Oxidative Decomposition Mechanism of Ethylene Carbonate on Positive Electrodes in Lithium-Ion Batteries

For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was kinetically and stereospecifically investigated in simplified reaction systems, which were in contact with the charged positive electrodes including...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 96; no. 5; pp. 444 - 451
Main Authors Qiu, Yi-Fei, Murayama, Haruno, Fujitomo, Chisaki, Kawai, Seiya, Haruta, Asahi, Hiasa, Takumi, Mita, Hiroki, Motohashi, Kazunari, Yamamoto, Eiji, Tokunaga, Makoto
Format Journal Article
LanguageEnglish
Published Tokyo The Chemical Society of Japan 15.05.2023
Chemical Society of Japan
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was kinetically and stereospecifically investigated in simplified reaction systems, which were in contact with the charged positive electrodes including Li1−xCoO2 as an active material removed from batteries. By identifying the products, mainly vinylene carbonate (VC) was detected by gas chromatography as an oxidation product of ethylene carbonate (EC). The kinetic isotope effects of the reaction were examined using EC and deuterium-labeled EC-D4. The kH/kD was found to be 2.9 suggesting the C–H bond cleavage step was irreversible and corresponds to the rate-determining step of the overall process in the reaction. Moreover, Arrhenius and Eyring plots and stereospecific studies using syn-substituted EC-D2 indicated that the transition state has a rigid structure and that the elimination of hydrogens from EC proceeds mainly via syn stereochemistry. Upon a change in the charge potential of Li1−xCoO2 from 4.5 V to 4.1 V, the rate of formation of VC decreased. PF6−, PO3F2−, and PO2F2− relating to LiPF6 promoted the generation of VC.
AbstractList For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was kinetically and stereospecifically investigated in simplified reaction systems, which were in contact with the charged positive electrodes including Li1−xCoO2 as an active material removed from batteries. By identifying the products, mainly vinylene carbonate (VC) was detected by gas chromatography as an oxidation product of ethylene carbonate (EC). The kinetic isotope effects of the reaction were examined using EC and deuterium-labeled EC-D4. The kH/kD was found to be 2.9 suggesting the C–H bond cleavage step was irreversible and corresponds to the rate-determining step of the overall process in the reaction. Moreover, Arrhenius and Eyring plots and stereospecific studies using syn-substituted EC-D2 indicated that the transition state has a rigid structure and that the elimination of hydrogens from EC proceeds mainly via syn stereochemistry. Upon a change in the charge potential of Li1−xCoO2 from 4.5 V to 4.1 V, the rate of formation of VC decreased. PF6−, PO3F2−, and PO2F2− relating to LiPF6 promoted the generation of VC.
Abstract For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was kinetically and stereospecifically investigated in simplified reaction systems, which were in contact with the charged positive electrodes including Li1−xCoO2 as an active material removed from batteries. By identifying the products, mainly vinylene carbonate (VC) was detected by gas chromatography as an oxidation product of ethylene carbonate (EC). The kinetic isotope effects of the reaction were examined using EC and deuterium-labeled EC-D4. The kH/kD was found to be 2.9 suggesting the C–H bond cleavage step was irreversible and corresponds to the rate-determining step of the overall process in the reaction. Moreover, Arrhenius and Eyring plots and stereospecific studies using syn-substituted EC-D2 indicated that the transition state has a rigid structure and that the elimination of hydrogens from EC proceeds mainly via syn stereochemistry. Upon a change in the charge potential of Li1−xCoO2 from 4.5 V to 4.1 V, the rate of formation of VC decreased. PF6−, PO3F2−, and PO2F2− relating to LiPF6 promoted the generation of VC.
Author Hiasa, Takumi
Yamamoto, Eiji
Murayama, Haruno
Motohashi, Kazunari
Qiu, Yi-Fei
Kawai, Seiya
Tokunaga, Makoto
Fujitomo, Chisaki
Haruta, Asahi
Mita, Hiroki
Author_xml – sequence: 1
  givenname: Yi-Fei
  surname: Qiu
  fullname: Qiu, Yi-Fei
– sequence: 2
  givenname: Haruno
  surname: Murayama
  fullname: Murayama, Haruno
– sequence: 3
  givenname: Chisaki
  surname: Fujitomo
  fullname: Fujitomo, Chisaki
– sequence: 4
  givenname: Seiya
  surname: Kawai
  fullname: Kawai, Seiya
– sequence: 5
  givenname: Asahi
  surname: Haruta
  fullname: Haruta, Asahi
– sequence: 6
  givenname: Takumi
  surname: Hiasa
  fullname: Hiasa, Takumi
– sequence: 7
  givenname: Hiroki
  surname: Mita
  fullname: Mita, Hiroki
– sequence: 8
  givenname: Kazunari
  surname: Motohashi
  fullname: Motohashi, Kazunari
– sequence: 9
  givenname: Eiji
  surname: Yamamoto
  fullname: Yamamoto, Eiji
– sequence: 10
  givenname: Makoto
  surname: Tokunaga
  fullname: Tokunaga, Makoto
BookMark eNptkEtLAzEUhYNUsK0u3QdcT81jOg93WqsWKnWh6yHJ3HFSOsmYpGL_vamtuHF1ufCdc-AboYGxBhC6pGRCWZpdS-XXE0YYJ4TlJ2hIeVokJOPpAA0JIWXCspyfoZH36_gW07QcovfVl65F0J-A70HZrrdeB20NfgbVCqN9h22D56HdbcAAngknrREBcEReftiYnG9ABWdr8FgbvNSh1dsuWUTkToQAToM_R6eN2Hi4ON4xenuYv86ekuXqcTG7XSaKFywkjNAyy2kt84aJQpKScMlFntalpCmjXIqGp2UKGS2mTaMKXqiaMpJJCrTJieRjdHXo7Z392IIP1dpunYmTFSt4HjVlUxap5EApZ7130FS9051wu4qSau-y2rusfl1G_ubIt9BpFdus0hB2a9EL87fwf_gb40N9ug
CitedBy_id crossref_primary_10_3390_ma17040936
crossref_primary_10_1093_bulcsj_uoad001
crossref_primary_10_1016_j_jpowsour_2023_233387
crossref_primary_10_3390_ma17010271
Cites_doi 10.1038/srep02557
10.1021/acs.accounts.7b00486
10.1021/jacs.0c06363
10.1021/acs.jpca.8b08079
10.1002/anie.201204136
10.1021/ja809822c
10.1039/j19660001711
10.1016/j.mattod.2018.03.037
10.1016/j.jelechem.2019.05.023
10.1021/acs.jpclett.7b01655
10.1002/anie.201603810
10.1016/j.ensm.2018.02.016
10.1002/admi.201801650
10.1021/jp212415x
10.1039/C9EE02543J
10.1021/jo01076a606
10.1002/batt.202100208
10.1016/j.jfluchem.2004.09.027
10.1002/admi.201700567
10.1021/ja510093x
10.1021/ja01619a032
10.1021/acsami.6b06157
10.1021/ja056165v
10.3390/en11092191
10.1002/anie.201107334
10.1021/ja00060a048
10.1149/1.1525430
10.1016/j.jpowsour.2012.12.062
10.1021/cr500003w
ContentType Journal Article
Copyright The Chemical Society of Japan
Copyright Chemical Society of Japan 2023
Copyright_xml – notice: The Chemical Society of Japan
– notice: Copyright Chemical Society of Japan 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1246/bcsj.20230027
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Oxidative Decomposition Mechanism of Ethylene Carbonate on Positive Electrodes in Lithium-Ion Batteries
EISSN 1348-0634
EndPage 451
ExternalDocumentID 10_1246_bcsj_20230027
FullText_t_NoSnippeting true
GroupedDBID -~X
23N
5GY
6J9
ABEFU
ABZEH
ACCUC
ACGFO
ACIWK
ACNCT
AENEX
AFFNX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
GX1
JSI
JSP
OK1
P0W
P2P
RAD
RJT
RZJ
SC5
TN5
TWZ
UPT
WH7
~02
0R~
AAPXW
AAUAY
AAYXX
ABXVV
ADIPN
BCRHZ
CITATION
KOP
OJZSN
OWPYF
ROX
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c382t-2019671db7f2a8b0903b3a74d9b14213baf3494e6185ffc838cd1206b1e1f70b3
ISSN 0009-2673
IngestDate Thu Oct 10 20:04:51 EDT 2024
Thu Sep 12 18:43:18 EDT 2024
Sat Jun 03 18:54:00 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Electrolyte
Kinetic isotope effect
Vinylene carbonate
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-2019671db7f2a8b0903b3a74d9b14213baf3494e6185ffc838cd1206b1e1f70b3
PQID 2837246652
PQPubID 1996365
PageCount 8
ParticipantIDs proquest_journals_2837246652
crossref_primary_10_1246_bcsj_20230027
chemicalsocietyjapan_journals_10_1246_bcsj_20230027
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Bulletin of the Chemical Society of Japan
PublicationYear 2023
Publisher The Chemical Society of Japan
Chemical Society of Japan
Publisher_xml – name: The Chemical Society of Japan
– name: Chemical Society of Japan
References 21M. S. Newman, R. W. Addor, J. Am. Chem. Soc. 1955, 77, 3789. 10.1021/ja01619a032
27B. L. Tran, M. Driess, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 17292. 10.1021/ja510093x25389772
11Y. Zhang, Y. Katayama, R. Tatara, L. Giordano, Y. Yu, D. Fraggedakis, G. J. Sun, F. Maglia, R. Jung, M. Z. Bazant, Y. Shao-Horn, Energy Environ. Sci. 2020, 13, 183. 10.1039/C9EE02543J
25D. Kalyani, E. E. Marlier, Chapter 24 in Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. 1st Ed. Mortier, J. Ed. John Wiley & Sons, Inc., Hoboken, New Jersey 2016.
8J. L. Tebbe, T. F. Fuerst, C. B. Musgrave, ACS Appl. Mater. Interfaces 2016, 8, 26664. 10.1021/acsami.6b0615727610630
13J.-N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu, H. Li, Energy Storage Mater. 2018, 14, 1. 10.1016/j.ensm.2018.02.016
18T. Li, L. Xing, W. Li, Y. Wang, M. Xu, F. Gu, S. Hu, J. Power Sources 2013, 244, 668. 10.1016/j.jpowsour.2012.12.062
16J. A. Osborn, F. H. Jardine, J. F. Young, G. Wilkinson, J. Chem. Soc. A 1966, 1711. 10.1039/j19660001711
28W.-L. Man, W. W. Y. Lam, H.-K. Kwong, S.-M. Yiu, T.-C. Lau, Angew. Chem., Int. Ed. 2012, 51, 9101. 10.1002/anie.201204136
32X. Han, R. Lee, T. Chen, J. Luo, Y. Lu, K.-W. Huang, Sci. Rep. 2013, 3, 2557. 10.1038/srep02557
12T. Späth, D. Becker, N. Schulz, R. Hausbrand, W. Jaegermann, Adv. Mater. Interfaces 2017, 4, 1700567. 10.1002/admi.201700567
31W. L. Jorgensen, D. Lim, J. F. Blake, J. Am. Chem. Soc. 1993, 115, 2936. 10.1021/ja00060a048
1K. Leung, J. Phys. Chem. C 2012, 116, 9852. 10.1021/jp212415x
26D. García-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128, 1066. 10.1021/ja056165v16433509
14F. Buchner, M. Fingerle, J. Kim, T. Späth, R. Hausbrand, R. J. Behm, Adv. Mater. Interfaces 2019, 6, 1801650. 10.1002/admi.201801650
19Q. Lei, T. Yang, X. Zhao, W. Fan, W. Wang, L. Yu, S. Guo, X. Zuo, R. Zeng, J. Nan, J. Electroanal. Chem. 2019, 846, 113141. 10.1016/j.jelechem.2019.05.023
2S. Venkatraman, Y. Shin, A. Manthiram, Electrochem. Solid-State Lett. 2003, 6, A9. 10.1149/1.1525430
3A. T. S. Freiberg, M. K. Roos, J. Wandt, R. Vivie-Riedle, H. A. Gasteiger, J. Phys. Chem. A 2018, 122, 8828. 10.1021/acs.jpca.8b0807930354136
10J. Wandt, A. T. S. Freiberg, A. Ogrodnik, H. A. Gasteiger, Mater. Today 2018, 21, 825. 10.1016/j.mattod.2018.03.037
23E. M. Simmons, J. F. Hartwig, Angew. Chem., Int. Ed. 2012, 51, 3066. 10.1002/anie.201107334
15M. Leißing, C. Peschel, F. Horsthemke, S. Wiemers-Meyer, M. Winter, S. Nowak, Batter. Supercaps 2021, 4, 1731. 10.1002/batt.202100208
17A. V. Plakhotnyk, L. Ernst, R. Schmutzler, J. Fluorine Chem. 2005, 126, 27. 10.1016/j.jfluchem.2004.09.027
29S. Kamijo, G. Takao, K. Kamijo, M. Hirota, K. Tao, T. Murafuji, Angew. Chem., Int. Ed. 2016, 55, 9695. 10.1002/anie.201603810
4L. Kong, C. Li, J. Jiang, M. G. Pecht, Energies 2018, 11, 2191. 10.3390/en11092191
22W. K. Johnson, T. L. Patton, J. Org. Chem. 1960, 25, 1042. 10.1021/jo01076a606
5K. Xu, Chem. Rev. 2014, 114, 11503. 10.1021/cr500003w25351820
7L. Giordano, P. Karayaylali, Y. Yu, Y. Katayama, F. Maglia, S. Lux, Y. Shao-Horn, J. Phys. Chem. Lett. 2017, 8, 3881. 10.1021/acs.jpclett.7b0165528766340
30T. Matsumoto, K. Ohkubo, K. Honda, A. Yazawa, H. Furutachi, S. Fujinami, S. Fukuzumi, M. Suzuki, J. Am. Chem. Soc. 2009, 131, 9258. 10.1021/ja809822c19530656
20M. Takiguchi, S. Ichikawa, Jpn. Kokai Tokkyo Koho (1999), publication No. JP 1999-171882.
24J. A. Osborn, F. H. Jardine, J. F. Young, G. Wilkinson, J. Chem. Soc. A 1966, 1711. 10.1039/j19660001711
9B. L. D. Rinkel, D. S. Hall, I. Temprano, C. P. Grey, J. Am. Chem. Soc. 2020, 142, 15058. 10.1021/jacs.0c0636332697590
6O. Borodin, X. Ren, J. Vatamanu, A. W. Cresce, J. Knap, K. Xu, Acc. Chem. Res. 2017, 50, 2886. 10.1021/acs.accounts.7b0048629164857
Freiberg (2024012105094248700_r3) 2018; 122
Li (2024012105094248700_r18) 2013; 244
Leung (2024012105094248700_r1) 2012; 116
2024012105094248700_r25
Späth (2024012105094248700_r12) 2017; 4
2024012105094248700_r20
Kong (2024012105094248700_r4) 2018; 11
Tran (2024012105094248700_r27) 2014; 136
Zhang (2024012105094248700_r13) 2018; 14
Leißing (2024012105094248700_r15) 2021; 4
Han (2024012105094248700_r32) 2013; 3
Buchner (2024012105094248700_r14) 2019; 6
Plakhotnyk (2024012105094248700_r17) 2005; 126
Venkatraman (2024012105094248700_r2) 2003; 6
Simmons (2024012105094248700_r23) 2012; 51
Newman (2024012105094248700_r21) 1955; 77
Giordano (2024012105094248700_r7) 2017; 8
Tebbe (2024012105094248700_r8) 2016; 8
Osborn (2024012105094248700_r24) 1966
Jorgensen (2024012105094248700_r31) 1993; 115
Lei (2024012105094248700_r19) 2019; 846
Johnson (2024012105094248700_r22) 1960; 25
Xu (2024012105094248700_r5) 2014; 114
Zhang (2024012105094248700_r11) 2020; 13
Osborn (2024012105094248700_r16) 1966
Matsumoto (2024012105094248700_r30) 2009; 131
García-Cuadrado (2024012105094248700_r26) 2006; 128
Man (2024012105094248700_r28) 2012; 51
Kamijo (2024012105094248700_r29) 2016; 55
Borodin (2024012105094248700_r6) 2017; 50
Wandt (2024012105094248700_r10) 2018; 21
Rinkel (2024012105094248700_r9) 2020; 142
References_xml – volume: 3
  start-page: 2557
  year: 2013
  ident: 2024012105094248700_r32
  publication-title: Sci. Rep.
  doi: 10.1038/srep02557
  contributor:
    fullname: Han
– volume: 50
  start-page: 2886
  year: 2017
  ident: 2024012105094248700_r6
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00486
  contributor:
    fullname: Borodin
– volume: 142
  start-page: 15058
  year: 2020
  ident: 2024012105094248700_r9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06363
  contributor:
    fullname: Rinkel
– volume: 122
  start-page: 8828
  year: 2018
  ident: 2024012105094248700_r3
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.8b08079
  contributor:
    fullname: Freiberg
– volume: 51
  start-page: 9101
  year: 2012
  ident: 2024012105094248700_r28
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204136
  contributor:
    fullname: Man
– volume: 131
  start-page: 9258
  year: 2009
  ident: 2024012105094248700_r30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809822c
  contributor:
    fullname: Matsumoto
– start-page: 1711
  year: 1966
  ident: 2024012105094248700_r16
  publication-title: J. Chem. Soc. A
  doi: 10.1039/j19660001711
  contributor:
    fullname: Osborn
– volume: 21
  start-page: 825
  year: 2018
  ident: 2024012105094248700_r10
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.03.037
  contributor:
    fullname: Wandt
– volume: 846
  start-page: 113141
  year: 2019
  ident: 2024012105094248700_r19
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.05.023
  contributor:
    fullname: Lei
– volume: 8
  start-page: 3881
  year: 2017
  ident: 2024012105094248700_r7
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01655
  contributor:
    fullname: Giordano
– volume: 55
  start-page: 9695
  year: 2016
  ident: 2024012105094248700_r29
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201603810
  contributor:
    fullname: Kamijo
– volume: 14
  start-page: 1
  year: 2018
  ident: 2024012105094248700_r13
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.02.016
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 1801650
  year: 2019
  ident: 2024012105094248700_r14
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201801650
  contributor:
    fullname: Buchner
– ident: 2024012105094248700_r25
– volume: 116
  start-page: 9852
  year: 2012
  ident: 2024012105094248700_r1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp212415x
  contributor:
    fullname: Leung
– volume: 13
  start-page: 183
  year: 2020
  ident: 2024012105094248700_r11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02543J
  contributor:
    fullname: Zhang
– volume: 25
  start-page: 1042
  year: 1960
  ident: 2024012105094248700_r22
  publication-title: J. Org. Chem.
  doi: 10.1021/jo01076a606
  contributor:
    fullname: Johnson
– volume: 4
  start-page: 1731
  year: 2021
  ident: 2024012105094248700_r15
  publication-title: Batter. Supercaps
  doi: 10.1002/batt.202100208
  contributor:
    fullname: Leißing
– volume: 126
  start-page: 27
  year: 2005
  ident: 2024012105094248700_r17
  publication-title: J. Fluorine Chem.
  doi: 10.1016/j.jfluchem.2004.09.027
  contributor:
    fullname: Plakhotnyk
– volume: 4
  start-page: 1700567
  year: 2017
  ident: 2024012105094248700_r12
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201700567
  contributor:
    fullname: Späth
– volume: 136
  start-page: 17292
  year: 2014
  ident: 2024012105094248700_r27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510093x
  contributor:
    fullname: Tran
– start-page: 1711
  year: 1966
  ident: 2024012105094248700_r24
  publication-title: J. Chem. Soc. A
  doi: 10.1039/j19660001711
  contributor:
    fullname: Osborn
– volume: 77
  start-page: 3789
  year: 1955
  ident: 2024012105094248700_r21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01619a032
  contributor:
    fullname: Newman
– volume: 8
  start-page: 26664
  year: 2016
  ident: 2024012105094248700_r8
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b06157
  contributor:
    fullname: Tebbe
– volume: 128
  start-page: 1066
  year: 2006
  ident: 2024012105094248700_r26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056165v
  contributor:
    fullname: García-Cuadrado
– volume: 11
  start-page: 2191
  year: 2018
  ident: 2024012105094248700_r4
  publication-title: Energies
  doi: 10.3390/en11092191
  contributor:
    fullname: Kong
– volume: 51
  start-page: 3066
  year: 2012
  ident: 2024012105094248700_r23
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107334
  contributor:
    fullname: Simmons
– volume: 115
  start-page: 2936
  year: 1993
  ident: 2024012105094248700_r31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00060a048
  contributor:
    fullname: Jorgensen
– volume: 6
  start-page: A9
  year: 2003
  ident: 2024012105094248700_r2
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1525430
  contributor:
    fullname: Venkatraman
– volume: 244
  start-page: 668
  year: 2013
  ident: 2024012105094248700_r18
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.12.062
  contributor:
    fullname: Li
– ident: 2024012105094248700_r20
– volume: 114
  start-page: 11503
  year: 2014
  ident: 2024012105094248700_r5
  publication-title: Chem. Rev.
  doi: 10.1021/cr500003w
  contributor:
    fullname: Xu
SSID ssj0008549
Score 2.4414499
Snippet For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was...
Abstract For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was...
SourceID proquest
crossref
chemicalsocietyjapan
SourceType Aggregation Database
Publisher
StartPage 444
SubjectTerms Decomposition
Deuterium
Electrodes
Electrolytes
Ethylene
Gas chromatography
Hydrogen bonds
Lithium
Lithium-ion batteries
Oxidation
Rechargeable batteries
Rigid structures
Stereochemistry
Title Oxidative Decomposition Mechanism of Ethylene Carbonate on Positive Electrodes in Lithium-Ion Batteries
URI http://dx.doi.org/10.1246/bcsj.20230027
https://www.proquest.com/docview/2837246652
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcgAOCFgQuyzIB8SlcsnTSY9o1VKWfYBopXKKbMdZUqkp2jZaliO_nJk4TlKprIBLVDmuZXu-zIztzzOEvHa4lFyHgkWxdhjYW8Vk4HOWOlCKK2ilcaF4ds4ns-BkHs57vV8d1lK5kQP1c-e9kv-RKpSBXPGW7D9ItmkUCuA3yBeeIGF4_pWML37kqai5P8gNrwlY_TON93kx_QXyBkEUYFo0cjsk7pVrPCD4VNWFf45MHpy0ImZhDI1veblkH6CKCb1pSYb24LcO1225BU3AAUv_hPITMMAN5r7mbKzz_ue87MhW3Ihl5bVOxFVZrFqOQb4Gj7Y_LhegaJZN-UdxbbJmf9H5jehuVHgVLdBc1TR8oVv7Y9XzkHnc5DYZaKOR_SBm4EcFXZVtkuDW0Ax3WgKvCoEs1XoxwM7g8rs1efaY__wiGc9OT5PpaD69Q-56oKxQS76ftzShOLRLKNO1Ok4rNP92q_EHZF_VI1ybAS5wcNvuzra1r1yY6SPysF570HcGSI9JTxdPyL1jm_Jvn1w2gKJbgKINoOgqoxZQtAEUhSoWULQFFM0L2gEUbQD1lMzGo-nxhNWZOJjyY28DHx0o6shNZZR5Ipa4tyd9EQXpEPcQXV-KDMMcaQ7eX5ap2I9V6nqgB1ztZpEj_Wdkr1gV-jmhqRs5WnARKKEDKcF-8DRTkc-HCpzjMDsg_q55TOrPbp3gqhVmP8HZT-zsH5A3dpqT7yZMy58qHlkhtE1iBCioyUPv8PbXL8j9FtlHZG9zVeqX4JRu5KsKNb8Bef2T7w
link.rule.ids 315,783,787,27936,27937
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+Decomposition+Mechanism+of+Ethylene+Carbonate+on+Positive+Electrodes+in+Lithium-Ion+Batteries&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Yi-Fei+Qiu&rft.au=Murayama%2C+Haruno&rft.au=Chisaki+Fujitomo&rft.au=Kawai%2C+Seiya&rft.date=2023-05-15&rft.pub=Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=96&rft.issue=5&rft_id=info:doi/10.1246%2Fbcsj.20230027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon