An effective imputation approach for handling missing data using intuitionistic fuzzy clustering algorithms

It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets. However, existing soft clustering-based imputation neglect the underlying non-spherical separability of the data in feature space. This study proposes tw...

Full description

Saved in:
Bibliographic Details
Published inDiscover Computing Vol. 28; no. 1; pp. 133 - 29
Main Authors Sethia, Kavita, Singh, Jaspreeti, Gosain, Anjana
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2948-2992
1386-4564
2948-2992
1573-7659
DOI10.1007/s10791-025-09639-6

Cover

Abstract It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets. However, existing soft clustering-based imputation neglect the underlying non-spherical separability of the data in feature space. This study proposes two robust missing data imputation (MDI) algorithms: Linear Interpolation-based Iterative Intuitionistic Fuzzy C-Means with Euclidean distance (LI-IIFCM) and its weighted variant LI-IIFCM-σ. LI-IIFCM and LI-IIFCM-σ uses linear interpolation for initial imputation followed by iterative IFCM and IFCM-σ, respectively. The approach leverages the soft Davies–Bouldin index to determine the optimal number of clusters and then iteratively refines imputations by minimizing average variation. Experimental analysis and statistical analysis (Friedman Test) on four UCI datasets, using two performance metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), demonstrate that the proposed algorithms consistently outperform eight existing fuzzy clustering-based MDI algorithms.
AbstractList It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets. However, existing soft clustering-based imputation neglect the underlying non-spherical separability of the data in feature space. This study proposes two robust missing data imputation (MDI) algorithms: Linear Interpolation-based Iterative Intuitionistic Fuzzy C-Means with Euclidean distance (LI-IIFCM) and its weighted variant LI-IIFCM-σ. LI-IIFCM and LI-IIFCM-σ uses linear interpolation for initial imputation followed by iterative IFCM and IFCM-σ, respectively. The approach leverages the soft Davies–Bouldin index to determine the optimal number of clusters and then iteratively refines imputations by minimizing average variation. Experimental analysis and statistical analysis (Friedman Test) on four UCI datasets, using two performance metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), demonstrate that the proposed algorithms consistently outperform eight existing fuzzy clustering-based MDI algorithms.
Abstract It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets. However, existing soft clustering-based imputation neglect the underlying non-spherical separability of the data in feature space. This study proposes two robust missing data imputation (MDI) algorithms: Linear Interpolation-based Iterative Intuitionistic Fuzzy C-Means with Euclidean distance (LI-IIFCM) and its weighted variant LI-IIFCM-σ. LI-IIFCM and LI-IIFCM-σ uses linear interpolation for initial imputation followed by iterative IFCM and IFCM-σ, respectively. The approach leverages the soft Davies–Bouldin index to determine the optimal number of clusters and then iteratively refines imputations by minimizing average variation. Experimental analysis and statistical analysis (Friedman Test) on four UCI datasets, using two performance metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), demonstrate that the proposed algorithms consistently outperform eight existing fuzzy clustering-based MDI algorithms.
ArticleNumber 133
Author Gosain, Anjana
Singh, Jaspreeti
Sethia, Kavita
Author_xml – sequence: 1
  givenname: Kavita
  surname: Sethia
  fullname: Sethia, Kavita
  email: kavita.17316490020@ipu.ac.in
  organization: USICT, Guru Gobind Singh Indraprastha University
– sequence: 2
  givenname: Jaspreeti
  surname: Singh
  fullname: Singh, Jaspreeti
  organization: USICT, Guru Gobind Singh Indraprastha University
– sequence: 3
  givenname: Anjana
  surname: Gosain
  fullname: Gosain, Anjana
  organization: USICT, Guru Gobind Singh Indraprastha University
BookMark eNp9kU9v3CAQxVGUSk3TfIGekHp2M_xfjlHUNpEi9ZI7whh2SbzGBVwp-fTF66jtqacZAb83w3sf0PmUJo_QJwJfCIC6LgSUJh1Q0YGWTHfyDF1QzXcd1Zqe_9O_R1elxB4EU4xKgAv0fDNhH4J3Nf7yOB7npdoa04TtPOdk3QGHlPHBTsMYpz0-xsa3Othq8XJq41SXuCKx1OhwWF5fX7Abl1J9Xu_tuE851sOxfETvgh2Lv3qrl-jx29fH27vu4cf3-9ubh86xHa0d2wmhHCHAmQIhIIDupRNUaMaos8q1P2vpghtY3w_COs6p8o4T55kEyS7R_SY7JPtk5hyPNr-YZKM5HaS8Nza3VUdvApDQLPRSC8W11HrgQ2BMSamAEN03rc-bVjPj5-JLNU9pyVPb3jDaHKSS83Ui3V65nErJPvyZSsCsEZktItMiMqeIzAqxDSrz6pPPf6X_Q_0G7T2WIw
Cites_doi 10.1007/978-981-10-3274-5_10
10.1117/12.654109
10.1016/j.procs.2024.04.237
10.1186/s12885-017-3877-1
10.1016/j.cmpb.2019.105122
10.4097/kjae.2013.64.5.402
10.1007/s10115-017-1038-0
10.1016/j.knosys.2013.08.023
10.1007/s10115-011-0424-2
10.1109/TFUZZ.2021.3058643
10.1016/j.aej.2024.11.037
10.1007/s00521-022-07702-7
10.1007/s44176-023-00022-7
10.1016/j.ins.2013.01.021
10.1177/1471082X0800900301
10.1109/TKDE.2010.99
10.1016/j.neucom.2016.04.015
10.1016/j.jksuci.2022.12.011
10.1007/s10462-019-09709-4
10.1109/FUZZ-IEEE.2018.8491581
10.1016/0098-3004(84)90020-7
10.1016/j.patcog.2017.04.005
10.1007/978-3-642-30157-5_45
10.1016/j.jksuci.2018.01.006
10.1007/s11071-015-2372-y
10.3390/s20071992
10.1016/j.jss.2012.05.073
10.1109/TFUZZ.2016.2516562
10.1007/978-3-642-41218-9_36
10.1007/s00521-022-06958-3
10.1016/j.eswa.2015.02.050
10.1214/aoms/1177731944
10.1002/9781119482260
10.1109/TSMCA.2007.902631
10.1109/TFUZZ.2022.3203506
10.1002/pmic.202400100
10.1166/asl.2016.7980
10.1007/978-1-4757-0450-1
10.1109/TFUZZ.2024.3466175
10.1016/0031-3203(91)90074-F
10.1093/bioinformatics/bth499
10.1016/j.health.2024.100357
10.1093/bioinformatics/17.6.520
10.1109/3477.956035
10.1186/s12874-025-02496-3
10.4028/www.scientific.net/MSF.803.278
10.1007/s10115-015-0822-y
10.1007/s12652-020-02649-w
10.1007/s00521-019-04535-9
10.1007/s00500-021-05739-9
10.1214/17-AOS1594
10.1016/j.imu.2021.100799
10.1007/s001800200103
10.1109/TPAMI.2012.39
10.1073/pnas.87.23.9193
10.1016/j.matcom.2025.02.012
10.1016/j.csa.2024.100063
10.1016/j.ins.2015.03.018
10.1016/j.asoc.2016.05.044
10.1109/FUZZ-IEEE.2017.8015560
10.1007/978-3-540-25929-9_70
10.1093/bioinformatics/btr597
10.1016/j.compeleceng.2021.107230
10.1016/j.ins.2023.120065
10.1016/j.asoc.2010.05.005
10.1016/j.csda.2017.02.012
10.1007/s10115-019-01427-1
10.1016/j.neucom.2016.08.044
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1007/s10791-025-09639-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
Library & Information Science
EISSN 2948-2992
1573-7659
EndPage 29
ExternalDocumentID oai_doaj_org_article_f01f100e695749699d4df3376670119b
10_1007_s10791_025_09639_6
GroupedDBID AAJSJ
AASML
AAYZH
ABDBE
AEFQL
ALMA_UNASSIGNED_HOLDINGS
C6C
JZLTJ
SOJ
AAYXX
CITATION
.4I
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29I
2J2
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7SC
7WY
8FD
8TC
8UJ
95-
95.
95~
96X
AABHQ
AAHNG
AAIAL
AAJKR
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACSTC
ADHHG
ADHIR
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBS
EIOEI
ELW
ESBYG
F5P
FEDTE
FERAY
FFXSO
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~Z
J-C
J0Z
JBSCW
JCJTX
JQ2
KDC
KOV
L7M
LAK
LLZTM
L~C
L~D
M0C
MA-
NB0
NPVJJ
NQJWS
O93
O9J
OAM
P2P
P9O
PF0
PT5
QOS
R89
R9I
RNS
RPX
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
GROUPED_DOAJ
ID FETCH-LOGICAL-c382t-38557c1104370550f09b6c5259332ca7c00796cfcd3bbd5ac4427ec41ce36063
IEDL.DBID DOA
ISSN 2948-2992
1386-4564
IngestDate Wed Aug 27 01:24:10 EDT 2025
Thu Jul 03 05:42:10 EDT 2025
Thu Jul 03 08:33:51 EDT 2025
Wed Jul 02 02:44:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Missing data
FCM
Linear interpolation
Fuzzy clustering
IFCM
IFCM-σ
Intuitionistic fuzzy C-means
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-38557c1104370550f09b6c5259332ca7c00796cfcd3bbd5ac4427ec41ce36063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/f01f100e695749699d4df3376670119b
PQID 3226026446
PQPubID 26106
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_f01f100e695749699d4df3376670119b
proquest_journals_3226026446
crossref_primary_10_1007_s10791_025_09639_6
springer_journals_10_1007_s10791_025_09639_6
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Discover Computing
PublicationTitleAbbrev Discov Computing
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References S Goel (9639_CR4) 2022; 42
H Goldstein (9639_CR47) 2009; 9
R Machmud (9639_CR43) 2016; 22
X Miao (9639_CR30) 2016; 24
W-C Lin (9639_CR3) 2020; 53
N Karmitsa (9639_CR12) 2020; 34
RK Bania (9639_CR48) 2020; 184
W Zhang (9639_CR71) 2022; 31
KJ Nishanth (9639_CR26) 2016; 218
H Khan (9639_CR59) 2021; 93
O Troyanskaya (9639_CR50) 2001; 17
P Balasubramaniam (9639_CR34) 2016; 83
MG Rahman (9639_CR35) 2013; 53
9639_CR46
M Friedman (9639_CR78) 1940; 11
W-Y Loh (9639_CR27) 2020; 30
HC Valdiviezo (9639_CR9) 2015; 311
PS Raja (9639_CR21) 2020; 32
H Kim (9639_CR51) 2005; 21
JY Nancy (9639_CR44) 2017; 112
A Purwar (9639_CR25) 2015; 42
H Toutenburg (9639_CR56) 2002; 17
J Liu (9639_CR13) 2012; 35
P Schmitt (9639_CR54) 2015; 6
9639_CR31
9639_CR75
9639_CR76
9639_CR77
RJ Hathaway (9639_CR33) 2001; 31
S Zhang (9639_CR49) 2012; 85
Z-Q Hong (9639_CR42) 1991; 24
Y Li (9639_CR61) 2024
Z Zhang (9639_CR62) 2024; 659
DJ Stekhoven (9639_CR16) 2012; 28
A Farhangfar (9639_CR8) 2007; 37
H Zhang (9639_CR64) 2025; 233
KK Mohanta (9639_CR65) 2023; 2
S Saha (9639_CR18) 2016; 2016
P Kaur (9639_CR70) 2012; 11
B Saha (9639_CR15) 2017; 53
9639_CR23
J Luengo (9639_CR19) 2012; 32
G Folino (9639_CR20) 2016; 47
A Mahmoudi (9639_CR17) 2021; 12
S Goel (9639_CR60) 2020; 23
X Zhu (9639_CR28) 2010; 23
A Ali (9639_CR63) 2023; 35
J Xia (9639_CR7) 2017; 69
MG Rahman (9639_CR10) 2016; 46
V Chaubey (9639_CR66) 2024; 6
FA Adnan (9639_CR2) 2022; 34
NM Noor (9639_CR69) 2015; 803
R Verma (9639_CR67) 2021; 25
J Huang (9639_CR39) 2020; 20
M Patrício (9639_CR41) 2018; 18
L Beretta (9639_CR55) 2016; 16
N Ma (9639_CR68) 2025; 113
A Nekouie (9639_CR1) 2019; 31
K Sethia (9639_CR38) 2024; 235
M Afkanpour (9639_CR72) 2025; 25
D Li (9639_CR32) 2005; 4
T Chaira (9639_CR74) 2011
M Amiri (9639_CR29) 2016; 205
Y Schumann (9639_CR36) 2025; 25
M Tahir (9639_CR73) 2025; 3
9639_CR52
SE Awan (9639_CR5) 2022; 34
9639_CR53
D Li (9639_CR37) 2021; 30
9639_CR11
WH Wolberg (9639_CR40) 1990; 87
9639_CR57
9639_CR58
JC Bezdek (9639_CR45) 1984; 10
H Kang (9639_CR14) 2013; 64
MK Hasan (9639_CR6) 2021; 27
IB Aydilek (9639_CR22) 2013; 233
S Nikfalazar (9639_CR24) 2020; 62
References_xml – ident: 9639_CR23
  doi: 10.1007/978-981-10-3274-5_10
– ident: 9639_CR57
  doi: 10.1117/12.654109
– volume: 235
  start-page: 2518
  year: 2024
  ident: 9639_CR38
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2024.04.237
– volume: 18
  start-page: 1
  issue: 1
  year: 2018
  ident: 9639_CR41
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3877-1
– volume: 184
  start-page: 105122
  year: 2020
  ident: 9639_CR48
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105122
– volume: 4
  start-page: 37
  year: 2005
  ident: 9639_CR32
  publication-title: Trans Rough Sets
– volume: 64
  start-page: 402
  year: 2013
  ident: 9639_CR14
  publication-title: Korean J Anesthesiol
  doi: 10.4097/kjae.2013.64.5.402
– volume: 53
  start-page: 179
  year: 2017
  ident: 9639_CR15
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-017-1038-0
– volume: 34
  start-page: 1889
  year: 2020
  ident: 9639_CR12
  publication-title: IEEE Trans Knowl Data Eng
– volume: 53
  start-page: 51
  year: 2013
  ident: 9639_CR35
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.08.023
– volume: 32
  start-page: 77
  year: 2012
  ident: 9639_CR19
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0424-2
– volume: 30
  start-page: 1396
  issue: 5
  year: 2021
  ident: 9639_CR37
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2021.3058643
– volume: 11
  start-page: 65
  year: 2012
  ident: 9639_CR70
  publication-title: WSEAS Trans Comput
– volume: 113
  start-page: 249
  year: 2025
  ident: 9639_CR68
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2024.11.037
– volume: 34
  start-page: 18325
  year: 2022
  ident: 9639_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07702-7
– volume: 2
  start-page: 12
  issue: 1
  year: 2023
  ident: 9639_CR65
  publication-title: Manag Syst Eng
  doi: 10.1007/s44176-023-00022-7
– volume: 233
  start-page: 25
  year: 2013
  ident: 9639_CR22
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2013.01.021
– volume: 9
  start-page: 173
  issue: 3
  year: 2009
  ident: 9639_CR47
  publication-title: Stat Modell
  doi: 10.1177/1471082X0800900301
– volume: 23
  start-page: 110
  issue: 1
  year: 2010
  ident: 9639_CR28
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2010.99
– volume: 205
  start-page: 152
  year: 2016
  ident: 9639_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.04.015
– volume: 35
  start-page: 426
  issue: 1
  year: 2023
  ident: 9639_CR63
  publication-title: J King Saud Univ Inf Sci
  doi: 10.1016/j.jksuci.2022.12.011
– volume: 53
  start-page: 1487
  year: 2020
  ident: 9639_CR3
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-019-09709-4
– volume: 23
  start-page: 91
  issue: 1
  year: 2020
  ident: 9639_CR60
  publication-title: J Stat Manag Syst
– ident: 9639_CR77
  doi: 10.1109/FUZZ-IEEE.2018.8491581
– volume: 10
  start-page: 2
  year: 1984
  ident: 9639_CR45
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 69
  start-page: 52
  year: 2017
  ident: 9639_CR7
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.04.005
– ident: 9639_CR75
  doi: 10.1007/978-3-642-30157-5_45
– volume: 31
  start-page: 287
  year: 2019
  ident: 9639_CR1
  publication-title: J King Saud Univ Inf Sci
  doi: 10.1016/j.jksuci.2018.01.006
– volume: 83
  start-page: 849
  year: 2016
  ident: 9639_CR34
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2372-y
– volume: 20
  start-page: 1992
  issue: 7
  year: 2020
  ident: 9639_CR39
  publication-title: Sensors
  doi: 10.3390/s20071992
– volume: 85
  start-page: 2541
  issue: 11
  year: 2012
  ident: 9639_CR49
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2012.05.073
– volume: 42
  start-page: 727
  year: 2022
  ident: 9639_CR4
  publication-title: J Intell Fuzzy Syst
– volume: 24
  start-page: 1349
  issue: 6
  year: 2016
  ident: 9639_CR30
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2016.2516562
– ident: 9639_CR76
  doi: 10.1007/978-3-642-41218-9_36
– volume: 34
  start-page: 9701
  year: 2022
  ident: 9639_CR5
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-06958-3
– volume: 42
  start-page: 5621
  issue: 13
  year: 2015
  ident: 9639_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.02.050
– volume: 2016
  start-page: 6134736
  year: 2016
  ident: 9639_CR18
  publication-title: Adv Fuzzy Syst
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  ident: 9639_CR54
  publication-title: J Biometrics Biostat
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 9639_CR78
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177731944
– ident: 9639_CR53
  doi: 10.1002/9781119482260
– volume: 37
  start-page: 692
  year: 2007
  ident: 9639_CR8
  publication-title: IEEE Trans Syst Man Cybern A Syst Humans
  doi: 10.1109/TSMCA.2007.902631
– volume: 31
  start-page: 1445
  issue: 5
  year: 2022
  ident: 9639_CR71
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2022.3203506
– volume: 25
  start-page: e202400100
  year: 2025
  ident: 9639_CR36
  publication-title: Proteomics
  doi: 10.1002/pmic.202400100
– ident: 9639_CR52
– volume: 22
  start-page: 3120
  issue: 10
  year: 2016
  ident: 9639_CR43
  publication-title: Adv Sci Lett
  doi: 10.1166/asl.2016.7980
– ident: 9639_CR46
  doi: 10.1007/978-1-4757-0450-1
– year: 2024
  ident: 9639_CR61
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2024.3466175
– volume: 24
  start-page: 317
  issue: 4
  year: 1991
  ident: 9639_CR42
  publication-title: Pattern Recognit
  doi: 10.1016/0031-3203(91)90074-F
– volume: 21
  start-page: 187
  issue: 2
  year: 2005
  ident: 9639_CR51
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth499
– volume: 6
  start-page: 100357
  year: 2024
  ident: 9639_CR66
  publication-title: Healthc Anal
  doi: 10.1016/j.health.2024.100357
– volume: 17
  start-page: 520
  issue: 6
  year: 2001
  ident: 9639_CR50
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– volume: 31
  start-page: 735
  year: 2001
  ident: 9639_CR33
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/3477.956035
– volume: 25
  start-page: 43
  issue: 1
  year: 2025
  ident: 9639_CR72
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-025-02496-3
– volume: 803
  start-page: 278
  year: 2015
  ident: 9639_CR69
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.803.278
– volume: 46
  start-page: 389
  year: 2016
  ident: 9639_CR10
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-015-0822-y
– volume: 12
  start-page: 9341
  year: 2021
  ident: 9639_CR17
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02649-w
– volume: 32
  start-page: 10033
  year: 2020
  ident: 9639_CR21
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04535-9
– volume: 25
  start-page: 9575
  issue: 14
  year: 2021
  ident: 9639_CR67
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05739-9
– ident: 9639_CR11
  doi: 10.1214/17-AOS1594
– volume: 27
  start-page: 100799
  year: 2021
  ident: 9639_CR6
  publication-title: Informatics Med. Unlocked
  doi: 10.1016/j.imu.2021.100799
– volume: 17
  start-page: 215
  year: 2002
  ident: 9639_CR56
  publication-title: Comput Stat
  doi: 10.1007/s001800200103
– volume: 35
  start-page: 208
  year: 2012
  ident: 9639_CR13
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.39
– volume: 87
  start-page: 9193
  issue: 23
  year: 1990
  ident: 9639_CR40
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.87.23.9193
– volume: 233
  start-page: 311
  year: 2025
  ident: 9639_CR64
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2025.02.012
– volume: 30
  start-page: 1697
  issue: 4
  year: 2020
  ident: 9639_CR27
  publication-title: Stat Sin
– volume: 3
  start-page: 100063
  year: 2025
  ident: 9639_CR73
  publication-title: Cyber Secur Appl
  doi: 10.1016/j.csa.2024.100063
– volume: 311
  start-page: 163
  year: 2015
  ident: 9639_CR9
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2015.03.018
– volume: 47
  start-page: 179
  year: 2016
  ident: 9639_CR20
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.05.044
– ident: 9639_CR58
  doi: 10.1109/FUZZ-IEEE.2017.8015560
– ident: 9639_CR31
  doi: 10.1007/978-3-540-25929-9_70
– volume: 16
  start-page: 197
  issue: 3
  year: 2016
  ident: 9639_CR55
  publication-title: BMC Med Inform Decis Mak
– volume: 28
  start-page: 112
  year: 2012
  ident: 9639_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– volume: 93
  start-page: 107230
  year: 2021
  ident: 9639_CR59
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2021.107230
– volume: 659
  start-page: 120065
  year: 2024
  ident: 9639_CR62
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2023.120065
– year: 2011
  ident: 9639_CR74
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2010.05.005
– volume: 112
  start-page: 63
  year: 2017
  ident: 9639_CR44
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2017.02.012
– volume: 62
  start-page: 2419
  year: 2020
  ident: 9639_CR24
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-019-01427-1
– volume: 218
  start-page: 17
  year: 2016
  ident: 9639_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.044
SSID ssib053732600
ssj0006449
Score 2.389631
Snippet It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets. However,...
Abstract It is imperative to handle missing data attentively in the preprocessing stage as it may affects the integrity and quality of real-world datasets....
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 133
SubjectTerms Algorithms
Clustering
Computer Science
Data Mining and Knowledge Discovery
Data Structures and Information Theory
Datasets
Decision trees
Euclidean geometry
FCM
Fuzzy clustering
IFCM
Information Storage and Retrieval
Interpolation
Intuitionistic fuzzy C-means
Linear interpolation
Literature reviews
Machine learning
Missing data
Natural Language Processing (NLP)
Pattern Recognition
Performance measurement
Root-mean-square errors
Set theory
Statistical analysis
Statistical methods
Support vector machines
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8QwDI54LCy8EcdLGdigUlvncRkPBEJIMIF0W5SkKZyAA91jgF-PnWtBh2Bgq5pErT47sRPbXxg79lpGtMxF5qVRVJLjMtN1kEWfq5hH5WQ6zLm5VVf34rov-w1NDtXC_IjfU4mbptycUmbobIPJ1CJblgWoFJhV563uSNBAXOtNXczvQ-dsT6Lon_Mrf4RCk4W5XGerjWvIezNZbrCFONxka-21C7yZhVvsqTfkszQMXKn4gJoTvLzlB-foiPJEn4Df4ShIOg_glAvKp-lxgIYmpWollmZeTz8-3nl4nhJpArW754fX0WDy-DLeZneXF3fnV1lzZ0IWoFtOMuhKqQPadAHEk5PXufEqSNzkAJTB6YDIGBXqUIH3lXRBiFLHIIoQAfcysMOWhq_DuMt4EargA1ToU4DQUrm89qpy2tSghQtFh520YNq3GTOG_eZAJugtQm8T9FZ12Bnh_dWTWK3TCxS2bSaJrfOixvFRGamFUcZUoqoBl0CliZrOd9hBKy3bTLWxxRWJrtHCbW2HnbYS_G7--5f2_td9n62USZcoVfeALU1G03iIDsnEHyVN_ARLaNgj
  priority: 102
  providerName: Springer Nature
Title An effective imputation approach for handling missing data using intuitionistic fuzzy clustering algorithms
URI https://link.springer.com/article/10.1007/s10791-025-09639-6
https://www.proquest.com/docview/3226026446
https://doaj.org/article/f01f100e695749699d4df3376670119b
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLCwIBIjyqDywQYQTv-qxrahQJVgAic2yHQcqoCBoB_j13DkpUCTEwpQoTqLTd7bvzj5_R8ih1zKCZc4zL43CIzkuM13Hs-iZiiwqJ9NizvmFOrsWoxt5863UF-aE1fTANXAnFcurnMFXRmphlDGlKCsOw0JppCvzOPsyw74FU9CTJNccmdebUzLNWTmNST6FzMBr5yZTC5YoEfYveJk_NkaTvRmuk7XGUaS9WsANshQnm-S-N6F1BgZMUnSMBRkSsnRODU7BB6WJOQF-SkGHuBRAMQ2UztLtGGxMytJKBM20mr2_v9HwMEO-BGx3D7dPL-Pp3ePrFrkanl4NzrKmXEIWeLeYZrwrpQ5gzgVHihxWMeNVkBDfcF4EpwPAYFSoQsm9L6ULQhQ6BpGHyCGM4dukNXmaxB1C81AGH3gJ7gQXWirHKq9Kp03FtXAhb5OjOXL2uSbFsF_0x4izBZxtwtmqNukjuJ9vIqF1egBqto2a7V9qbpP9uWpsM8peLUxGWEELIto2OZ6r66v5d5F2_0OkPbJapO6Eubv7pDV9mcUD8FCmvkNWer3R5Qivw37_okOWB2rQSV30AywJ47A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOMCFXV6iwIIP3CBSEr_qI1stKs9TkbhZtuNARSkI2gP8embcZBFoOewtim0l-mbsGdsz3wAceC0jWuYi89IoSslxmek6nkWfq5hH5WQ6zLm8Uv1rcXYjbxqaHMqF-XJ_TylummJzSpmhs81NpuZhURRGkwb3VK_VHck1J671Ji_m30M_2Z5E0f_Jr_xyFZoszMlPWGlcQ3Y8k-UqzMXxGvxoyy6wZhauw_3xmM3CMHClYkNqTvCylh-coSPKEn0CfoehIOk8gFEsKJumxyEamhSqlViaWT19e3tlYTQl0gRqd6Pbx-fh5O7hZQMGJ38GvX7W1EzIAu-Wk4x3pdQBbbrgxJOT17nxKkjc5HBeBqcDImNUqEPFva-kC0KUOgZRhMhxL8M3YWH8OI5bwIpQBR94hT4FF1oql9deVU6bmmvhQtGBwxZM-zRjxrAfHMgEvUXobYLeqg78Jrz_9iRW6_QChW2bSWLrvKhxfFRGamGUMZWoao5LoNJETec7sNtKyzZT7cXiikRltHBb24GjVoIfzd__0vb_dd-Hpf7g8sJenF6d78BymfSKwnZ3YWHyPI2_0DmZ-L2kle-vTdsZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VKp6KfQltjzqQ29tRBK_1kdeK_pCPVCJm2U7Nl0VsmjJHsqv74w3KVDRA7cotpXom7Fn7Jn5DPDeaxnRMleFl0ZRSY4rzNjxIvpSxTIqJ_NhzrdjdfRDfD6Vp7eq-HO2-xCSXNY0EEtT2-1cNmnnVuGbpoydWhbognNTqMfwRJDpo3Ct2h80SnLNiYG9r5a5f-gdi5SJ--94m_8ESLPdmazB895hZLtLCb-AR7F9CavDZQysn5uv4Nduy5bJGbh-sSk1Z9DZwBrO0D1lmVQBv8NQvHRKwChDlC3y4xTNT07gytzNLC2ur3-zcL4gKgVqd-dns_m0-3lx9RpOJocn-0dFf5NCEfi47go-llIHtPSCE3tOmUrjVZC49eG8Dk4HRMaokELDvW-kC0LUOgZRhchxh8PfwEo7a-M6sCo0wQfeoKfBhZbKlcmrxmmTuBYuVCP4MIBpL5d8GfaGGZmgtwi9zdBbNYI9wvtvT-K6zi9m8zPbTx2byirh-KiM1MIoYxrRJI4Lo9JEWOdHsDlIy_YT8MriOkWXa-FmdwQfBwneNP__l94-rPs7ePr9YGK_fjr-sgHP6qxWlMu7CSvdfBG30GPp_HZWyj9WjeNX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+imputation+approach+for+handling+missing+data+using+intuitionistic+fuzzy+clustering+algorithms&rft.jtitle=Discover+Computing&rft.au=Kavita+Sethia&rft.au=Jaspreeti+Singh&rft.au=Anjana+Gosain&rft.date=2025-07-01&rft.pub=Springer&rft.eissn=2948-2992&rft.volume=28&rft.issue=1&rft.spage=1&rft.epage=29&rft_id=info:doi/10.1007%2Fs10791-025-09639-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f01f100e695749699d4df3376670119b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2992&client=summon