Oxidative Decomposition Mechanism of Ethylene Carbonate on Positive Electrodes in Lithium-Ion Batteries
For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was kinetically and stereospecifically investigated in simplified reaction systems, which were in contact with the charged positive electrodes including...
Saved in:
Published in | Bulletin of the Chemical Society of Japan Vol. 96; no. 5; pp. 444 - 451 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Chemical Society of Japan
15.05.2023
Chemical Society of Japan |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was kinetically and stereospecifically investigated in simplified reaction systems, which were in contact with the charged positive electrodes including Li1−xCoO2 as an active material removed from batteries. By identifying the products, mainly vinylene carbonate (VC) was detected by gas chromatography as an oxidation product of ethylene carbonate (EC). The kinetic isotope effects of the reaction were examined using EC and deuterium-labeled EC-D4. The kH/kD was found to be 2.9 suggesting the C–H bond cleavage step was irreversible and corresponds to the rate-determining step of the overall process in the reaction. Moreover, Arrhenius and Eyring plots and stereospecific studies using syn-substituted EC-D2 indicated that the transition state has a rigid structure and that the elimination of hydrogens from EC proceeds mainly via syn stereochemistry. Upon a change in the charge potential of Li1−xCoO2 from 4.5 V to 4.1 V, the rate of formation of VC decreased. PF6−, PO3F2−, and PO2F2− relating to LiPF6 promoted the generation of VC. |
---|---|
AbstractList | For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was kinetically and stereospecifically investigated in simplified reaction systems, which were in contact with the charged positive electrodes including Li1−xCoO2 as an active material removed from batteries. By identifying the products, mainly vinylene carbonate (VC) was detected by gas chromatography as an oxidation product of ethylene carbonate (EC). The kinetic isotope effects of the reaction were examined using EC and deuterium-labeled EC-D4. The kH/kD was found to be 2.9 suggesting the C–H bond cleavage step was irreversible and corresponds to the rate-determining step of the overall process in the reaction. Moreover, Arrhenius and Eyring plots and stereospecific studies using syn-substituted EC-D2 indicated that the transition state has a rigid structure and that the elimination of hydrogens from EC proceeds mainly via syn stereochemistry. Upon a change in the charge potential of Li1−xCoO2 from 4.5 V to 4.1 V, the rate of formation of VC decreased. PF6−, PO3F2−, and PO2F2− relating to LiPF6 promoted the generation of VC. Abstract For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was kinetically and stereospecifically investigated in simplified reaction systems, which were in contact with the charged positive electrodes including Li1−xCoO2 as an active material removed from batteries. By identifying the products, mainly vinylene carbonate (VC) was detected by gas chromatography as an oxidation product of ethylene carbonate (EC). The kinetic isotope effects of the reaction were examined using EC and deuterium-labeled EC-D4. The kH/kD was found to be 2.9 suggesting the C–H bond cleavage step was irreversible and corresponds to the rate-determining step of the overall process in the reaction. Moreover, Arrhenius and Eyring plots and stereospecific studies using syn-substituted EC-D2 indicated that the transition state has a rigid structure and that the elimination of hydrogens from EC proceeds mainly via syn stereochemistry. Upon a change in the charge potential of Li1−xCoO2 from 4.5 V to 4.1 V, the rate of formation of VC decreased. PF6−, PO3F2−, and PO2F2− relating to LiPF6 promoted the generation of VC. |
Author | Hiasa, Takumi Yamamoto, Eiji Murayama, Haruno Motohashi, Kazunari Qiu, Yi-Fei Kawai, Seiya Tokunaga, Makoto Fujitomo, Chisaki Haruta, Asahi Mita, Hiroki |
Author_xml | – sequence: 1 givenname: Yi-Fei surname: Qiu fullname: Qiu, Yi-Fei – sequence: 2 givenname: Haruno surname: Murayama fullname: Murayama, Haruno – sequence: 3 givenname: Chisaki surname: Fujitomo fullname: Fujitomo, Chisaki – sequence: 4 givenname: Seiya surname: Kawai fullname: Kawai, Seiya – sequence: 5 givenname: Asahi surname: Haruta fullname: Haruta, Asahi – sequence: 6 givenname: Takumi surname: Hiasa fullname: Hiasa, Takumi – sequence: 7 givenname: Hiroki surname: Mita fullname: Mita, Hiroki – sequence: 8 givenname: Kazunari surname: Motohashi fullname: Motohashi, Kazunari – sequence: 9 givenname: Eiji surname: Yamamoto fullname: Yamamoto, Eiji – sequence: 10 givenname: Makoto surname: Tokunaga fullname: Tokunaga, Makoto |
BookMark | eNptkEtLAzEUhYNUsK0u3QdcT81jOg93WqsWKnWh6yHJ3HFSOsmYpGL_vamtuHF1ufCdc-AboYGxBhC6pGRCWZpdS-XXE0YYJ4TlJ2hIeVokJOPpAA0JIWXCspyfoZH36_gW07QcovfVl65F0J-A70HZrrdeB20NfgbVCqN9h22D56HdbcAAngknrREBcEReftiYnG9ABWdr8FgbvNSh1dsuWUTkToQAToM_R6eN2Hi4ON4xenuYv86ekuXqcTG7XSaKFywkjNAyy2kt84aJQpKScMlFntalpCmjXIqGp2UKGS2mTaMKXqiaMpJJCrTJieRjdHXo7Z392IIP1dpunYmTFSt4HjVlUxap5EApZ7130FS9051wu4qSau-y2rusfl1G_ubIt9BpFdus0hB2a9EL87fwf_gb40N9ug |
CitedBy_id | crossref_primary_10_3390_ma17040936 crossref_primary_10_1093_bulcsj_uoad001 crossref_primary_10_1016_j_jpowsour_2023_233387 crossref_primary_10_3390_ma17010271 |
Cites_doi | 10.1038/srep02557 10.1021/acs.accounts.7b00486 10.1021/jacs.0c06363 10.1021/acs.jpca.8b08079 10.1002/anie.201204136 10.1021/ja809822c 10.1039/j19660001711 10.1016/j.mattod.2018.03.037 10.1016/j.jelechem.2019.05.023 10.1021/acs.jpclett.7b01655 10.1002/anie.201603810 10.1016/j.ensm.2018.02.016 10.1002/admi.201801650 10.1021/jp212415x 10.1039/C9EE02543J 10.1021/jo01076a606 10.1002/batt.202100208 10.1016/j.jfluchem.2004.09.027 10.1002/admi.201700567 10.1021/ja510093x 10.1021/ja01619a032 10.1021/acsami.6b06157 10.1021/ja056165v 10.3390/en11092191 10.1002/anie.201107334 10.1021/ja00060a048 10.1149/1.1525430 10.1016/j.jpowsour.2012.12.062 10.1021/cr500003w |
ContentType | Journal Article |
Copyright | The Chemical Society of Japan Copyright Chemical Society of Japan 2023 |
Copyright_xml | – notice: The Chemical Society of Japan – notice: Copyright Chemical Society of Japan 2023 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1246/bcsj.20230027 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Oxidative Decomposition Mechanism of Ethylene Carbonate on Positive Electrodes in Lithium-Ion Batteries |
EISSN | 1348-0634 |
EndPage | 451 |
ExternalDocumentID | 10_1246_bcsj_20230027 |
FullText_t_NoSnippeting | true |
GroupedDBID | -~X 23N 5GY 6J9 ABEFU ABZEH ACCUC ACGFO ACIWK ACNCT AENEX AFFNX AIDUJ ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F5P GX1 JSI JSP OK1 P0W P2P RAD RJT RZJ SC5 TN5 TWZ UPT WH7 ~02 0R~ AAPXW AAUAY AAYXX ABXVV ADIPN BCRHZ CITATION KOP OJZSN OWPYF ROX 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c382t-2019671db7f2a8b0903b3a74d9b14213baf3494e6185ffc838cd1206b1e1f70b3 |
ISSN | 0009-2673 |
IngestDate | Thu Oct 10 20:04:51 EDT 2024 Thu Sep 12 18:43:18 EDT 2024 Sat Jun 03 18:54:00 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Electrolyte Kinetic isotope effect Vinylene carbonate |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c382t-2019671db7f2a8b0903b3a74d9b14213baf3494e6185ffc838cd1206b1e1f70b3 |
PQID | 2837246652 |
PQPubID | 1996365 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2837246652 crossref_primary_10_1246_bcsj_20230027 chemicalsocietyjapan_journals_10_1246_bcsj_20230027 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-15 |
PublicationDateYYYYMMDD | 2023-05-15 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Bulletin of the Chemical Society of Japan |
PublicationYear | 2023 |
Publisher | The Chemical Society of Japan Chemical Society of Japan |
Publisher_xml | – name: The Chemical Society of Japan – name: Chemical Society of Japan |
References | 21M. S. Newman, R. W. Addor, J. Am. Chem. Soc. 1955, 77, 3789. 10.1021/ja01619a032 27B. L. Tran, M. Driess, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 17292. 10.1021/ja510093x25389772 11Y. Zhang, Y. Katayama, R. Tatara, L. Giordano, Y. Yu, D. Fraggedakis, G. J. Sun, F. Maglia, R. Jung, M. Z. Bazant, Y. Shao-Horn, Energy Environ. Sci. 2020, 13, 183. 10.1039/C9EE02543J 25D. Kalyani, E. E. Marlier, Chapter 24 in Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. 1st Ed. Mortier, J. Ed. John Wiley & Sons, Inc., Hoboken, New Jersey 2016. 8J. L. Tebbe, T. F. Fuerst, C. B. Musgrave, ACS Appl. Mater. Interfaces 2016, 8, 26664. 10.1021/acsami.6b0615727610630 13J.-N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu, H. Li, Energy Storage Mater. 2018, 14, 1. 10.1016/j.ensm.2018.02.016 18T. Li, L. Xing, W. Li, Y. Wang, M. Xu, F. Gu, S. Hu, J. Power Sources 2013, 244, 668. 10.1016/j.jpowsour.2012.12.062 16J. A. Osborn, F. H. Jardine, J. F. Young, G. Wilkinson, J. Chem. Soc. A 1966, 1711. 10.1039/j19660001711 28W.-L. Man, W. W. Y. Lam, H.-K. Kwong, S.-M. Yiu, T.-C. Lau, Angew. Chem., Int. Ed. 2012, 51, 9101. 10.1002/anie.201204136 32X. Han, R. Lee, T. Chen, J. Luo, Y. Lu, K.-W. Huang, Sci. Rep. 2013, 3, 2557. 10.1038/srep02557 12T. Späth, D. Becker, N. Schulz, R. Hausbrand, W. Jaegermann, Adv. Mater. Interfaces 2017, 4, 1700567. 10.1002/admi.201700567 31W. L. Jorgensen, D. Lim, J. F. Blake, J. Am. Chem. Soc. 1993, 115, 2936. 10.1021/ja00060a048 1K. Leung, J. Phys. Chem. C 2012, 116, 9852. 10.1021/jp212415x 26D. García-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128, 1066. 10.1021/ja056165v16433509 14F. Buchner, M. Fingerle, J. Kim, T. Späth, R. Hausbrand, R. J. Behm, Adv. Mater. Interfaces 2019, 6, 1801650. 10.1002/admi.201801650 19Q. Lei, T. Yang, X. Zhao, W. Fan, W. Wang, L. Yu, S. Guo, X. Zuo, R. Zeng, J. Nan, J. Electroanal. Chem. 2019, 846, 113141. 10.1016/j.jelechem.2019.05.023 2S. Venkatraman, Y. Shin, A. Manthiram, Electrochem. Solid-State Lett. 2003, 6, A9. 10.1149/1.1525430 3A. T. S. Freiberg, M. K. Roos, J. Wandt, R. Vivie-Riedle, H. A. Gasteiger, J. Phys. Chem. A 2018, 122, 8828. 10.1021/acs.jpca.8b0807930354136 10J. Wandt, A. T. S. Freiberg, A. Ogrodnik, H. A. Gasteiger, Mater. Today 2018, 21, 825. 10.1016/j.mattod.2018.03.037 23E. M. Simmons, J. F. Hartwig, Angew. Chem., Int. Ed. 2012, 51, 3066. 10.1002/anie.201107334 15M. Leißing, C. Peschel, F. Horsthemke, S. Wiemers-Meyer, M. Winter, S. Nowak, Batter. Supercaps 2021, 4, 1731. 10.1002/batt.202100208 17A. V. Plakhotnyk, L. Ernst, R. Schmutzler, J. Fluorine Chem. 2005, 126, 27. 10.1016/j.jfluchem.2004.09.027 29S. Kamijo, G. Takao, K. Kamijo, M. Hirota, K. Tao, T. Murafuji, Angew. Chem., Int. Ed. 2016, 55, 9695. 10.1002/anie.201603810 4L. Kong, C. Li, J. Jiang, M. G. Pecht, Energies 2018, 11, 2191. 10.3390/en11092191 22W. K. Johnson, T. L. Patton, J. Org. Chem. 1960, 25, 1042. 10.1021/jo01076a606 5K. Xu, Chem. Rev. 2014, 114, 11503. 10.1021/cr500003w25351820 7L. Giordano, P. Karayaylali, Y. Yu, Y. Katayama, F. Maglia, S. Lux, Y. Shao-Horn, J. Phys. Chem. Lett. 2017, 8, 3881. 10.1021/acs.jpclett.7b0165528766340 30T. Matsumoto, K. Ohkubo, K. Honda, A. Yazawa, H. Furutachi, S. Fujinami, S. Fukuzumi, M. Suzuki, J. Am. Chem. Soc. 2009, 131, 9258. 10.1021/ja809822c19530656 20M. Takiguchi, S. Ichikawa, Jpn. Kokai Tokkyo Koho (1999), publication No. JP 1999-171882. 24J. A. Osborn, F. H. Jardine, J. F. Young, G. Wilkinson, J. Chem. Soc. A 1966, 1711. 10.1039/j19660001711 9B. L. D. Rinkel, D. S. Hall, I. Temprano, C. P. Grey, J. Am. Chem. Soc. 2020, 142, 15058. 10.1021/jacs.0c0636332697590 6O. Borodin, X. Ren, J. Vatamanu, A. W. Cresce, J. Knap, K. Xu, Acc. Chem. Res. 2017, 50, 2886. 10.1021/acs.accounts.7b0048629164857 Freiberg (2024012105094248700_r3) 2018; 122 Li (2024012105094248700_r18) 2013; 244 Leung (2024012105094248700_r1) 2012; 116 2024012105094248700_r25 Späth (2024012105094248700_r12) 2017; 4 2024012105094248700_r20 Kong (2024012105094248700_r4) 2018; 11 Tran (2024012105094248700_r27) 2014; 136 Zhang (2024012105094248700_r13) 2018; 14 Leißing (2024012105094248700_r15) 2021; 4 Han (2024012105094248700_r32) 2013; 3 Buchner (2024012105094248700_r14) 2019; 6 Plakhotnyk (2024012105094248700_r17) 2005; 126 Venkatraman (2024012105094248700_r2) 2003; 6 Simmons (2024012105094248700_r23) 2012; 51 Newman (2024012105094248700_r21) 1955; 77 Giordano (2024012105094248700_r7) 2017; 8 Tebbe (2024012105094248700_r8) 2016; 8 Osborn (2024012105094248700_r24) 1966 Jorgensen (2024012105094248700_r31) 1993; 115 Lei (2024012105094248700_r19) 2019; 846 Johnson (2024012105094248700_r22) 1960; 25 Xu (2024012105094248700_r5) 2014; 114 Zhang (2024012105094248700_r11) 2020; 13 Osborn (2024012105094248700_r16) 1966 Matsumoto (2024012105094248700_r30) 2009; 131 García-Cuadrado (2024012105094248700_r26) 2006; 128 Man (2024012105094248700_r28) 2012; 51 Kamijo (2024012105094248700_r29) 2016; 55 Borodin (2024012105094248700_r6) 2017; 50 Wandt (2024012105094248700_r10) 2018; 21 Rinkel (2024012105094248700_r9) 2020; 142 |
References_xml | – volume: 3 start-page: 2557 year: 2013 ident: 2024012105094248700_r32 publication-title: Sci. Rep. doi: 10.1038/srep02557 contributor: fullname: Han – volume: 50 start-page: 2886 year: 2017 ident: 2024012105094248700_r6 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00486 contributor: fullname: Borodin – volume: 142 start-page: 15058 year: 2020 ident: 2024012105094248700_r9 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06363 contributor: fullname: Rinkel – volume: 122 start-page: 8828 year: 2018 ident: 2024012105094248700_r3 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.8b08079 contributor: fullname: Freiberg – volume: 51 start-page: 9101 year: 2012 ident: 2024012105094248700_r28 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204136 contributor: fullname: Man – volume: 131 start-page: 9258 year: 2009 ident: 2024012105094248700_r30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809822c contributor: fullname: Matsumoto – start-page: 1711 year: 1966 ident: 2024012105094248700_r16 publication-title: J. Chem. Soc. A doi: 10.1039/j19660001711 contributor: fullname: Osborn – volume: 21 start-page: 825 year: 2018 ident: 2024012105094248700_r10 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.03.037 contributor: fullname: Wandt – volume: 846 start-page: 113141 year: 2019 ident: 2024012105094248700_r19 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.05.023 contributor: fullname: Lei – volume: 8 start-page: 3881 year: 2017 ident: 2024012105094248700_r7 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01655 contributor: fullname: Giordano – volume: 55 start-page: 9695 year: 2016 ident: 2024012105094248700_r29 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201603810 contributor: fullname: Kamijo – volume: 14 start-page: 1 year: 2018 ident: 2024012105094248700_r13 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.02.016 contributor: fullname: Zhang – volume: 6 start-page: 1801650 year: 2019 ident: 2024012105094248700_r14 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201801650 contributor: fullname: Buchner – ident: 2024012105094248700_r25 – volume: 116 start-page: 9852 year: 2012 ident: 2024012105094248700_r1 publication-title: J. Phys. Chem. C doi: 10.1021/jp212415x contributor: fullname: Leung – volume: 13 start-page: 183 year: 2020 ident: 2024012105094248700_r11 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02543J contributor: fullname: Zhang – volume: 25 start-page: 1042 year: 1960 ident: 2024012105094248700_r22 publication-title: J. Org. Chem. doi: 10.1021/jo01076a606 contributor: fullname: Johnson – volume: 4 start-page: 1731 year: 2021 ident: 2024012105094248700_r15 publication-title: Batter. Supercaps doi: 10.1002/batt.202100208 contributor: fullname: Leißing – volume: 126 start-page: 27 year: 2005 ident: 2024012105094248700_r17 publication-title: J. Fluorine Chem. doi: 10.1016/j.jfluchem.2004.09.027 contributor: fullname: Plakhotnyk – volume: 4 start-page: 1700567 year: 2017 ident: 2024012105094248700_r12 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201700567 contributor: fullname: Späth – volume: 136 start-page: 17292 year: 2014 ident: 2024012105094248700_r27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510093x contributor: fullname: Tran – start-page: 1711 year: 1966 ident: 2024012105094248700_r24 publication-title: J. Chem. Soc. A doi: 10.1039/j19660001711 contributor: fullname: Osborn – volume: 77 start-page: 3789 year: 1955 ident: 2024012105094248700_r21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01619a032 contributor: fullname: Newman – volume: 8 start-page: 26664 year: 2016 ident: 2024012105094248700_r8 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06157 contributor: fullname: Tebbe – volume: 128 start-page: 1066 year: 2006 ident: 2024012105094248700_r26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056165v contributor: fullname: García-Cuadrado – volume: 11 start-page: 2191 year: 2018 ident: 2024012105094248700_r4 publication-title: Energies doi: 10.3390/en11092191 contributor: fullname: Kong – volume: 51 start-page: 3066 year: 2012 ident: 2024012105094248700_r23 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107334 contributor: fullname: Simmons – volume: 115 start-page: 2936 year: 1993 ident: 2024012105094248700_r31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00060a048 contributor: fullname: Jorgensen – volume: 6 start-page: A9 year: 2003 ident: 2024012105094248700_r2 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1525430 contributor: fullname: Venkatraman – volume: 244 start-page: 668 year: 2013 ident: 2024012105094248700_r18 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.062 contributor: fullname: Li – ident: 2024012105094248700_r20 – volume: 114 start-page: 11503 year: 2014 ident: 2024012105094248700_r5 publication-title: Chem. Rev. doi: 10.1021/cr500003w contributor: fullname: Xu |
SSID | ssj0008549 |
Score | 2.4414499 |
Snippet | For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was... Abstract For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was... |
SourceID | proquest crossref chemicalsocietyjapan |
SourceType | Aggregation Database Publisher |
StartPage | 444 |
SubjectTerms | Decomposition Deuterium Electrodes Electrolytes Ethylene Gas chromatography Hydrogen bonds Lithium Lithium-ion batteries Oxidation Rechargeable batteries Rigid structures Stereochemistry |
Title | Oxidative Decomposition Mechanism of Ethylene Carbonate on Positive Electrodes in Lithium-Ion Batteries |
URI | http://dx.doi.org/10.1246/bcsj.20230027 https://www.proquest.com/docview/2837246652 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcgAOCFgQuyzIB8SlcsnTSY9o1VKWfYBopXKKbMdZUqkp2jZaliO_nJk4TlKprIBLVDmuZXu-zIztzzOEvHa4lFyHgkWxdhjYW8Vk4HOWOlCKK2ilcaF4ds4ns-BkHs57vV8d1lK5kQP1c-e9kv-RKpSBXPGW7D9ItmkUCuA3yBeeIGF4_pWML37kqai5P8gNrwlY_TON93kx_QXyBkEUYFo0cjsk7pVrPCD4VNWFf45MHpy0ImZhDI1veblkH6CKCb1pSYb24LcO1225BU3AAUv_hPITMMAN5r7mbKzz_ue87MhW3Ihl5bVOxFVZrFqOQb4Gj7Y_LhegaJZN-UdxbbJmf9H5jehuVHgVLdBc1TR8oVv7Y9XzkHnc5DYZaKOR_SBm4EcFXZVtkuDW0Ax3WgKvCoEs1XoxwM7g8rs1efaY__wiGc9OT5PpaD69Q-56oKxQS76ftzShOLRLKNO1Ok4rNP92q_EHZF_VI1ybAS5wcNvuzra1r1yY6SPysF570HcGSI9JTxdPyL1jm_Jvn1w2gKJbgKINoOgqoxZQtAEUhSoWULQFFM0L2gEUbQD1lMzGo-nxhNWZOJjyY28DHx0o6shNZZR5Ipa4tyd9EQXpEPcQXV-KDMMcaQ7eX5ap2I9V6nqgB1ztZpEj_Wdkr1gV-jmhqRs5WnARKKEDKcF-8DRTkc-HCpzjMDsg_q55TOrPbp3gqhVmP8HZT-zsH5A3dpqT7yZMy58qHlkhtE1iBCioyUPv8PbXL8j9FtlHZG9zVeqX4JRu5KsKNb8Bef2T7w |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+Decomposition+Mechanism+of+Ethylene+Carbonate+on+Positive+Electrodes+in+Lithium-Ion+Batteries&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Yi-Fei+Qiu&rft.au=Murayama%2C+Haruno&rft.au=Chisaki+Fujitomo&rft.au=Kawai%2C+Seiya&rft.date=2023-05-15&rft.pub=Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=96&rft.issue=5&rft_id=info:doi/10.1246%2Fbcsj.20230027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon |