Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China

Purpose Nutrient deficiency and salt stress (sodium, Na + ) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, ferti...

Full description

Saved in:
Bibliographic Details
Published inJournal of soils and sediments Vol. 17; no. 3; pp. 780 - 789
Main Authors Luo, Xianxiang, Liu, Guocheng, Xia, Yang, Chen, Lei, Jiang, Zhixiang, Zheng, Hao, Wang, Zhenyu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Nutrient deficiency and salt stress (sodium, Na + ) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity. Materials and methods The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania ( Sesbania canabina (Retz.) Pers ) and seashore mallow ( Kosteletzkya virginica ), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % ( w / w ). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils. Results and discussion The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved. Conclusions The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil.
AbstractList Purpose Nutrient deficiency and salt stress (sodium, Na + ) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity. Materials and methods The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania ( Sesbania canabina (Retz.) Pers ) and seashore mallow ( Kosteletzkya virginica ), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % ( w / w ). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils. Results and discussion The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved. Conclusions The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil.
PURPOSE: Nutrient deficiency and salt stress (sodium, Na⁺) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity. MATERIALS AND METHODS: The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania (Sesbania canabina (Retz.) Pers) and seashore mallow (Kosteletzkya virginica), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % (w/w). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils. RESULTS AND DISCUSSION: The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved. CONCLUSIONS: The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil.
Nutrient deficiency and salt stress (sodium, Na super(+)) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity. The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania (Sesbania canabina (Retz.) Pers) and seashore mallow (Kosteletzkya virginica), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % (w/w). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils. The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved. The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil.
Purpose Nutrient deficiency and salt stress (sodium, Na+) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity. Materials and methods The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania (Sesbania canabina (Retz.) Pers) and seashore mallow (Kosteletzkya virginica), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % (w/w). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils. Results and discussion The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved. Conclusions The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil.
Author Zheng, Hao
Liu, Guocheng
Xia, Yang
Jiang, Zhixiang
Chen, Lei
Wang, Zhenyu
Luo, Xianxiang
Author_xml – sequence: 1
  givenname: Xianxiang
  surname: Luo
  fullname: Luo, Xianxiang
  organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China
– sequence: 2
  givenname: Guocheng
  surname: Liu
  fullname: Liu, Guocheng
  organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China
– sequence: 3
  givenname: Yang
  surname: Xia
  fullname: Xia, Yang
  organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China
– sequence: 4
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China
– sequence: 5
  givenname: Zhixiang
  surname: Jiang
  fullname: Jiang, Zhixiang
  organization: College of Chemical and Environmental Engineering, Qingdao University
– sequence: 6
  givenname: Hao
  surname: Zheng
  fullname: Zheng, Hao
  email: zhenghao2013@ouc.edu.cn
  organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China
– sequence: 7
  givenname: Zhenyu
  surname: Wang
  fullname: Wang, Zhenyu
  organization: College of Environmental Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China
BookMark eNqFkcFPHCEUxkljk-rqH9AbSS8eHMsbZmDm2KxaTUyamHrwNGHh4WJmYQvsmo3_fJluD8ak9vJ45Pt98OA7Igc-eCTkM7BzYEx-TQBcdBUDUZUGKvhADkFAU8mmYwelb3hfVNZ9IkcpPTHGZZEPyct9QhosXbiglypWOqzWIWWaA3WrdQxbpKWuMWaHiSpvpq3Z6Oy2Lu8mZ14iNfgYlUFDdVApq5Gm4Ebq_B_xAccxPNM7t8VIL3DM6ozOl86rY_LRqjHhyd91Ru6vLn_Or6vbH99v5t9uK827OldQM4m1Ea3RDW8Z9FYbawQKK_UC5ML2om1a3nIjgbNaW9MZ3qPhmgH2VvIZOd2fW0b_tcGUh5VLukylPIZNGmrGWCPr8jn_RaGTsuOi7duCfnmDPoVN9OUhhRK9ED1vp7vlntIxpBTRDtpllV3wOSo3DsCGKb9hn99Q8hum_EqZEXjjXEe3UnH3rqfee1Jh_SPGVzP90_Qb5QCvAg
CitedBy_id crossref_primary_10_1088_1755_1315_1114_1_012046
crossref_primary_10_1007_s11356_022_23499_3
crossref_primary_10_1016_j_eti_2022_102886
crossref_primary_10_1007_s42729_022_01066_6
crossref_primary_10_1111_gcbb_12952
crossref_primary_10_1016_j_jenvman_2020_111443
crossref_primary_10_2139_ssrn_5139795
crossref_primary_10_1016_j_scitotenv_2020_137775
crossref_primary_10_1051_e3sconf_202125102028
crossref_primary_10_1080_00103624_2017_1421657
crossref_primary_10_1007_s10661_024_12324_8
crossref_primary_10_1016_j_geoderma_2020_114184
crossref_primary_10_1016_j_jhydrol_2019_124256
crossref_primary_10_1016_j_scitotenv_2022_155183
crossref_primary_10_3390_agronomy11061136
crossref_primary_10_3390_su12114456
crossref_primary_10_1111_sum_12892
crossref_primary_10_1016_j_scitotenv_2023_167334
crossref_primary_10_1016_j_agwat_2021_106995
crossref_primary_10_1088_1755_1315_1262_8_082036
crossref_primary_10_3389_fmicb_2023_1250453
crossref_primary_10_1007_s12517_021_06485_w
crossref_primary_10_1016_j_scitotenv_2018_07_115
crossref_primary_10_1080_10643389_2020_1811590
crossref_primary_10_3799_dqkx_2020_377
crossref_primary_10_1080_15226514_2023_2300115
crossref_primary_10_1016_j_jclepro_2019_04_282
crossref_primary_10_1007_s11104_021_04909_w
crossref_primary_10_1016_j_scitotenv_2021_151588
crossref_primary_10_1016_j_scitotenv_2022_153421
crossref_primary_10_3389_fenvs_2022_924358
crossref_primary_10_7717_peerj_11766
crossref_primary_10_3390_su14127270
crossref_primary_10_1002_ldr_3705
crossref_primary_10_1016_j_scitotenv_2023_169618
crossref_primary_10_3389_fpls_2023_1206820
crossref_primary_10_3390_atmos12081034
crossref_primary_10_3390_agronomy13020542
crossref_primary_10_1139_cjss_2024_0072
crossref_primary_10_1016_j_rhisph_2024_100888
crossref_primary_10_3390_plants13192804
crossref_primary_10_1016_j_biortech_2017_07_090
crossref_primary_10_1016_j_scitotenv_2023_168355
crossref_primary_10_1007_s44246_024_00138_9
crossref_primary_10_3390_agronomy11122409
crossref_primary_10_1080_15226514_2021_1901849
crossref_primary_10_1002_ldr_4905
crossref_primary_10_1007_s11368_023_03447_5
crossref_primary_10_1007_s10668_023_03470_z
crossref_primary_10_17660_ActaHortic_2024_1411_20
crossref_primary_10_1016_j_plaphy_2018_05_030
crossref_primary_10_3390_polym16060851
crossref_primary_10_1016_j_scitotenv_2020_143291
crossref_primary_10_1016_j_scitotenv_2023_167262
crossref_primary_10_1016_j_catena_2020_104587
crossref_primary_10_1016_j_still_2021_105060
crossref_primary_10_1016_j_agee_2020_107124
crossref_primary_10_1016_j_foreco_2018_08_037
crossref_primary_10_3390_plants9091248
crossref_primary_10_3390_w11102089
crossref_primary_10_1080_15324982_2019_1696423
crossref_primary_10_1016_j_jclepro_2022_130685
crossref_primary_10_1007_s11368_019_02277_8
crossref_primary_10_21273_HORTSCI15398_20
crossref_primary_10_1016_j_envpol_2022_120937
crossref_primary_10_1111_sum_13028
crossref_primary_10_1016_j_scitotenv_2020_136635
crossref_primary_10_1016_j_envres_2023_116596
crossref_primary_10_1016_j_scitotenv_2017_08_166
crossref_primary_10_1016_j_scienta_2019_02_077
crossref_primary_10_1007_s10661_023_11894_3
crossref_primary_10_1007_s11368_016_1610_3
crossref_primary_10_1007_s42729_021_00747_y
crossref_primary_10_1016_j_still_2023_105893
crossref_primary_10_1002_ldr_4685
crossref_primary_10_1016_j_eti_2021_102070
crossref_primary_10_1007_s11104_022_05326_3
crossref_primary_10_3390_microorganisms13020341
crossref_primary_10_1016_j_jenvman_2021_112158
crossref_primary_10_1016_j_scitotenv_2023_164530
crossref_primary_10_1007_s11368_020_02616_0
crossref_primary_10_1007_s11676_019_00965_2
crossref_primary_10_3389_fpls_2023_1163195
crossref_primary_10_3390_su151914439
crossref_primary_10_15243_jdmlm_2024_113_5849
crossref_primary_10_1007_s12517_023_11261_z
crossref_primary_10_1016_j_still_2019_104372
crossref_primary_10_1021_acsomega_3c07921
crossref_primary_10_1007_s10725_025_01276_9
crossref_primary_10_1016_j_scitotenv_2019_06_244
crossref_primary_10_3390_agronomy12123154
crossref_primary_10_1007_s42729_021_00691_x
crossref_primary_10_1007_s42729_023_01519_6
crossref_primary_10_3390_plants11020228
crossref_primary_10_1016_j_envpol_2021_117330
crossref_primary_10_3389_fenvs_2022_1036837
crossref_primary_10_1007_s40726_023_00288_1
crossref_primary_10_1111_ppl_13261
crossref_primary_10_1111_sum_12638
crossref_primary_10_1016_j_ecoenv_2023_115075
crossref_primary_10_1007_s42729_025_02209_1
crossref_primary_10_1016_j_jenvman_2024_120448
crossref_primary_10_1016_j_jenvman_2024_121653
crossref_primary_10_1089_ees_2018_0503
crossref_primary_10_1016_j_scitotenv_2020_143801
crossref_primary_10_3390_su132413796
crossref_primary_10_1016_j_indcrop_2022_115599
crossref_primary_10_3390_ijerph19127282
crossref_primary_10_1016_j_eti_2025_104156
crossref_primary_10_1016_j_scitotenv_2020_137014
crossref_primary_10_1007_s11368_019_02365_9
crossref_primary_10_1002_ldr_5071
crossref_primary_10_1016_j_cscee_2022_100211
crossref_primary_10_1016_j_chemosphere_2019_02_100
crossref_primary_10_36953_ECJ_22862589
crossref_primary_10_1016_j_scitotenv_2022_154817
crossref_primary_10_1016_j_indcrop_2024_119830
crossref_primary_10_1016_j_scitotenv_2017_03_230
crossref_primary_10_1016_j_rhisph_2021_100416
crossref_primary_10_1016_j_scitotenv_2021_145166
crossref_primary_10_3390_microorganisms12040683
crossref_primary_10_1002_agj2_20249
crossref_primary_10_1016_j_jenvman_2018_10_117
crossref_primary_10_1016_j_still_2023_105702
crossref_primary_10_1007_s12649_017_0027_6
crossref_primary_10_1016_j_agwat_2022_107940
crossref_primary_10_1007_s11368_021_03086_8
crossref_primary_10_1016_j_clcb_2022_100013
crossref_primary_10_1016_j_plaphy_2022_05_008
crossref_primary_10_3390_agronomy14102431
crossref_primary_10_1016_j_envres_2023_116551
crossref_primary_10_1007_s42729_023_01174_x
crossref_primary_10_1016_j_still_2021_104950
crossref_primary_10_1080_00103624_2019_1603305
crossref_primary_10_1080_09064710_2021_1954239
crossref_primary_10_1016_j_seh_2023_100033
crossref_primary_10_1080_15320383_2021_2024141
crossref_primary_10_1111_sum_12842
crossref_primary_10_1016_j_scitotenv_2022_159628
crossref_primary_10_1007_s10661_019_7393_4
crossref_primary_10_1016_j_cej_2021_133904
crossref_primary_10_1007_s11356_017_8904_x
crossref_primary_10_1021_acsomega_3c06516
crossref_primary_10_1016_j_pedsph_2022_11_007
crossref_primary_10_1002_agj2_20941
crossref_primary_10_1016_j_scitotenv_2019_134073
crossref_primary_10_1016_j_scitotenv_2024_176283
crossref_primary_10_1016_j_scitotenv_2017_07_046
crossref_primary_10_1007_s11368_021_02891_5
crossref_primary_10_3390_su16062523
crossref_primary_10_1080_15324982_2020_1765221
crossref_primary_10_3390_toxics9080184
crossref_primary_10_1016_j_scitotenv_2023_162024
crossref_primary_10_1007_s42729_022_01098_y
crossref_primary_10_1007_s11104_024_07163_y
crossref_primary_10_1016_j_jclepro_2018_11_051
crossref_primary_10_1016_j_gecco_2020_e01449
crossref_primary_10_1080_10643389_2021_1877033
crossref_primary_10_1007_s11104_024_07063_1
crossref_primary_10_2139_ssrn_4155102
crossref_primary_10_3389_fsoil_2024_1376159
crossref_primary_10_1016_j_scitotenv_2023_163067
crossref_primary_10_1111_ejss_12436
crossref_primary_10_1002_eap_3079
crossref_primary_10_1007_s11368_019_02403_6
crossref_primary_10_1016_j_scitotenv_2021_148756
crossref_primary_10_1016_j_scitotenv_2022_160478
crossref_primary_10_48130_tihort_0023_0029
crossref_primary_10_1016_j_scitotenv_2023_168749
crossref_primary_10_1016_j_scitotenv_2017_12_257
crossref_primary_10_3389_fevo_2021_798520
crossref_primary_10_1016_j_envpol_2021_117199
crossref_primary_10_3390_toxics11030262
crossref_primary_10_1016_j_scitotenv_2020_144893
crossref_primary_10_1080_17429145_2017_1418914
crossref_primary_10_3389_fenvs_2022_962581
crossref_primary_10_1007_s42773_023_00244_8
crossref_primary_10_1007_s11368_019_02333_3
crossref_primary_10_1016_j_jclepro_2020_125229
crossref_primary_10_3390_agronomy13030781
crossref_primary_10_1371_journal_pone_0265005
crossref_primary_10_3390_plants9091173
crossref_primary_10_1071_CP21653
crossref_primary_10_1111_gcbb_13147
crossref_primary_10_1007_s11356_020_10891_0
crossref_primary_10_1016_j_geoderma_2022_115882
crossref_primary_10_1016_j_jenvman_2022_117051
crossref_primary_10_1111_pce_12944
crossref_primary_10_1007_s11356_023_27701_y
crossref_primary_10_3390_agriculture13081557
crossref_primary_10_1002_ldr_3079
crossref_primary_10_1016_j_ecoleng_2024_107328
crossref_primary_10_1016_j_jenvman_2021_112794
crossref_primary_10_3389_fpls_2022_926850
crossref_primary_10_3390_molecules26164783
crossref_primary_10_1007_s00271_021_00763_x
crossref_primary_10_1016_j_jece_2021_106039
crossref_primary_10_1016_j_catena_2020_104882
crossref_primary_10_3390_agronomy13102518
crossref_primary_10_1007_s11368_019_02404_5
crossref_primary_10_1080_01904167_2022_2155552
crossref_primary_10_1007_s40098_024_00875_z
crossref_primary_10_21467_jmm_6_1_40_51
crossref_primary_10_1016_j_still_2020_104867
crossref_primary_10_1016_j_fcr_2025_109807
crossref_primary_10_1016_j_jenvman_2019_02_044
crossref_primary_10_3389_sjss_2024_12814
crossref_primary_10_1016_j_ecoenv_2023_115916
crossref_primary_10_1016_j_eti_2025_104115
crossref_primary_10_1016_j_ecoenv_2022_114408
crossref_primary_10_1080_10643389_2020_1859271
crossref_primary_10_1016_j_jece_2021_107017
crossref_primary_10_3390_agriculture12060782
crossref_primary_10_1016_j_scitotenv_2020_143342
Cites_doi 10.1111/sum.12102
10.1016/j.jhydrol.2014.09.038
10.1016/j.geoderma.2013.12.022
10.1016/j.geoderma.2014.12.002
10.1016/j.agwat.2015.06.002
10.1016/j.soilbio.2005.10.017
10.5194/se-5-665-2014
10.1016/j.geoderma.2015.05.005
10.1016/j.agee.2014.03.011
10.1007/978-1-4614-3348-4_7
10.1023/A:1022371130939
10.2134/jeq2011.0069
10.1038/ngeo2154
10.1016/j.soilbio.2012.01.013
10.1016/j.jenvman.2013.05.057
10.1016/j.chemosphere.2015.05.065
10.1016/j.geoderma.2013.04.018
10.1021/es5021058
10.1016/j.agee.2010.09.003
10.1002/jpln.201100143
10.1016/j.envpol.2011.07.023
10.1021/es5043468
10.1007/s00374-011-0624-7
10.1007/s13593-013-0150-0
10.1016/j.soilbio.2011.10.012
10.1016/j.fcr.2009.07.018
10.1007/978-3-540-31211-6
10.1016/j.agwat.2011.04.007
10.3389/fpls.2015.00529
10.1016/j.agee.2011.08.015
10.1007/s11104-014-2074-0
10.1007/s12355-014-0335-0
10.1016/j.soilbio.2011.04.022
10.1016/j.agee.2015.07.027
10.1007/s00374-013-0857-8
10.1016/j.chemosphere.2015.06.084
10.1016/j.biortech.2014.11.077
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Journal of Soils and Sediments is a copyright of Springer, 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Journal of Soils and Sediments is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7ST
7UA
7X2
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
L.G
M0K
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7TN
7S9
L.6
DOI 10.1007/s11368-016-1361-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agriculture Science Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
Oceanic Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
Oceanic Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1614-7480
EndPage 789
ExternalDocumentID 4315310851
10_1007_s11368_016_1361_1
GeographicLocations China
Yellow River
China, People's Rep., Huang He R
GeographicLocations_xml – name: China
– name: Yellow River
– name: China, People's Rep., Huang He R
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2014DQ011
  funderid: http://dx.doi.org/10.13039/501100007129
– fundername: National Natural Science Foundation of China (CN)
  grantid: 41406085
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Postdoctoral Fund in China
  grantid: 2014M550374
– fundername: Ocean Public Welfare Scientific Research Project
  grantid: 201305021
– fundername: National Natural Science Foundation of China
  grantid: 41573089; 41325013
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ATCPS
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L8X
LAS
LK5
LLZTM
M0K
M2P
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RMD
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7U
Z7Y
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7UA
7XB
8FK
ABRTQ
C1K
F1W
H96
H97
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7TN
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c382t-1207e2d65dc435019fcdfd6e6f7cb17bf96545353d71302cfd8d39ed3c01e9f73
IEDL.DBID U2A
ISSN 1439-0108
IngestDate Thu Aug 07 14:37:38 EDT 2025
Sun Aug 24 03:32:32 EDT 2025
Sat Jul 26 00:59:21 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Tue Jul 01 01:38:07 EDT 2025
Fri Feb 21 02:33:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Productivity
Biochar-compost amendment
Halophyte
Degraded coastal soil
Remediation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-1207e2d65dc435019fcdfd6e6f7cb17bf96545353d71302cfd8d39ed3c01e9f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1869669357
PQPubID 54474
PageCount 10
ParticipantIDs proquest_miscellaneous_2000472108
proquest_miscellaneous_1877836595
proquest_journals_1869669357
crossref_citationtrail_10_1007_s11368_016_1361_1
crossref_primary_10_1007_s11368_016_1361_1
springer_journals_10_1007_s11368_016_1361_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170300
2017-3-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 3
  year: 2017
  text: 20170300
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Journal of soils and sediments
PublicationTitleAbbrev J Soils Sediments
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (CR16) 2011; 43
Agegnehu, Bass, Nelson, Muirhead, Wright, Bird (CR2) 2015; 213
Zhang, Cui, Pan, Li, Hussain, Zhang, Zheng, Crowley (CR37) 2010; 139
Spokas, Cantrell, Novak, Archer, Ippolito, Collins, Boateng, Lima, Lamb, McAloon, Lentz, Nichols (CR27) 2011; 41
Chen, Xiao, Chen, Zhu (CR8) 2015; 49
Xu, Wang, Li, Yao, Su, Zhu (CR35) 2014; 48
Wang, Xu (CR31) 2013; 5
Jeffery, Verheijen, van der Velde, Bastos (CR12) 2011; 144
Bruun, Petersen, Hansen, Holm, Hauggaard-Nielsen (CR6) 2014; 30
Thomas, Frye, Gale, Garmon, Launchbury, Machado, Melamed, Murray, Petroff, Winsborough (CR30) 2013; 129
CR33
Kong, Miao, Borthwick, Duan, Liu, Sun, Ye, Di, Gong (CR15) 2015; 520
CR32
Pansu, Gautheyrou (CR20) 2006
Jones, Rousk, Edwards-Jones, DeLuca, Murphy (CR13) 2012; 45
Zhang, Wang, Liu, Wang, Wang, Zhou (CR38) 2015; 159
Abiven, Schmidt, Lehmann (CR1) 2014; 7
Akhter, Hage-Ahmed, Soja, Steinkellner (CR3) 2015; 6
Hinsinger, Plassard, Tang, Jaillard (CR11) 2003; 248
Tedeschi, Lavini, Riccardi, Pulvento, d’Andria (CR28) 2011; 98
Gill, Sale, Peries, Tang (CR10) 2009; 114
Tejada, Garcia, Gonzalez, Hernandez (CR29) 2006; 38
Soinne, Hovi, Tammeorg, Turtola (CR25) 2014; 219–220
Beesley, Moreno-Jiménez, Gomez-Eyles, Harris, Robinson, Sizmur (CR4) 2011; 159
Novak, Busscher, Lee (CR18) 2013
Sastre-Conde, Lobo, Beltrán-Hernández, Poggi-Varaldo (CR22) 2015; 247–248
Khan, Clark, Sánchez-Monedero, Shea, Meier, Qi, Kookana, Bolan (CR14) 2016; 142
Mia, van Groenigen, van de Voorde, Oram, Bezemer, Mommer, Jeffery (CR17) 2014; 191
Rajkovich, Enders, Hanley, Hyland, Zimmerman, Lehmann (CR21) 2012; 48
Schulz, Glaser (CR23) 2012; 175
Wu, Xu, Shao (CR34) 2014; 5
Zheng, Wang, Deng, Herbert, Xing (CR39) 2013; 206
Song, Zhang, Ma, Chang, Gong (CR26) 2014; 50
Schulz, Dunst, Glaser (CR24) 2013; 33
Chaganti, Crohn (CR7) 2015; 259–260
Yang, Liao, Huang, Yang, Li (CR36) 2015; 17
Brennan, Moreno-Jiménez, Puschenreiter, Alburquerque, Switzer (CR5) 2014; 379
Dempster, Jones, Murphy (CR9) 2012; 48
Novak, Lima, Xing, Gaskin, Steiner, Das, Ahmedna, Rehrah, Watts, Busscher (CR19) 2009; 3
GJ Wang (1361_CR31) 2013; 5
A Brennan (1361_CR5) 2014; 379
S Abiven (1361_CR1) 2014; 7
L Yang (1361_CR36) 2015; 17
DL Jones (1361_CR13) 2012; 45
1361_CR33
1361_CR32
L Beesley (1361_CR4) 2011; 159
S Rajkovich (1361_CR21) 2012; 48
T Zhang (1361_CR38) 2015; 159
HJ Xu (1361_CR35) 2014; 48
JM Novak (1361_CR18) 2013
DN Dempster (1361_CR9) 2012; 48
H Zheng (1361_CR39) 2013; 206
J Lehmann (1361_CR16) 2011; 43
H Schulz (1361_CR23) 2012; 175
DX Kong (1361_CR15) 2015; 520
KA Spokas (1361_CR27) 2011; 41
H Soinne (1361_CR25) 2014; 219–220
VN Chaganti (1361_CR7) 2015; 259–260
N Khan (1361_CR14) 2016; 142
M Tejada (1361_CR29) 2006; 38
S Mia (1361_CR17) 2014; 191
AF Zhang (1361_CR37) 2010; 139
P Hinsinger (1361_CR11) 2003; 248
Y Wu (1361_CR34) 2014; 5
I Sastre-Conde (1361_CR22) 2015; 247–248
M Pansu (1361_CR20) 2006
G Agegnehu (1361_CR2) 2015; 213
A Akhter (1361_CR3) 2015; 6
H Schulz (1361_CR24) 2013; 33
JM Novak (1361_CR19) 2009; 3
A Tedeschi (1361_CR28) 2011; 98
EW Bruun (1361_CR6) 2014; 30
S Jeffery (1361_CR12) 2011; 144
ZM Chen (1361_CR8) 2015; 49
JS Gill (1361_CR10) 2009; 114
YJ Song (1361_CR26) 2014; 50
SC Thomas (1361_CR30) 2013; 129
References_xml – volume: 30
  start-page: 109
  year: 2014
  end-page: 118
  ident: CR6
  article-title: Biochar amendment to coarse sandy subsoil improves root growth and increases water retention
  publication-title: Soil Use and Manage
  doi: 10.1111/sum.12102
– volume: 520
  start-page: 157
  year: 2015
  end-page: 167
  ident: CR15
  article-title: Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.09.038
– volume: 219–220
  start-page: 162
  year: 2014
  end-page: 167
  ident: CR25
  article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.022
– volume: 247–248
  start-page: 140
  year: 2015
  end-page: 150
  ident: CR22
  article-title: Remediation of saline soils by a two-step process: washing and amendment with sludge
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.12.002
– volume: 159
  start-page: 115
  year: 2015
  end-page: 122
  ident: CR38
  article-title: Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses
  publication-title: Agr Water Manage
  doi: 10.1016/j.agwat.2015.06.002
– volume: 38
  start-page: 1413
  year: 2006
  end-page: 1421
  ident: CR29
  article-title: Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.10.017
– volume: 3
  start-page: 195
  year: 2009
  end-page: 206
  ident: CR19
  article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
  publication-title: Ann Environ Sci
– volume: 5
  start-page: 665
  year: 2014
  end-page: 671
  ident: CR34
  article-title: Furfural and its biochar improve the general properties of a saline soil
  publication-title: Solid Earth
  doi: 10.5194/se-5-665-2014
– ident: CR33
– volume: 259–260
  start-page: 45
  year: 2015
  end-page: 55
  ident: CR7
  article-title: Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.05.005
– volume: 191
  start-page: 83
  year: 2014
  end-page: 91
  ident: CR17
  article-title: Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2014.03.011
– start-page: 69
  year: 2013
  end-page: 96
  ident: CR18
  article-title: Selection and use of designer biochars to improve characteristics of Southeastern USA Coastal Plain degraded soils
  publication-title: Advanced biofuels and bioproducts
  doi: 10.1007/978-1-4614-3348-4_7
– volume: 248
  start-page: 43
  year: 2003
  end-page: 59
  ident: CR11
  article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review
  publication-title: Plant Soil
  doi: 10.1023/A:1022371130939
– volume: 41
  start-page: 973
  year: 2011
  end-page: 989
  ident: CR27
  article-title: Biochar: a synthesis of its agronomic impact beyond carbon sequestration
  publication-title: J Environ Qual
  doi: 10.2134/jeq2011.0069
– volume: 7
  start-page: 326
  year: 2014
  end-page: 327
  ident: CR1
  article-title: Biochar by design
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2154
– volume: 48
  start-page: 47
  year: 2012
  end-page: 50
  ident: CR9
  article-title: Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.01.013
– volume: 129
  start-page: 62
  year: 2013
  end-page: 68
  ident: CR30
  article-title: Biochar mitigates negative effects of salt additions on two herbaceous plant species
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2013.05.057
– volume: 142
  start-page: 14
  year: 2016
  end-page: 23
  ident: CR14
  article-title: Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.065
– volume: 206
  start-page: 32
  year: 2013
  end-page: 39
  ident: CR39
  article-title: Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.04.018
– volume: 48
  start-page: 9391
  year: 2014
  end-page: 9399
  ident: CR35
  article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape
  publication-title: Environ Sci Technol
  doi: 10.1021/es5021058
– volume: 139
  start-page: 469
  year: 2010
  end-page: 475
  ident: CR37
  article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2010.09.003
– volume: 175
  start-page: 410
  year: 2012
  end-page: 422
  ident: CR23
  article-title: Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201100143
– volume: 159
  start-page: 3269
  year: 2011
  end-page: 3282
  ident: CR4
  article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2011.07.023
– volume: 49
  start-page: 309
  year: 2015
  end-page: 317
  ident: CR8
  article-title: Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures
  publication-title: Environ Sci Technol
  doi: 10.1021/es5043468
– volume: 48
  start-page: 271
  year: 2012
  end-page: 284
  ident: CR21
  article-title: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-011-0624-7
– volume: 5
  start-page: 116
  year: 2013
  end-page: 119
  ident: CR31
  article-title: The effects of biochar on germination and growth of wheat in different saline-alkali soil
  publication-title: Asian Agr Res
– volume: 33
  start-page: 817
  year: 2013
  end-page: 827
  ident: CR24
  article-title: Positive effects of composted biochar on plant growth and soil fertility
  publication-title: Agron Sustain Dev
  doi: 10.1007/s13593-013-0150-0
– volume: 45
  start-page: 113
  year: 2012
  end-page: 124
  ident: CR13
  article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.10.012
– volume: 114
  start-page: 137
  year: 2009
  end-page: 146
  ident: CR10
  article-title: Changes in soil physical properties and crop root growth in dense sodic subsoil following incorporation of organic amendments
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2009.07.018
– year: 2006
  ident: CR20
  publication-title: Handbook of soil analysis: mineralogical, organic and inorganic methods
  doi: 10.1007/978-3-540-31211-6
– volume: 98
  start-page: 1329
  year: 2011
  end-page: 1338
  ident: CR28
  article-title: Melon crops ( L., cv. Tendral) grown in a Mediterranean environment under saline-sodic conditions: part I. Yield and quality
  publication-title: Agr Water Manage
  doi: 10.1016/j.agwat.2011.04.007
– volume: 6
  start-page: 529
  year: 2015
  ident: CR3
  article-title: Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp.
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00529
– volume: 144
  start-page: 175
  year: 2011
  end-page: 187
  ident: CR12
  article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2011.08.015
– volume: 379
  start-page: 351
  year: 2014
  end-page: 360
  ident: CR5
  article-title: Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2074-0
– volume: 17
  start-page: 36
  year: 2015
  end-page: 40
  ident: CR36
  article-title: Biochar improves sugarcane seedling root and soil properties under a pot experiment
  publication-title: Sugar Tech
  doi: 10.1007/s12355-014-0335-0
– ident: CR32
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: CR16
  article-title: Biochar effects on soil biota—a review
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 213
  start-page: 72
  year: 2015
  end-page: 85
  ident: CR2
  article-title: Biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2015.07.027
– volume: 50
  start-page: 321
  year: 2014
  end-page: 332
  ident: CR26
  article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-013-0857-8
– volume: 50
  start-page: 321
  year: 2014
  ident: 1361_CR26
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-013-0857-8
– volume: 48
  start-page: 9391
  year: 2014
  ident: 1361_CR35
  publication-title: Environ Sci Technol
  doi: 10.1021/es5021058
– volume: 259–260
  start-page: 45
  year: 2015
  ident: 1361_CR7
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.05.005
– volume: 43
  start-page: 1812
  year: 2011
  ident: 1361_CR16
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 5
  start-page: 116
  year: 2013
  ident: 1361_CR31
  publication-title: Asian Agr Res
– volume: 213
  start-page: 72
  year: 2015
  ident: 1361_CR2
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2015.07.027
– volume: 38
  start-page: 1413
  year: 2006
  ident: 1361_CR29
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.10.017
– volume: 3
  start-page: 195
  year: 2009
  ident: 1361_CR19
  publication-title: Ann Environ Sci
– volume: 49
  start-page: 309
  year: 2015
  ident: 1361_CR8
  publication-title: Environ Sci Technol
  doi: 10.1021/es5043468
– volume: 206
  start-page: 32
  year: 2013
  ident: 1361_CR39
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.04.018
– volume: 30
  start-page: 109
  year: 2014
  ident: 1361_CR6
  publication-title: Soil Use and Manage
  doi: 10.1111/sum.12102
– volume-title: Handbook of soil analysis: mineralogical, organic and inorganic methods
  year: 2006
  ident: 1361_CR20
  doi: 10.1007/978-3-540-31211-6
– volume: 129
  start-page: 62
  year: 2013
  ident: 1361_CR30
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2013.05.057
– volume: 5
  start-page: 665
  year: 2014
  ident: 1361_CR34
  publication-title: Solid Earth
  doi: 10.5194/se-5-665-2014
– volume: 6
  start-page: 529
  year: 2015
  ident: 1361_CR3
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00529
– volume: 175
  start-page: 410
  year: 2012
  ident: 1361_CR23
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201100143
– volume: 191
  start-page: 83
  year: 2014
  ident: 1361_CR17
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2014.03.011
– volume: 142
  start-page: 14
  year: 2016
  ident: 1361_CR14
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.065
– volume: 219–220
  start-page: 162
  year: 2014
  ident: 1361_CR25
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.022
– volume: 139
  start-page: 469
  year: 2010
  ident: 1361_CR37
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2010.09.003
– volume: 7
  start-page: 326
  year: 2014
  ident: 1361_CR1
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2154
– volume: 159
  start-page: 115
  year: 2015
  ident: 1361_CR38
  publication-title: Agr Water Manage
  doi: 10.1016/j.agwat.2015.06.002
– volume: 41
  start-page: 973
  year: 2011
  ident: 1361_CR27
  publication-title: J Environ Qual
  doi: 10.2134/jeq2011.0069
– ident: 1361_CR33
  doi: 10.1016/j.chemosphere.2015.06.084
– volume: 248
  start-page: 43
  year: 2003
  ident: 1361_CR11
  publication-title: Plant Soil
  doi: 10.1023/A:1022371130939
– volume: 98
  start-page: 1329
  year: 2011
  ident: 1361_CR28
  publication-title: Agr Water Manage
  doi: 10.1016/j.agwat.2011.04.007
– volume: 48
  start-page: 47
  year: 2012
  ident: 1361_CR9
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.01.013
– ident: 1361_CR32
  doi: 10.1016/j.biortech.2014.11.077
– volume: 144
  start-page: 175
  year: 2011
  ident: 1361_CR12
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2011.08.015
– start-page: 69
  volume-title: Advanced biofuels and bioproducts
  year: 2013
  ident: 1361_CR18
  doi: 10.1007/978-1-4614-3348-4_7
– volume: 247–248
  start-page: 140
  year: 2015
  ident: 1361_CR22
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.12.002
– volume: 17
  start-page: 36
  year: 2015
  ident: 1361_CR36
  publication-title: Sugar Tech
  doi: 10.1007/s12355-014-0335-0
– volume: 114
  start-page: 137
  year: 2009
  ident: 1361_CR10
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2009.07.018
– volume: 159
  start-page: 3269
  year: 2011
  ident: 1361_CR4
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2011.07.023
– volume: 379
  start-page: 351
  year: 2014
  ident: 1361_CR5
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2074-0
– volume: 33
  start-page: 817
  year: 2013
  ident: 1361_CR24
  publication-title: Agron Sustain Dev
  doi: 10.1007/s13593-013-0150-0
– volume: 48
  start-page: 271
  year: 2012
  ident: 1361_CR21
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-011-0624-7
– volume: 520
  start-page: 157
  year: 2015
  ident: 1361_CR15
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.09.038
– volume: 45
  start-page: 113
  year: 2012
  ident: 1361_CR13
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.10.012
SSID ssj0037161
Score 2.5631194
Snippet Purpose Nutrient deficiency and salt stress (sodium, Na + ) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta....
Purpose Nutrient deficiency and salt stress (sodium, Na+) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta....
Nutrient deficiency and salt stress (sodium, Na super(+)) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta....
PURPOSE: Nutrient deficiency and salt stress (sodium, Na⁺) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 780
SubjectTerms Acidification
additives
Arachis hypogaea
Bioavailability
biochar
Biochar for a Sustainable Environment
Biomass
Brackish
Cation exchange
cation exchange capacity
Charcoal
China
coastal soils
Coasts
Composting
Composts
Earth and Environmental Science
Environment
Environmental Physics
exchangeable sodium
Fertility
Freshwater
halophytes
Kosteletzkya virginica
Land degradation
nitrogen
nutrient deficiencies
Nutrient deficiency
nutrients
Organic matter
peanut hulls
Rhizosphere
river deltas
Rivers
Salinization
salt stress
Seafood
seafoods
Sesbania
Sodium
Soil conditioners
Soil organic matter
Soil pH
Soil properties
Soil salinity
Soil Science & Conservation
surface area
Yellow River
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSxwxFA92vbSHUrWl21qJ0FM1dDKZJJNTsVURoVLEBXsaMvmQhWWy3Rnpof9882LGbQU9zGFIwoR5yft-74fQxyhEJCtNS1ptFBgonGhGDRGtq5V1qrAJG_D7hTibVefX_Do73PqcVjnyxMSobTDgI_8M0ElCKMbll-UvAqhREF3NEBrP0GZkwXU9QZtfTy5-XI68mEVrIJlcUexGo7mox7hmKp6jTEAiF_ThE5TQ_yXTWt18ECFNguf0FXqZNUZ8dEfiLbThum304uhmlbtmuB30Z9Y7HDxu5wGqqAjkiYd-wEPA8-Q0cHgJTvcVdE_FurPwCo1eE3IErIxqILbQN8I6i03QUWdc4D7MF3jepcGfEKT5jS8hjQMfu8WgD3HC3n6NZqcnV9_OSEZVIIbV5UBoWUhXWsGtqSCqqLyx3gonvDQtla1XImpVjDMrIahpvK0tU84yU1CnvGRv0KQLnXuLsNWOM6nj40XlKx7pG_UzVrSWUqW0n6Ji_KONyS3HAfli0aybJQMRGkgzAyI0dIo-3S9Z3vXbeGry7kimJl-9vlkflCnavx-OlwYiIbpz4RbmSKhe4Yo_PgdqmKpoHxf1FB2MR-Cfzzy2qXdPb-o9el6CZpDS2HbRZFjdug9RrxnavXx4_wJrCfS9
  priority: 102
  providerName: ProQuest
Title Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China
URI https://link.springer.com/article/10.1007/s11368-016-1361-1
https://www.proquest.com/docview/1869669357
https://www.proquest.com/docview/1877836595
https://www.proquest.com/docview/2000472108
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-wwEA-iFz08_HjivqcSwZPPQtM0SXNcdVUURcQFPZU0H4-FpZVtxYP_vJlsu6uigodSSiZt6STNbzIzv0Fo3y8igia6iAqlJRgoLFKU6IgXNpPGytiE2oBX1_x8mF7cs_s2j7vuot07l2T4U8-T3QjlEHgFvHmcRN7kWWLedIc4rmHS736_1BsAwcryK60XjrPOlfnZLd4vRnOE-cEpGtaa01X0qwWJuD_V6hpasOU6Wun_n7REGXYDvQxriyuHi1EFiVMRhIZXdYObCo_CPoHFj7DPPgHCVKxKA5fA7RqKRUBPj_ywAaoIYw3WlfIwcYzrajTGozI0PoBf5hnfQuQGPrHjRh3iUG77NxqeDu6Oz6O2kEKkaZY0EUliYRPDmdEpOBKl08YZbrkTuiCicJJ7IEUZNQL8mNqZzFBpDdUxsdIJuokWy6q0WwgbZRkVyh-Opy5lXqUektG4MIRIqVwPxd0XzXXLMg7FLsb5nB8ZlJBDZBkoISc9dDDr8jil2PhOeLtTU97OtjqHslqcS8pED-3Nmv08AeeHKm31BDICElaYZF_LQNpS6k3iOOuhf90QePOYr17qz4-k_6LlBLBBCGTbRovN5MnueGTTFLtoqX_2cDnw56PB9c3tbhjZr8uW8tw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5iSwEjwQWIiOPYiQ8IFdpqS9sVqrpSOaWJH2ilVbzdpKoQ_4nfiMebdAGpvfWQQ2Q7sTxjzzeeF8BrL0QylqgqqkolUUHhUcmoikRlcqmNjHWoDXg4FqNJ-vWEn6zB7z4WBt0q-zMxHNTaKbwj_4Clk4SQjGef5mcRVo1C62pfQmPJFvvm54VX2ZqPe9uevm-SZHfn-Mso6qoKRIrlSRvRJM5MogXXKkWrmrRKWy2MsJmqaFZZKTyqYJzpDI16yupcM2k0UzE10mbMf_cWrKdMxMkA1j_vjL8d9Wc_89pHUPG8mPdKepz3dtQQrEeZQMcxzPsnaET_lYQrePufRTYIut37cK9DqGRryVIPYM3UD-Hu1o9Fl6XDPIJfk8YQZ0k1dRi1FaFfumta0joyDZcUhszxkn-B2VpJWWt8xcSyoVIFjvSwk2jMU6GNJsqVHqPOSOOmMzKtQ-N3NApdkCN0GyHbZtaW70mo9f0YJjey3k9gULvaPAWiS8NZVvrHitSm3POTx4MsrjSlUpZ2CHG_ooXqUpxjpY1ZsUrOjEQo0K0NiVDQIby9HDJf5ve4rvNmT6ai2-pNsWLMIby6bPabFC0vZW3cOfbJMFqGS351H4yZSr0-HudDeNezwF-_uWpSG9dP6iXcHh0fHhQHe-P9Z3AnQVQSXOg2YdAuzs1zj6na6kXHyAROb3rv_AGqGjHn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKLQWMBBfAIo4TOz4gVNiuWgqrqmKlckoTP9BKq2S7SVUh_hm_Do836QJSe-shh8h2YnnGnvk8L4CXXohIHuuSloVWCFBSWnCmqShtpoxVkQm1Ab9OxN40-XycHm_A7z4WBt0q-zMxHNSm1nhH_g5LJwmhuAfwrnOLOByNPyxOKVaQQktrX05jxSIH9ue5h2_N-_2Rp_WrOB7vfvu0R7sKA1TzLG4piyNpYyNSoxO0sCmnjTPCCid1yWTplPAaBk-5kWjg085khitruI6YVU5y_90bsCkRFQ1g8-Pu5PColwPcI5EA97zI94A9ynqbagjcY1ygExnmABSMsn-l4lrV_c86G4Te-C7c6bRVsrNir3uwYav7cHvnx7LL2GEfwK9pY0ntSDmrMYKLoo963bSkrcksXFhYssAL_yVmbiVFZfAVk8yGqhU40qugxGDOCmMN0XXh9dU5aerZnMyq0PgdDUTn5AhdSMjIztviLQl1vx_C9FrW-xEMqrqyj4GYwqZcFv5xInFJ6nnL64Y8Kg1jShVuCFG_ornu0p1j1Y15vk7UjETI0cUNiZCzIby-GLJY5fq4qvN2T6a82_ZNvmbSIby4aPYbFq0wRWXrM-wjMXImVenlfTB-KvHYPMqG8KZngb9-c9mktq6e1HO46fdM_mV_cvAEbsWooARvum0YtMsz-9SrV235rONjAifXvXX-AOzENhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+biochar-compost+to+improve+properties+and+productivity+of+the+degraded+coastal+soil+in+the+Yellow+River+Delta%2C+China&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Luo%2C+Xianxiang&rft.au=Liu%2C+Guocheng&rft.au=Xia%2C+Yang&rft.au=Chen%2C+Lei&rft.date=2017-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=17&rft.issue=3&rft.spage=780&rft.epage=789&rft_id=info:doi/10.1007%2Fs11368-016-1361-1&rft.externalDocID=10_1007_s11368_016_1361_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon