More than a spiny morphology: plastome variation in the prickly pear cacti (Opuntieae)

Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 132; no. 4; pp. 771 - 786
Main Authors Köhler, Matias, Reginato, Marcelo, Jin, Jian-Jun, Majure, Lucas C
Format Journal Article
LanguageEnglish
Published England Oxford University Press 25.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far. Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes. Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny. Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.
AbstractList Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far.BACKGROUNDPlastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far.Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes.METHODSHere, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes.Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny.KEY RESULTSPlastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny.Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.CONCLUSIONSOur study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.
Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far. Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes. Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny. Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.
Author Jin, Jian-Jun
Köhler, Matias
Reginato, Marcelo
Majure, Lucas C
Author_xml – sequence: 1
  givenname: Matias
  surname: Köhler
  fullname: Köhler, Matias
– sequence: 2
  givenname: Marcelo
  surname: Reginato
  fullname: Reginato, Marcelo
– sequence: 3
  givenname: Jian-Jun
  surname: Jin
  fullname: Jin, Jian-Jun
– sequence: 4
  givenname: Lucas C
  surname: Majure
  fullname: Majure, Lucas C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37467174$$D View this record in MEDLINE/PubMed
BookMark eNptkU1P3DAQhi20CJalp94rH7eqAv6I46QXhFBbkBZxob1aE8dhXRI7tb1I--9rYIsKYi4jzTzzzmjeIzRz3hmEPlJyQknDT8G3p6OGjjT1Hprnkihq1pAZmhNORCF5VR6ioxh_E0JY1dADdMhlWUkqyzn6de2DwWkNDgOOk3VbPPowrf3g77Zf8TRATH40-AGChWS9w9Zl3OApWH0_bPFkIGANOlm8vJk2LlkD5vMx2u9hiObDLi_Qz-_fbi8ui9XNj6uL81Whec1SwQXtCTOioh0wEFJyw1sJDTScCQJaMKnLClomyrbuegqsFk3X60q2dStExRfo7Fl32rSj6bRxKcCg8nEjhK3yYNXrjrNrdecfFCWyyfGosNwpBP9nY2JSo43aDAM44zdRsbokrKwELzP66f9lL1v-fTMDX54BHXyMwfQvCCXq0SuVvVI7rzJN39Dapqcf50vt8O7MX-yomho
CitedBy_id crossref_primary_10_17129_botsci_3446
crossref_primary_10_1007_s11033_024_09871_1
crossref_primary_10_1093_aob_mcad160
Cites_doi 10.1038/s41598-020-80149-9
10.1186/s13059-020-02154-5
10.1186/s12870-021-03202-3
10.1093/sysbio/syaa013
10.1016/bs.abr.2017.11.013
10.1093/sysbio/syaa064
10.1093/gbe/evr105
10.1016/j.ympev.2008.06.013
10.1111/tpj.13525
10.1093/oxfordjournals.molbev.a026334
10.1093/gbe/evaa155
10.1093/gbe/evz076
10.1080/10635150701472164
10.1105/tpc.114.135541
10.3732/ajb.1500299
10.1016/j.ympev.2020.106903
10.1016/bs.abr.2017.11.017
10.1007/s00299-019-02420-2
10.1007/s40415-021-00772-2
10.1093/bioinformatics/btq706
10.3389/fpls.2020.600354
10.1007/s11105-012-0461-3
10.1007/s00239-008-9086-4
10.1105/tpc.160771
10.1109/GCE.2010.5676129
10.1093/molbev/mst010
10.1371/journal.pbio.1000602
10.1038/nmeth.1923
10.3732/ajb.1100335
10.1093/sysbio/syab053
10.1093/nar/gkab688
10.1007/s00239-009-9317-3
10.1111/nph.14398
10.1038/nrg1271
10.1002/ajb2.1048
10.1093/nar/25.18.3681
10.1042/BCJ20190365
10.7717/peerj.7747
10.3390/plants8100392
10.3372/wi.51.51208
10.1073/pnas.1100628108
10.1046/j.1365-313x.2000.00722.x
10.3389/fpls.2020.00729
10.1093/gbe/evw167
10.1007/s12298-021-01121-z
10.1093/bioinformatics/btv383
10.1016/S1016-8478(23)13062-7
10.1007/s00425-021-03690-5
10.1079/9780851999043.0045
10.1371/journal.pone.0068591
10.1186/s12870-015-0484-7
10.1093/bioinformatics/bty633
10.1002/ajb2.1364
10.1073/pnas.85.22.8573
10.1038/srep09040
10.1073/pnas.1430924100
10.1038/s41598-021-92727-6
10.1007/s00294-009-0249-7
10.1007/s00425-022-03841-2
10.2307/2399279
10.1023/A:1006478403810
10.1002/ajb2.1069
10.1111/j.1469-8137.2010.03195.x
10.1186/s13059-016-1004-2
10.1105/tpc.13.2.245
10.1186/1471-2164-11-143
10.2307/2419599
10.3732/ajb.1600453
10.1007/s00294-015-0548-0
10.1093/oxfordjournals.molbev.a026201
10.1101/gr.2289704
10.1186/s12870-023-04148-4
10.1093/gbe/evx013
10.1126/sciadv.abd8215
10.1186/s12862-015-0423-0
10.1073/pnas.0806759105
10.1016/j.jmb.2003.11.020
10.1016/j.ympev.2013.07.006
10.1007/s00299-010-0929-2
10.1016/0167-7799(93)90059-I
10.3390/plants9080979
10.1002/ajb2.1001
10.1093/gbe/evab215
10.1073/pnas.2023058118
10.1186/s12870-020-02518-w
10.3732/ajb.1500184
10.1089/cmb.2012.0021
10.1105/tpc.18.00357
10.1186/1471-2105-10-421
10.1002/ece3.6839
10.1086/593048
10.1007/s40415-020-00689-2
10.1371/journal.pone.0165176
10.1016/j.ympev.2019.05.022
10.1038/s41467-019-08822-w
10.1093/molbev/msq229
10.3389/fpls.2020.00942
10.1016/0092-8674(82)90170-2
10.1371/journal.pone.0162324
10.1038/celldisc.2016.3
10.1111/nph.13743
10.3389/fpls.2015.00883
10.7717/peerj.10155
10.1080/23802359.2022.2035837
10.1038/s41559-017-0126
10.1080/14620316.2017.1389308
10.11646/phytotaxa.505.3.2
10.1093/nar/gkx391
10.1007/BF00334522
10.25223/brad.n13.1995.a1
10.1038/srep16958
10.1016/j.ympev.2018.12.023
10.1038/s41598-020-66024-7
10.3732/ajb.1100375
10.1038/301092a0
10.1111/jse.12425
10.1111/tpj.15351
10.1093/aob/mcu050
10.1371/journal.pone.0187318
10.1093/bioinformatics/btu033
10.1007/s11103-011-9762-4
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2023
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/aob/mcad098
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 786
ExternalDocumentID PMC10799996
37467174
10_1093_aob_mcad098
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: International Association for Plant Taxonomy
– fundername: National Science Foundation
  grantid: DEB #1735604
– fundername: CAPES
  grantid: 88887.583192/2020-00
– fundername: Cactus and Succulent Society of America
– fundername: ;
– fundername: ;
  grantid: 88887.583192/2020-00
– fundername: ;
  grantid: DEB #1735604
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
1TH
1~5
23M
2WC
4.4
482
48X
4G.
5GY
5VS
5WA
5WD
6J9
7-5
70D
79B
A8Z
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAXTN
AAYXX
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUFI
ACUHS
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EMOBN
ESX
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
NU-
O-L
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TCN
TLC
TN5
TR2
UPT
W8F
WH7
WOQ
X7H
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
AACTN
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c382t-351f02e561da2a5773e3b7a9a93250ac527c46ab254b8df1a2859dfc67b8b5563
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 18:32:55 EDT 2025
Thu Jul 10 18:23:57 EDT 2025
Thu Apr 03 07:09:02 EDT 2025
Tue Jul 01 03:04:18 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords plastid genome
Cactaceae
evolution
Opuntia
atypical plastomes
phylogenomics
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-351f02e561da2a5773e3b7a9a93250ac527c46ab254b8df1a2859dfc67b8b5563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/aob/advance-article-pdf/doi/10.1093/aob/mcad098/50912525/mcad098.pdf
PMID 37467174
PQID 2840246534
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10799996
proquest_miscellaneous_2840246534
pubmed_primary_37467174
crossref_primary_10_1093_aob_mcad098
crossref_citationtrail_10_1093_aob_mcad098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-25
PublicationDateYYYYMMDD 2023-11-25
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: US
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Doyle (2024071900443596500_CIT0025) 2022; 71
Cui (2024071900443596500_CIT0020) 2021; 11
Sadali (2024071900443596500_CIT0090) 2019; 38
Maréchal (2024071900443596500_CIT0064) 2010; 186
Gitzendanner (2024071900443596500_CIT0029) 2018; 105
Bayly (2024071900443596500_CIT0007) 2013; 69
Ruhlman (2024071900443596500_CIT0088) 2015; 15
Paradis (2024071900443596500_CIT0077) 2019; 35
Mower (2024071900443596500_CIT0068) 2018
de Vries (2024071900443596500_CIT0110) 2015; 27
Camacho (2024071900443596500_CIT0012) 2009; 10
Lin (2024071900443596500_CIT0057) 2015; 5
Liu (2024071900443596500_CIT0059) 2018; 93
Oldenburg (2024071900443596500_CIT0070) 2004; 335
Kikuchi (2024071900443596500_CIT0047) 2018; 30
Chen (2024071900443596500_CIT0017) 2022; 7
Schmitz-Linneweber (2024071900443596500_CIT0093) 2001; 45
Wicke (2024071900443596500_CIT0117) 2011; 76
Korotkova (2024071900443596500_CIT0051) 2021; 51
Guisinger (2024071900443596500_CIT0034) 2008; 105
Oulo (2024071900443596500_CIT0128) 2020; 9
Jin (2024071900443596500_CIT0042) 2020; 11
Köhler (2024071900443596500_CIT0050) 2021; 505
Oldenburg (2024071900443596500_CIT0071) 2015; 6
Majure (2024071900443596500_CIT0061) 2012; 99
Oldenburg (2024071900443596500_CIT0072) 2016; 62
Parins-Fukuchi (2024071900443596500_CIT0078) 2021; 118
Jo (2024071900443596500_CIT0044) 2011; 30
Ruhlman (2024071900443596500_CIT0087) 2021
Bendich (2024071900443596500_CIT0010) 1990; 17
Mayer (2024071900443596500_CIT0066) 2006
Yao (2024071900443596500_CIT0122) 2019; 134
Ruhlman (2024071900443596500_CIT0089) 2017; 104
Zhang (2024071900443596500_CIT0125) 2020; 69
Wick (2024071900443596500_CIT0116) 2015; 31
Philippe (2024071900443596500_CIT0081) 2017; 283
Harris (2024071900443596500_CIT0038) 2013; 31
Arakaki (2024071900443596500_CIT0005) 2011; 108
Talavera (2024071900443596500_CIT0105) 2007; 56
Miller (2024071900443596500_CIT0067) 2010
Sanderson (2024071900443596500_CIT0091) 2015; 102
Drescher (2024071900443596500_CIT0027) 2000; 22
Schliep (2024071900443596500_CIT0092) 2011; 27
Graham (2024071900443596500_CIT0032) 2017; 214
Dalla Costa (2024071900443596500_CIT0021) 2022; 255
Choi (2024071900443596500_CIT0018) 2019; 11
Gonçalves (2024071900443596500_CIT0031) 2020; 151
Haberle (2024071900443596500_CIT0037) 2008; 66
Tillich (2024071900443596500_CIT0107) 2017; 45
Doyle (2024071900443596500_CIT0026) 1987; 19
Jin (2024071900443596500_CIT0041) 2020; 10
Wallace (2024071900443596500_CIT0114) 1995; 13
Zhu (2024071900443596500_CIT0127) 2016; 209
Li (2024071900443596500_CIT0055) 2016; 8
Silva (2024071900443596500_CIT0096) 2016; 11
Johnson (2024071900443596500_CIT0045) 2017
Guisinger (2024071900443596500_CIT0036) 2011; 28
Raubeson (2024071900443596500_CIT0085) 2005
Palmer (2024071900443596500_CIT0074) 1983; 301
Shimodaira (2024071900443596500_CIT0095) 1999; 16
Philippe (2024071900443596500_CIT0080) 2011; 9
Choi (2024071900443596500_CIT0019) 2020; 10
Palmer (2024071900443596500_CIT0076) 1988; 75
Walker (2024071900443596500_CIT0112) 2019; 7
Anderson (2024071900443596500_CIT0004) 2001
Lilly (2024071900443596500_CIT0056) 2001; 13
Rabah (2024071900443596500_CIT0084) 2019; 57
Lee (2024071900443596500_CIT0053) 2021; 107
Palmer (2024071900443596500_CIT0075) 1982; 29
Peredo (2024071900443596500_CIT0079) 2013; 8
Shen (2024071900443596500_CIT0094) 2017; 1
Stamatakis (2024071900443596500_CIT0101) 2014; 30
Jansen (2024071900443596500_CIT0039) 2012
Majure (2024071900443596500_CIT0060) 2014; 8
Dugas (2024071900443596500_CIT0028) 2015; 5
Lee (2024071900443596500_CIT0054) 2004; 17
Charboneau (2024071900443596500_CIT0016) 2021; 13
Martin (2024071900443596500_CIT0065) 2014; 113
Straub (2024071900443596500_CIT0104) 2012; 99
Strand (2024071900443596500_CIT0103) 2019; 476
Zhong (2024071900443596500_CIT0126) 2011; 3
Abadi (2024071900443596500_CIT0001) 2019; 10
Amaral (2024071900443596500_CIT0003) 2021; 254
Guisinger (2024071900443596500_CIT0035) 2010; 70
Xu (2024071900443596500_CIT0120) 2021; 11
Bushnell (2024071900443596500_CIT0129) 2016
Xiao (2024071900443596500_CIT0119) 2020; 8
Kunnimalaiyaan (2024071900443596500_CIT0052) 1997; 25
Jansen (2024071900443596500_CIT0040) 2008; 48
Portik (2024071900443596500_CIT0082) 2021; 70
Daniell (2024071900443596500_CIT0022) 2016; 17
Sinn (2024071900443596500_CIT0098) 2018; 105
Yu (2024071900443596500_CIT0123) 2023; 23
Kim (2024071900443596500_CIT0048) 2017; 12
Maliga (2024071900443596500_CIT0063) 1993; 11
Lin (2024071900443596500_CIT0058) 2017; 90
Köhler (2024071900443596500_CIT0049) 2020; 11
Castresana (2024071900443596500_CIT0013) 2000; 17
Thode (2024071900443596500_CIT0106) 2021; 11
Smith (2024071900443596500_CIT0099) 2015; 15
Griffith (2024071900443596500_CIT0033) 2009; 170
Solórzano (2024071900443596500_CIT0100) 2019; 8
Walker (2024071900443596500_CIT0111) 2015; 102
de Vries (2024071900443596500_CIT0109) 2017; 9
Bendich (2024071900443596500_CIT0009) 2004; 16
Oliver (2024071900443596500_CIT0073) 2010; 11
Braukmann (2024071900443596500_CIT0011) 2009; 55
Langmead (2024071900443596500_CIT0130) 2012; 9
Ruhlman (2024071900443596500_CIT0086) 2018
Zhang (2024071900443596500_CIT0124) 2020; 20
Downie (2024071900443596500_CIT0024) 1994; 19
Qin (2024071900443596500_CIT0083) 2022; 28
Gonçalves (2024071900443596500_CIT0030) 2019; 138
Hertle (2024071900443596500_CIT0131) 2021; 7
Almeida (2024071900443596500_CIT0002) 2021; 44
Walker (2024071900443596500_CIT0113) 2018; 105
Majure (2024071900443596500_CIT0062) 2019; 106
Wang (2024071900443596500_CIT0115) 2016; 11
da Silva (2024071900443596500_CIT0097) 2021; 44
Stegemann (2024071900443596500_CIT0102) 2003; 100
Katoh (2024071900443596500_CIT0046) 2013; 30
Timmis (2024071900443596500_CIT0108) 2004; 5
Cauz-Santos (2024071900443596500_CIT0014) 2020; 12
Darling (2024071900443596500_CIT0023) 2004; 14
Chan (2024071900443596500_CIT0015) 2021; 49
Ogihara (2024071900443596500_CIT0069) 1988; 85
Wu (2024071900443596500_CIT0118) 2021; 21
Yang (2024071900443596500_CIT0121) 2016; 2
Jin (2024071900443596500_CIT0043) 2020; 21
Bankevich (2024071900443596500_CIT0006) 2012; 19
Becker (2024071900443596500_CIT0008) 2022
References_xml – volume: 11
  start-page: 1595
  year: 2021
  ident: 2024071900443596500_CIT0020
  article-title: Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-80149-9
– volume: 21
  start-page: 241
  year: 2020
  ident: 2024071900443596500_CIT0043
  article-title: GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes
  publication-title: Genome Biology
  doi: 10.1186/s13059-020-02154-5
– volume: 21
  start-page: 421
  year: 2021
  ident: 2024071900443596500_CIT0118
  article-title: Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives
  publication-title: BMC Plant Biology
  doi: 10.1186/s12870-021-03202-3
– volume: 69
  start-page: 613
  year: 2020
  ident: 2024071900443596500_CIT0125
  article-title: Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae
  publication-title: Systematic Biology
  doi: 10.1093/sysbio/syaa013
– start-page: 263
  volume-title: Plastid genome evolution. Advances in botanical research
  year: 2018
  ident: 2024071900443596500_CIT0068
  article-title: Structural diversity among plastid genomes of land plants
  doi: 10.1016/bs.abr.2017.11.013
– volume: 70
  start-page: 440
  year: 2021
  ident: 2024071900443596500_CIT0082
  article-title: Do alignment and trimming methods matter for phylogenomic (UCE) analyses
  publication-title: Systematic Biology
  doi: 10.1093/sysbio/syaa064
– volume: 3
  start-page: 1340
  year: 2011
  ident: 2024071900443596500_CIT0126
  article-title: Systematic error in seed plant phylogenomics
  publication-title: Genome Biology and Evolution
  doi: 10.1093/gbe/evr105
– volume: 48
  start-page: 1204
  year: 2008
  ident: 2024071900443596500_CIT0040
  article-title: Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae)
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1016/j.ympev.2008.06.013
– volume: 90
  start-page: 994
  year: 2017
  ident: 2024071900443596500_CIT0058
  article-title: Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids
  publication-title: The Plant Journal
  doi: 10.1111/tpj.13525
– volume: 17
  start-page: 540
  year: 2000
  ident: 2024071900443596500_CIT0013
  article-title: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/oxfordjournals.molbev.a026334
– volume: 12
  start-page: 1841
  year: 2020
  ident: 2024071900443596500_CIT0014
  article-title: A repertory of rearrangements and the loss of an inverted repeat region in Passiflora chloroplast genomes
  publication-title: Genome Biology and Evolution
  doi: 10.1093/gbe/evaa155
– start-page: 103
  volume-title: Advances in photosynthesis and respiration
  year: 2012
  ident: 2024071900443596500_CIT0039
  article-title: Plastid genomes of seed plants
– volume: 11
  start-page: 1321
  year: 2019
  ident: 2024071900443596500_CIT0018
  article-title: Lost and found: return of the inverted repeat in the legume clade defined by its absence
  publication-title: Genome Biology and Evolution
  doi: 10.1093/gbe/evz076
– volume: 56
  start-page: 564
  year: 2007
  ident: 2024071900443596500_CIT0105
  article-title: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments
  publication-title: Systematic Biology
  doi: 10.1080/10635150701472164
– volume: 27
  start-page: 1827
  year: 2015
  ident: 2024071900443596500_CIT0110
  article-title: YCF1: a green TIC
  publication-title: The Plant Cell
  doi: 10.1105/tpc.114.135541
– volume: 102
  start-page: 1751
  year: 2015
  ident: 2024071900443596500_CIT0111
  article-title: Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.1500299
– volume: 151
  start-page: 106903
  year: 2020
  ident: 2024071900443596500_CIT0031
  article-title: Under the rug: abandoning persistent misconceptions that obfuscate organelle evolution
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1016/j.ympev.2020.106903
– start-page: 223
  volume-title: Plastid genome evolution. Advances in Botanical Research
  year: 2018
  ident: 2024071900443596500_CIT0086
  article-title: Aberration or analogy? The atypical plastomes of Geraniaceae
  doi: 10.1016/bs.abr.2017.11.017
– volume: 38
  start-page: 803
  year: 2019
  ident: 2024071900443596500_CIT0090
  article-title: Differentiation of chromoplasts and other plastids in plants
  publication-title: Plant Cell Reports
  doi: 10.1007/s00299-019-02420-2
– volume: 44
  start-page: 877
  year: 2021
  ident: 2024071900443596500_CIT0002
  article-title: Assembling the puzzle: complete chloroplast genome sequences of Discocactus bahiensis Britton & Rose and Melocactus ernestii Vaupel (Cactaceae) and their evolutionary significance
  publication-title: Brazilian Journal of Botany
  doi: 10.1007/s40415-021-00772-2
– volume: 27
  start-page: 592
  year: 2011
  ident: 2024071900443596500_CIT0092
  article-title: phangorn: phylogenetic analysis in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq706
– volume: 11
  start-page: 600354
  year: 2021
  ident: 2024071900443596500_CIT0120
  article-title: Comparative chloroplast genomics of Corydalis species (Papaveraceae): evolutionary perspectives on their unusual large scale rearrangements
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.600354
– volume: 31
  start-page: 21
  year: 2013
  ident: 2024071900443596500_CIT0038
  article-title: Loss of the acetyl-CoA carboxylase (accD) gene in Poales
  publication-title: Plant Molecular Biology Reporter
  doi: 10.1007/s11105-012-0461-3
– year: 2017
  ident: 2024071900443596500_CIT0045
– volume: 66
  start-page: 350
  year: 2008
  ident: 2024071900443596500_CIT0037
  article-title: Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes
  publication-title: Journal of Molecular Evolution
  doi: 10.1007/s00239-008-9086-4
– volume: 16
  start-page: 1661
  year: 2004
  ident: 2024071900443596500_CIT0009
  article-title: Circular chloroplast chromosomes: the grand illusion
  publication-title: The Plant Cell
  doi: 10.1105/tpc.160771
– start-page: 1
  volume-title: 2010 Gateway Computing Environments Workshop (GCE)
  year: 2010
  ident: 2024071900443596500_CIT0067
  article-title: Creating the CIPRES Science Gateway for inference of large phylogenetic trees
  doi: 10.1109/GCE.2010.5676129
– volume: 283
  start-page: 1
  year: 2017
  ident: 2024071900443596500_CIT0081
  article-title: Pitfalls in supermatrix phylogenomics
  publication-title: European Journal of Taxonomy
– volume: 30
  start-page: 772
  year: 2013
  ident: 2024071900443596500_CIT0046
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/mst010
– volume: 9
  start-page: e1000602
  year: 2011
  ident: 2024071900443596500_CIT0080
  article-title: Resolving difficult phylogenetic questions: why more sequences are not enough
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.1000602
– volume: 9
  start-page: 357
  year: 2012
  ident: 2024071900443596500_CIT0130
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1923
– volume: 99
  start-page: 349
  year: 2012
  ident: 2024071900443596500_CIT0104
  article-title: Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.1100335
– volume: 71
  start-page: 476
  year: 2022
  ident: 2024071900443596500_CIT0025
  article-title: Defining coalescent genes: theory meets practice in organelle phylogenomics
  publication-title: Systematic Biology
  doi: 10.1093/sysbio/syab053
– volume: 49
  start-page: 9077
  year: 2021
  ident: 2024071900443596500_CIT0015
  article-title: tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkab688
– volume: 70
  start-page: 149
  year: 2010
  ident: 2024071900443596500_CIT0035
  article-title: Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae
  publication-title: Journal of Molecular Evolution
  doi: 10.1007/s00239-009-9317-3
– year: 2016
  ident: 2024071900443596500_CIT0129
  publication-title: BBMap short read aligner, and other bioinformatic tools
– volume: 214
  start-page: 48
  year: 2017
  ident: 2024071900443596500_CIT0032
  article-title: Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes
  publication-title: New Phytologist
  doi: 10.1111/nph.14398
– volume: 5
  start-page: 123
  year: 2004
  ident: 2024071900443596500_CIT0108
  article-title: Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg1271
– volume: 105
  start-page: 291
  year: 2018
  ident: 2024071900443596500_CIT0029
  article-title: Plastid phylogenomic analysis of green plants: a billion years of evolutionary history
  publication-title: American Journal of Botany
  doi: 10.1002/ajb2.1048
– volume: 25
  start-page: 3681
  year: 1997
  ident: 2024071900443596500_CIT0052
  article-title: Fine mapping of replication origins (oriA and oriB) in Nicotiana tabacum chloroplast DNA
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/25.18.3681
– volume: 476
  start-page: 2743
  year: 2019
  ident: 2024071900443596500_CIT0103
  article-title: The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics
  publication-title: Biochemical Journal
  doi: 10.1042/BCJ20190365
– volume: 7
  start-page: e7747
  year: 2019
  ident: 2024071900443596500_CIT0112
  article-title: Characterizing gene tree conflict in plastome-inferred phylogenies
  publication-title: PeerJ
  doi: 10.7717/peerj.7747
– volume: 8
  start-page: 392
  year: 2019
  ident: 2024071900443596500_CIT0100
  article-title: De novo assembly discovered novel structures in genome of plastids and revealed divergent inverted repeats in Mammillaria (Cactaceae, Caryophyllales)
  publication-title: Plants
  doi: 10.3390/plants8100392
– year: 2022
  ident: 2024071900443596500_CIT0008
– volume: 51
  start-page: 251
  year: 2021
  ident: 2024071900443596500_CIT0051
  article-title: Cactaceae at Caryophyllales.org – a dynamic online species-level taxonomic backbone for the family
  publication-title: Willdenowia
  doi: 10.3372/wi.51.51208
– volume: 108
  start-page: 8379
  year: 2011
  ident: 2024071900443596500_CIT0005
  article-title: Contemporaneous and recent radiations of the world’s major succulent plant lineages
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1100628108
– volume: 19
  start-page: 11
  year: 1987
  ident: 2024071900443596500_CIT0026
  article-title: A rapid DNA isolation procedure from small quantities of fresh leaf tissue
  publication-title: Phytochemical Bulletin
– volume: 22
  start-page: 97
  year: 2000
  ident: 2024071900443596500_CIT0027
  article-title: The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes
  publication-title: The Plant Journal: for Cell and Molecular Biology
  doi: 10.1046/j.1365-313x.2000.00722.x
– volume: 11
  start-page: 729
  year: 2020
  ident: 2024071900443596500_CIT0049
  article-title: Insights into chloroplast genome evolution across Opuntioideae (Cactaceae) reveals robust yet sometimes conflicting phylogenetic topologies
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.00729
– volume: 8
  start-page: 2452
  year: 2016
  ident: 2024071900443596500_CIT0055
  article-title: Genes translocated into the plastid inverted repeat show decelerated substitution rates and elevated GC content
  publication-title: Genome Biology and Evolution
  doi: 10.1093/gbe/evw167
– volume: 28
  start-page: 123
  year: 2022
  ident: 2024071900443596500_CIT0083
  article-title: The complete plastomes of red fleshed pitaya (Selenicereus monacanthus) and three related Selenicereus species: insights into gene losses, inverted repeat expansions and phylogenomic implications
  publication-title: Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology
  doi: 10.1007/s12298-021-01121-z
– volume: 31
  start-page: 3350
  year: 2015
  ident: 2024071900443596500_CIT0116
  article-title: Bandage: interactive visualization of de novo genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv383
– volume: 17
  start-page: 422
  year: 2004
  ident: 2024071900443596500_CIT0054
  article-title: Characterization of the plastid-encoded carboxyltransferase subunit (accD) gene of potato
  publication-title: Molecules and Cells
  doi: 10.1016/S1016-8478(23)13062-7
– volume: 254
  start-page: 44
  year: 2021
  ident: 2024071900443596500_CIT0003
  article-title: The genome of a thorny species: comparative genomic analysis among South and North American Cactaceae
  publication-title: Planta
  doi: 10.1007/s00425-021-03690-5
– start-page: 45
  volume-title: Plant diversity and evolution: genotypic and phenotypic variation in higher plants
  year: 2005
  ident: 2024071900443596500_CIT0085
  article-title: Chloroplast genomes of plants
  doi: 10.1079/9780851999043.0045
– volume: 8
  start-page: e68591
  year: 2013
  ident: 2024071900443596500_CIT0079
  article-title: The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068591
– volume: 15
  start-page: 100
  year: 2015
  ident: 2024071900443596500_CIT0088
  article-title: NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss
  publication-title: BMC Plant Biology
  doi: 10.1186/s12870-015-0484-7
– volume: 35
  start-page: 526
  year: 2019
  ident: 2024071900443596500_CIT0077
  article-title: ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty633
– volume: 106
  start-page: 1327
  year: 2019
  ident: 2024071900443596500_CIT0062
  article-title: Phylogenomics in Cactaceae: a case study using the chollas sensu lato (Cylindropuntieae, Opuntioideae) reveals a common pattern out of the Chihuahuan and Sonoran deserts
  publication-title: American Journal of Botany
  doi: 10.1002/ajb2.1364
– volume: 85
  start-page: 8573
  year: 1988
  ident: 2024071900443596500_CIT0069
  article-title: Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.85.22.8573
– volume: 5
  start-page: 9040
  year: 2015
  ident: 2024071900443596500_CIT0057
  article-title: The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family
  publication-title: Scientific Reports
  doi: 10.1038/srep09040
– volume: 100
  start-page: 8828
  year: 2003
  ident: 2024071900443596500_CIT0102
  article-title: High-frequency gene transfer from the chloroplast genome to the nucleus
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1430924100
– volume: 11
  start-page: 13267
  year: 2021
  ident: 2024071900443596500_CIT0106
  article-title: Comparative analyses of Mikania (Asteraceae: Eupatorieae) plastomes and impact of data partitioning and inference methods on phylogenetic relationships
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-92727-6
– volume: 55
  start-page: 323
  year: 2009
  ident: 2024071900443596500_CIT0011
  article-title: Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny
  publication-title: Current Genetics
  doi: 10.1007/s00294-009-0249-7
– volume: 255
  start-page: 57
  year: 2022
  ident: 2024071900443596500_CIT0021
  article-title: The plastome of Melocactus glaucescens Buining & Brederoo reveals unique evolutionary features and loss of essential tRNA genes
  publication-title: Planta
  doi: 10.1007/s00425-022-03841-2
– volume: 75
  start-page: 1180
  year: 1988
  ident: 2024071900443596500_CIT0076
  article-title: Chloroplast DNA variation and plant phylogeny
  publication-title: Annals of the Missouri Botanical Garden
  doi: 10.2307/2399279
– volume: 45
  start-page: 307
  year: 2001
  ident: 2024071900443596500_CIT0093
  article-title: The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization
  publication-title: Plant Molecular Biology
  doi: 10.1023/A:1006478403810
– volume: 105
  start-page: 446
  year: 2018
  ident: 2024071900443596500_CIT0113
  article-title: From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales
  publication-title: American Journal of Botany
  doi: 10.1002/ajb2.1069
– volume: 186
  start-page: 299
  year: 2010
  ident: 2024071900443596500_CIT0064
  article-title: Recombination and the maintenance of plant organelle genome stability
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2010.03195.x
– volume: 17
  start-page: 134
  year: 2016
  ident: 2024071900443596500_CIT0022
  article-title: Chloroplast genomes: diversity, evolution, and applications in genetic engineering
  publication-title: Genome Biology
  doi: 10.1186/s13059-016-1004-2
– volume: 13
  start-page: 245
  year: 2001
  ident: 2024071900443596500_CIT0056
  article-title: Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants
  publication-title: The Plant Cell
  doi: 10.1105/tpc.13.2.245
– volume: 11
  start-page: 143
  year: 2010
  ident: 2024071900443596500_CIT0073
  article-title: Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-143
– start-page: 3
  volume-title: Methods in molecular biology
  year: 2021
  ident: 2024071900443596500_CIT0087
  article-title: Plastid genomes of flowering plants: essential principles
– volume: 19
  start-page: 236
  year: 1994
  ident: 2024071900443596500_CIT0024
  article-title: A chloroplast DNA phylogeny of the caryophyllales based on structural and inverted repeat restriction site variation
  publication-title: Systematic Botany
  doi: 10.2307/2419599
– volume: 104
  start-page: 559
  year: 2017
  ident: 2024071900443596500_CIT0089
  article-title: Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.1600453
– volume: 62
  start-page: 431
  year: 2016
  ident: 2024071900443596500_CIT0072
  article-title: The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication
  publication-title: Current Genetics
  doi: 10.1007/s00294-015-0548-0
– volume: 16
  start-page: 1114
  year: 1999
  ident: 2024071900443596500_CIT0095
  article-title: Multiple comparisons of log-likelihoods with applications to phylogenetic inference
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/oxfordjournals.molbev.a026201
– volume: 14
  start-page: 1394
  year: 2004
  ident: 2024071900443596500_CIT0023
  article-title: Mauve: multiple alignment of conserved genomic sequence with rearrangements
  publication-title: Genome Research
  doi: 10.1101/gr.2289704
– volume: 23
  start-page: 132
  year: 2023
  ident: 2024071900443596500_CIT0123
  article-title: Plastome variations reveal the distinct evolutionary scenarios of plastomes in the subfamily Cereoideae (Cactaceae)
  publication-title: BMC Plant Biology
  doi: 10.1186/s12870-023-04148-4
– volume: 9
  start-page: 473
  year: 2017
  ident: 2024071900443596500_CIT0109
  article-title: The carboxy terminus of YCF1 contains a motif conserved throughout >500 Myr of streptophyte evolution
  publication-title: Genome Biology and Evolution
  doi: 10.1093/gbe/evx013
– volume: 7
  start-page: eabd8215
  year: 2021
  ident: 2024071900443596500_CIT0131
  article-title: Horizontal genome transfer by cell-to-cell travel of whole organelles
  publication-title: Science Advances
  doi: 10.1126/sciadv.abd8215
– volume: 15
  start-page: 150
  year: 2015
  ident: 2024071900443596500_CIT0099
  article-title: Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants
  publication-title: BMC Evolutionary Biology
  doi: 10.1186/s12862-015-0423-0
– volume: 105
  start-page: 18424
  year: 2008
  ident: 2024071900443596500_CIT0034
  article-title: Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0806759105
– volume: 335
  start-page: 953
  year: 2004
  ident: 2024071900443596500_CIT0070
  article-title: Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2003.11.020
– volume: 69
  start-page: 704
  year: 2013
  ident: 2024071900443596500_CIT0007
  article-title: Chloroplast genome analysis of Australian eucalypts – Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae)
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1016/j.ympev.2013.07.006
– volume: 30
  start-page: 217
  year: 2011
  ident: 2024071900443596500_CIT0044
  article-title: Complete sequencing and comparative analyses of the pepper (Capsicum annuum L.) plastome revealed high frequency of tandem repeats and large insertion/deletions on pepper plastome
  publication-title: Plant Cell Reports
  doi: 10.1007/s00299-010-0929-2
– volume: 11
  start-page: 101
  year: 1993
  ident: 2024071900443596500_CIT0063
  article-title: Towards plastid transformation in flowering plants
  publication-title: Trends in Biotechnology
  doi: 10.1016/0167-7799(93)90059-I
– volume: 9
  start-page: 979
  year: 2020
  ident: 2024071900443596500_CIT0128
  article-title: Complete chloroplast genome of Rhipsalis baccifera, the only cactus with natural distribution in the old world: genome rearrangement, intron gain and loss, and implications for phylogenetic studies
  publication-title: Plants
  doi: 10.3390/plants9080979
– volume: 105
  start-page: 71
  year: 2018
  ident: 2024071900443596500_CIT0098
  article-title: Total duplication of the small single copy region in the angiosperm plastome: rearrangement and inverted repeat instability in Asarum
  publication-title: American Journal of Botany
  doi: 10.1002/ajb2.1001
– volume: 13
  start-page: evab215
  year: 2021
  ident: 2024071900443596500_CIT0016
  article-title: Plastome structural evolution and homoplastic inversions in neo-astragalus (Fabaceae)
  publication-title: Genome Biology and Evolution
  doi: 10.1093/gbe/evab215
– volume: 118
  start-page: e2023058118
  year: 2021
  ident: 2024071900443596500_CIT0078
  article-title: Phylogenomic conflict coincides with rapid morphological innovation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.2023058118
– volume: 20
  start-page: 340
  year: 2020
  ident: 2024071900443596500_CIT0124
  article-title: Plastome phylogenomic study of Gentianeae (Gentianaceae): widespread gene tree discordance and its association with evolutionary rate heterogeneity of plastid genes
  publication-title: BMC Plant Biology
  doi: 10.1186/s12870-020-02518-w
– volume: 102
  start-page: 1115
  year: 2015
  ident: 2024071900443596500_CIT0091
  article-title: Exceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): loss of the ndh gene suite and inverted repeat
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.1500184
– volume: 19
  start-page: 455
  year: 2012
  ident: 2024071900443596500_CIT0006
  article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing
  publication-title: Journal of Computational Biology
  doi: 10.1089/cmb.2012.0021
– volume: 30
  start-page: 2677
  year: 2018
  ident: 2024071900443596500_CIT0047
  article-title: A Ycf2-FtsHi heteromeric AAA-ATPase complex is required for chloroplast protein import
  publication-title: The Plant Cell
  doi: 10.1105/tpc.18.00357
– volume-title: The cactus family
  year: 2001
  ident: 2024071900443596500_CIT0004
– volume: 10
  start-page: 421
  year: 2009
  ident: 2024071900443596500_CIT0012
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-421
– volume: 10
  start-page: 12129
  year: 2020
  ident: 2024071900443596500_CIT0019
  article-title: Caught in the act: variation in plastid genome inverted repeat expansion within and between populations of Medicago minima
  publication-title: Ecology and Evolution
  doi: 10.1002/ece3.6839
– volume: 170
  start-page: 107
  year: 2009
  ident: 2024071900443596500_CIT0033
  article-title: Phylogeny of Opuntioideae (Cactaceae)
  publication-title: International Journal of Plant Sciences
  doi: 10.1086/593048
– volume: 44
  start-page: 97
  year: 2021
  ident: 2024071900443596500_CIT0097
  article-title: Genetic and evolutionary analyses of plastomes of the subfamily Cactoideae (Cactaceae) indicate relaxed protein biosynthesis and tRNA import from cytosol
  publication-title: Brazilian Journal of Botany
  doi: 10.1007/s40415-020-00689-2
– volume: 11
  start-page: e0165176
  year: 2016
  ident: 2024071900443596500_CIT0096
  article-title: The chloroplast genome of Utricularia reniformis sheds light on the evolution of the ndh gene complex of terrestrial carnivorous plants from the Lentibulariaceae family
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0165176
– volume: 138
  start-page: 219
  year: 2019
  ident: 2024071900443596500_CIT0030
  article-title: Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1016/j.ympev.2019.05.022
– volume: 10
  start-page: 934
  year: 2019
  ident: 2024071900443596500_CIT0001
  article-title: Model selection may not be a mandatory step for phylogeny reconstruction
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-08822-w
– volume: 28
  start-page: 583
  year: 2011
  ident: 2024071900443596500_CIT0036
  article-title: Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msq229
– volume: 11
  start-page: 942
  year: 2020
  ident: 2024071900443596500_CIT0042
  article-title: The loss of the inverted repeat in the putranjivoid clade of Malpighiales
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.00942
– volume: 29
  start-page: 537
  year: 1982
  ident: 2024071900443596500_CIT0075
  article-title: Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost
  publication-title: Cell
  doi: 10.1016/0092-8674(82)90170-2
– volume: 11
  start-page: e0162324
  year: 2016
  ident: 2024071900443596500_CIT0115
  article-title: Chloroplast genome evolution in Actinidiaceae: clpP loss, heterogenous divergence and phylogenomic practice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162324
– volume: 2
  start-page: 16003
  year: 2016
  ident: 2024071900443596500_CIT0121
  article-title: PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis
  publication-title: Cell Discovery
  doi: 10.1038/celldisc.2016.3
– volume: 209
  start-page: 1747
  year: 2016
  ident: 2024071900443596500_CIT0127
  article-title: Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates
  publication-title: New Phytologist
  doi: 10.1111/nph.13743
– volume: 6
  start-page: 883
  year: 2015
  ident: 2024071900443596500_CIT0071
  article-title: DNA maintenance in plastids and mitochondria of plants
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2015.00883
– volume: 8
  start-page: e10155
  year: 2020
  ident: 2024071900443596500_CIT0119
  article-title: Conflicting phylogenetic signals in plastomes of the tribe Laureae (Lauraceae)
  publication-title: PeerJ
  doi: 10.7717/peerj.10155
– volume: 7
  start-page: 361
  year: 2022
  ident: 2024071900443596500_CIT0017
  article-title: The complete chloroplast genome sequence of Opuntia sulphurea (Cactaceae)
  publication-title: Mitochondrial DNA Part B
  doi: 10.1080/23802359.2022.2035837
– volume: 1
  start-page: 0126
  year: 2017
  ident: 2024071900443596500_CIT0094
  article-title: Contentious relationships in phylogenomic studies can be driven by a handful of genes
  publication-title: Nature Ecology & Evolution
  doi: 10.1038/s41559-017-0126
– volume: 93
  start-page: 356
  year: 2018
  ident: 2024071900443596500_CIT0059
  article-title: The complete chloroplast genome sequence of the folk medicinal and vegetable plant purslane (Portulaca oleracea L.)
  publication-title: The Journal of Horticultural Science and Biotechnology
  doi: 10.1080/14620316.2017.1389308
– volume: 505
  start-page: 262
  year: 2021
  ident: 2024071900443596500_CIT0050
  article-title: “That’s Opuntia, that was!”, again: a new combination for an old and enigmatic Opuntia s.l. (Cactaceae)
  publication-title: Phytotaxa
  doi: 10.11646/phytotaxa.505.3.2
– volume: 45
  start-page: W6
  year: 2017
  ident: 2024071900443596500_CIT0107
  article-title: GeSeq – versatile and accurate annotation of organelle genomes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx391
– volume: 17
  start-page: 421
  year: 1990
  ident: 2024071900443596500_CIT0010
  article-title: Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria
  publication-title: Current Genetics
  doi: 10.1007/BF00334522
– volume: 13
  start-page: 1
  year: 1995
  ident: 2024071900443596500_CIT0114
  article-title: Molecular systematic study of the Cactaceae: using chloroplast DNA variation to elucidate cactus phylogeny
  publication-title: Bradleya
  doi: 10.25223/brad.n13.1995.a1
– volume: 5
  start-page: 16958
  year: 2015
  ident: 2024071900443596500_CIT0028
  article-title: Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions and accelerated rate of evolution in clpP
  publication-title: Scientific Reports
  doi: 10.1038/srep16958
– volume: 134
  start-page: 74
  year: 2019
  ident: 2024071900443596500_CIT0122
  article-title: Plastid phylogenomic insights into the evolution of Caryophyllales
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1016/j.ympev.2018.12.023
– volume: 10
  start-page: 9091
  year: 2020
  ident: 2024071900443596500_CIT0041
  article-title: Plastome structural conservation and evolution in the clusioid clade of Malpighiales
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-66024-7
– volume: 99
  start-page: 847
  year: 2012
  ident: 2024071900443596500_CIT0061
  article-title: Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.1100375
– volume: 301
  start-page: 92
  year: 1983
  ident: 2024071900443596500_CIT0074
  article-title: Chloroplast DNA exists in two orientations
  publication-title: Nature
  doi: 10.1038/301092a0
– volume: 57
  start-page: 1
  year: 2019
  ident: 2024071900443596500_CIT0084
  article-title: Passiflora plastome sequencing reveals widespread genomic rearrangements
  publication-title: Journal of Systematics and Evolution
  doi: 10.1111/jse.12425
– year: 2006
  ident: 2024071900443596500_CIT0066
– volume: 8
  start-page: 9
  year: 2014
  ident: 2024071900443596500_CIT0060
  article-title: Phylogenetic relationships and morphological evolution in Opuntia s.str. and closely related members of tribe Opuntieae
  publication-title: Succulent Plant Research
– volume: 107
  start-page: 861
  year: 2021
  ident: 2024071900443596500_CIT0053
  article-title: The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes
  publication-title: The Plant Journal
  doi: 10.1111/tpj.15351
– volume: 113
  start-page: 1197
  year: 2014
  ident: 2024071900443596500_CIT0065
  article-title: The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcu050
– volume: 12
  start-page: e0187318
  year: 2017
  ident: 2024071900443596500_CIT0048
  article-title: Independent degradation in genes of the plastid ndh gene family in species of the orchid genus Cymbidium (Orchidaceae; Epidendroideae)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0187318
– volume: 30
  start-page: 1312
  year: 2014
  ident: 2024071900443596500_CIT0101
  article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 76
  start-page: 273
  year: 2011
  ident: 2024071900443596500_CIT0117
  article-title: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-011-9762-4
SSID ssj0002691
Score 2.4579535
Snippet Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 771
SubjectTerms Evolution, Molecular
Genes, Plant - genetics
Genome, Plastid - genetics
Opuntia - genetics
Part III: CAM Evolution
Phylogeny
Plastids - genetics
Title More than a spiny morphology: plastome variation in the prickly pear cacti (Opuntieae)
URI https://www.ncbi.nlm.nih.gov/pubmed/37467174
https://www.proquest.com/docview/2840246534
https://pubmed.ncbi.nlm.nih.gov/PMC10799996
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKhtBeEJ-jfMlIewCibF2cxClv62CaJop42NDeIttxRNGaRFuCBP8P_yd3seOkdEKwl6hK3Vjx_Xq-O9_9jpAdMCk0Fyzwp7nC0E2W-VPNmc_BWo8jKbJItlm-n-Ljs_DkPDofjX4NspaaWu6qn9fWldxEqnAP5IpVsv8hWfdQuAGfQb5wBQnD9Z9kPC8vtYexb094V9Wi-OEtS1g3U4ACrn4FpnFdLrX3HTxiMUxrrJANHwMbyOOjsLih5R2tsHGEFo6paY1lWZZ1pz1QS-Mx-yzuGijPYQrR5863LR_aLk1YEaT0RenSdWwLMICmf9I4eM7Ft8aExD9iKzYbwLUhiYBhbZ4pX_5bqeNAs4GS8Tkz9OW72mhesPV8PNVdUc197LMPPLSKlpvGLXbP5oZOe207MFRZopRwXSqRTUzH6wE0qmWLDYZdV_Z52O-KLlfx8_wQXOQpOoa3yGYA3gio082D2fvZkdvyg9i0ZuzeyxaCwvR7MPmenXqL3OnmWbWC1lybPzN0BybP6T1y1_oq9MAA7z4Z6eIBuT1rIfCQfEH0UUQfFbRFH-3R94522KMOe3RRwHBNLfYoYo-22KOvHfLePCJnRx9OD49926XDVywJaiwFySeBBjs8E4GIOGeaSS6mAjyDaCJUFHAVxkIGUSiTLN8XSJmY5SrmMpFIT_eYbBRloZ8QCjdiFbE80hkYyvA8qSTL4oTDsuU642Pytlu1VFkKe-ykcpGaVAqWwmqndrXHZMcNrgxzy_XDXnXLn4JmxeMyUeiyuUrBcAMDNo5YOCbbRhzuQZ0cxyRZEZQbgKztq98Ui68te3sHpqc3_-kzstX_7Z6Tjfqy0S_ANq7lS4vM3wZLvtc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+than+a+spiny+morphology%3A+plastome+variation+in+the+prickly+pear+cacti+%28Opuntieae%29&rft.jtitle=Annals+of+botany&rft.au=K%C3%B6hler%2C+Matias&rft.au=Reginato%2C+Marcelo&rft.au=Jin%2C+Jian-Jun&rft.au=Majure%2C+Lucas+C&rft.date=2023-11-25&rft.pub=Oxford+University+Press&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=132&rft.issue=4&rft.spage=771&rft.epage=786&rft_id=info:doi/10.1093%2Faob%2Fmcad098&rft_id=info%3Apmid%2F37467174&rft.externalDocID=PMC10799996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon