Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China
Purpose Nutrient deficiency and salt stress (sodium, Na + ) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, ferti...
Saved in:
Published in | Journal of soils and sediments Vol. 17; no. 3; pp. 780 - 789 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Nutrient deficiency and salt stress (sodium, Na
+
) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity.
Materials and methods
The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania (
Sesbania canabina (Retz.) Pers
) and seashore mallow (
Kosteletzkya virginica
), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % (
w
/
w
). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils.
Results and discussion
The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved.
Conclusions
The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil. |
---|---|
AbstractList | Purpose
Nutrient deficiency and salt stress (sodium, Na
+
) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity.
Materials and methods
The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania (
Sesbania canabina (Retz.) Pers
) and seashore mallow (
Kosteletzkya virginica
), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % (
w
/
w
). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils.
Results and discussion
The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved.
Conclusions
The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil. PURPOSE: Nutrient deficiency and salt stress (sodium, Na⁺) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity. MATERIALS AND METHODS: The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania (Sesbania canabina (Retz.) Pers) and seashore mallow (Kosteletzkya virginica), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % (w/w). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils. RESULTS AND DISCUSSION: The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved. CONCLUSIONS: The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil. Nutrient deficiency and salt stress (sodium, Na super(+)) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity. The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania (Sesbania canabina (Retz.) Pers) and seashore mallow (Kosteletzkya virginica), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % (w/w). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils. The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved. The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil. Purpose Nutrient deficiency and salt stress (sodium, Na+) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity. Materials and methods The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania (Sesbania canabina (Retz.) Pers) and seashore mallow (Kosteletzkya virginica), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % (w/w). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils. Results and discussion The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved. Conclusions The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil. |
Author | Zheng, Hao Liu, Guocheng Xia, Yang Jiang, Zhixiang Chen, Lei Wang, Zhenyu Luo, Xianxiang |
Author_xml | – sequence: 1 givenname: Xianxiang surname: Luo fullname: Luo, Xianxiang organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China – sequence: 2 givenname: Guocheng surname: Liu fullname: Liu, Guocheng organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China – sequence: 3 givenname: Yang surname: Xia fullname: Xia, Yang organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China – sequence: 4 givenname: Lei surname: Chen fullname: Chen, Lei organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China – sequence: 5 givenname: Zhixiang surname: Jiang fullname: Jiang, Zhixiang organization: College of Chemical and Environmental Engineering, Qingdao University – sequence: 6 givenname: Hao surname: Zheng fullname: Zheng, Hao email: zhenghao2013@ouc.edu.cn organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China – sequence: 7 givenname: Zhenyu surname: Wang fullname: Wang, Zhenyu organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China |
BookMark | eNqFkcFPHCEUxkljk-rqH9AbSS8eHMsbZmDm2KxaTUyamHrwNGHh4WJmYQvsmo3_fJluD8ak9vJ45Pt98OA7Igc-eCTkM7BzYEx-TQBcdBUDUZUGKvhADkFAU8mmYwelb3hfVNZ9IkcpPTHGZZEPyct9QhosXbiglypWOqzWIWWaA3WrdQxbpKWuMWaHiSpvpq3Z6Oy2Lu8mZ14iNfgYlUFDdVApq5Gm4Ebq_B_xAccxPNM7t8VIL3DM6ozOl86rY_LRqjHhyd91Ru6vLn_Or6vbH99v5t9uK827OldQM4m1Ea3RDW8Z9FYbawQKK_UC5ML2om1a3nIjgbNaW9MZ3qPhmgH2VvIZOd2fW0b_tcGUh5VLukylPIZNGmrGWCPr8jn_RaGTsuOi7duCfnmDPoVN9OUhhRK9ED1vp7vlntIxpBTRDtpllV3wOSo3DsCGKb9hn99Q8hum_EqZEXjjXEe3UnH3rqfee1Jh_SPGVzP90_Qb5QCvAg |
CitedBy_id | crossref_primary_10_1088_1755_1315_1114_1_012046 crossref_primary_10_1007_s11356_022_23499_3 crossref_primary_10_1016_j_eti_2022_102886 crossref_primary_10_1007_s42729_022_01066_6 crossref_primary_10_1111_gcbb_12952 crossref_primary_10_1016_j_jenvman_2020_111443 crossref_primary_10_2139_ssrn_5139795 crossref_primary_10_1016_j_scitotenv_2020_137775 crossref_primary_10_1051_e3sconf_202125102028 crossref_primary_10_1080_00103624_2017_1421657 crossref_primary_10_1007_s10661_024_12324_8 crossref_primary_10_1016_j_geoderma_2020_114184 crossref_primary_10_1016_j_jhydrol_2019_124256 crossref_primary_10_1016_j_scitotenv_2022_155183 crossref_primary_10_3390_agronomy11061136 crossref_primary_10_3390_su12114456 crossref_primary_10_1111_sum_12892 crossref_primary_10_1016_j_scitotenv_2023_167334 crossref_primary_10_1016_j_agwat_2021_106995 crossref_primary_10_1088_1755_1315_1262_8_082036 crossref_primary_10_3389_fmicb_2023_1250453 crossref_primary_10_1007_s12517_021_06485_w crossref_primary_10_1016_j_scitotenv_2018_07_115 crossref_primary_10_1080_10643389_2020_1811590 crossref_primary_10_3799_dqkx_2020_377 crossref_primary_10_1080_15226514_2023_2300115 crossref_primary_10_1016_j_jclepro_2019_04_282 crossref_primary_10_1007_s11104_021_04909_w crossref_primary_10_1016_j_scitotenv_2021_151588 crossref_primary_10_1016_j_scitotenv_2022_153421 crossref_primary_10_3389_fenvs_2022_924358 crossref_primary_10_7717_peerj_11766 crossref_primary_10_3390_su14127270 crossref_primary_10_1002_ldr_3705 crossref_primary_10_1016_j_scitotenv_2023_169618 crossref_primary_10_3389_fpls_2023_1206820 crossref_primary_10_3390_atmos12081034 crossref_primary_10_3390_agronomy13020542 crossref_primary_10_1139_cjss_2024_0072 crossref_primary_10_1016_j_rhisph_2024_100888 crossref_primary_10_3390_plants13192804 crossref_primary_10_1016_j_biortech_2017_07_090 crossref_primary_10_1016_j_scitotenv_2023_168355 crossref_primary_10_1007_s44246_024_00138_9 crossref_primary_10_3390_agronomy11122409 crossref_primary_10_1080_15226514_2021_1901849 crossref_primary_10_1002_ldr_4905 crossref_primary_10_1007_s11368_023_03447_5 crossref_primary_10_1007_s10668_023_03470_z crossref_primary_10_17660_ActaHortic_2024_1411_20 crossref_primary_10_1016_j_plaphy_2018_05_030 crossref_primary_10_3390_polym16060851 crossref_primary_10_1016_j_scitotenv_2020_143291 crossref_primary_10_1016_j_scitotenv_2023_167262 crossref_primary_10_1016_j_catena_2020_104587 crossref_primary_10_1016_j_still_2021_105060 crossref_primary_10_1016_j_agee_2020_107124 crossref_primary_10_1016_j_foreco_2018_08_037 crossref_primary_10_3390_plants9091248 crossref_primary_10_3390_w11102089 crossref_primary_10_1080_15324982_2019_1696423 crossref_primary_10_1016_j_jclepro_2022_130685 crossref_primary_10_1007_s11368_019_02277_8 crossref_primary_10_21273_HORTSCI15398_20 crossref_primary_10_1016_j_envpol_2022_120937 crossref_primary_10_1111_sum_13028 crossref_primary_10_1016_j_scitotenv_2020_136635 crossref_primary_10_1016_j_envres_2023_116596 crossref_primary_10_1016_j_scitotenv_2017_08_166 crossref_primary_10_1016_j_scienta_2019_02_077 crossref_primary_10_1007_s10661_023_11894_3 crossref_primary_10_1007_s11368_016_1610_3 crossref_primary_10_1007_s42729_021_00747_y crossref_primary_10_1016_j_still_2023_105893 crossref_primary_10_1002_ldr_4685 crossref_primary_10_1016_j_eti_2021_102070 crossref_primary_10_1007_s11104_022_05326_3 crossref_primary_10_3390_microorganisms13020341 crossref_primary_10_1016_j_jenvman_2021_112158 crossref_primary_10_1016_j_scitotenv_2023_164530 crossref_primary_10_1007_s11368_020_02616_0 crossref_primary_10_1007_s11676_019_00965_2 crossref_primary_10_3389_fpls_2023_1163195 crossref_primary_10_3390_su151914439 crossref_primary_10_15243_jdmlm_2024_113_5849 crossref_primary_10_1007_s12517_023_11261_z crossref_primary_10_1016_j_still_2019_104372 crossref_primary_10_1021_acsomega_3c07921 crossref_primary_10_1007_s10725_025_01276_9 crossref_primary_10_1016_j_scitotenv_2019_06_244 crossref_primary_10_3390_agronomy12123154 crossref_primary_10_1007_s42729_021_00691_x crossref_primary_10_1007_s42729_023_01519_6 crossref_primary_10_3390_plants11020228 crossref_primary_10_1016_j_envpol_2021_117330 crossref_primary_10_3389_fenvs_2022_1036837 crossref_primary_10_1007_s40726_023_00288_1 crossref_primary_10_1111_ppl_13261 crossref_primary_10_1111_sum_12638 crossref_primary_10_1016_j_ecoenv_2023_115075 crossref_primary_10_1007_s42729_025_02209_1 crossref_primary_10_1016_j_jenvman_2024_120448 crossref_primary_10_1016_j_jenvman_2024_121653 crossref_primary_10_1089_ees_2018_0503 crossref_primary_10_1016_j_scitotenv_2020_143801 crossref_primary_10_3390_su132413796 crossref_primary_10_1016_j_indcrop_2022_115599 crossref_primary_10_3390_ijerph19127282 crossref_primary_10_1016_j_eti_2025_104156 crossref_primary_10_1016_j_scitotenv_2020_137014 crossref_primary_10_1007_s11368_019_02365_9 crossref_primary_10_1002_ldr_5071 crossref_primary_10_1016_j_cscee_2022_100211 crossref_primary_10_1016_j_chemosphere_2019_02_100 crossref_primary_10_36953_ECJ_22862589 crossref_primary_10_1016_j_scitotenv_2022_154817 crossref_primary_10_1016_j_indcrop_2024_119830 crossref_primary_10_1016_j_scitotenv_2017_03_230 crossref_primary_10_1016_j_rhisph_2021_100416 crossref_primary_10_1016_j_scitotenv_2021_145166 crossref_primary_10_3390_microorganisms12040683 crossref_primary_10_1002_agj2_20249 crossref_primary_10_1016_j_jenvman_2018_10_117 crossref_primary_10_1016_j_still_2023_105702 crossref_primary_10_1007_s12649_017_0027_6 crossref_primary_10_1016_j_agwat_2022_107940 crossref_primary_10_1007_s11368_021_03086_8 crossref_primary_10_1016_j_clcb_2022_100013 crossref_primary_10_1016_j_plaphy_2022_05_008 crossref_primary_10_3390_agronomy14102431 crossref_primary_10_1016_j_envres_2023_116551 crossref_primary_10_1007_s42729_023_01174_x crossref_primary_10_1016_j_still_2021_104950 crossref_primary_10_1080_00103624_2019_1603305 crossref_primary_10_1080_09064710_2021_1954239 crossref_primary_10_1016_j_seh_2023_100033 crossref_primary_10_1080_15320383_2021_2024141 crossref_primary_10_1111_sum_12842 crossref_primary_10_1016_j_scitotenv_2022_159628 crossref_primary_10_1007_s10661_019_7393_4 crossref_primary_10_1016_j_cej_2021_133904 crossref_primary_10_1007_s11356_017_8904_x crossref_primary_10_1021_acsomega_3c06516 crossref_primary_10_1016_j_pedsph_2022_11_007 crossref_primary_10_1002_agj2_20941 crossref_primary_10_1016_j_scitotenv_2019_134073 crossref_primary_10_1016_j_scitotenv_2024_176283 crossref_primary_10_1016_j_scitotenv_2017_07_046 crossref_primary_10_1007_s11368_021_02891_5 crossref_primary_10_3390_su16062523 crossref_primary_10_1080_15324982_2020_1765221 crossref_primary_10_3390_toxics9080184 crossref_primary_10_1016_j_scitotenv_2023_162024 crossref_primary_10_1007_s42729_022_01098_y crossref_primary_10_1007_s11104_024_07163_y crossref_primary_10_1016_j_jclepro_2018_11_051 crossref_primary_10_1016_j_gecco_2020_e01449 crossref_primary_10_1080_10643389_2021_1877033 crossref_primary_10_1007_s11104_024_07063_1 crossref_primary_10_2139_ssrn_4155102 crossref_primary_10_3389_fsoil_2024_1376159 crossref_primary_10_1016_j_scitotenv_2023_163067 crossref_primary_10_1111_ejss_12436 crossref_primary_10_1002_eap_3079 crossref_primary_10_1007_s11368_019_02403_6 crossref_primary_10_1016_j_scitotenv_2021_148756 crossref_primary_10_1016_j_scitotenv_2022_160478 crossref_primary_10_48130_tihort_0023_0029 crossref_primary_10_1016_j_scitotenv_2023_168749 crossref_primary_10_1016_j_scitotenv_2017_12_257 crossref_primary_10_3389_fevo_2021_798520 crossref_primary_10_1016_j_envpol_2021_117199 crossref_primary_10_3390_toxics11030262 crossref_primary_10_1016_j_scitotenv_2020_144893 crossref_primary_10_1080_17429145_2017_1418914 crossref_primary_10_3389_fenvs_2022_962581 crossref_primary_10_1007_s42773_023_00244_8 crossref_primary_10_1007_s11368_019_02333_3 crossref_primary_10_1016_j_jclepro_2020_125229 crossref_primary_10_3390_agronomy13030781 crossref_primary_10_1371_journal_pone_0265005 crossref_primary_10_3390_plants9091173 crossref_primary_10_1071_CP21653 crossref_primary_10_1111_gcbb_13147 crossref_primary_10_1007_s11356_020_10891_0 crossref_primary_10_1016_j_geoderma_2022_115882 crossref_primary_10_1016_j_jenvman_2022_117051 crossref_primary_10_1111_pce_12944 crossref_primary_10_1007_s11356_023_27701_y crossref_primary_10_3390_agriculture13081557 crossref_primary_10_1002_ldr_3079 crossref_primary_10_1016_j_ecoleng_2024_107328 crossref_primary_10_1016_j_jenvman_2021_112794 crossref_primary_10_3389_fpls_2022_926850 crossref_primary_10_3390_molecules26164783 crossref_primary_10_1007_s00271_021_00763_x crossref_primary_10_1016_j_jece_2021_106039 crossref_primary_10_1016_j_catena_2020_104882 crossref_primary_10_3390_agronomy13102518 crossref_primary_10_1007_s11368_019_02404_5 crossref_primary_10_1080_01904167_2022_2155552 crossref_primary_10_1007_s40098_024_00875_z crossref_primary_10_21467_jmm_6_1_40_51 crossref_primary_10_1016_j_still_2020_104867 crossref_primary_10_1016_j_fcr_2025_109807 crossref_primary_10_1016_j_jenvman_2019_02_044 crossref_primary_10_3389_sjss_2024_12814 crossref_primary_10_1016_j_ecoenv_2023_115916 crossref_primary_10_1016_j_eti_2025_104115 crossref_primary_10_1016_j_ecoenv_2022_114408 crossref_primary_10_1080_10643389_2020_1859271 crossref_primary_10_1016_j_jece_2021_107017 crossref_primary_10_3390_agriculture12060782 crossref_primary_10_1016_j_scitotenv_2020_143342 |
Cites_doi | 10.1111/sum.12102 10.1016/j.jhydrol.2014.09.038 10.1016/j.geoderma.2013.12.022 10.1016/j.geoderma.2014.12.002 10.1016/j.agwat.2015.06.002 10.1016/j.soilbio.2005.10.017 10.5194/se-5-665-2014 10.1016/j.geoderma.2015.05.005 10.1016/j.agee.2014.03.011 10.1007/978-1-4614-3348-4_7 10.1023/A:1022371130939 10.2134/jeq2011.0069 10.1038/ngeo2154 10.1016/j.soilbio.2012.01.013 10.1016/j.jenvman.2013.05.057 10.1016/j.chemosphere.2015.05.065 10.1016/j.geoderma.2013.04.018 10.1021/es5021058 10.1016/j.agee.2010.09.003 10.1002/jpln.201100143 10.1016/j.envpol.2011.07.023 10.1021/es5043468 10.1007/s00374-011-0624-7 10.1007/s13593-013-0150-0 10.1016/j.soilbio.2011.10.012 10.1016/j.fcr.2009.07.018 10.1007/978-3-540-31211-6 10.1016/j.agwat.2011.04.007 10.3389/fpls.2015.00529 10.1016/j.agee.2011.08.015 10.1007/s11104-014-2074-0 10.1007/s12355-014-0335-0 10.1016/j.soilbio.2011.04.022 10.1016/j.agee.2015.07.027 10.1007/s00374-013-0857-8 10.1016/j.chemosphere.2015.06.084 10.1016/j.biortech.2014.11.077 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 Journal of Soils and Sediments is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Journal of Soils and Sediments is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7ST 7UA 7X2 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ L.G M0K M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U SOI 7TN 7S9 L.6 |
DOI | 10.1007/s11368-016-1361-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Agriculture Science Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts Oceanic Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) Oceanic Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1614-7480 |
EndPage | 789 |
ExternalDocumentID | 4315310851 10_1007_s11368_016_1361_1 |
GeographicLocations | China Yellow River China, People's Rep., Huang He R |
GeographicLocations_xml | – name: China – name: Yellow River – name: China, People's Rep., Huang He R |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2014DQ011 funderid: http://dx.doi.org/10.13039/501100007129 – fundername: National Natural Science Foundation of China (CN) grantid: 41406085 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Postdoctoral Fund in China grantid: 2014M550374 – fundername: Ocean Public Welfare Scientific Research Project grantid: 201305021 – fundername: National Natural Science Foundation of China grantid: 41573089; 41325013 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ATCPS AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L8X LAS LK5 LLZTM M0K M2P M4Y M7R MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RMD ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7U Z7Y ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7UA 7XB 8FK ABRTQ C1K F1W H96 H97 L.G PKEHL PQEST PQUKI Q9U SOI 7TN PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c382t-1207e2d65dc435019fcdfd6e6f7cb17bf96545353d71302cfd8d39ed3c01e9f73 |
IEDL.DBID | U2A |
ISSN | 1439-0108 |
IngestDate | Thu Aug 07 14:37:38 EDT 2025 Sun Aug 24 03:32:32 EDT 2025 Sat Jul 26 00:59:21 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 Tue Jul 01 01:38:07 EDT 2025 Fri Feb 21 02:33:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Productivity Biochar-compost amendment Halophyte Degraded coastal soil Remediation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-1207e2d65dc435019fcdfd6e6f7cb17bf96545353d71302cfd8d39ed3c01e9f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1869669357 |
PQPubID | 54474 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000472108 proquest_miscellaneous_1877836595 proquest_journals_1869669357 crossref_citationtrail_10_1007_s11368_016_1361_1 crossref_primary_10_1007_s11368_016_1361_1 springer_journals_10_1007_s11368_016_1361_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170300 2017-3-00 20170301 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 3 year: 2017 text: 20170300 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Journal of soils and sediments |
PublicationTitleAbbrev | J Soils Sediments |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (CR16) 2011; 43 Agegnehu, Bass, Nelson, Muirhead, Wright, Bird (CR2) 2015; 213 Zhang, Cui, Pan, Li, Hussain, Zhang, Zheng, Crowley (CR37) 2010; 139 Spokas, Cantrell, Novak, Archer, Ippolito, Collins, Boateng, Lima, Lamb, McAloon, Lentz, Nichols (CR27) 2011; 41 Chen, Xiao, Chen, Zhu (CR8) 2015; 49 Xu, Wang, Li, Yao, Su, Zhu (CR35) 2014; 48 Wang, Xu (CR31) 2013; 5 Jeffery, Verheijen, van der Velde, Bastos (CR12) 2011; 144 Bruun, Petersen, Hansen, Holm, Hauggaard-Nielsen (CR6) 2014; 30 Thomas, Frye, Gale, Garmon, Launchbury, Machado, Melamed, Murray, Petroff, Winsborough (CR30) 2013; 129 CR33 Kong, Miao, Borthwick, Duan, Liu, Sun, Ye, Di, Gong (CR15) 2015; 520 CR32 Pansu, Gautheyrou (CR20) 2006 Jones, Rousk, Edwards-Jones, DeLuca, Murphy (CR13) 2012; 45 Zhang, Wang, Liu, Wang, Wang, Zhou (CR38) 2015; 159 Abiven, Schmidt, Lehmann (CR1) 2014; 7 Akhter, Hage-Ahmed, Soja, Steinkellner (CR3) 2015; 6 Hinsinger, Plassard, Tang, Jaillard (CR11) 2003; 248 Tedeschi, Lavini, Riccardi, Pulvento, d’Andria (CR28) 2011; 98 Gill, Sale, Peries, Tang (CR10) 2009; 114 Tejada, Garcia, Gonzalez, Hernandez (CR29) 2006; 38 Soinne, Hovi, Tammeorg, Turtola (CR25) 2014; 219–220 Beesley, Moreno-Jiménez, Gomez-Eyles, Harris, Robinson, Sizmur (CR4) 2011; 159 Novak, Busscher, Lee (CR18) 2013 Sastre-Conde, Lobo, Beltrán-Hernández, Poggi-Varaldo (CR22) 2015; 247–248 Khan, Clark, Sánchez-Monedero, Shea, Meier, Qi, Kookana, Bolan (CR14) 2016; 142 Mia, van Groenigen, van de Voorde, Oram, Bezemer, Mommer, Jeffery (CR17) 2014; 191 Rajkovich, Enders, Hanley, Hyland, Zimmerman, Lehmann (CR21) 2012; 48 Schulz, Glaser (CR23) 2012; 175 Wu, Xu, Shao (CR34) 2014; 5 Zheng, Wang, Deng, Herbert, Xing (CR39) 2013; 206 Song, Zhang, Ma, Chang, Gong (CR26) 2014; 50 Schulz, Dunst, Glaser (CR24) 2013; 33 Chaganti, Crohn (CR7) 2015; 259–260 Yang, Liao, Huang, Yang, Li (CR36) 2015; 17 Brennan, Moreno-Jiménez, Puschenreiter, Alburquerque, Switzer (CR5) 2014; 379 Dempster, Jones, Murphy (CR9) 2012; 48 Novak, Lima, Xing, Gaskin, Steiner, Das, Ahmedna, Rehrah, Watts, Busscher (CR19) 2009; 3 GJ Wang (1361_CR31) 2013; 5 A Brennan (1361_CR5) 2014; 379 S Abiven (1361_CR1) 2014; 7 L Yang (1361_CR36) 2015; 17 DL Jones (1361_CR13) 2012; 45 1361_CR33 1361_CR32 L Beesley (1361_CR4) 2011; 159 S Rajkovich (1361_CR21) 2012; 48 T Zhang (1361_CR38) 2015; 159 HJ Xu (1361_CR35) 2014; 48 JM Novak (1361_CR18) 2013 DN Dempster (1361_CR9) 2012; 48 H Zheng (1361_CR39) 2013; 206 J Lehmann (1361_CR16) 2011; 43 H Schulz (1361_CR23) 2012; 175 DX Kong (1361_CR15) 2015; 520 KA Spokas (1361_CR27) 2011; 41 H Soinne (1361_CR25) 2014; 219–220 VN Chaganti (1361_CR7) 2015; 259–260 N Khan (1361_CR14) 2016; 142 M Tejada (1361_CR29) 2006; 38 S Mia (1361_CR17) 2014; 191 AF Zhang (1361_CR37) 2010; 139 P Hinsinger (1361_CR11) 2003; 248 Y Wu (1361_CR34) 2014; 5 I Sastre-Conde (1361_CR22) 2015; 247–248 M Pansu (1361_CR20) 2006 G Agegnehu (1361_CR2) 2015; 213 A Akhter (1361_CR3) 2015; 6 H Schulz (1361_CR24) 2013; 33 JM Novak (1361_CR19) 2009; 3 A Tedeschi (1361_CR28) 2011; 98 EW Bruun (1361_CR6) 2014; 30 S Jeffery (1361_CR12) 2011; 144 ZM Chen (1361_CR8) 2015; 49 JS Gill (1361_CR10) 2009; 114 YJ Song (1361_CR26) 2014; 50 SC Thomas (1361_CR30) 2013; 129 |
References_xml | – volume: 30 start-page: 109 year: 2014 end-page: 118 ident: CR6 article-title: Biochar amendment to coarse sandy subsoil improves root growth and increases water retention publication-title: Soil Use and Manage doi: 10.1111/sum.12102 – volume: 520 start-page: 157 year: 2015 end-page: 167 ident: CR15 article-title: Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.09.038 – volume: 219–220 start-page: 162 year: 2014 end-page: 167 ident: CR25 article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.022 – volume: 247–248 start-page: 140 year: 2015 end-page: 150 ident: CR22 article-title: Remediation of saline soils by a two-step process: washing and amendment with sludge publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.002 – volume: 159 start-page: 115 year: 2015 end-page: 122 ident: CR38 article-title: Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses publication-title: Agr Water Manage doi: 10.1016/j.agwat.2015.06.002 – volume: 38 start-page: 1413 year: 2006 end-page: 1421 ident: CR29 article-title: Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.10.017 – volume: 3 start-page: 195 year: 2009 end-page: 206 ident: CR19 article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand publication-title: Ann Environ Sci – volume: 5 start-page: 665 year: 2014 end-page: 671 ident: CR34 article-title: Furfural and its biochar improve the general properties of a saline soil publication-title: Solid Earth doi: 10.5194/se-5-665-2014 – ident: CR33 – volume: 259–260 start-page: 45 year: 2015 end-page: 55 ident: CR7 article-title: Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water publication-title: Geoderma doi: 10.1016/j.geoderma.2015.05.005 – volume: 191 start-page: 83 year: 2014 end-page: 91 ident: CR17 article-title: Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2014.03.011 – start-page: 69 year: 2013 end-page: 96 ident: CR18 article-title: Selection and use of designer biochars to improve characteristics of Southeastern USA Coastal Plain degraded soils publication-title: Advanced biofuels and bioproducts doi: 10.1007/978-1-4614-3348-4_7 – volume: 248 start-page: 43 year: 2003 end-page: 59 ident: CR11 article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review publication-title: Plant Soil doi: 10.1023/A:1022371130939 – volume: 41 start-page: 973 year: 2011 end-page: 989 ident: CR27 article-title: Biochar: a synthesis of its agronomic impact beyond carbon sequestration publication-title: J Environ Qual doi: 10.2134/jeq2011.0069 – volume: 7 start-page: 326 year: 2014 end-page: 327 ident: CR1 article-title: Biochar by design publication-title: Nat Geosci doi: 10.1038/ngeo2154 – volume: 48 start-page: 47 year: 2012 end-page: 50 ident: CR9 article-title: Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.01.013 – volume: 129 start-page: 62 year: 2013 end-page: 68 ident: CR30 article-title: Biochar mitigates negative effects of salt additions on two herbaceous plant species publication-title: J Environ Manage doi: 10.1016/j.jenvman.2013.05.057 – volume: 142 start-page: 14 year: 2016 end-page: 23 ident: CR14 article-title: Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.065 – volume: 206 start-page: 32 year: 2013 end-page: 39 ident: CR39 article-title: Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2013.04.018 – volume: 48 start-page: 9391 year: 2014 end-page: 9399 ident: CR35 article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape publication-title: Environ Sci Technol doi: 10.1021/es5021058 – volume: 139 start-page: 469 year: 2010 end-page: 475 ident: CR37 article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2010.09.003 – volume: 175 start-page: 410 year: 2012 end-page: 422 ident: CR23 article-title: Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201100143 – volume: 159 start-page: 3269 year: 2011 end-page: 3282 ident: CR4 article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ Pollut doi: 10.1016/j.envpol.2011.07.023 – volume: 49 start-page: 309 year: 2015 end-page: 317 ident: CR8 article-title: Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures publication-title: Environ Sci Technol doi: 10.1021/es5043468 – volume: 48 start-page: 271 year: 2012 end-page: 284 ident: CR21 article-title: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil publication-title: Biol Fert Soils doi: 10.1007/s00374-011-0624-7 – volume: 5 start-page: 116 year: 2013 end-page: 119 ident: CR31 article-title: The effects of biochar on germination and growth of wheat in different saline-alkali soil publication-title: Asian Agr Res – volume: 33 start-page: 817 year: 2013 end-page: 827 ident: CR24 article-title: Positive effects of composted biochar on plant growth and soil fertility publication-title: Agron Sustain Dev doi: 10.1007/s13593-013-0150-0 – volume: 45 start-page: 113 year: 2012 end-page: 124 ident: CR13 article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.10.012 – volume: 114 start-page: 137 year: 2009 end-page: 146 ident: CR10 article-title: Changes in soil physical properties and crop root growth in dense sodic subsoil following incorporation of organic amendments publication-title: Field Crop Res doi: 10.1016/j.fcr.2009.07.018 – year: 2006 ident: CR20 publication-title: Handbook of soil analysis: mineralogical, organic and inorganic methods doi: 10.1007/978-3-540-31211-6 – volume: 98 start-page: 1329 year: 2011 end-page: 1338 ident: CR28 article-title: Melon crops ( L., cv. Tendral) grown in a Mediterranean environment under saline-sodic conditions: part I. Yield and quality publication-title: Agr Water Manage doi: 10.1016/j.agwat.2011.04.007 – volume: 6 start-page: 529 year: 2015 ident: CR3 article-title: Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00529 – volume: 144 start-page: 175 year: 2011 end-page: 187 ident: CR12 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2011.08.015 – volume: 379 start-page: 351 year: 2014 end-page: 360 ident: CR5 article-title: Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil publication-title: Plant Soil doi: 10.1007/s11104-014-2074-0 – volume: 17 start-page: 36 year: 2015 end-page: 40 ident: CR36 article-title: Biochar improves sugarcane seedling root and soil properties under a pot experiment publication-title: Sugar Tech doi: 10.1007/s12355-014-0335-0 – ident: CR32 – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: CR16 article-title: Biochar effects on soil biota—a review publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.022 – volume: 213 start-page: 72 year: 2015 end-page: 85 ident: CR2 article-title: Biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2015.07.027 – volume: 50 start-page: 321 year: 2014 end-page: 332 ident: CR26 article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil publication-title: Biol Fert Soils doi: 10.1007/s00374-013-0857-8 – volume: 50 start-page: 321 year: 2014 ident: 1361_CR26 publication-title: Biol Fert Soils doi: 10.1007/s00374-013-0857-8 – volume: 48 start-page: 9391 year: 2014 ident: 1361_CR35 publication-title: Environ Sci Technol doi: 10.1021/es5021058 – volume: 259–260 start-page: 45 year: 2015 ident: 1361_CR7 publication-title: Geoderma doi: 10.1016/j.geoderma.2015.05.005 – volume: 43 start-page: 1812 year: 2011 ident: 1361_CR16 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.022 – volume: 5 start-page: 116 year: 2013 ident: 1361_CR31 publication-title: Asian Agr Res – volume: 213 start-page: 72 year: 2015 ident: 1361_CR2 publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2015.07.027 – volume: 38 start-page: 1413 year: 2006 ident: 1361_CR29 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.10.017 – volume: 3 start-page: 195 year: 2009 ident: 1361_CR19 publication-title: Ann Environ Sci – volume: 49 start-page: 309 year: 2015 ident: 1361_CR8 publication-title: Environ Sci Technol doi: 10.1021/es5043468 – volume: 206 start-page: 32 year: 2013 ident: 1361_CR39 publication-title: Geoderma doi: 10.1016/j.geoderma.2013.04.018 – volume: 30 start-page: 109 year: 2014 ident: 1361_CR6 publication-title: Soil Use and Manage doi: 10.1111/sum.12102 – volume-title: Handbook of soil analysis: mineralogical, organic and inorganic methods year: 2006 ident: 1361_CR20 doi: 10.1007/978-3-540-31211-6 – volume: 129 start-page: 62 year: 2013 ident: 1361_CR30 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2013.05.057 – volume: 5 start-page: 665 year: 2014 ident: 1361_CR34 publication-title: Solid Earth doi: 10.5194/se-5-665-2014 – volume: 6 start-page: 529 year: 2015 ident: 1361_CR3 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00529 – volume: 175 start-page: 410 year: 2012 ident: 1361_CR23 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201100143 – volume: 191 start-page: 83 year: 2014 ident: 1361_CR17 publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2014.03.011 – volume: 142 start-page: 14 year: 2016 ident: 1361_CR14 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.065 – volume: 219–220 start-page: 162 year: 2014 ident: 1361_CR25 publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.022 – volume: 139 start-page: 469 year: 2010 ident: 1361_CR37 publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2010.09.003 – volume: 7 start-page: 326 year: 2014 ident: 1361_CR1 publication-title: Nat Geosci doi: 10.1038/ngeo2154 – volume: 159 start-page: 115 year: 2015 ident: 1361_CR38 publication-title: Agr Water Manage doi: 10.1016/j.agwat.2015.06.002 – volume: 41 start-page: 973 year: 2011 ident: 1361_CR27 publication-title: J Environ Qual doi: 10.2134/jeq2011.0069 – ident: 1361_CR33 doi: 10.1016/j.chemosphere.2015.06.084 – volume: 248 start-page: 43 year: 2003 ident: 1361_CR11 publication-title: Plant Soil doi: 10.1023/A:1022371130939 – volume: 98 start-page: 1329 year: 2011 ident: 1361_CR28 publication-title: Agr Water Manage doi: 10.1016/j.agwat.2011.04.007 – volume: 48 start-page: 47 year: 2012 ident: 1361_CR9 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.01.013 – ident: 1361_CR32 doi: 10.1016/j.biortech.2014.11.077 – volume: 144 start-page: 175 year: 2011 ident: 1361_CR12 publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2011.08.015 – start-page: 69 volume-title: Advanced biofuels and bioproducts year: 2013 ident: 1361_CR18 doi: 10.1007/978-1-4614-3348-4_7 – volume: 247–248 start-page: 140 year: 2015 ident: 1361_CR22 publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.002 – volume: 17 start-page: 36 year: 2015 ident: 1361_CR36 publication-title: Sugar Tech doi: 10.1007/s12355-014-0335-0 – volume: 114 start-page: 137 year: 2009 ident: 1361_CR10 publication-title: Field Crop Res doi: 10.1016/j.fcr.2009.07.018 – volume: 159 start-page: 3269 year: 2011 ident: 1361_CR4 publication-title: Environ Pollut doi: 10.1016/j.envpol.2011.07.023 – volume: 379 start-page: 351 year: 2014 ident: 1361_CR5 publication-title: Plant Soil doi: 10.1007/s11104-014-2074-0 – volume: 33 start-page: 817 year: 2013 ident: 1361_CR24 publication-title: Agron Sustain Dev doi: 10.1007/s13593-013-0150-0 – volume: 48 start-page: 271 year: 2012 ident: 1361_CR21 publication-title: Biol Fert Soils doi: 10.1007/s00374-011-0624-7 – volume: 520 start-page: 157 year: 2015 ident: 1361_CR15 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.09.038 – volume: 45 start-page: 113 year: 2012 ident: 1361_CR13 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.10.012 |
SSID | ssj0037161 |
Score | 2.5631194 |
Snippet | Purpose
Nutrient deficiency and salt stress (sodium, Na
+
) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta.... Purpose Nutrient deficiency and salt stress (sodium, Na+) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta.... Nutrient deficiency and salt stress (sodium, Na super(+)) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta.... PURPOSE: Nutrient deficiency and salt stress (sodium, Na⁺) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 780 |
SubjectTerms | Acidification additives Arachis hypogaea Bioavailability biochar Biochar for a Sustainable Environment Biomass Brackish Cation exchange cation exchange capacity Charcoal China coastal soils Coasts Composting Composts Earth and Environmental Science Environment Environmental Physics exchangeable sodium Fertility Freshwater halophytes Kosteletzkya virginica Land degradation nitrogen nutrient deficiencies Nutrient deficiency nutrients Organic matter peanut hulls Rhizosphere river deltas Rivers Salinization salt stress Seafood seafoods Sesbania Sodium Soil conditioners Soil organic matter Soil pH Soil properties Soil salinity Soil Science & Conservation surface area Yellow River |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSxwxFA92vbSHUrWl21qJ0FM1dDKZJJNTsVURoVLEBXsaMvmQhWWy3Rnpof9882LGbQU9zGFIwoR5yft-74fQxyhEJCtNS1ptFBgonGhGDRGtq5V1qrAJG_D7hTibVefX_Do73PqcVjnyxMSobTDgI_8M0ElCKMbll-UvAqhREF3NEBrP0GZkwXU9QZtfTy5-XI68mEVrIJlcUexGo7mox7hmKp6jTEAiF_ThE5TQ_yXTWt18ECFNguf0FXqZNUZ8dEfiLbThum304uhmlbtmuB30Z9Y7HDxu5wGqqAjkiYd-wEPA8-Q0cHgJTvcVdE_FurPwCo1eE3IErIxqILbQN8I6i03QUWdc4D7MF3jepcGfEKT5jS8hjQMfu8WgD3HC3n6NZqcnV9_OSEZVIIbV5UBoWUhXWsGtqSCqqLyx3gonvDQtla1XImpVjDMrIahpvK0tU84yU1CnvGRv0KQLnXuLsNWOM6nj40XlKx7pG_UzVrSWUqW0n6Ji_KONyS3HAfli0aybJQMRGkgzAyI0dIo-3S9Z3vXbeGry7kimJl-9vlkflCnavx-OlwYiIbpz4RbmSKhe4Yo_PgdqmKpoHxf1FB2MR-Cfzzy2qXdPb-o9el6CZpDS2HbRZFjdug9RrxnavXx4_wJrCfS9 priority: 102 providerName: ProQuest |
Title | Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China |
URI | https://link.springer.com/article/10.1007/s11368-016-1361-1 https://www.proquest.com/docview/1869669357 https://www.proquest.com/docview/1877836595 https://www.proquest.com/docview/2000472108 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-wwEA-iFz08_HjivqcSwZPPQtM0SXNcdVUURcQFPZU0H4-FpZVtxYP_vJlsu6uigodSSiZt6STNbzIzv0Fo3y8igia6iAqlJRgoLFKU6IgXNpPGytiE2oBX1_x8mF7cs_s2j7vuot07l2T4U8-T3QjlEHgFvHmcRN7kWWLedIc4rmHS736_1BsAwcryK60XjrPOlfnZLd4vRnOE-cEpGtaa01X0qwWJuD_V6hpasOU6Wun_n7REGXYDvQxriyuHi1EFiVMRhIZXdYObCo_CPoHFj7DPPgHCVKxKA5fA7RqKRUBPj_ywAaoIYw3WlfIwcYzrajTGozI0PoBf5hnfQuQGPrHjRh3iUG77NxqeDu6Oz6O2kEKkaZY0EUliYRPDmdEpOBKl08YZbrkTuiCicJJ7IEUZNQL8mNqZzFBpDdUxsdIJuokWy6q0WwgbZRkVyh-Opy5lXqUektG4MIRIqVwPxd0XzXXLMg7FLsb5nB8ZlJBDZBkoISc9dDDr8jil2PhOeLtTU97OtjqHslqcS8pED-3Nmv08AeeHKm31BDICElaYZF_LQNpS6k3iOOuhf90QePOYr17qz4-k_6LlBLBBCGTbRovN5MnueGTTFLtoqX_2cDnw56PB9c3tbhjZr8uW8tw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5iSwEjwQWIiOPYiQ8IFdpqS9sVqrpSOaWJH2ilVbzdpKoQ_4nfiMebdAGpvfWQQ2Q7sTxjzzeeF8BrL0QylqgqqkolUUHhUcmoikRlcqmNjHWoDXg4FqNJ-vWEn6zB7z4WBt0q-zMxHNTaKbwj_4Clk4SQjGef5mcRVo1C62pfQmPJFvvm54VX2ZqPe9uevm-SZHfn-Mso6qoKRIrlSRvRJM5MogXXKkWrmrRKWy2MsJmqaFZZKTyqYJzpDI16yupcM2k0UzE10mbMf_cWrKdMxMkA1j_vjL8d9Wc_89pHUPG8mPdKepz3dtQQrEeZQMcxzPsnaET_lYQrePufRTYIut37cK9DqGRryVIPYM3UD-Hu1o9Fl6XDPIJfk8YQZ0k1dRi1FaFfumta0joyDZcUhszxkn-B2VpJWWt8xcSyoVIFjvSwk2jMU6GNJsqVHqPOSOOmMzKtQ-N3NApdkCN0GyHbZtaW70mo9f0YJjey3k9gULvaPAWiS8NZVvrHitSm3POTx4MsrjSlUpZ2CHG_ooXqUpxjpY1ZsUrOjEQo0K0NiVDQIby9HDJf5ve4rvNmT6ai2-pNsWLMIby6bPabFC0vZW3cOfbJMFqGS351H4yZSr0-HudDeNezwF-_uWpSG9dP6iXcHh0fHhQHe-P9Z3AnQVQSXOg2YdAuzs1zj6na6kXHyAROb3rv_AGqGjHn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKLQWMBBfAIo4TOz4gVNiuWgqrqmKlckoTP9BKq2S7SVUh_hm_Do836QJSe-shh8h2YnnGnvk8L4CXXohIHuuSloVWCFBSWnCmqShtpoxVkQm1Ab9OxN40-XycHm_A7z4WBt0q-zMxHNSm1nhH_g5LJwmhuAfwrnOLOByNPyxOKVaQQktrX05jxSIH9ue5h2_N-_2Rp_WrOB7vfvu0R7sKA1TzLG4piyNpYyNSoxO0sCmnjTPCCid1yWTplPAaBk-5kWjg085khitruI6YVU5y_90bsCkRFQ1g8-Pu5PColwPcI5EA97zI94A9ynqbagjcY1ygExnmABSMsn-l4lrV_c86G4Te-C7c6bRVsrNir3uwYav7cHvnx7LL2GEfwK9pY0ntSDmrMYKLoo963bSkrcksXFhYssAL_yVmbiVFZfAVk8yGqhU40qugxGDOCmMN0XXh9dU5aerZnMyq0PgdDUTn5AhdSMjIztviLQl1vx_C9FrW-xEMqrqyj4GYwqZcFv5xInFJ6nnL64Y8Kg1jShVuCFG_ornu0p1j1Y15vk7UjETI0cUNiZCzIby-GLJY5fq4qvN2T6a82_ZNvmbSIby4aPYbFq0wRWXrM-wjMXImVenlfTB-KvHYPMqG8KZngb9-c9mktq6e1HO46fdM_mV_cvAEbsWooARvum0YtMsz-9SrV235rONjAifXvXX-AOzENhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+biochar-compost+to+improve+properties+and+productivity+of+the+degraded+coastal+soil+in+the+Yellow+River+Delta%2C+China&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Luo%2C+Xianxiang&rft.au=Liu%2C+Guocheng&rft.au=Xia%2C+Yang&rft.au=Chen%2C+Lei&rft.date=2017-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=17&rft.issue=3&rft.spage=780&rft.epage=789&rft_id=info:doi/10.1007%2Fs11368-016-1361-1&rft.externalDocID=10_1007_s11368_016_1361_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon |