More than a spiny morphology: plastome variation in the prickly pear cacti (Opuntieae)
Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one...
Saved in:
Published in | Annals of botany Vol. 132; no. 4; pp. 771 - 786 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
25.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far.
Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes.
Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny.
Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further. |
---|---|
AbstractList | Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far.BACKGROUNDPlastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far.Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes.METHODSHere, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes.Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny.KEY RESULTSPlastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny.Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.CONCLUSIONSOur study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further. Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far. Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes. Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny. Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further. |
Author | Jin, Jian-Jun Köhler, Matias Reginato, Marcelo Majure, Lucas C |
Author_xml | – sequence: 1 givenname: Matias surname: Köhler fullname: Köhler, Matias – sequence: 2 givenname: Marcelo surname: Reginato fullname: Reginato, Marcelo – sequence: 3 givenname: Jian-Jun surname: Jin fullname: Jin, Jian-Jun – sequence: 4 givenname: Lucas C surname: Majure fullname: Majure, Lucas C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37467174$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1P3DAQhi20CJalp94rH7eqAv6I46QXhFBbkBZxob1aE8dhXRI7tb1I--9rYIsKYi4jzTzzzmjeIzRz3hmEPlJyQknDT8G3p6OGjjT1Hprnkihq1pAZmhNORCF5VR6ioxh_E0JY1dADdMhlWUkqyzn6de2DwWkNDgOOk3VbPPowrf3g77Zf8TRATH40-AGChWS9w9Zl3OApWH0_bPFkIGANOlm8vJk2LlkD5vMx2u9hiObDLi_Qz-_fbi8ui9XNj6uL81Whec1SwQXtCTOioh0wEFJyw1sJDTScCQJaMKnLClomyrbuegqsFk3X60q2dStExRfo7Fl32rSj6bRxKcCg8nEjhK3yYNXrjrNrdecfFCWyyfGosNwpBP9nY2JSo43aDAM44zdRsbokrKwELzP66f9lL1v-fTMDX54BHXyMwfQvCCXq0SuVvVI7rzJN39Dapqcf50vt8O7MX-yomho |
CitedBy_id | crossref_primary_10_17129_botsci_3446 crossref_primary_10_1007_s11033_024_09871_1 crossref_primary_10_1093_aob_mcad160 |
Cites_doi | 10.1038/s41598-020-80149-9 10.1186/s13059-020-02154-5 10.1186/s12870-021-03202-3 10.1093/sysbio/syaa013 10.1016/bs.abr.2017.11.013 10.1093/sysbio/syaa064 10.1093/gbe/evr105 10.1016/j.ympev.2008.06.013 10.1111/tpj.13525 10.1093/oxfordjournals.molbev.a026334 10.1093/gbe/evaa155 10.1093/gbe/evz076 10.1080/10635150701472164 10.1105/tpc.114.135541 10.3732/ajb.1500299 10.1016/j.ympev.2020.106903 10.1016/bs.abr.2017.11.017 10.1007/s00299-019-02420-2 10.1007/s40415-021-00772-2 10.1093/bioinformatics/btq706 10.3389/fpls.2020.600354 10.1007/s11105-012-0461-3 10.1007/s00239-008-9086-4 10.1105/tpc.160771 10.1109/GCE.2010.5676129 10.1093/molbev/mst010 10.1371/journal.pbio.1000602 10.1038/nmeth.1923 10.3732/ajb.1100335 10.1093/sysbio/syab053 10.1093/nar/gkab688 10.1007/s00239-009-9317-3 10.1111/nph.14398 10.1038/nrg1271 10.1002/ajb2.1048 10.1093/nar/25.18.3681 10.1042/BCJ20190365 10.7717/peerj.7747 10.3390/plants8100392 10.3372/wi.51.51208 10.1073/pnas.1100628108 10.1046/j.1365-313x.2000.00722.x 10.3389/fpls.2020.00729 10.1093/gbe/evw167 10.1007/s12298-021-01121-z 10.1093/bioinformatics/btv383 10.1016/S1016-8478(23)13062-7 10.1007/s00425-021-03690-5 10.1079/9780851999043.0045 10.1371/journal.pone.0068591 10.1186/s12870-015-0484-7 10.1093/bioinformatics/bty633 10.1002/ajb2.1364 10.1073/pnas.85.22.8573 10.1038/srep09040 10.1073/pnas.1430924100 10.1038/s41598-021-92727-6 10.1007/s00294-009-0249-7 10.1007/s00425-022-03841-2 10.2307/2399279 10.1023/A:1006478403810 10.1002/ajb2.1069 10.1111/j.1469-8137.2010.03195.x 10.1186/s13059-016-1004-2 10.1105/tpc.13.2.245 10.1186/1471-2164-11-143 10.2307/2419599 10.3732/ajb.1600453 10.1007/s00294-015-0548-0 10.1093/oxfordjournals.molbev.a026201 10.1101/gr.2289704 10.1186/s12870-023-04148-4 10.1093/gbe/evx013 10.1126/sciadv.abd8215 10.1186/s12862-015-0423-0 10.1073/pnas.0806759105 10.1016/j.jmb.2003.11.020 10.1016/j.ympev.2013.07.006 10.1007/s00299-010-0929-2 10.1016/0167-7799(93)90059-I 10.3390/plants9080979 10.1002/ajb2.1001 10.1093/gbe/evab215 10.1073/pnas.2023058118 10.1186/s12870-020-02518-w 10.3732/ajb.1500184 10.1089/cmb.2012.0021 10.1105/tpc.18.00357 10.1186/1471-2105-10-421 10.1002/ece3.6839 10.1086/593048 10.1007/s40415-020-00689-2 10.1371/journal.pone.0165176 10.1016/j.ympev.2019.05.022 10.1038/s41467-019-08822-w 10.1093/molbev/msq229 10.3389/fpls.2020.00942 10.1016/0092-8674(82)90170-2 10.1371/journal.pone.0162324 10.1038/celldisc.2016.3 10.1111/nph.13743 10.3389/fpls.2015.00883 10.7717/peerj.10155 10.1080/23802359.2022.2035837 10.1038/s41559-017-0126 10.1080/14620316.2017.1389308 10.11646/phytotaxa.505.3.2 10.1093/nar/gkx391 10.1007/BF00334522 10.25223/brad.n13.1995.a1 10.1038/srep16958 10.1016/j.ympev.2018.12.023 10.1038/s41598-020-66024-7 10.3732/ajb.1100375 10.1038/301092a0 10.1111/jse.12425 10.1111/tpj.15351 10.1093/aob/mcu050 10.1371/journal.pone.0187318 10.1093/bioinformatics/btu033 10.1007/s11103-011-9762-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2023 |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/aob/mcad098 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1095-8290 |
EndPage | 786 |
ExternalDocumentID | PMC10799996 37467174 10_1093_aob_mcad098 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: International Association for Plant Taxonomy – fundername: National Science Foundation grantid: DEB #1735604 – fundername: CAPES grantid: 88887.583192/2020-00 – fundername: Cactus and Succulent Society of America – fundername: ; – fundername: ; grantid: 88887.583192/2020-00 – fundername: ; grantid: DEB #1735604 |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 1TH 1~5 23M 2WC 4.4 482 48X 4G. 5GY 5VS 5WA 5WD 6J9 7-5 70D 79B A8Z AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAXTN AAYXX ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACIWK ACNCT ACPRK ACUFI ACUHS ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHGBF AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CITATION COF CS3 CZ4 DAKXR DILTD D~K E3Z EBD EBS EDH EE~ EMOBN ESX F5P F9B FDB FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HYE HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY NU- O-L O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX RPM RUSNO RW1 RXO SV3 TCN TLC TN5 TR2 UPT W8F WH7 WOQ X7H Y6R YAYTL YKOAZ YSK YXANX YZZ ZKX ~02 ~91 ~KM AACTN CGR CUY CVF ECM EIF M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c382t-351f02e561da2a5773e3b7a9a93250ac527c46ab254b8df1a2859dfc67b8b5563 |
ISSN | 0305-7364 1095-8290 |
IngestDate | Thu Aug 21 18:32:55 EDT 2025 Thu Jul 10 18:23:57 EDT 2025 Thu Apr 03 07:09:02 EDT 2025 Tue Jul 01 03:04:18 EDT 2025 Thu Apr 24 22:56:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | plastid genome Cactaceae evolution Opuntia atypical plastomes phylogenomics |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c382t-351f02e561da2a5773e3b7a9a93250ac527c46ab254b8df1a2859dfc67b8b5563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/aob/advance-article-pdf/doi/10.1093/aob/mcad098/50912525/mcad098.pdf |
PMID | 37467174 |
PQID | 2840246534 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10799996 proquest_miscellaneous_2840246534 pubmed_primary_37467174 crossref_primary_10_1093_aob_mcad098 crossref_citationtrail_10_1093_aob_mcad098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-25 |
PublicationDateYYYYMMDD | 2023-11-25 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: US |
PublicationTitle | Annals of botany |
PublicationTitleAlternate | Ann Bot |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Doyle (2024071900443596500_CIT0025) 2022; 71 Cui (2024071900443596500_CIT0020) 2021; 11 Sadali (2024071900443596500_CIT0090) 2019; 38 Maréchal (2024071900443596500_CIT0064) 2010; 186 Gitzendanner (2024071900443596500_CIT0029) 2018; 105 Bayly (2024071900443596500_CIT0007) 2013; 69 Ruhlman (2024071900443596500_CIT0088) 2015; 15 Paradis (2024071900443596500_CIT0077) 2019; 35 Mower (2024071900443596500_CIT0068) 2018 de Vries (2024071900443596500_CIT0110) 2015; 27 Camacho (2024071900443596500_CIT0012) 2009; 10 Lin (2024071900443596500_CIT0057) 2015; 5 Liu (2024071900443596500_CIT0059) 2018; 93 Oldenburg (2024071900443596500_CIT0070) 2004; 335 Kikuchi (2024071900443596500_CIT0047) 2018; 30 Chen (2024071900443596500_CIT0017) 2022; 7 Schmitz-Linneweber (2024071900443596500_CIT0093) 2001; 45 Wicke (2024071900443596500_CIT0117) 2011; 76 Korotkova (2024071900443596500_CIT0051) 2021; 51 Guisinger (2024071900443596500_CIT0034) 2008; 105 Oulo (2024071900443596500_CIT0128) 2020; 9 Jin (2024071900443596500_CIT0042) 2020; 11 Köhler (2024071900443596500_CIT0050) 2021; 505 Oldenburg (2024071900443596500_CIT0071) 2015; 6 Majure (2024071900443596500_CIT0061) 2012; 99 Oldenburg (2024071900443596500_CIT0072) 2016; 62 Parins-Fukuchi (2024071900443596500_CIT0078) 2021; 118 Jo (2024071900443596500_CIT0044) 2011; 30 Ruhlman (2024071900443596500_CIT0087) 2021 Bendich (2024071900443596500_CIT0010) 1990; 17 Mayer (2024071900443596500_CIT0066) 2006 Yao (2024071900443596500_CIT0122) 2019; 134 Ruhlman (2024071900443596500_CIT0089) 2017; 104 Zhang (2024071900443596500_CIT0125) 2020; 69 Wick (2024071900443596500_CIT0116) 2015; 31 Philippe (2024071900443596500_CIT0081) 2017; 283 Harris (2024071900443596500_CIT0038) 2013; 31 Arakaki (2024071900443596500_CIT0005) 2011; 108 Talavera (2024071900443596500_CIT0105) 2007; 56 Miller (2024071900443596500_CIT0067) 2010 Sanderson (2024071900443596500_CIT0091) 2015; 102 Drescher (2024071900443596500_CIT0027) 2000; 22 Schliep (2024071900443596500_CIT0092) 2011; 27 Graham (2024071900443596500_CIT0032) 2017; 214 Dalla Costa (2024071900443596500_CIT0021) 2022; 255 Choi (2024071900443596500_CIT0018) 2019; 11 Gonçalves (2024071900443596500_CIT0031) 2020; 151 Haberle (2024071900443596500_CIT0037) 2008; 66 Tillich (2024071900443596500_CIT0107) 2017; 45 Doyle (2024071900443596500_CIT0026) 1987; 19 Jin (2024071900443596500_CIT0041) 2020; 10 Wallace (2024071900443596500_CIT0114) 1995; 13 Zhu (2024071900443596500_CIT0127) 2016; 209 Li (2024071900443596500_CIT0055) 2016; 8 Silva (2024071900443596500_CIT0096) 2016; 11 Johnson (2024071900443596500_CIT0045) 2017 Guisinger (2024071900443596500_CIT0036) 2011; 28 Raubeson (2024071900443596500_CIT0085) 2005 Palmer (2024071900443596500_CIT0074) 1983; 301 Shimodaira (2024071900443596500_CIT0095) 1999; 16 Philippe (2024071900443596500_CIT0080) 2011; 9 Choi (2024071900443596500_CIT0019) 2020; 10 Palmer (2024071900443596500_CIT0076) 1988; 75 Walker (2024071900443596500_CIT0112) 2019; 7 Anderson (2024071900443596500_CIT0004) 2001 Lilly (2024071900443596500_CIT0056) 2001; 13 Rabah (2024071900443596500_CIT0084) 2019; 57 Lee (2024071900443596500_CIT0053) 2021; 107 Palmer (2024071900443596500_CIT0075) 1982; 29 Peredo (2024071900443596500_CIT0079) 2013; 8 Shen (2024071900443596500_CIT0094) 2017; 1 Stamatakis (2024071900443596500_CIT0101) 2014; 30 Jansen (2024071900443596500_CIT0039) 2012 Majure (2024071900443596500_CIT0060) 2014; 8 Dugas (2024071900443596500_CIT0028) 2015; 5 Lee (2024071900443596500_CIT0054) 2004; 17 Charboneau (2024071900443596500_CIT0016) 2021; 13 Martin (2024071900443596500_CIT0065) 2014; 113 Straub (2024071900443596500_CIT0104) 2012; 99 Strand (2024071900443596500_CIT0103) 2019; 476 Zhong (2024071900443596500_CIT0126) 2011; 3 Abadi (2024071900443596500_CIT0001) 2019; 10 Amaral (2024071900443596500_CIT0003) 2021; 254 Guisinger (2024071900443596500_CIT0035) 2010; 70 Xu (2024071900443596500_CIT0120) 2021; 11 Bushnell (2024071900443596500_CIT0129) 2016 Xiao (2024071900443596500_CIT0119) 2020; 8 Kunnimalaiyaan (2024071900443596500_CIT0052) 1997; 25 Jansen (2024071900443596500_CIT0040) 2008; 48 Portik (2024071900443596500_CIT0082) 2021; 70 Daniell (2024071900443596500_CIT0022) 2016; 17 Sinn (2024071900443596500_CIT0098) 2018; 105 Yu (2024071900443596500_CIT0123) 2023; 23 Kim (2024071900443596500_CIT0048) 2017; 12 Maliga (2024071900443596500_CIT0063) 1993; 11 Lin (2024071900443596500_CIT0058) 2017; 90 Köhler (2024071900443596500_CIT0049) 2020; 11 Castresana (2024071900443596500_CIT0013) 2000; 17 Thode (2024071900443596500_CIT0106) 2021; 11 Smith (2024071900443596500_CIT0099) 2015; 15 Griffith (2024071900443596500_CIT0033) 2009; 170 Solórzano (2024071900443596500_CIT0100) 2019; 8 Walker (2024071900443596500_CIT0111) 2015; 102 de Vries (2024071900443596500_CIT0109) 2017; 9 Bendich (2024071900443596500_CIT0009) 2004; 16 Oliver (2024071900443596500_CIT0073) 2010; 11 Braukmann (2024071900443596500_CIT0011) 2009; 55 Langmead (2024071900443596500_CIT0130) 2012; 9 Ruhlman (2024071900443596500_CIT0086) 2018 Zhang (2024071900443596500_CIT0124) 2020; 20 Downie (2024071900443596500_CIT0024) 1994; 19 Qin (2024071900443596500_CIT0083) 2022; 28 Gonçalves (2024071900443596500_CIT0030) 2019; 138 Hertle (2024071900443596500_CIT0131) 2021; 7 Almeida (2024071900443596500_CIT0002) 2021; 44 Walker (2024071900443596500_CIT0113) 2018; 105 Majure (2024071900443596500_CIT0062) 2019; 106 Wang (2024071900443596500_CIT0115) 2016; 11 da Silva (2024071900443596500_CIT0097) 2021; 44 Stegemann (2024071900443596500_CIT0102) 2003; 100 Katoh (2024071900443596500_CIT0046) 2013; 30 Timmis (2024071900443596500_CIT0108) 2004; 5 Cauz-Santos (2024071900443596500_CIT0014) 2020; 12 Darling (2024071900443596500_CIT0023) 2004; 14 Chan (2024071900443596500_CIT0015) 2021; 49 Ogihara (2024071900443596500_CIT0069) 1988; 85 Wu (2024071900443596500_CIT0118) 2021; 21 Yang (2024071900443596500_CIT0121) 2016; 2 Jin (2024071900443596500_CIT0043) 2020; 21 Bankevich (2024071900443596500_CIT0006) 2012; 19 Becker (2024071900443596500_CIT0008) 2022 |
References_xml | – volume: 11 start-page: 1595 year: 2021 ident: 2024071900443596500_CIT0020 article-title: Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer publication-title: Scientific Reports doi: 10.1038/s41598-020-80149-9 – volume: 21 start-page: 241 year: 2020 ident: 2024071900443596500_CIT0043 article-title: GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes publication-title: Genome Biology doi: 10.1186/s13059-020-02154-5 – volume: 21 start-page: 421 year: 2021 ident: 2024071900443596500_CIT0118 article-title: Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives publication-title: BMC Plant Biology doi: 10.1186/s12870-021-03202-3 – volume: 69 start-page: 613 year: 2020 ident: 2024071900443596500_CIT0125 article-title: Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae publication-title: Systematic Biology doi: 10.1093/sysbio/syaa013 – start-page: 263 volume-title: Plastid genome evolution. Advances in botanical research year: 2018 ident: 2024071900443596500_CIT0068 article-title: Structural diversity among plastid genomes of land plants doi: 10.1016/bs.abr.2017.11.013 – volume: 70 start-page: 440 year: 2021 ident: 2024071900443596500_CIT0082 article-title: Do alignment and trimming methods matter for phylogenomic (UCE) analyses publication-title: Systematic Biology doi: 10.1093/sysbio/syaa064 – volume: 3 start-page: 1340 year: 2011 ident: 2024071900443596500_CIT0126 article-title: Systematic error in seed plant phylogenomics publication-title: Genome Biology and Evolution doi: 10.1093/gbe/evr105 – volume: 48 start-page: 1204 year: 2008 ident: 2024071900443596500_CIT0040 article-title: Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae) publication-title: Molecular Phylogenetics and Evolution doi: 10.1016/j.ympev.2008.06.013 – volume: 90 start-page: 994 year: 2017 ident: 2024071900443596500_CIT0058 article-title: Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids publication-title: The Plant Journal doi: 10.1111/tpj.13525 – volume: 17 start-page: 540 year: 2000 ident: 2024071900443596500_CIT0013 article-title: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis publication-title: Molecular Biology and Evolution doi: 10.1093/oxfordjournals.molbev.a026334 – volume: 12 start-page: 1841 year: 2020 ident: 2024071900443596500_CIT0014 article-title: A repertory of rearrangements and the loss of an inverted repeat region in Passiflora chloroplast genomes publication-title: Genome Biology and Evolution doi: 10.1093/gbe/evaa155 – start-page: 103 volume-title: Advances in photosynthesis and respiration year: 2012 ident: 2024071900443596500_CIT0039 article-title: Plastid genomes of seed plants – volume: 11 start-page: 1321 year: 2019 ident: 2024071900443596500_CIT0018 article-title: Lost and found: return of the inverted repeat in the legume clade defined by its absence publication-title: Genome Biology and Evolution doi: 10.1093/gbe/evz076 – volume: 56 start-page: 564 year: 2007 ident: 2024071900443596500_CIT0105 article-title: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments publication-title: Systematic Biology doi: 10.1080/10635150701472164 – volume: 27 start-page: 1827 year: 2015 ident: 2024071900443596500_CIT0110 article-title: YCF1: a green TIC publication-title: The Plant Cell doi: 10.1105/tpc.114.135541 – volume: 102 start-page: 1751 year: 2015 ident: 2024071900443596500_CIT0111 article-title: Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes publication-title: American Journal of Botany doi: 10.3732/ajb.1500299 – volume: 151 start-page: 106903 year: 2020 ident: 2024071900443596500_CIT0031 article-title: Under the rug: abandoning persistent misconceptions that obfuscate organelle evolution publication-title: Molecular Phylogenetics and Evolution doi: 10.1016/j.ympev.2020.106903 – start-page: 223 volume-title: Plastid genome evolution. Advances in Botanical Research year: 2018 ident: 2024071900443596500_CIT0086 article-title: Aberration or analogy? The atypical plastomes of Geraniaceae doi: 10.1016/bs.abr.2017.11.017 – volume: 38 start-page: 803 year: 2019 ident: 2024071900443596500_CIT0090 article-title: Differentiation of chromoplasts and other plastids in plants publication-title: Plant Cell Reports doi: 10.1007/s00299-019-02420-2 – volume: 44 start-page: 877 year: 2021 ident: 2024071900443596500_CIT0002 article-title: Assembling the puzzle: complete chloroplast genome sequences of Discocactus bahiensis Britton & Rose and Melocactus ernestii Vaupel (Cactaceae) and their evolutionary significance publication-title: Brazilian Journal of Botany doi: 10.1007/s40415-021-00772-2 – volume: 27 start-page: 592 year: 2011 ident: 2024071900443596500_CIT0092 article-title: phangorn: phylogenetic analysis in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq706 – volume: 11 start-page: 600354 year: 2021 ident: 2024071900443596500_CIT0120 article-title: Comparative chloroplast genomics of Corydalis species (Papaveraceae): evolutionary perspectives on their unusual large scale rearrangements publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.600354 – volume: 31 start-page: 21 year: 2013 ident: 2024071900443596500_CIT0038 article-title: Loss of the acetyl-CoA carboxylase (accD) gene in Poales publication-title: Plant Molecular Biology Reporter doi: 10.1007/s11105-012-0461-3 – year: 2017 ident: 2024071900443596500_CIT0045 – volume: 66 start-page: 350 year: 2008 ident: 2024071900443596500_CIT0037 article-title: Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes publication-title: Journal of Molecular Evolution doi: 10.1007/s00239-008-9086-4 – volume: 16 start-page: 1661 year: 2004 ident: 2024071900443596500_CIT0009 article-title: Circular chloroplast chromosomes: the grand illusion publication-title: The Plant Cell doi: 10.1105/tpc.160771 – start-page: 1 volume-title: 2010 Gateway Computing Environments Workshop (GCE) year: 2010 ident: 2024071900443596500_CIT0067 article-title: Creating the CIPRES Science Gateway for inference of large phylogenetic trees doi: 10.1109/GCE.2010.5676129 – volume: 283 start-page: 1 year: 2017 ident: 2024071900443596500_CIT0081 article-title: Pitfalls in supermatrix phylogenomics publication-title: European Journal of Taxonomy – volume: 30 start-page: 772 year: 2013 ident: 2024071900443596500_CIT0046 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/mst010 – volume: 9 start-page: e1000602 year: 2011 ident: 2024071900443596500_CIT0080 article-title: Resolving difficult phylogenetic questions: why more sequences are not enough publication-title: PLoS Biology doi: 10.1371/journal.pbio.1000602 – volume: 9 start-page: 357 year: 2012 ident: 2024071900443596500_CIT0130 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nature Methods doi: 10.1038/nmeth.1923 – volume: 99 start-page: 349 year: 2012 ident: 2024071900443596500_CIT0104 article-title: Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics publication-title: American Journal of Botany doi: 10.3732/ajb.1100335 – volume: 71 start-page: 476 year: 2022 ident: 2024071900443596500_CIT0025 article-title: Defining coalescent genes: theory meets practice in organelle phylogenomics publication-title: Systematic Biology doi: 10.1093/sysbio/syab053 – volume: 49 start-page: 9077 year: 2021 ident: 2024071900443596500_CIT0015 article-title: tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes publication-title: Nucleic Acids Research doi: 10.1093/nar/gkab688 – volume: 70 start-page: 149 year: 2010 ident: 2024071900443596500_CIT0035 article-title: Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae publication-title: Journal of Molecular Evolution doi: 10.1007/s00239-009-9317-3 – year: 2016 ident: 2024071900443596500_CIT0129 publication-title: BBMap short read aligner, and other bioinformatic tools – volume: 214 start-page: 48 year: 2017 ident: 2024071900443596500_CIT0032 article-title: Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes publication-title: New Phytologist doi: 10.1111/nph.14398 – volume: 5 start-page: 123 year: 2004 ident: 2024071900443596500_CIT0108 article-title: Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes publication-title: Nature Reviews Genetics doi: 10.1038/nrg1271 – volume: 105 start-page: 291 year: 2018 ident: 2024071900443596500_CIT0029 article-title: Plastid phylogenomic analysis of green plants: a billion years of evolutionary history publication-title: American Journal of Botany doi: 10.1002/ajb2.1048 – volume: 25 start-page: 3681 year: 1997 ident: 2024071900443596500_CIT0052 article-title: Fine mapping of replication origins (oriA and oriB) in Nicotiana tabacum chloroplast DNA publication-title: Nucleic Acids Research doi: 10.1093/nar/25.18.3681 – volume: 476 start-page: 2743 year: 2019 ident: 2024071900443596500_CIT0103 article-title: The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics publication-title: Biochemical Journal doi: 10.1042/BCJ20190365 – volume: 7 start-page: e7747 year: 2019 ident: 2024071900443596500_CIT0112 article-title: Characterizing gene tree conflict in plastome-inferred phylogenies publication-title: PeerJ doi: 10.7717/peerj.7747 – volume: 8 start-page: 392 year: 2019 ident: 2024071900443596500_CIT0100 article-title: De novo assembly discovered novel structures in genome of plastids and revealed divergent inverted repeats in Mammillaria (Cactaceae, Caryophyllales) publication-title: Plants doi: 10.3390/plants8100392 – year: 2022 ident: 2024071900443596500_CIT0008 – volume: 51 start-page: 251 year: 2021 ident: 2024071900443596500_CIT0051 article-title: Cactaceae at Caryophyllales.org – a dynamic online species-level taxonomic backbone for the family publication-title: Willdenowia doi: 10.3372/wi.51.51208 – volume: 108 start-page: 8379 year: 2011 ident: 2024071900443596500_CIT0005 article-title: Contemporaneous and recent radiations of the world’s major succulent plant lineages publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1100628108 – volume: 19 start-page: 11 year: 1987 ident: 2024071900443596500_CIT0026 article-title: A rapid DNA isolation procedure from small quantities of fresh leaf tissue publication-title: Phytochemical Bulletin – volume: 22 start-page: 97 year: 2000 ident: 2024071900443596500_CIT0027 article-title: The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes publication-title: The Plant Journal: for Cell and Molecular Biology doi: 10.1046/j.1365-313x.2000.00722.x – volume: 11 start-page: 729 year: 2020 ident: 2024071900443596500_CIT0049 article-title: Insights into chloroplast genome evolution across Opuntioideae (Cactaceae) reveals robust yet sometimes conflicting phylogenetic topologies publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.00729 – volume: 8 start-page: 2452 year: 2016 ident: 2024071900443596500_CIT0055 article-title: Genes translocated into the plastid inverted repeat show decelerated substitution rates and elevated GC content publication-title: Genome Biology and Evolution doi: 10.1093/gbe/evw167 – volume: 28 start-page: 123 year: 2022 ident: 2024071900443596500_CIT0083 article-title: The complete plastomes of red fleshed pitaya (Selenicereus monacanthus) and three related Selenicereus species: insights into gene losses, inverted repeat expansions and phylogenomic implications publication-title: Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology doi: 10.1007/s12298-021-01121-z – volume: 31 start-page: 3350 year: 2015 ident: 2024071900443596500_CIT0116 article-title: Bandage: interactive visualization of de novo genome assemblies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv383 – volume: 17 start-page: 422 year: 2004 ident: 2024071900443596500_CIT0054 article-title: Characterization of the plastid-encoded carboxyltransferase subunit (accD) gene of potato publication-title: Molecules and Cells doi: 10.1016/S1016-8478(23)13062-7 – volume: 254 start-page: 44 year: 2021 ident: 2024071900443596500_CIT0003 article-title: The genome of a thorny species: comparative genomic analysis among South and North American Cactaceae publication-title: Planta doi: 10.1007/s00425-021-03690-5 – start-page: 45 volume-title: Plant diversity and evolution: genotypic and phenotypic variation in higher plants year: 2005 ident: 2024071900443596500_CIT0085 article-title: Chloroplast genomes of plants doi: 10.1079/9780851999043.0045 – volume: 8 start-page: e68591 year: 2013 ident: 2024071900443596500_CIT0079 article-title: The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm publication-title: PLoS One doi: 10.1371/journal.pone.0068591 – volume: 15 start-page: 100 year: 2015 ident: 2024071900443596500_CIT0088 article-title: NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss publication-title: BMC Plant Biology doi: 10.1186/s12870-015-0484-7 – volume: 35 start-page: 526 year: 2019 ident: 2024071900443596500_CIT0077 article-title: ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty633 – volume: 106 start-page: 1327 year: 2019 ident: 2024071900443596500_CIT0062 article-title: Phylogenomics in Cactaceae: a case study using the chollas sensu lato (Cylindropuntieae, Opuntioideae) reveals a common pattern out of the Chihuahuan and Sonoran deserts publication-title: American Journal of Botany doi: 10.1002/ajb2.1364 – volume: 85 start-page: 8573 year: 1988 ident: 2024071900443596500_CIT0069 article-title: Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.85.22.8573 – volume: 5 start-page: 9040 year: 2015 ident: 2024071900443596500_CIT0057 article-title: The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family publication-title: Scientific Reports doi: 10.1038/srep09040 – volume: 100 start-page: 8828 year: 2003 ident: 2024071900443596500_CIT0102 article-title: High-frequency gene transfer from the chloroplast genome to the nucleus publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1430924100 – volume: 11 start-page: 13267 year: 2021 ident: 2024071900443596500_CIT0106 article-title: Comparative analyses of Mikania (Asteraceae: Eupatorieae) plastomes and impact of data partitioning and inference methods on phylogenetic relationships publication-title: Scientific Reports doi: 10.1038/s41598-021-92727-6 – volume: 55 start-page: 323 year: 2009 ident: 2024071900443596500_CIT0011 article-title: Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny publication-title: Current Genetics doi: 10.1007/s00294-009-0249-7 – volume: 255 start-page: 57 year: 2022 ident: 2024071900443596500_CIT0021 article-title: The plastome of Melocactus glaucescens Buining & Brederoo reveals unique evolutionary features and loss of essential tRNA genes publication-title: Planta doi: 10.1007/s00425-022-03841-2 – volume: 75 start-page: 1180 year: 1988 ident: 2024071900443596500_CIT0076 article-title: Chloroplast DNA variation and plant phylogeny publication-title: Annals of the Missouri Botanical Garden doi: 10.2307/2399279 – volume: 45 start-page: 307 year: 2001 ident: 2024071900443596500_CIT0093 article-title: The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization publication-title: Plant Molecular Biology doi: 10.1023/A:1006478403810 – volume: 105 start-page: 446 year: 2018 ident: 2024071900443596500_CIT0113 article-title: From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales publication-title: American Journal of Botany doi: 10.1002/ajb2.1069 – volume: 186 start-page: 299 year: 2010 ident: 2024071900443596500_CIT0064 article-title: Recombination and the maintenance of plant organelle genome stability publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03195.x – volume: 17 start-page: 134 year: 2016 ident: 2024071900443596500_CIT0022 article-title: Chloroplast genomes: diversity, evolution, and applications in genetic engineering publication-title: Genome Biology doi: 10.1186/s13059-016-1004-2 – volume: 13 start-page: 245 year: 2001 ident: 2024071900443596500_CIT0056 article-title: Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants publication-title: The Plant Cell doi: 10.1105/tpc.13.2.245 – volume: 11 start-page: 143 year: 2010 ident: 2024071900443596500_CIT0073 article-title: Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes publication-title: BMC Genomics doi: 10.1186/1471-2164-11-143 – start-page: 3 volume-title: Methods in molecular biology year: 2021 ident: 2024071900443596500_CIT0087 article-title: Plastid genomes of flowering plants: essential principles – volume: 19 start-page: 236 year: 1994 ident: 2024071900443596500_CIT0024 article-title: A chloroplast DNA phylogeny of the caryophyllales based on structural and inverted repeat restriction site variation publication-title: Systematic Botany doi: 10.2307/2419599 – volume: 104 start-page: 559 year: 2017 ident: 2024071900443596500_CIT0089 article-title: Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure publication-title: American Journal of Botany doi: 10.3732/ajb.1600453 – volume: 62 start-page: 431 year: 2016 ident: 2024071900443596500_CIT0072 article-title: The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication publication-title: Current Genetics doi: 10.1007/s00294-015-0548-0 – volume: 16 start-page: 1114 year: 1999 ident: 2024071900443596500_CIT0095 article-title: Multiple comparisons of log-likelihoods with applications to phylogenetic inference publication-title: Molecular Biology and Evolution doi: 10.1093/oxfordjournals.molbev.a026201 – volume: 14 start-page: 1394 year: 2004 ident: 2024071900443596500_CIT0023 article-title: Mauve: multiple alignment of conserved genomic sequence with rearrangements publication-title: Genome Research doi: 10.1101/gr.2289704 – volume: 23 start-page: 132 year: 2023 ident: 2024071900443596500_CIT0123 article-title: Plastome variations reveal the distinct evolutionary scenarios of plastomes in the subfamily Cereoideae (Cactaceae) publication-title: BMC Plant Biology doi: 10.1186/s12870-023-04148-4 – volume: 9 start-page: 473 year: 2017 ident: 2024071900443596500_CIT0109 article-title: The carboxy terminus of YCF1 contains a motif conserved throughout >500 Myr of streptophyte evolution publication-title: Genome Biology and Evolution doi: 10.1093/gbe/evx013 – volume: 7 start-page: eabd8215 year: 2021 ident: 2024071900443596500_CIT0131 article-title: Horizontal genome transfer by cell-to-cell travel of whole organelles publication-title: Science Advances doi: 10.1126/sciadv.abd8215 – volume: 15 start-page: 150 year: 2015 ident: 2024071900443596500_CIT0099 article-title: Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants publication-title: BMC Evolutionary Biology doi: 10.1186/s12862-015-0423-0 – volume: 105 start-page: 18424 year: 2008 ident: 2024071900443596500_CIT0034 article-title: Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0806759105 – volume: 335 start-page: 953 year: 2004 ident: 2024071900443596500_CIT0070 article-title: Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2003.11.020 – volume: 69 start-page: 704 year: 2013 ident: 2024071900443596500_CIT0007 article-title: Chloroplast genome analysis of Australian eucalypts – Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae) publication-title: Molecular Phylogenetics and Evolution doi: 10.1016/j.ympev.2013.07.006 – volume: 30 start-page: 217 year: 2011 ident: 2024071900443596500_CIT0044 article-title: Complete sequencing and comparative analyses of the pepper (Capsicum annuum L.) plastome revealed high frequency of tandem repeats and large insertion/deletions on pepper plastome publication-title: Plant Cell Reports doi: 10.1007/s00299-010-0929-2 – volume: 11 start-page: 101 year: 1993 ident: 2024071900443596500_CIT0063 article-title: Towards plastid transformation in flowering plants publication-title: Trends in Biotechnology doi: 10.1016/0167-7799(93)90059-I – volume: 9 start-page: 979 year: 2020 ident: 2024071900443596500_CIT0128 article-title: Complete chloroplast genome of Rhipsalis baccifera, the only cactus with natural distribution in the old world: genome rearrangement, intron gain and loss, and implications for phylogenetic studies publication-title: Plants doi: 10.3390/plants9080979 – volume: 105 start-page: 71 year: 2018 ident: 2024071900443596500_CIT0098 article-title: Total duplication of the small single copy region in the angiosperm plastome: rearrangement and inverted repeat instability in Asarum publication-title: American Journal of Botany doi: 10.1002/ajb2.1001 – volume: 13 start-page: evab215 year: 2021 ident: 2024071900443596500_CIT0016 article-title: Plastome structural evolution and homoplastic inversions in neo-astragalus (Fabaceae) publication-title: Genome Biology and Evolution doi: 10.1093/gbe/evab215 – volume: 118 start-page: e2023058118 year: 2021 ident: 2024071900443596500_CIT0078 article-title: Phylogenomic conflict coincides with rapid morphological innovation publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.2023058118 – volume: 20 start-page: 340 year: 2020 ident: 2024071900443596500_CIT0124 article-title: Plastome phylogenomic study of Gentianeae (Gentianaceae): widespread gene tree discordance and its association with evolutionary rate heterogeneity of plastid genes publication-title: BMC Plant Biology doi: 10.1186/s12870-020-02518-w – volume: 102 start-page: 1115 year: 2015 ident: 2024071900443596500_CIT0091 article-title: Exceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): loss of the ndh gene suite and inverted repeat publication-title: American Journal of Botany doi: 10.3732/ajb.1500184 – volume: 19 start-page: 455 year: 2012 ident: 2024071900443596500_CIT0006 article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing publication-title: Journal of Computational Biology doi: 10.1089/cmb.2012.0021 – volume: 30 start-page: 2677 year: 2018 ident: 2024071900443596500_CIT0047 article-title: A Ycf2-FtsHi heteromeric AAA-ATPase complex is required for chloroplast protein import publication-title: The Plant Cell doi: 10.1105/tpc.18.00357 – volume-title: The cactus family year: 2001 ident: 2024071900443596500_CIT0004 – volume: 10 start-page: 421 year: 2009 ident: 2024071900443596500_CIT0012 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 10 start-page: 12129 year: 2020 ident: 2024071900443596500_CIT0019 article-title: Caught in the act: variation in plastid genome inverted repeat expansion within and between populations of Medicago minima publication-title: Ecology and Evolution doi: 10.1002/ece3.6839 – volume: 170 start-page: 107 year: 2009 ident: 2024071900443596500_CIT0033 article-title: Phylogeny of Opuntioideae (Cactaceae) publication-title: International Journal of Plant Sciences doi: 10.1086/593048 – volume: 44 start-page: 97 year: 2021 ident: 2024071900443596500_CIT0097 article-title: Genetic and evolutionary analyses of plastomes of the subfamily Cactoideae (Cactaceae) indicate relaxed protein biosynthesis and tRNA import from cytosol publication-title: Brazilian Journal of Botany doi: 10.1007/s40415-020-00689-2 – volume: 11 start-page: e0165176 year: 2016 ident: 2024071900443596500_CIT0096 article-title: The chloroplast genome of Utricularia reniformis sheds light on the evolution of the ndh gene complex of terrestrial carnivorous plants from the Lentibulariaceae family publication-title: PLoS One doi: 10.1371/journal.pone.0165176 – volume: 138 start-page: 219 year: 2019 ident: 2024071900443596500_CIT0030 article-title: Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes publication-title: Molecular Phylogenetics and Evolution doi: 10.1016/j.ympev.2019.05.022 – volume: 10 start-page: 934 year: 2019 ident: 2024071900443596500_CIT0001 article-title: Model selection may not be a mandatory step for phylogeny reconstruction publication-title: Nature Communications doi: 10.1038/s41467-019-08822-w – volume: 28 start-page: 583 year: 2011 ident: 2024071900443596500_CIT0036 article-title: Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msq229 – volume: 11 start-page: 942 year: 2020 ident: 2024071900443596500_CIT0042 article-title: The loss of the inverted repeat in the putranjivoid clade of Malpighiales publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.00942 – volume: 29 start-page: 537 year: 1982 ident: 2024071900443596500_CIT0075 article-title: Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost publication-title: Cell doi: 10.1016/0092-8674(82)90170-2 – volume: 11 start-page: e0162324 year: 2016 ident: 2024071900443596500_CIT0115 article-title: Chloroplast genome evolution in Actinidiaceae: clpP loss, heterogenous divergence and phylogenomic practice publication-title: PLoS One doi: 10.1371/journal.pone.0162324 – volume: 2 start-page: 16003 year: 2016 ident: 2024071900443596500_CIT0121 article-title: PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis publication-title: Cell Discovery doi: 10.1038/celldisc.2016.3 – volume: 209 start-page: 1747 year: 2016 ident: 2024071900443596500_CIT0127 article-title: Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates publication-title: New Phytologist doi: 10.1111/nph.13743 – volume: 6 start-page: 883 year: 2015 ident: 2024071900443596500_CIT0071 article-title: DNA maintenance in plastids and mitochondria of plants publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2015.00883 – volume: 8 start-page: e10155 year: 2020 ident: 2024071900443596500_CIT0119 article-title: Conflicting phylogenetic signals in plastomes of the tribe Laureae (Lauraceae) publication-title: PeerJ doi: 10.7717/peerj.10155 – volume: 7 start-page: 361 year: 2022 ident: 2024071900443596500_CIT0017 article-title: The complete chloroplast genome sequence of Opuntia sulphurea (Cactaceae) publication-title: Mitochondrial DNA Part B doi: 10.1080/23802359.2022.2035837 – volume: 1 start-page: 0126 year: 2017 ident: 2024071900443596500_CIT0094 article-title: Contentious relationships in phylogenomic studies can be driven by a handful of genes publication-title: Nature Ecology & Evolution doi: 10.1038/s41559-017-0126 – volume: 93 start-page: 356 year: 2018 ident: 2024071900443596500_CIT0059 article-title: The complete chloroplast genome sequence of the folk medicinal and vegetable plant purslane (Portulaca oleracea L.) publication-title: The Journal of Horticultural Science and Biotechnology doi: 10.1080/14620316.2017.1389308 – volume: 505 start-page: 262 year: 2021 ident: 2024071900443596500_CIT0050 article-title: “That’s Opuntia, that was!”, again: a new combination for an old and enigmatic Opuntia s.l. (Cactaceae) publication-title: Phytotaxa doi: 10.11646/phytotaxa.505.3.2 – volume: 45 start-page: W6 year: 2017 ident: 2024071900443596500_CIT0107 article-title: GeSeq – versatile and accurate annotation of organelle genomes publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx391 – volume: 17 start-page: 421 year: 1990 ident: 2024071900443596500_CIT0010 article-title: Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria publication-title: Current Genetics doi: 10.1007/BF00334522 – volume: 13 start-page: 1 year: 1995 ident: 2024071900443596500_CIT0114 article-title: Molecular systematic study of the Cactaceae: using chloroplast DNA variation to elucidate cactus phylogeny publication-title: Bradleya doi: 10.25223/brad.n13.1995.a1 – volume: 5 start-page: 16958 year: 2015 ident: 2024071900443596500_CIT0028 article-title: Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions and accelerated rate of evolution in clpP publication-title: Scientific Reports doi: 10.1038/srep16958 – volume: 134 start-page: 74 year: 2019 ident: 2024071900443596500_CIT0122 article-title: Plastid phylogenomic insights into the evolution of Caryophyllales publication-title: Molecular Phylogenetics and Evolution doi: 10.1016/j.ympev.2018.12.023 – volume: 10 start-page: 9091 year: 2020 ident: 2024071900443596500_CIT0041 article-title: Plastome structural conservation and evolution in the clusioid clade of Malpighiales publication-title: Scientific Reports doi: 10.1038/s41598-020-66024-7 – volume: 99 start-page: 847 year: 2012 ident: 2024071900443596500_CIT0061 article-title: Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution publication-title: American Journal of Botany doi: 10.3732/ajb.1100375 – volume: 301 start-page: 92 year: 1983 ident: 2024071900443596500_CIT0074 article-title: Chloroplast DNA exists in two orientations publication-title: Nature doi: 10.1038/301092a0 – volume: 57 start-page: 1 year: 2019 ident: 2024071900443596500_CIT0084 article-title: Passiflora plastome sequencing reveals widespread genomic rearrangements publication-title: Journal of Systematics and Evolution doi: 10.1111/jse.12425 – year: 2006 ident: 2024071900443596500_CIT0066 – volume: 8 start-page: 9 year: 2014 ident: 2024071900443596500_CIT0060 article-title: Phylogenetic relationships and morphological evolution in Opuntia s.str. and closely related members of tribe Opuntieae publication-title: Succulent Plant Research – volume: 107 start-page: 861 year: 2021 ident: 2024071900443596500_CIT0053 article-title: The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes publication-title: The Plant Journal doi: 10.1111/tpj.15351 – volume: 113 start-page: 1197 year: 2014 ident: 2024071900443596500_CIT0065 article-title: The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family publication-title: Annals of Botany doi: 10.1093/aob/mcu050 – volume: 12 start-page: e0187318 year: 2017 ident: 2024071900443596500_CIT0048 article-title: Independent degradation in genes of the plastid ndh gene family in species of the orchid genus Cymbidium (Orchidaceae; Epidendroideae) publication-title: PLoS One doi: 10.1371/journal.pone.0187318 – volume: 30 start-page: 1312 year: 2014 ident: 2024071900443596500_CIT0101 article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 76 start-page: 273 year: 2011 ident: 2024071900443596500_CIT0117 article-title: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function publication-title: Plant Molecular Biology doi: 10.1007/s11103-011-9762-4 |
SSID | ssj0002691 |
Score | 2.4579535 |
Snippet | Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 771 |
SubjectTerms | Evolution, Molecular Genes, Plant - genetics Genome, Plastid - genetics Opuntia - genetics Part III: CAM Evolution Phylogeny Plastids - genetics |
Title | More than a spiny morphology: plastome variation in the prickly pear cacti (Opuntieae) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37467174 https://www.proquest.com/docview/2840246534 https://pubmed.ncbi.nlm.nih.gov/PMC10799996 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKhtBeEJ-jfMlIewCibF2cxClv62CaJop42NDeIttxRNGaRFuCBP8P_yd3seOkdEKwl6hK3Vjx_Xq-O9_9jpAdMCk0Fyzwp7nC0E2W-VPNmc_BWo8jKbJItlm-n-Ljs_DkPDofjX4NspaaWu6qn9fWldxEqnAP5IpVsv8hWfdQuAGfQb5wBQnD9Z9kPC8vtYexb094V9Wi-OEtS1g3U4ACrn4FpnFdLrX3HTxiMUxrrJANHwMbyOOjsLih5R2tsHGEFo6paY1lWZZ1pz1QS-Mx-yzuGijPYQrR5863LR_aLk1YEaT0RenSdWwLMICmf9I4eM7Ft8aExD9iKzYbwLUhiYBhbZ4pX_5bqeNAs4GS8Tkz9OW72mhesPV8PNVdUc197LMPPLSKlpvGLXbP5oZOe207MFRZopRwXSqRTUzH6wE0qmWLDYZdV_Z52O-KLlfx8_wQXOQpOoa3yGYA3gio082D2fvZkdvyg9i0ZuzeyxaCwvR7MPmenXqL3OnmWbWC1lybPzN0BybP6T1y1_oq9MAA7z4Z6eIBuT1rIfCQfEH0UUQfFbRFH-3R94522KMOe3RRwHBNLfYoYo-22KOvHfLePCJnRx9OD49926XDVywJaiwFySeBBjs8E4GIOGeaSS6mAjyDaCJUFHAVxkIGUSiTLN8XSJmY5SrmMpFIT_eYbBRloZ8QCjdiFbE80hkYyvA8qSTL4oTDsuU642Pytlu1VFkKe-ykcpGaVAqWwmqndrXHZMcNrgxzy_XDXnXLn4JmxeMyUeiyuUrBcAMDNo5YOCbbRhzuQZ0cxyRZEZQbgKztq98Ui68te3sHpqc3_-kzstX_7Z6Tjfqy0S_ANq7lS4vM3wZLvtc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+than+a+spiny+morphology%3A+plastome+variation+in+the+prickly+pear+cacti+%28Opuntieae%29&rft.jtitle=Annals+of+botany&rft.au=K%C3%B6hler%2C+Matias&rft.au=Reginato%2C+Marcelo&rft.au=Jin%2C+Jian-Jun&rft.au=Majure%2C+Lucas+C&rft.date=2023-11-25&rft.pub=Oxford+University+Press&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=132&rft.issue=4&rft.spage=771&rft.epage=786&rft_id=info:doi/10.1093%2Faob%2Fmcad098&rft_id=info%3Apmid%2F37467174&rft.externalDocID=PMC10799996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon |