An effective imputation approach for handling missing data using intuitionistic fuzzy clustering algorithms
It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets. However, existing soft clustering-based imputation neglect the underlying non-spherical separability of the data in feature space. This study proposes tw...
Saved in:
Published in | Discover Computing Vol. 28; no. 1; pp. 133 - 29 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.07.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 2948-2992 1386-4564 2948-2992 1573-7659 |
DOI | 10.1007/s10791-025-09639-6 |
Cover
Abstract | It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets. However, existing soft clustering-based imputation neglect the underlying non-spherical separability of the data in feature space. This study proposes two robust missing data imputation (MDI) algorithms: Linear Interpolation-based Iterative Intuitionistic Fuzzy C-Means with Euclidean distance (LI-IIFCM) and its weighted variant LI-IIFCM-σ. LI-IIFCM and LI-IIFCM-σ uses linear interpolation for initial imputation followed by iterative IFCM and IFCM-σ, respectively. The approach leverages the soft Davies–Bouldin index to determine the optimal number of clusters and then iteratively refines imputations by minimizing average variation. Experimental analysis and statistical analysis (Friedman Test) on four UCI datasets, using two performance metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), demonstrate that the proposed algorithms consistently outperform eight existing fuzzy clustering-based MDI algorithms. |
---|---|
AbstractList | It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets. However, existing soft clustering-based imputation neglect the underlying non-spherical separability of the data in feature space. This study proposes two robust missing data imputation (MDI) algorithms: Linear Interpolation-based Iterative Intuitionistic Fuzzy C-Means with Euclidean distance (LI-IIFCM) and its weighted variant LI-IIFCM-σ. LI-IIFCM and LI-IIFCM-σ uses linear interpolation for initial imputation followed by iterative IFCM and IFCM-σ, respectively. The approach leverages the soft Davies–Bouldin index to determine the optimal number of clusters and then iteratively refines imputations by minimizing average variation. Experimental analysis and statistical analysis (Friedman Test) on four UCI datasets, using two performance metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), demonstrate that the proposed algorithms consistently outperform eight existing fuzzy clustering-based MDI algorithms. Abstract It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets. However, existing soft clustering-based imputation neglect the underlying non-spherical separability of the data in feature space. This study proposes two robust missing data imputation (MDI) algorithms: Linear Interpolation-based Iterative Intuitionistic Fuzzy C-Means with Euclidean distance (LI-IIFCM) and its weighted variant LI-IIFCM-σ. LI-IIFCM and LI-IIFCM-σ uses linear interpolation for initial imputation followed by iterative IFCM and IFCM-σ, respectively. The approach leverages the soft Davies–Bouldin index to determine the optimal number of clusters and then iteratively refines imputations by minimizing average variation. Experimental analysis and statistical analysis (Friedman Test) on four UCI datasets, using two performance metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), demonstrate that the proposed algorithms consistently outperform eight existing fuzzy clustering-based MDI algorithms. |
ArticleNumber | 133 |
Author | Gosain, Anjana Singh, Jaspreeti Sethia, Kavita |
Author_xml | – sequence: 1 givenname: Kavita surname: Sethia fullname: Sethia, Kavita email: kavita.17316490020@ipu.ac.in organization: USICT, Guru Gobind Singh Indraprastha University – sequence: 2 givenname: Jaspreeti surname: Singh fullname: Singh, Jaspreeti organization: USICT, Guru Gobind Singh Indraprastha University – sequence: 3 givenname: Anjana surname: Gosain fullname: Gosain, Anjana organization: USICT, Guru Gobind Singh Indraprastha University |
BookMark | eNp9kU9v3CAQxVGUSk3TfIGekHp2M_xfjlHUNpEi9ZI7whh2SbzGBVwp-fTF66jtqacZAb83w3sf0PmUJo_QJwJfCIC6LgSUJh1Q0YGWTHfyDF1QzXcd1Zqe_9O_R1elxB4EU4xKgAv0fDNhH4J3Nf7yOB7npdoa04TtPOdk3QGHlPHBTsMYpz0-xsa3Othq8XJq41SXuCKx1OhwWF5fX7Abl1J9Xu_tuE851sOxfETvgh2Lv3qrl-jx29fH27vu4cf3-9ubh86xHa0d2wmhHCHAmQIhIIDupRNUaMaos8q1P2vpghtY3w_COs6p8o4T55kEyS7R_SY7JPtk5hyPNr-YZKM5HaS8Nza3VUdvApDQLPRSC8W11HrgQ2BMSamAEN03rc-bVjPj5-JLNU9pyVPb3jDaHKSS83Ui3V65nErJPvyZSsCsEZktItMiMqeIzAqxDSrz6pPPf6X_Q_0G7T2WIw |
Cites_doi | 10.1007/978-981-10-3274-5_10 10.1117/12.654109 10.1016/j.procs.2024.04.237 10.1186/s12885-017-3877-1 10.1016/j.cmpb.2019.105122 10.4097/kjae.2013.64.5.402 10.1007/s10115-017-1038-0 10.1016/j.knosys.2013.08.023 10.1007/s10115-011-0424-2 10.1109/TFUZZ.2021.3058643 10.1016/j.aej.2024.11.037 10.1007/s00521-022-07702-7 10.1007/s44176-023-00022-7 10.1016/j.ins.2013.01.021 10.1177/1471082X0800900301 10.1109/TKDE.2010.99 10.1016/j.neucom.2016.04.015 10.1016/j.jksuci.2022.12.011 10.1007/s10462-019-09709-4 10.1109/FUZZ-IEEE.2018.8491581 10.1016/0098-3004(84)90020-7 10.1016/j.patcog.2017.04.005 10.1007/978-3-642-30157-5_45 10.1016/j.jksuci.2018.01.006 10.1007/s11071-015-2372-y 10.3390/s20071992 10.1016/j.jss.2012.05.073 10.1109/TFUZZ.2016.2516562 10.1007/978-3-642-41218-9_36 10.1007/s00521-022-06958-3 10.1016/j.eswa.2015.02.050 10.1214/aoms/1177731944 10.1002/9781119482260 10.1109/TSMCA.2007.902631 10.1109/TFUZZ.2022.3203506 10.1002/pmic.202400100 10.1166/asl.2016.7980 10.1007/978-1-4757-0450-1 10.1109/TFUZZ.2024.3466175 10.1016/0031-3203(91)90074-F 10.1093/bioinformatics/bth499 10.1016/j.health.2024.100357 10.1093/bioinformatics/17.6.520 10.1109/3477.956035 10.1186/s12874-025-02496-3 10.4028/www.scientific.net/MSF.803.278 10.1007/s10115-015-0822-y 10.1007/s12652-020-02649-w 10.1007/s00521-019-04535-9 10.1007/s00500-021-05739-9 10.1214/17-AOS1594 10.1016/j.imu.2021.100799 10.1007/s001800200103 10.1109/TPAMI.2012.39 10.1073/pnas.87.23.9193 10.1016/j.matcom.2025.02.012 10.1016/j.csa.2024.100063 10.1016/j.ins.2015.03.018 10.1016/j.asoc.2016.05.044 10.1109/FUZZ-IEEE.2017.8015560 10.1007/978-3-540-25929-9_70 10.1093/bioinformatics/btr597 10.1016/j.compeleceng.2021.107230 10.1016/j.ins.2023.120065 10.1016/j.asoc.2010.05.005 10.1016/j.csda.2017.02.012 10.1007/s10115-019-01427-1 10.1016/j.neucom.2016.08.044 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Dec 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Dec 2025 |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.1007/s10791-025-09639-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Engineering Library & Information Science |
EISSN | 2948-2992 1573-7659 |
EndPage | 29 |
ExternalDocumentID | oai_doaj_org_article_f01f100e695749699d4df3376670119b 10_1007_s10791_025_09639_6 |
GroupedDBID | AAJSJ AASML AAYZH ABDBE AEFQL ALMA_UNASSIGNED_HOLDINGS C6C JZLTJ SOJ AAYXX CITATION .4I .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29I 2J2 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7SC 7WY 8FD 8TC 8UJ 95- 95. 95~ 96X AABHQ AAHNG AAIAL AAJKR AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACSTC ADHHG ADHIR ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBS EIOEI ELW ESBYG F5P FEDTE FERAY FFXSO FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HMJXF HQYDN HRMNR HVGLF I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~Z J-C J0Z JBSCW JCJTX JQ2 KDC KOV L7M LAK LLZTM L~C L~D M0C MA- NB0 NPVJJ NQJWS O93 O9J OAM P2P P9O PF0 PT5 QOS R89 R9I RNS RPX S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SNE SNPRN SNX SOHCF SRMVM SSLCW STPWE SZN T13 TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR GROUPED_DOAJ |
ID | FETCH-LOGICAL-c382t-38557c1104370550f09b6c5259332ca7c00796cfcd3bbd5ac4427ec41ce36063 |
IEDL.DBID | DOA |
ISSN | 2948-2992 1386-4564 |
IngestDate | Wed Aug 27 01:24:10 EDT 2025 Thu Jul 03 05:42:10 EDT 2025 Thu Jul 03 08:33:51 EDT 2025 Wed Jul 02 02:44:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Missing data FCM Linear interpolation Fuzzy clustering IFCM IFCM-σ Intuitionistic fuzzy C-means |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-38557c1104370550f09b6c5259332ca7c00796cfcd3bbd5ac4427ec41ce36063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/f01f100e695749699d4df3376670119b |
PQID | 3226026446 |
PQPubID | 26106 |
PageCount | 29 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f01f100e695749699d4df3376670119b proquest_journals_3226026446 crossref_primary_10_1007_s10791_025_09639_6 springer_journals_10_1007_s10791_025_09639_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Discover Computing |
PublicationTitleAbbrev | Discov Computing |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | S Goel (9639_CR4) 2022; 42 H Goldstein (9639_CR47) 2009; 9 R Machmud (9639_CR43) 2016; 22 X Miao (9639_CR30) 2016; 24 W-C Lin (9639_CR3) 2020; 53 N Karmitsa (9639_CR12) 2020; 34 RK Bania (9639_CR48) 2020; 184 W Zhang (9639_CR71) 2022; 31 KJ Nishanth (9639_CR26) 2016; 218 H Khan (9639_CR59) 2021; 93 O Troyanskaya (9639_CR50) 2001; 17 P Balasubramaniam (9639_CR34) 2016; 83 MG Rahman (9639_CR35) 2013; 53 9639_CR46 M Friedman (9639_CR78) 1940; 11 W-Y Loh (9639_CR27) 2020; 30 HC Valdiviezo (9639_CR9) 2015; 311 PS Raja (9639_CR21) 2020; 32 H Kim (9639_CR51) 2005; 21 JY Nancy (9639_CR44) 2017; 112 A Purwar (9639_CR25) 2015; 42 H Toutenburg (9639_CR56) 2002; 17 J Liu (9639_CR13) 2012; 35 P Schmitt (9639_CR54) 2015; 6 9639_CR31 9639_CR75 9639_CR76 9639_CR77 RJ Hathaway (9639_CR33) 2001; 31 S Zhang (9639_CR49) 2012; 85 Z-Q Hong (9639_CR42) 1991; 24 Y Li (9639_CR61) 2024 Z Zhang (9639_CR62) 2024; 659 DJ Stekhoven (9639_CR16) 2012; 28 A Farhangfar (9639_CR8) 2007; 37 H Zhang (9639_CR64) 2025; 233 KK Mohanta (9639_CR65) 2023; 2 S Saha (9639_CR18) 2016; 2016 P Kaur (9639_CR70) 2012; 11 B Saha (9639_CR15) 2017; 53 9639_CR23 J Luengo (9639_CR19) 2012; 32 G Folino (9639_CR20) 2016; 47 A Mahmoudi (9639_CR17) 2021; 12 S Goel (9639_CR60) 2020; 23 X Zhu (9639_CR28) 2010; 23 A Ali (9639_CR63) 2023; 35 J Xia (9639_CR7) 2017; 69 MG Rahman (9639_CR10) 2016; 46 V Chaubey (9639_CR66) 2024; 6 FA Adnan (9639_CR2) 2022; 34 NM Noor (9639_CR69) 2015; 803 R Verma (9639_CR67) 2021; 25 J Huang (9639_CR39) 2020; 20 M Patrício (9639_CR41) 2018; 18 L Beretta (9639_CR55) 2016; 16 N Ma (9639_CR68) 2025; 113 A Nekouie (9639_CR1) 2019; 31 K Sethia (9639_CR38) 2024; 235 M Afkanpour (9639_CR72) 2025; 25 D Li (9639_CR32) 2005; 4 T Chaira (9639_CR74) 2011 M Amiri (9639_CR29) 2016; 205 Y Schumann (9639_CR36) 2025; 25 M Tahir (9639_CR73) 2025; 3 9639_CR52 SE Awan (9639_CR5) 2022; 34 9639_CR53 D Li (9639_CR37) 2021; 30 9639_CR11 WH Wolberg (9639_CR40) 1990; 87 9639_CR57 9639_CR58 JC Bezdek (9639_CR45) 1984; 10 H Kang (9639_CR14) 2013; 64 MK Hasan (9639_CR6) 2021; 27 IB Aydilek (9639_CR22) 2013; 233 S Nikfalazar (9639_CR24) 2020; 62 |
References_xml | – ident: 9639_CR23 doi: 10.1007/978-981-10-3274-5_10 – ident: 9639_CR57 doi: 10.1117/12.654109 – volume: 235 start-page: 2518 year: 2024 ident: 9639_CR38 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2024.04.237 – volume: 18 start-page: 1 issue: 1 year: 2018 ident: 9639_CR41 publication-title: BMC Cancer doi: 10.1186/s12885-017-3877-1 – volume: 184 start-page: 105122 year: 2020 ident: 9639_CR48 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.105122 – volume: 4 start-page: 37 year: 2005 ident: 9639_CR32 publication-title: Trans Rough Sets – volume: 64 start-page: 402 year: 2013 ident: 9639_CR14 publication-title: Korean J Anesthesiol doi: 10.4097/kjae.2013.64.5.402 – volume: 53 start-page: 179 year: 2017 ident: 9639_CR15 publication-title: Knowl Inf Syst doi: 10.1007/s10115-017-1038-0 – volume: 34 start-page: 1889 year: 2020 ident: 9639_CR12 publication-title: IEEE Trans Knowl Data Eng – volume: 53 start-page: 51 year: 2013 ident: 9639_CR35 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2013.08.023 – volume: 32 start-page: 77 year: 2012 ident: 9639_CR19 publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0424-2 – volume: 30 start-page: 1396 issue: 5 year: 2021 ident: 9639_CR37 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2021.3058643 – volume: 11 start-page: 65 year: 2012 ident: 9639_CR70 publication-title: WSEAS Trans Comput – volume: 113 start-page: 249 year: 2025 ident: 9639_CR68 publication-title: Alexandria Eng J doi: 10.1016/j.aej.2024.11.037 – volume: 34 start-page: 18325 year: 2022 ident: 9639_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07702-7 – volume: 2 start-page: 12 issue: 1 year: 2023 ident: 9639_CR65 publication-title: Manag Syst Eng doi: 10.1007/s44176-023-00022-7 – volume: 233 start-page: 25 year: 2013 ident: 9639_CR22 publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2013.01.021 – volume: 9 start-page: 173 issue: 3 year: 2009 ident: 9639_CR47 publication-title: Stat Modell doi: 10.1177/1471082X0800900301 – volume: 23 start-page: 110 issue: 1 year: 2010 ident: 9639_CR28 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2010.99 – volume: 205 start-page: 152 year: 2016 ident: 9639_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.04.015 – volume: 35 start-page: 426 issue: 1 year: 2023 ident: 9639_CR63 publication-title: J King Saud Univ Inf Sci doi: 10.1016/j.jksuci.2022.12.011 – volume: 53 start-page: 1487 year: 2020 ident: 9639_CR3 publication-title: Artif Intell Rev doi: 10.1007/s10462-019-09709-4 – volume: 23 start-page: 91 issue: 1 year: 2020 ident: 9639_CR60 publication-title: J Stat Manag Syst – ident: 9639_CR77 doi: 10.1109/FUZZ-IEEE.2018.8491581 – volume: 10 start-page: 2 year: 1984 ident: 9639_CR45 publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume: 69 start-page: 52 year: 2017 ident: 9639_CR7 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.04.005 – ident: 9639_CR75 doi: 10.1007/978-3-642-30157-5_45 – volume: 31 start-page: 287 year: 2019 ident: 9639_CR1 publication-title: J King Saud Univ Inf Sci doi: 10.1016/j.jksuci.2018.01.006 – volume: 83 start-page: 849 year: 2016 ident: 9639_CR34 publication-title: Nonlinear Dyn doi: 10.1007/s11071-015-2372-y – volume: 20 start-page: 1992 issue: 7 year: 2020 ident: 9639_CR39 publication-title: Sensors doi: 10.3390/s20071992 – volume: 85 start-page: 2541 issue: 11 year: 2012 ident: 9639_CR49 publication-title: J Syst Softw doi: 10.1016/j.jss.2012.05.073 – volume: 42 start-page: 727 year: 2022 ident: 9639_CR4 publication-title: J Intell Fuzzy Syst – volume: 24 start-page: 1349 issue: 6 year: 2016 ident: 9639_CR30 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2016.2516562 – ident: 9639_CR76 doi: 10.1007/978-3-642-41218-9_36 – volume: 34 start-page: 9701 year: 2022 ident: 9639_CR5 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-06958-3 – volume: 42 start-page: 5621 issue: 13 year: 2015 ident: 9639_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.02.050 – volume: 2016 start-page: 6134736 year: 2016 ident: 9639_CR18 publication-title: Adv Fuzzy Syst – volume: 6 start-page: 1 issue: 1 year: 2015 ident: 9639_CR54 publication-title: J Biometrics Biostat – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 9639_CR78 publication-title: Ann Math Stat doi: 10.1214/aoms/1177731944 – ident: 9639_CR53 doi: 10.1002/9781119482260 – volume: 37 start-page: 692 year: 2007 ident: 9639_CR8 publication-title: IEEE Trans Syst Man Cybern A Syst Humans doi: 10.1109/TSMCA.2007.902631 – volume: 31 start-page: 1445 issue: 5 year: 2022 ident: 9639_CR71 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2022.3203506 – volume: 25 start-page: e202400100 year: 2025 ident: 9639_CR36 publication-title: Proteomics doi: 10.1002/pmic.202400100 – ident: 9639_CR52 – volume: 22 start-page: 3120 issue: 10 year: 2016 ident: 9639_CR43 publication-title: Adv Sci Lett doi: 10.1166/asl.2016.7980 – ident: 9639_CR46 doi: 10.1007/978-1-4757-0450-1 – year: 2024 ident: 9639_CR61 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2024.3466175 – volume: 24 start-page: 317 issue: 4 year: 1991 ident: 9639_CR42 publication-title: Pattern Recognit doi: 10.1016/0031-3203(91)90074-F – volume: 21 start-page: 187 issue: 2 year: 2005 ident: 9639_CR51 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth499 – volume: 6 start-page: 100357 year: 2024 ident: 9639_CR66 publication-title: Healthc Anal doi: 10.1016/j.health.2024.100357 – volume: 17 start-page: 520 issue: 6 year: 2001 ident: 9639_CR50 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.520 – volume: 31 start-page: 735 year: 2001 ident: 9639_CR33 publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/3477.956035 – volume: 25 start-page: 43 issue: 1 year: 2025 ident: 9639_CR72 publication-title: BMC Med Res Methodol doi: 10.1186/s12874-025-02496-3 – volume: 803 start-page: 278 year: 2015 ident: 9639_CR69 publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.803.278 – volume: 46 start-page: 389 year: 2016 ident: 9639_CR10 publication-title: Knowl Inf Syst doi: 10.1007/s10115-015-0822-y – volume: 12 start-page: 9341 year: 2021 ident: 9639_CR17 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02649-w – volume: 32 start-page: 10033 year: 2020 ident: 9639_CR21 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04535-9 – volume: 25 start-page: 9575 issue: 14 year: 2021 ident: 9639_CR67 publication-title: Soft Comput doi: 10.1007/s00500-021-05739-9 – ident: 9639_CR11 doi: 10.1214/17-AOS1594 – volume: 27 start-page: 100799 year: 2021 ident: 9639_CR6 publication-title: Informatics Med. Unlocked doi: 10.1016/j.imu.2021.100799 – volume: 17 start-page: 215 year: 2002 ident: 9639_CR56 publication-title: Comput Stat doi: 10.1007/s001800200103 – volume: 35 start-page: 208 year: 2012 ident: 9639_CR13 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.39 – volume: 87 start-page: 9193 issue: 23 year: 1990 ident: 9639_CR40 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.87.23.9193 – volume: 233 start-page: 311 year: 2025 ident: 9639_CR64 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2025.02.012 – volume: 30 start-page: 1697 issue: 4 year: 2020 ident: 9639_CR27 publication-title: Stat Sin – volume: 3 start-page: 100063 year: 2025 ident: 9639_CR73 publication-title: Cyber Secur Appl doi: 10.1016/j.csa.2024.100063 – volume: 311 start-page: 163 year: 2015 ident: 9639_CR9 publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2015.03.018 – volume: 47 start-page: 179 year: 2016 ident: 9639_CR20 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.05.044 – ident: 9639_CR58 doi: 10.1109/FUZZ-IEEE.2017.8015560 – ident: 9639_CR31 doi: 10.1007/978-3-540-25929-9_70 – volume: 16 start-page: 197 issue: 3 year: 2016 ident: 9639_CR55 publication-title: BMC Med Inform Decis Mak – volume: 28 start-page: 112 year: 2012 ident: 9639_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr597 – volume: 93 start-page: 107230 year: 2021 ident: 9639_CR59 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2021.107230 – volume: 659 start-page: 120065 year: 2024 ident: 9639_CR62 publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2023.120065 – year: 2011 ident: 9639_CR74 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2010.05.005 – volume: 112 start-page: 63 year: 2017 ident: 9639_CR44 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2017.02.012 – volume: 62 start-page: 2419 year: 2020 ident: 9639_CR24 publication-title: Knowl Inf Syst doi: 10.1007/s10115-019-01427-1 – volume: 218 start-page: 17 year: 2016 ident: 9639_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.044 |
SSID | ssib053732600 ssj0006449 |
Score | 2.389631 |
Snippet | It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets. However,... Abstract It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets.... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 133 |
SubjectTerms | Algorithms Clustering Computer Science Data Mining and Knowledge Discovery Data Structures and Information Theory Datasets Decision trees Euclidean geometry FCM Fuzzy clustering IFCM Information Storage and Retrieval Interpolation Intuitionistic fuzzy C-means Linear interpolation Literature reviews Machine learning Missing data Natural Language Processing (NLP) Pattern Recognition Performance measurement Root-mean-square errors Set theory Statistical analysis Statistical methods Support vector machines |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8QwDI54LCy8EcdLGdigUlvncRkPBEJIMIF0W5SkKZyAA91jgF-PnWtBh2Bgq5pErT47sRPbXxg79lpGtMxF5qVRVJLjMtN1kEWfq5hH5WQ6zLm5VVf34rov-w1NDtXC_IjfU4mbptycUmbobIPJ1CJblgWoFJhV563uSNBAXOtNXczvQ-dsT6Lon_Mrf4RCk4W5XGerjWvIezNZbrCFONxka-21C7yZhVvsqTfkszQMXKn4gJoTvLzlB-foiPJEn4Df4ShIOg_glAvKp-lxgIYmpWollmZeTz8-3nl4nhJpArW754fX0WDy-DLeZneXF3fnV1lzZ0IWoFtOMuhKqQPadAHEk5PXufEqSNzkAJTB6YDIGBXqUIH3lXRBiFLHIIoQAfcysMOWhq_DuMt4EargA1ToU4DQUrm89qpy2tSghQtFh520YNq3GTOG_eZAJugtQm8T9FZ12Bnh_dWTWK3TCxS2bSaJrfOixvFRGamFUcZUoqoBl0CliZrOd9hBKy3bTLWxxRWJrtHCbW2HnbYS_G7--5f2_td9n62USZcoVfeALU1G03iIDsnEHyVN_ARLaNgj priority: 102 providerName: Springer Nature |
Title | An effective imputation approach for handling missing data using intuitionistic fuzzy clustering algorithms |
URI | https://link.springer.com/article/10.1007/s10791-025-09639-6 https://www.proquest.com/docview/3226026446 https://doaj.org/article/f01f100e695749699d4df3376670119b |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLCwIBIjyqDywQYQTv-qxrahQJVgAic2yHQcqoCBoB_j13DkpUCTEwpQoTqLTd7bvzj5_R8ih1zKCZc4zL43CIzkuM13Hs-iZiiwqJ9NizvmFOrsWoxt5863UF-aE1fTANXAnFcurnMFXRmphlDGlKCsOw0JppCvzOPsyw74FU9CTJNccmdebUzLNWTmNST6FzMBr5yZTC5YoEfYveJk_NkaTvRmuk7XGUaS9WsANshQnm-S-N6F1BgZMUnSMBRkSsnRODU7BB6WJOQF-SkGHuBRAMQ2UztLtGGxMytJKBM20mr2_v9HwMEO-BGx3D7dPL-Pp3ePrFrkanl4NzrKmXEIWeLeYZrwrpQ5gzgVHihxWMeNVkBDfcF4EpwPAYFSoQsm9L6ULQhQ6BpGHyCGM4dukNXmaxB1C81AGH3gJ7gQXWirHKq9Kp03FtXAhb5OjOXL2uSbFsF_0x4izBZxtwtmqNukjuJ9vIqF1egBqto2a7V9qbpP9uWpsM8peLUxGWEELIto2OZ6r66v5d5F2_0OkPbJapO6Eubv7pDV9mcUD8FCmvkNWer3R5Qivw37_okOWB2rQSV30AywJ47A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOMCFXV6iwIIP3CBSEr_qI1stKs9TkbhZtuNARSkI2gP8embcZBFoOewtim0l-mbsGdsz3wAceC0jWuYi89IoSslxmek6nkWfq5hH5WQ6zLm8Uv1rcXYjbxqaHMqF-XJ_TylummJzSpmhs81NpuZhURRGkwb3VK_VHck1J671Ji_m30M_2Z5E0f_Jr_xyFZoszMlPWGlcQ3Y8k-UqzMXxGvxoyy6wZhauw_3xmM3CMHClYkNqTvCylh-coSPKEn0CfoehIOk8gFEsKJumxyEamhSqlViaWT19e3tlYTQl0gRqd6Pbx-fh5O7hZQMGJ38GvX7W1EzIAu-Wk4x3pdQBbbrgxJOT17nxKkjc5HBeBqcDImNUqEPFva-kC0KUOgZRhMhxL8M3YWH8OI5bwIpQBR94hT4FF1oql9deVU6bmmvhQtGBwxZM-zRjxrAfHMgEvUXobYLeqg78Jrz_9iRW6_QChW2bSWLrvKhxfFRGamGUMZWoao5LoNJETec7sNtKyzZT7cXiikRltHBb24GjVoIfzd__0vb_dd-Hpf7g8sJenF6d78BymfSKwnZ3YWHyPI2_0DmZ-L2kle-vTdsZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VKp6KfQltjzqQ29tRBK_1kdeK_pCPVCJm2U7Nl0VsmjJHsqv74w3KVDRA7cotpXom7Fn7Jn5DPDeaxnRMleFl0ZRSY4rzNjxIvpSxTIqJ_NhzrdjdfRDfD6Vp7eq-HO2-xCSXNY0EEtT2-1cNmnnVuGbpoydWhbognNTqMfwRJDpo3Ct2h80SnLNiYG9r5a5f-gdi5SJ--94m_8ESLPdmazB895hZLtLCb-AR7F9CavDZQysn5uv4Nduy5bJGbh-sSk1Z9DZwBrO0D1lmVQBv8NQvHRKwChDlC3y4xTNT07gytzNLC2ur3-zcL4gKgVqd-dns_m0-3lx9RpOJocn-0dFf5NCEfi47go-llIHtPSCE3tOmUrjVZC49eG8Dk4HRMaokELDvW-kC0LUOgZRhchxh8PfwEo7a-M6sCo0wQfeoKfBhZbKlcmrxmmTuBYuVCP4MIBpL5d8GfaGGZmgtwi9zdBbNYI9wvtvT-K6zi9m8zPbTx2byirh-KiM1MIoYxrRJI4Lo9JEWOdHsDlIy_YT8MriOkWXa-FmdwQfBwneNP__l94-rPs7ePr9YGK_fjr-sgHP6qxWlMu7CSvdfBG30GPp_HZWyj9WjeNX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+imputation+approach+for+handling+missing+data+using+intuitionistic+fuzzy+clustering+algorithms&rft.jtitle=Discover+Computing&rft.au=Kavita+Sethia&rft.au=Jaspreeti+Singh&rft.au=Anjana+Gosain&rft.date=2025-07-01&rft.pub=Springer&rft.eissn=2948-2992&rft.volume=28&rft.issue=1&rft.spage=1&rft.epage=29&rft_id=info:doi/10.1007%2Fs10791-025-09639-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f01f100e695749699d4df3376670119b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2992&client=summon |