.1021/acs.jpclett.9b03664 10.1146/annurev-physchem-042018-052331 10.1016/j.resconrec.2022.106207 10.1038/s41563-021-00995-4 10.1016/j.nanoms.2023.08.002 10.1016/j.joule.2021.10.001 10.1021/acsami.3c18448 10.1038/s41560-019-0356-8 10.1038/s41586-022-04501-x 10.1038/s41467-021-26480-9 10.1038/s41578-021-00340-w 10.1016/j.ensm.2020.06.033 10.1038/npjcompumats.2015.10 10.1073/pnas.2214357120 10.1038/s41563-020-0777-6 10.1038/s42256-021-00312-3 10.1038/s41467-023-37034-6 10.1038/s43588-022-00349-3 10.1038/s43588-023-00563-7 10.1038/s41524-022-00713-x 10.1016/j.joule.2023.08.007 10.1021/acs.jpclett.1c01605 10.1021/jacs.3c08346 10.1038/s41586-020-1994-5 10.1016/j.polymertesting.2022.107796 10.1063/1.4812323 10.1016/j.jmat.2017.02.002 10.1016/j.ensm.2024.103710 10.1002/adts.202100196 10.1038/s41598-021-94275-5 10.1038/s41467-019-08756-3 10.1021/acs.jpcc.1c06821 10.1063/1.5016317 10.1021/jacs.9b11442 10.1038/s41467-022-33957-8 10.1016/j.energy.2024.132395 10.1021/ja045155b 10.1016/j.procs.2022.12.383 10.1002/batt.202300046 10.1038/s41467-020-15235-7 10.1038/nchem.121 10.1038/s41524-021-00554-0 10.1016/j.heliyon.2023.e17754 10.1038/s41560-023-01279-8 10.1016/j.ensm.2022.12.034 10.1038/s41586-021-03885-6 10.1038/s41467-023-38493-7 10.3390/ma15031157 10.1016/j.joule.2022.08.008 10.1016/j.jpowsour.2024.234156 10.1007/s10822-020-00346-6 10.1038/s41560-019-0405-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Nature Publishing Group 2025 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1038/s41524-025-01575-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2057-3960 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_8b1c5031c614406e8865e95724166135 10_1038_s41524_025_01575_9 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 92372126; 52373203 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ AASML ABJCF ABUWG ACGFS ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU D1I EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK KB. KQ8 LK8 M7P M~E NAO NO~ OK1 PDBOC PHGZT PIMPY PQQKQ PROAC RNT SNYQT UKHRP AAYXX CITATION PHGZM 3V. 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c382t-483039b80ddb3b70ac76e654cc3e2cfcb0480b323fbca6edfa4aad84d8d3ecf73 |
IEDL.DBID | 7X7 |
ISSN | 2057-3960 |
IngestDate | Wed Aug 27 01:32:38 EDT 2025 Wed Aug 13 04:10:57 EDT 2025 Tue Jul 01 04:53:32 EDT 2025 Thu Apr 03 03:05:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-483039b80ddb3b70ac76e654cc3e2cfcb0480b323fbca6edfa4aad84d8d3ecf73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7459-1152 |
OpenAccessLink | https://www.proquest.com/docview/3185506915?pq-origsite=%requestingapplication% |
PQID | 3185506915 |
PQPubID | 2041924 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8b1c5031c614406e8865e95724166135 proquest_journals_3185506915 crossref_primary_10_1038_s41524_025_01575_9 springer_journals_10_1038_s41524_025_01575_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-02 |
PublicationDateYYYYMMDD | 2025-04-02 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj computational materials |
PublicationTitleAbbrev | npj Comput Mater |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Z Yang (1575_CR15) 2024; 10 M Scheffler (1575_CR16) 2022; 604 MABH Susan (1575_CR92) 2005; 127 Y Zhang (1575_CR10) 2019; 10 M Attarian Shandiz (1575_CR34) 2016; 117 Y Hao (1575_CR99) 2024; 20 Z Wei (1575_CR98) 2023; 56 J Wu (1575_CR55) 2016; 6 T Morawietz (1575_CR69) 2021; 35 C Chen (1575_CR80) 2022; 2 A Manthiram (1575_CR67) 2017; 2 D Ge (1575_CR109) 2024; 305 C Duan (1575_CR14) 2023; 3 1575_CR12 1575_CR11 D Roman (1575_CR110) 2021; 3 1575_CR13 C Yang (1575_CR89) 2021; 598 A Jain (1575_CR19) 2013; 1 B Blaiszik (1575_CR22) 2016; 68 M Watanabe (1575_CR91) 2017; 117 Y Huang (1575_CR52) 2023; 9 J Jeong (1575_CR37) 2024; 16 A Hajibabaei (1575_CR79) 2021; 12 Y Li (1575_CR50) 2023; 5 J Neumann (1575_CR117) 2022; 12 S Curtarolo (1575_CR20) 2012; 58 1575_CR84 TP Lodge (1575_CR93) 2016; 49 S Kirklin (1575_CR21) 2015; 1 G Harper (1575_CR64) 2019; 575 S Park (1575_CR38) 2021; 14 RJ Zhu (1575_CR73) 2024; 15 Y Liu (1575_CR96) 2019; 4 X Zhang (1575_CR41) 2022; 8 1575_CR83 M-F Ng (1575_CR105) 2020; 2 JW Lee (1575_CR82) 2024; 12 C Lv (1575_CR2) 2022; 34 J Zhu (1575_CR107) 2022; 13 SC Kim (1575_CR29) 2023; 120 A Ran (1575_CR125) 2022; 7 PO Dral (1575_CR17) 2020; 11 KT Butler (1575_CR6) 2018; 559 JF Whitacre (1575_CR61) 2019; 166 ZM Konz (1575_CR101) 2023; 8 1575_CR9 Y Xu (1575_CR76) 2020; 4 M Duquesnoy (1575_CR65) 2023; 56 SJ Honrao (1575_CR47) 2021; 11 S Tao (1575_CR118) 2024; 597 Q Hu (1575_CR71) 2024; 5 J Li (1575_CR72) 2024; 14 Y Wang (1575_CR90) 2019; 10 Y Cai (1575_CR115) 2023; 9 DG Mackanic (1575_CR86) 2019; 10 T Xie (1575_CR87) 2022; 13 S Haghi (1575_CR66) 2023; 6 1575_CR62 K Li (1575_CR68) 2024; 14 AD Sendek (1575_CR70) 2019; 31 A Garg (1575_CR124) 2020; 275 W Yan (1575_CR57) 2023; 8 J Xu (1575_CR60) 2023; 614 M Cheng (1575_CR123) 2023; 173 C Ling (1575_CR1) 2022; 8 S Xu (1575_CR42) 2021; 125 CH Liow (1575_CR44) 2022; 98 SJ Harris (1575_CR103) 2023; 7 S Fujikake (1575_CR53) 2018; 148 1575_CR102 S Curtarolo (1575_CR24) 2013; 12 M Ahmadi (1575_CR27) 2021; 5 Y Liu (1575_CR3) 2020; 31 1575_CR54 1575_CR100 Y-T Chen (1575_CR85) 2021; 6 F Noé (1575_CR18) 2020; 71 B Onat (1575_CR56) 2018; 97 K Li (1575_CR7) 2023; 14 Y-T Liu (1575_CR8) 2022; 13 K Daems (1575_CR31) 2024; 191 L Ward (1575_CR4) 2022; 6 KA Severson (1575_CR108) 2019; 4 A Wołos (1575_CR77) 2022; 604 GLW Hart (1575_CR58) 2021; 6 W Song (1575_CR113) 2023; 217 P Seitz (1575_CR48) 2023; 218 ZJ Baum (1575_CR116) 2022; 7 S Batzner (1575_CR81) 2022; 13 R Bouchet (1575_CR88) 2013; 12 S Müller (1575_CR51) 2021; 12 1575_CR40 K Hatakeyama-Sato (1575_CR94) 2020; 142 PK Jones (1575_CR111) 2022; 13 CJ Hargreaves (1575_CR75) 2023; 9 Y Wang (1575_CR95) 2016; 28 V Fung (1575_CR25) 2021; 7 X Wang (1575_CR33) 2017; 3 Z Nozarijouybari (1575_CR104) 2024; 601 P Friederich (1575_CR78) 2021; 20 B Jagger (1575_CR30) 2023; 7 1575_CR121 Y Liang (1575_CR39) 2020; 5 X He (1575_CR36) 2024; 16 A Dave (1575_CR63) 2020; 167 G Houchins (1575_CR32) 2020; 153 C Qian (1575_CR106) 2024; 294 A Merchant (1575_CR46) 2023; 624 JK Nørskov (1575_CR23) 2009; 1 S Tao (1575_CR120) 2023; 14 A Gayon-Lombardo (1575_CR45) 2020; 6 Y Wang (1575_CR59) 2021; 20 1575_CR26 1575_CR28 Y Zhang (1575_CR112) 2020; 11 K Meng (1575_CR122) 2022; 182 J Du (1575_CR43) 2024; 12 G Xu (1575_CR5) 2024; 72 D Chen (1575_CR114) 2022; 10 PM Attia (1575_CR97) 2020; 578 RP Joshi (1575_CR35) 2019; 11 K Wang (1575_CR49) 2023; 14 F Yang (1575_CR74) 2024; 6 1575_CR119 |
References_xml | – volume: 117 start-page: 7190 year: 2017 ident: 1575_CR91 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00504 – volume: 7 start-page: 920 year: 2023 ident: 1575_CR103 publication-title: Joule doi: 10.1016/j.joule.2023.03.008 – volume: 601 year: 2024 ident: 1575_CR104 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2024.234272 – volume: 12 start-page: 191 year: 2013 ident: 1575_CR24 publication-title: Nat. Mater. doi: 10.1038/nmat3568 – volume: 624 start-page: 80 year: 2023 ident: 1575_CR46 publication-title: Nature doi: 10.1038/s41586-023-06735-9 – ident: 1575_CR102 doi: 10.1002/aenm.202401644 – ident: 1575_CR84 doi: 10.1002/admi.202101734 – volume: 10 year: 2024 ident: 1575_CR15 publication-title: npj Computational Mater. doi: 10.1038/s41524-024-01470-9 – volume: 604 start-page: 668 year: 2022 ident: 1575_CR77 publication-title: Nature doi: 10.1038/s41586-022-04503-9 – volume: 575 start-page: 75 year: 2019 ident: 1575_CR64 publication-title: Nature doi: 10.1038/s41586-019-1682-5 – volume: 275 start-page: 124152 year: 2020 ident: 1575_CR124 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124152 – volume: 9 year: 2023 ident: 1575_CR75 publication-title: npj Computational Mater. doi: 10.1038/s41524-022-00951-z – volume: 166 start-page: A4181 year: 2019 ident: 1575_CR61 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0521916jes – volume: 5 start-page: 100159 year: 2024 ident: 1575_CR71 publication-title: Energy – volume: 34 year: 2022 ident: 1575_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.202101474 – volume: 28 start-page: 2571 year: 2016 ident: 1575_CR95 publication-title: Adv. Mater. doi: 10.1002/adma.201505183 – volume: 191 start-page: 114136 year: 2024 ident: 1575_CR31 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.114136 – volume: 8 year: 2022 ident: 1575_CR41 publication-title: npj Computational Mater. doi: 10.1038/s41524-022-00858-9 – volume: 6 year: 2020 ident: 1575_CR45 publication-title: npj Computational Mater. doi: 10.1038/s41524-020-0340-7 – volume: 97 start-page: 094106 year: 2018 ident: 1575_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.094106 – volume: 294 start-page: 130764 year: 2024 ident: 1575_CR106 publication-title: Energy doi: 10.1016/j.energy.2024.130764 – volume: 14 start-page: 2400956 year: 2024 ident: 1575_CR68 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202400956 – volume: 20 start-page: 127 year: 2024 ident: 1575_CR99 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3257299 – volume: 5 start-page: 2948 year: 2023 ident: 1575_CR50 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.3c00253 – volume: 559 start-page: 547 year: 2018 ident: 1575_CR6 publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 10 start-page: 19621 year: 2022 ident: 1575_CR114 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3151975 – ident: 1575_CR12 – volume: 614 start-page: 694 year: 2023 ident: 1575_CR60 publication-title: Nature doi: 10.1038/s41586-022-05627-8 – volume: 14 year: 2023 ident: 1575_CR120 publication-title: Nat. Commun. doi: 10.1038/s41467-023-43883-y – volume: 6 year: 2016 ident: 1575_CR55 publication-title: Sci. Rep. doi: 10.1038/srep29356 – volume: 7 start-page: 3817 year: 2022 ident: 1575_CR125 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01898 – volume: 218 start-page: 111984 year: 2023 ident: 1575_CR48 publication-title: Computational Mater. Sci. doi: 10.1016/j.commatsci.2022.111984 – volume: 13 year: 2022 ident: 1575_CR107 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29837-w – volume: 58 start-page: 218 year: 2012 ident: 1575_CR20 publication-title: Computational Mater. Sci. doi: 10.1016/j.commatsci.2012.02.005 – volume: 10 year: 2019 ident: 1575_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13214-1 – ident: 1575_CR28 doi: 10.1126/sciadv.aba4098 – volume: 167 start-page: 013514 year: 2020 ident: 1575_CR63 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0142001JES – volume: 5 start-page: 646 year: 2020 ident: 1575_CR39 publication-title: Nat. Energy doi: 10.1038/s41560-020-0655-0 – volume: 16 start-page: 24494 year: 2024 ident: 1575_CR36 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c00624 – volume: 13 year: 2022 ident: 1575_CR81 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29939-5 – volume: 15 start-page: 5191 year: 2024 ident: 1575_CR73 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.4c00698 – volume: 12 start-page: 452 year: 2013 ident: 1575_CR88 publication-title: Nat. Mater. doi: 10.1038/nmat3602 – ident: 1575_CR83 doi: 10.1002/smm2.1183 – volume: 10 year: 2019 ident: 1575_CR86 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13362-4 – volume: 173 start-page: 113053 year: 2023 ident: 1575_CR123 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.113053 – volume: 14 start-page: 5864 year: 2021 ident: 1575_CR38 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01136G – ident: 1575_CR11 – volume: 2 start-page: 16103 year: 2017 ident: 1575_CR67 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.103 – volume: 2 start-page: 161 year: 2020 ident: 1575_CR105 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0156-7 – volume: 12 start-page: 12034 year: 2024 ident: 1575_CR43 publication-title: J. Mater. Chem. A doi: 10.1039/D4TA00136B – volume: 11 start-page: 18494 year: 2019 ident: 1575_CR35 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04933 – volume: 49 start-page: 2107 year: 2016 ident: 1575_CR93 publication-title: Acc. Chem. Res doi: 10.1021/acs.accounts.6b00308 – volume: 14 start-page: 2304480 year: 2024 ident: 1575_CR72 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202304480 – volume: 13 year: 2022 ident: 1575_CR87 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30994-1 – ident: 1575_CR100 doi: 10.1021/acsami.1c21683 – volume: 12 start-page: 7272 year: 2024 ident: 1575_CR82 publication-title: J. Mater. Chem. A doi: 10.1039/D4TA00361F – volume: 12 start-page: 2102917 year: 2022 ident: 1575_CR117 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102917 – volume: 68 start-page: 2045 year: 2016 ident: 1575_CR22 publication-title: JOM doi: 10.1007/s11837-016-2001-3 – volume: 7 start-page: 712 year: 2022 ident: 1575_CR116 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02602 – volume: 9 year: 2023 ident: 1575_CR52 publication-title: npj Computational Mater. doi: 10.1038/s41524-023-01039-y – volume: 153 start-page: 054124 year: 2020 ident: 1575_CR32 publication-title: J. Chem. Phys. doi: 10.1063/5.0015872 – volume: 8 start-page: 450 year: 2023 ident: 1575_CR101 publication-title: Nat. Energy doi: 10.1038/s41560-023-01194-y – volume: 6 start-page: 1639 year: 2021 ident: 1575_CR85 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00332 – ident: 1575_CR54 doi: 10.1126/sciadv.abn4372 – volume: 13 year: 2022 ident: 1575_CR111 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32422-w – volume: 4 start-page: 055015 year: 2020 ident: 1575_CR76 publication-title: J. Phys. Commun. doi: 10.1088/2399-6528/ab92d8 – volume: 98 start-page: 107214 year: 2022 ident: 1575_CR44 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107214 – volume: 56 start-page: 50 year: 2023 ident: 1575_CR65 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.12.040 – volume: 117 start-page: 270 year: 2016 ident: 1575_CR34 publication-title: Computational Mater. Sci. doi: 10.1016/j.commatsci.2016.02.021 – volume: 31 start-page: 342 year: 2019 ident: 1575_CR70 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03272 – ident: 1575_CR121 doi: 10.1007/s10845-022-01936-x – ident: 1575_CR119 doi: 10.1007/978-3-030-99666-6_123 – volume: 11 start-page: 2336 year: 2020 ident: 1575_CR17 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03664 – volume: 71 start-page: 361 year: 2020 ident: 1575_CR18 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-042018-052331 – volume: 182 start-page: 106207 year: 2022 ident: 1575_CR122 publication-title: Resour. Conserv. Recycling doi: 10.1016/j.resconrec.2022.106207 – volume: 20 start-page: 1255 year: 2021 ident: 1575_CR59 publication-title: Nat. Mater. doi: 10.1038/s41563-021-00995-4 – volume: 6 start-page: 256 year: 2024 ident: 1575_CR74 publication-title: Nano Mater. Sci. doi: 10.1016/j.nanoms.2023.08.002 – volume: 5 start-page: 2797 year: 2021 ident: 1575_CR27 publication-title: Joule doi: 10.1016/j.joule.2021.10.001 – volume: 16 start-page: 24431 year: 2024 ident: 1575_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c18448 – volume: 4 start-page: 383 year: 2019 ident: 1575_CR108 publication-title: Nat. Energy doi: 10.1038/s41560-019-0356-8 – volume: 604 start-page: 635 year: 2022 ident: 1575_CR16 publication-title: Nature doi: 10.1038/s41586-022-04501-x – volume: 12 year: 2021 ident: 1575_CR51 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26480-9 – volume: 6 start-page: 730 year: 2021 ident: 1575_CR58 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00340-w – volume: 31 start-page: 434 year: 2020 ident: 1575_CR3 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.06.033 – volume: 1 year: 2015 ident: 1575_CR21 publication-title: npj Computational Mater. doi: 10.1038/npjcompumats.2015.10 – ident: 1575_CR13 – volume: 120 start-page: e2214357120 year: 2023 ident: 1575_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2214357120 – volume: 20 start-page: 750 year: 2021 ident: 1575_CR78 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0777-6 – volume: 3 start-page: 447 year: 2021 ident: 1575_CR110 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00312-3 – volume: 14 year: 2023 ident: 1575_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37034-6 – volume: 2 start-page: 718 year: 2022 ident: 1575_CR80 publication-title: Nat. Computational Sci. doi: 10.1038/s43588-022-00349-3 – volume: 3 start-page: 1045 year: 2023 ident: 1575_CR14 publication-title: Nat. Computational Sci. doi: 10.1038/s43588-023-00563-7 – volume: 8 year: 2022 ident: 1575_CR1 publication-title: npj Computational Mater. doi: 10.1038/s41524-022-00713-x – volume: 7 start-page: 2228 year: 2023 ident: 1575_CR30 publication-title: Joule doi: 10.1016/j.joule.2023.08.007 – volume: 12 start-page: 8115 year: 2021 ident: 1575_CR79 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c01605 – ident: 1575_CR62 doi: 10.1021/jacs.3c08346 – volume: 578 start-page: 397 year: 2020 ident: 1575_CR97 publication-title: Nature doi: 10.1038/s41586-020-1994-5 – ident: 1575_CR9 doi: 10.1016/j.polymertesting.2022.107796 – volume: 1 start-page: 011002 year: 2013 ident: 1575_CR19 publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 3 start-page: 178 year: 2017 ident: 1575_CR33 publication-title: J. Materiomics doi: 10.1016/j.jmat.2017.02.002 – volume: 72 year: 2024 ident: 1575_CR5 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2024.103710 – ident: 1575_CR40 doi: 10.1002/adts.202100196 – volume: 11 year: 2021 ident: 1575_CR47 publication-title: Sci. Rep. doi: 10.1038/s41598-021-94275-5 – volume: 10 year: 2019 ident: 1575_CR90 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08756-3 – volume: 125 start-page: 21352 year: 2021 ident: 1575_CR42 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c06821 – volume: 148 start-page: 241714 year: 2018 ident: 1575_CR53 publication-title: J. Chem. Phys. doi: 10.1063/1.5016317 – volume: 142 start-page: 3301 year: 2020 ident: 1575_CR94 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11442 – volume: 13 year: 2022 ident: 1575_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33957-8 – volume: 305 start-page: 132395 year: 2024 ident: 1575_CR109 publication-title: Energy doi: 10.1016/j.energy.2024.132395 – volume: 127 start-page: 4976 year: 2005 ident: 1575_CR92 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja045155b – volume: 217 start-page: 1830 year: 2023 ident: 1575_CR113 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2022.12.383 – volume: 6 start-page: e202300046 year: 2023 ident: 1575_CR66 publication-title: Batteries Supercaps doi: 10.1002/batt.202300046 – volume: 11 year: 2020 ident: 1575_CR112 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15235-7 – volume: 1 start-page: 37 year: 2009 ident: 1575_CR23 publication-title: Nat. Chem. doi: 10.1038/nchem.121 – volume: 7 year: 2021 ident: 1575_CR25 publication-title: npj Computational Mater. doi: 10.1038/s41524-021-00554-0 – volume: 9 start-page: e17754 year: 2023 ident: 1575_CR115 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e17754 – volume: 8 start-page: 800 year: 2023 ident: 1575_CR57 publication-title: Nat. Energy doi: 10.1038/s41560-023-01279-8 – volume: 56 start-page: 62 year: 2023 ident: 1575_CR98 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.12.034 – volume: 598 start-page: 590 year: 2021 ident: 1575_CR89 publication-title: Nature doi: 10.1038/s41586-021-03885-6 – volume: 14 year: 2023 ident: 1575_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38493-7 – ident: 1575_CR26 doi: 10.3390/ma15031157 – volume: 6 start-page: 2253 year: 2022 ident: 1575_CR4 publication-title: Joule doi: 10.1016/j.joule.2022.08.008 – volume: 597 start-page: 234156 year: 2024 ident: 1575_CR118 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2024.234156 – volume: 35 start-page: 557 year: 2021 ident: 1575_CR69 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-020-00346-6 – volume: 4 start-page: 540 year: 2019 ident: 1575_CR96 publication-title: Nat. Energy doi: 10.1038/s41560-019-0405-3 |
SSID | ssj0001928240 |
Score | 2.3321207 |
SecondaryResourceType | review_article |
Snippet | In the development of battery science, machine learning (ML) has been widely employed to predict material properties, monitor morphological variations, learn... Abstract In the development of battery science, machine learning (ML) has been widely employed to predict material properties, monitor morphological... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 89 |
SubjectTerms | 639/166/987 639/301/1034/1037 639/301/299/891 Algorithms Artificial intelligence Automation Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Datasets Electrolytes Energy consumption Learning algorithms Machine learning Material properties Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Neural networks Optimization Perspective Polymers Science Simulation Software engineering Theoretical |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygU5IENrKZx7NhjQaAKqUxU6mb5lQqktoiWgX_PnZPSFgmxsCW2B-vunO-cu_uOkCvAGB-0sgzMyTH44Ck4c3nFJDbrtlrDCF4UB0-yPyweR2K01uoLc8JqeuBacB3lul6A5Xm8uWQyKiVF1KIE5AFo4Ym9FDBv7TL1WvstCrCqqZLJuOrMEakKht1bAQFLwfQGEiXC_g0v80dgNOHNwz7ZaxxF2qs3eEC24vSQ7K7RBx6RQW8VfWYzJCwG95GGlJNBZxWdpETJSJvOEGOKPN_hZTyZU3BVqUvUmp-0AcFjMny4f77rs6Y9AvNc5Qv8DZhx7VQWguOuzKwvZZSi8J7H3FfeYbm44zmvnLcyhsoW1gZVBBV49FXJT8j2dDaNp1i47QorfSWskoWorMtgLT5x3y3htUWul6IybzULhknRa65MLVgDgjVJsEa3yC1K83slMlinAdCrafRq_tJri7SXujDNsZobLPUWmdRdmL5Z6mc1_fuWzv5jS-dkJ0_2g2bUJtuL9494AS7Jwl0m6_sCuD3Ylg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4QL3owPiOKpgdvunHZbrvtEYmEmOBJEm5NX0s8AAbw4L93puyKGD142z42aabTztd25htCbsDGOK-kSUCdbAIbnoQ1l5WJwGTdRimowYPi8FkMRvnTmI8bJKtjYaLTfqS0jNt07R12v0RDkyeYfBUMWMETtUN2kbodtbonept7FQWHiDyt4mNSJn_5dcsGRar-LXz540k0Wpr-ITmoICLtrgd1RBphdkz2vxEHnpBhd_PunMyRqhiAI_XRG4POSzqNLpKBVjkhJhQZvv3rZLqkAFKpjaSaH7Qyf6dk1H986Q2SKjFC4pjMVngBmDJlZeq9ZbZIjStEEDx3joXMlc5ioLhlGSutMyL40uTGeJl76VlwZcHOSHM2n4VzDNm2uRGu5EaKnJfGptAXv5jrFFBskdtaVPptzX-h47s1k3otWA2C1VGwWrXIA0rzqydyV8eK-WKiq7nU0nYch73E4Vk0FUFKwYPiBWAJAAuMt0i7ngtdLailxiBvngrVgea7en42zX8P6eJ_3S_JXhY1BRWmTZqrxXu4AtixstdRzz4BtwTQXw priority: 102 providerName: Springer Nature |
Title | Application-oriented design of machine learning paradigms for battery science |
URI | https://link.springer.com/article/10.1038/s41524-025-01575-9 https://www.proquest.com/docview/3185506915 https://doaj.org/article/8b1c5031c614406e8865e95724166135 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3JSgMxNLhc9CCuWJeSgzcdnE4mmeQktViloIgL9BayTfFgq7Ye_HvfS1Orgl5myYQhvLy8fSHkCHiM80qaDNDJZkDwJJy5os4ENus2SsEIKorXN-Lqsez1eT8Z3MYprHJGEyOh9iOHNvJTzPLluVAtfvbymmHXKPSuphYai2QZS5dhSFfVr-Y2FgUKRZmnXJmcydMx8qsywx6uwAcrnqkf_CiW7f8ha_5yj0au010na0lcpO3p_m6QhTDcJKvfighukev23AeNK8Yim576GJlBRzV9juGSgab-EAOK1b790-B5TEFgpTYW2PygiRVuk8fuxUPnKktNEjLHZDFBY2DOlJW595bZKjeuEkHw0jkWClc7i0njlhWsts6I4GtTGuNl6aVnwdUV2yFLw9Ew7GL6ti2NcDU3UpS8NjaHufjEXKuC1wY5noFKv0xrYejow2ZSTwGrAbA6AlarBjlHaH7NxDrWcWD0NtDpWGhpW44DXXGol-YiSCl4ULwCuQIEB8Yb5GC2FzodrrGeo0KDnMz2Z_757yXt_f-3fbJSRMxABDkgS5O393AIIsfENiNewVV2L5tkud3u3ffgfn5xc3sHox3RaUZl_hP1Wdh7 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gHtSD8RkXQfqgJ5wwO_2Y7oMhKKyLsJwg4db2azYe2EV2ieFP-Rut6p1xwURu3GZ6Op1J9Vevrq4qgPeoY0I02hUIJ1-gwNPIc1VTKGrW7YzBEXIUR8dqeCq-ncmzFfjd5cLQtcpOJmZBHaeBzsi3KctXlsr05c7Fz4K6RlF0tWuhsYDFYbr-hS7b7NPBHu7vh6oa7J98GRZtV4EicF3N6fSs5MbrMkbPfV26UKukpAiBpyo0wVOWtecVb3xwKsXGCeeiFlFHnkJTc1z3ATwUnBviKD34ujzTMejAiLLNzSm53p6RfhQF9YxFvVvLwtzSf7lNwC3b9p9wbNZyg2fwtDVP2e4CT89hJU1ewJMbRQtfwmh3GfMmClFRz8hivgnCpg07z9czE2v7UYwZVRePP8bnM4YGMvO5oOc1a1XvKzi9F_K9htXJdJLeULq4F06FRjqthGycL3EuPfHQr_G1B1sdqezFovaGzTFzru2CsBYJazNhrenBZ6Lm35lUNzsPTC_HtmVDq30_SJRjgfzgUiWtlUxG1mjHoKHCZQ_Wu72wLTPP7BJ6PfjY7c_y8_9_ae3u1Tbh0fBkdGSPDo4P38LjKqOEwLIOq_PLq7SB5s7cv8sYY_D9vkH9B0iREjQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIiE4IJ5qoIAPcIJVNuv164BQoUQtpRUHKuVm_Iw4NClNqqp_jV_HjLNLKBLcetv1WtZq_M3DnhfAS9QxIRrtKoSTr1DgaeS5JleSmnU7Y3CEDoqHR3LvuP00EZMN-NnnwlBYZS8Ti6CO80B35EPK8hW1NCMxzF1YxJfd8bvTHxV1kCJPa99OYwWRg3R5gce3xdv9XdzrV00z_vj1w17VdRioAtfNkm7Sam68rmP03KvaBSWTFG0IPDUhB08Z1543PPvgZIrZtc5F3UYdeQpZcVz3BtxUXIyIx9REre93DB5m2rrL06m5Hi5IV7YV9Y9FHaxEZa7owtIy4Iqd-5drtmi88T2425mqbGeFrfuwkWYP4M4fBQwfwuHO2v9NFKICn5HFEhXC5pmdlFDNxLreFFNGlcbj9-nJgqGxzHwp7nnJOjX8CI6vhXyPYXM2n6UtSh33rZMhC6dlK7LzNc6lJx5GCl8H8LonlT1d1eGwxX_OtV0R1iJhbSGsNQN4T9T8PZNqaJeB-dnUdixptR8FgTIt0Jm4lklrKZIRCm0aNFq4GMB2vxe2Y-yFXcNwAG_6_Vl__vcvPfn_ai_gFsLZft4_OngKt5sCEsLKNmwuz87TM7R8lv55gRiDb9eN6V-vtRZh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application-oriented+design+of+machine+learning+paradigms+for+battery+science&rft.jtitle=npj+computational+materials&rft.date=2025-04-02&rft.pub=Nature+Publishing+Group&rft.eissn=2057-3960&rft.volume=11&rft.issue=1&rft.spage=89&rft_id=info:doi/10.1038%2Fs41524-025-01575-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon |