Buildings’ Heating and Cooling Load Prediction for Hot Arid Climates: A Novel Intelligent Data-Driven Approach

An important aspect in improving the energy efficiency of buildings is the effective use of building heating and cooling load prediction models. A lot of studies have been undertaken in recent years to anticipate cooling and heating loads. Choosing the most effective input parameters as well as deve...

Full description

Saved in:
Bibliographic Details
Published inBuildings (Basel) Vol. 12; no. 10; p. 1677
Main Authors Irshad, Kashif, Zahir, Md. Hasan, Shaik, Mahaboob Sharief, Ali, Amjad
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An important aspect in improving the energy efficiency of buildings is the effective use of building heating and cooling load prediction models. A lot of studies have been undertaken in recent years to anticipate cooling and heating loads. Choosing the most effective input parameters as well as developing a high-accuracy forecasting model are the most difficult and important aspects of prediction. The goal of this research is to create an intelligent data-driven load forecast model for residential construction heating and cooling load intensities. In this paper, the shuffled shepherd red deer optimization linked self-systematized intelligent fuzzy reasoning-based neural network (SSRD-SsIF-NN) is introduced as a novel intelligent data-driven load prediction method. To test the suggested approaches, a simulated dataset based on the climate of Dhahran, Saudi Arabia will be employed, with building system parameters as input factors and heating and cooling loads as output results for each system. The simulation of this research is executed using MATLAB software. Finally, the theoretical and experimental results demonstrate the efficacy of the presented techniques. In terms of Mean Square Error (MSE), Root Mean Square Error (RMSE), Regression (R) values, Mean Absolute Error (MAE), coefficient of determination (R2), and other metrics, their prediction performance is compared to that of other conventional methods. It shows that the proposed method has achieved the finest performance of load prediction compared with the conventional methods.
AbstractList An important aspect in improving the energy efficiency of buildings is the effective use of building heating and cooling load prediction models. A lot of studies have been undertaken in recent years to anticipate cooling and heating loads. Choosing the most effective input parameters as well as developing a high-accuracy forecasting model are the most difficult and important aspects of prediction. The goal of this research is to create an intelligent data-driven load forecast model for residential construction heating and cooling load intensities. In this paper, the shuffled shepherd red deer optimization linked self-systematized intelligent fuzzy reasoning-based neural network (SSRD-SsIF-NN) is introduced as a novel intelligent data-driven load prediction method. To test the suggested approaches, a simulated dataset based on the climate of Dhahran, Saudi Arabia will be employed, with building system parameters as input factors and heating and cooling loads as output results for each system. The simulation of this research is executed using MATLAB software. Finally, the theoretical and experimental results demonstrate the efficacy of the presented techniques. In terms of Mean Square Error (MSE), Root Mean Square Error (RMSE), Regression (R) values, Mean Absolute Error (MAE), coefficient of determination (R2), and other metrics, their prediction performance is compared to that of other conventional methods. It shows that the proposed method has achieved the finest performance of load prediction compared with the conventional methods.
Author Shaik, Mahaboob Sharief
Irshad, Kashif
Ali, Amjad
Zahir, Md. Hasan
Author_xml – sequence: 1
  givenname: Kashif
  orcidid: 0000-0001-6493-0969
  surname: Irshad
  fullname: Irshad, Kashif
– sequence: 2
  givenname: Md. Hasan
  orcidid: 0000-0002-6752-9318
  surname: Zahir
  fullname: Zahir, Md. Hasan
– sequence: 3
  givenname: Mahaboob Sharief
  surname: Shaik
  fullname: Shaik, Mahaboob Sharief
– sequence: 4
  givenname: Amjad
  orcidid: 0000-0002-3610-9716
  surname: Ali
  fullname: Ali, Amjad
BookMark eNplUctuFDEQtKIgJYR8QG6WOA_4MTPu4bbZBHalFXAgZ8tjtxevBnvj8Ubixm_we3wJDgtRJPrSpVZ1dbXqJTmNKSIhV5y9kXJgb8dDmFyI25kLzniv1Ak5F0x1TSfZcPoMn5HLed6xWtAJ0bXnZH_9b_fXj590haZUTE10dJnS9Ig3yTj6OaMLtoQUqU-ZrlKhixwqaQrfTMH5HV3Qj-kBJ7qOBacpbDEWemOKaW5yeMBIF_t9TsZ-fUVeeDPNePm3X5C797dflqtm8-nDernYNFaCKA1n1guQba-sGhDtOIyC9V723QAD434A4XsFoxhB-t5b0RsH1jgH0AHvQF6Q9VHXJbPT-1x95u86maD_DFLeapNLsBNqK4exSnGBnW-Vh9E7ycD3QhmGCk3Ven3Uqi_cH3AuepcOOVb7WigBbQugWGXxI8vmNM8Z_dNVzvRjTvq_nORviVeKKQ
CitedBy_id crossref_primary_10_1016_j_ijrefrig_2024_01_012
crossref_primary_10_3390_buildings13010142
crossref_primary_10_3390_en15228750
crossref_primary_10_1016_j_est_2024_112126
crossref_primary_10_3390_app14093810
crossref_primary_10_3390_buildings14020534
Cites_doi 10.3390/en11061570
10.1016/j.aei.2018.06.004
10.1016/j.apenergy.2021.116814
10.3390/su14031278
10.1016/j.energy.2019.116552
10.1016/j.jclepro.2019.118714
10.3390/su14010065
10.1016/j.csite.2022.101958
10.1016/j.enbuild.2018.01.016
10.1016/j.chemosphere.2022.135065
10.1016/j.energy.2021.122692
10.3390/en14051331
10.1007/s12053-019-09806-x
10.1007/s11356-022-20915-6
10.1016/j.energy.2020.119605
10.1016/j.energy.2020.119542
10.20944/preprints201906.0299.v1
10.1016/j.est.2020.101772
10.1016/j.energy.2021.122073
10.1016/j.jobe.2019.101054
10.1016/j.enbuild.2020.110705
10.1016/j.enbuild.2021.110740
10.1109/ACCESS.2020.2985036
10.1016/j.jobe.2019.100790
10.1016/j.esd.2021.01.001
10.1016/j.scs.2019.101484
10.1016/j.measurement.2020.108837
10.1016/j.energy.2021.120950
10.1016/j.jclepro.2020.120082
10.3390/s20226419
10.1016/j.rser.2021.110714
10.3390/su132112302
10.1016/j.scs.2021.103511
10.1016/j.energy.2017.05.084
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
DOA
DOI 10.3390/buildings12101677
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_c39b78b12e5f47f8bfd308f627a0e7ea
10_3390_buildings12101677
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PIMPY
PROAC
PTHSS
PYCSY
RIG
TUS
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c382t-10cf283467c79eecb9b206f36598901f982f678b2b83f6fc26ad8cadd88581583
IEDL.DBID DOA
ISSN 2075-5309
IngestDate Tue Oct 22 14:58:21 EDT 2024
Mon Nov 04 15:35:15 EST 2024
Wed Aug 14 12:34:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-10cf283467c79eecb9b206f36598901f982f678b2b83f6fc26ad8cadd88581583
ORCID 0000-0002-6752-9318
0000-0001-6493-0969
0000-0002-3610-9716
OpenAccessLink https://doaj.org/article/c39b78b12e5f47f8bfd308f627a0e7ea
PQID 2728448870
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_c39b78b12e5f47f8bfd308f627a0e7ea
proquest_journals_2728448870
crossref_primary_10_3390_buildings12101677
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Alassery (ref_4) 2022; 52
Xu (ref_26) 2022; 240
Zeng (ref_12) 2020; 28
Chaturvedi (ref_23) 2022; 57
Mokhtara (ref_22) 2021; 219
ref_10
Singaravel (ref_35) 2018; 38
ref_17
Wei (ref_37) 2021; 231
Malik (ref_13) 2022; 16
Irshad (ref_11) 2020; 8
Irshad (ref_3) 2022; 34
Moayedi (ref_18) 2021; 172
Zhou (ref_32) 2020; 254
Krarti (ref_2) 2017; 134
Islam (ref_8) 2021; 218
Feng (ref_9) 2021; 291
Safikhani (ref_14) 2020; 32
Seyedzadeh (ref_33) 2019; 47
ref_25
Wang (ref_19) 2020; 245
ref_21
Almalawi (ref_24) 2022; 303
ref_1
Tran (ref_31) 2020; 191
Amasyali (ref_15) 2021; 142
Esmaeil (ref_7) 2019; 12
ref_27
Kim (ref_30) 2021; 61
Sharif (ref_34) 2019; 25
Rana (ref_28) 2022; 76
Li (ref_29) 2021; 235
Green (ref_20) 2021; 235
Gao (ref_36) 2022; 238
ref_5
Tsoka (ref_16) 2018; 165
ref_6
References_xml – ident: ref_17
  doi: 10.3390/en11061570
– volume: 38
  start-page: 81
  year: 2018
  ident: ref_35
  article-title: Deep-learning neural-network architectures and methods: Using component-based models in building-design energy prediction
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.06.004
  contributor:
    fullname: Singaravel
– volume: 291
  start-page: 116814
  year: 2021
  ident: ref_9
  article-title: Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116814
  contributor:
    fullname: Feng
– volume: 57
  start-page: 49
  year: 2022
  ident: ref_23
  article-title: Application of PSO and GA stochastic algorithms to select optimum building envelope and air conditioner size—A case of a residential building prototype
  publication-title: Mater. Today: Proc.
  contributor:
    fullname: Chaturvedi
– ident: ref_5
  doi: 10.3390/su14031278
– volume: 191
  start-page: 116552
  year: 2020
  ident: ref_31
  article-title: Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116552
  contributor:
    fullname: Tran
– volume: 245
  start-page: 118714
  year: 2020
  ident: ref_19
  article-title: Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118714
  contributor:
    fullname: Wang
– ident: ref_25
  doi: 10.3390/su14010065
– volume: 34
  start-page: 101958
  year: 2022
  ident: ref_3
  article-title: Parametric Analysis and Optimization of a Novel Photovoltaic Trombe Wall System with Venetian Blinds: Experimental and Computational Study
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.101958
  contributor:
    fullname: Irshad
– volume: 165
  start-page: 270
  year: 2018
  ident: ref_16
  article-title: A method to account for the urban microclimate on the creation of ‘typical weather year’ datasets for building energy simulation, using stochastically generated data
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.01.016
  contributor:
    fullname: Tsoka
– volume: 303
  start-page: 135065
  year: 2022
  ident: ref_24
  article-title: Modeling of remora optimization with deep learning enabled heavy metal sorption efficiency prediction onto biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135065
  contributor:
    fullname: Almalawi
– volume: 240
  start-page: 122692
  year: 2022
  ident: ref_26
  article-title: Prediction and optimization of heating and cooling loads in a residential building based on multi-layer Perceptron neural network and different optimization algorithms
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122692
  contributor:
    fullname: Xu
– ident: ref_27
  doi: 10.3390/en14051331
– volume: 12
  start-page: 2123
  year: 2019
  ident: ref_7
  article-title: Analysis of energy consumption pattern in Saudi Arabia’s residential buildings with specific reference to qassim region
  publication-title: Energy Effic.
  doi: 10.1007/s12053-019-09806-x
  contributor:
    fullname: Esmaeil
– ident: ref_6
  doi: 10.1007/s11356-022-20915-6
– volume: 219
  start-page: 119605
  year: 2021
  ident: ref_22
  article-title: Design optimization of off-grid hybrid renewable energy systems considering the effects of building energy performance and climate change: Case study of Algeria
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119605
  contributor:
    fullname: Mokhtara
– volume: 218
  start-page: 119542
  year: 2021
  ident: ref_8
  article-title: Numerical and experimental study on the performance of a photovoltaic Trombe wall system with Venetian blinds
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119542
  contributor:
    fullname: Islam
– ident: ref_1
  doi: 10.20944/preprints201906.0299.v1
– volume: 32
  start-page: 101772
  year: 2020
  ident: ref_14
  article-title: Multi-objective optimization of cooling and heating loads in residential buildings integrated with phase change materials using the artificial neural network and genetic algorithm
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101772
  contributor:
    fullname: Safikhani
– volume: 238
  start-page: 122073
  year: 2022
  ident: ref_36
  article-title: A hybrid method of cooling load forecasting for large commercial building based on Extreme Learning Machine
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122073
  contributor:
    fullname: Gao
– volume: 28
  start-page: 101054
  year: 2020
  ident: ref_12
  article-title: Prediction of building electricity usage using gaussian process regression
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2019.101054
  contributor:
    fullname: Zeng
– volume: 235
  start-page: 110705
  year: 2021
  ident: ref_20
  article-title: Residential microgrid optimization using grey-box and black-box modeling methods
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110705
  contributor:
    fullname: Green
– volume: 235
  start-page: 110740
  year: 2021
  ident: ref_29
  article-title: Modelling heating and cooling energy demand for building stock using a hybrid approach
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.110740
  contributor:
    fullname: Li
– volume: 8
  start-page: 99709
  year: 2020
  ident: ref_11
  article-title: Utilizing artificial neural network for prediction of Occupants thermal comfort: A case study of a test room fitted with a thermoelectric air-conditioning system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985036
  contributor:
    fullname: Irshad
– volume: 25
  start-page: 100790
  year: 2019
  ident: ref_34
  article-title: Developing surrogate ANN for selecting near-optimal building energy renovation methods considering energy consumption, LCC and LCA
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2019.100790
  contributor:
    fullname: Sharif
– volume: 61
  start-page: 1
  year: 2021
  ident: ref_30
  article-title: Heating and cooling energy consumption prediction model for high-rise apartment buildings considering design parameters
  publication-title: Energy Sustain. Dev.
  doi: 10.1016/j.esd.2021.01.001
  contributor:
    fullname: Kim
– volume: 47
  start-page: 101484
  year: 2019
  ident: ref_33
  article-title: Tuning machine learning models for prediction of building energy loads
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101484
  contributor:
    fullname: Seyedzadeh
– volume: 172
  start-page: 108837
  year: 2021
  ident: ref_18
  article-title: Imperialist competitive algorithm hybridized with multilayer perceptron to predict the load-settlement of square footing on layered soils
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108837
  contributor:
    fullname: Moayedi
– volume: 231
  start-page: 120950
  year: 2021
  ident: ref_37
  article-title: Prediction of residential district heating load based on machine learning: A case study
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120950
  contributor:
    fullname: Wei
– volume: 254
  start-page: 120082
  year: 2020
  ident: ref_32
  article-title: Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120082
  contributor:
    fullname: Zhou
– ident: ref_10
  doi: 10.3390/s20226419
– volume: 142
  start-page: 110714
  year: 2021
  ident: ref_15
  article-title: Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110714
  contributor:
    fullname: Amasyali
– ident: ref_21
  doi: 10.3390/su132112302
– volume: 16
  start-page: 570
  year: 2022
  ident: ref_13
  article-title: Deep learning versus gradient boosting machine for Pan evaporation prediction
  publication-title: Eng. Appl. Comput. Fluid Mech.
  contributor:
    fullname: Malik
– volume: 76
  start-page: 103511
  year: 2022
  ident: ref_28
  article-title: A data-driven approach based on quantile regression forest to forecast cooling load for commercial buildings
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.103511
  contributor:
    fullname: Rana
– volume: 134
  start-page: 595
  year: 2017
  ident: ref_2
  article-title: Evaluation of Building Energy Efficiency Investment Options for the Kingdom of Saudi Arabia
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.084
  contributor:
    fullname: Krarti
– volume: 52
  start-page: 102060
  year: 2022
  ident: ref_4
  article-title: An Artificial Intelligence-Based Solar Radiation Prophesy Model for Green Energy Utilization in Energy Management System
  publication-title: Sustain. Energy Technol. Assess.
  contributor:
    fullname: Alassery
SSID ssj0000852254
Score 2.3096282
Snippet An important aspect in improving the energy efficiency of buildings is the effective use of building heating and cooling load prediction models. A lot of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 1677
SubjectTerms Algorithms
Arid climates
Aridity
Artificial intelligence
building
Buildings
Climate change
Construction
Construction industry
cooling load
Cooling loads
Cooling systems
data-driven
Energy consumption
Energy efficiency
Forecasting
Fuzzy logic
Green buildings
Heating
Heating load
Investigations
Load
Machine learning
Model accuracy
Neural networks
Optimization
Optimization techniques
Parameters
Performance prediction
prediction
Prediction models
Residential areas
Residential buildings
Root-mean-square errors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELXKcikHVEoR29LKh54qRWTtxHZ6QfsBWqpqhRBI3CJ_rpAg2e4GzvwN_h6_hJmsdylC4ppYSTQev3n2TN4Q8jNTEAYM1umklicZD0ViPCx3oVG_XDmIyG2B7ESML7M_V_lVPHBbxLLKFSa2QO1qi2fkh0wCkIK3yfRo9i_BrlGYXY0tNDbIJoOdQtohm4Pjydn5-pQFCAU4bLZMZ3LY3x-a2G16gcpZPSHlq4DU6va_geU21px8ItuRJNL-clZ3yAdffSZb_0kH7pLZYPWGp4dHOkbmV02prhwd1tiHZ0r_1trRszkmYtD4FNgpHdcNPPUaBt1c3yLL_E37dFLf-xt6utbmbOhINzoZzREIaT-Kjn8hlyfHF8NxErsnJJYr1gC-2gDcAYDQysJ7awrDUhG4yAsFJCAUigWIVIYZxYMIlgntlAW4UypXvVzxPdKp6srvEyq8S00QHuUFMxu4ks5Yo7MsyCJ1QXTJr5UJy9lSJKOEzQXau3xj7y4ZoJHXA1Hfur1Qz6dlXC6l5YWBb-sxn4dMBmWC46kKgkmdeul1lxyspqiMi25RvrjI1_dvfyMfGf7F0NbkHZBOM7_z34FbNOZHdKBnXYfQ8g
  priority: 102
  providerName: ProQuest
Title Buildings’ Heating and Cooling Load Prediction for Hot Arid Climates: A Novel Intelligent Data-Driven Approach
URI https://www.proquest.com/docview/2728448870
https://doaj.org/article/c39b78b12e5f47f8bfd308f627a0e7ea
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWgLDAgnqJQKg9MSFFdO7Edtj4pCFUVAoktih0bFUGC2sDMb_B7fAnXSVoVMbCwRlYc3WufcyzfnIvQmS-BBpSr0yGaeT6zoacMbHceO_9ymQAjFwWyYz66968fgoeVVl-uJqy0By4D19IsVEKqNjWB9YWVyiaMSMupiIkRppRGJFw5TD2V1VewUP3yGpPBub6lqi7Tc-eY1eZC_CCiwq__FxwXHDPcQduVOMSd8qN20ZpJ99DWimXgPnrtLmb4-vjEI6f40kccpwnuZa7_ziO-yeIET2buAsYFHYMqxaMsh7dOYdDz9MWpywvcwePs3Tzjq6UnZ477cR57_ZkDQNypzMYP0P1wcNcbeVXXBE8zSXPAVW1BMwAAahEao1WoKOGW8SCUQP42lNQCQymqJLPcasrjRGqAOSkD2Q4kO0S1NEvNEcLcJERZbpytoK8tkyJRWsW-b0VIEsvr6HwRwui1NMeI4FDh4h39incddV2QlwOdr3XxALIdVdmO_sp2HTUWKYqqzTaPqACOBSAS5Pg_5jhBm9T941BU7DVQLZ-9mVNQHrlqonU5vGyije5gPLltFkvuG7Yg23g
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVKewAOiE91oYAPnJCiZm3HdnpB25YlbZcVh1bqLfLnqlJJlt3AuX-jf6-_hJmsdwFV4ppYTjQev3m2x28I-SA0hAGLeTq545ngscxsgOkuDeqXaw8RuU-QncrqQpxeFpdpw22Z0irXmNgDtW8d7pHvMwVACt6m8k_zHxlWjcLT1VRC4wHZERxiNd4UH3_Z7LEAnQB3FavDTA6r-32bak0vUTdrKJX6Jxz1qv33QLmPNOOn5EmiiHS0GtNnZCs0z8njv4QDX5D54foLdze3tELe18yoaTw9arEKz4xOWuPptwUew6DpKXBTWrUd9HoFja6vviPHPKAjOm1_hWt6slHm7Oix6Ux2vEAYpKMkOf6SXIw_nx9VWaqdkDmuWQfo6iIwB4BBp8oQnC0ty2Xksig1UIBYahYhTllmNY8yOiaN1w7ATutCDwvNX5Htpm3CLqEy-NxGGVBcULjItfLWWSNEVGXuoxyQj2sT1vOVREYNSwu0d33P3gNyiEbeNER16_5Bu5jVabLUjpcW_m3IQhGFitpGz3MdJVMmDyqYAdlbD1Gdptyy_uMgr___-j15WJ1_ndSTk-nZG_KI4X2GPjtvj2x3i5_hLbCMzr7rXek30K7SfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaKlXlgOhLXaDUh54qRZu1E9vhUu2D7dKiFYcicYv8XCHRZNkNnPkb_D1-CTNZ79IKqdfESqKZ8Tef7ck3hHzNFKQBg3U6qeVJxkORGA_TXWjUL1cOMnJbIDsVk_Ps50V-EeuflrGsco2JLVC72uIeeZdJAFKINpl2QyyLOBuNv8-vE-wghSetsZ3GS_IKsqLACFfjH5v9FqAWELrZ6mCTw0q_a2Lf6SVqaPWElP-kplbB_xlAt1lnvEt2Il2k_ZV_35IXvnpHtv8SEXxP5oP1Gx7u7ukEOWA1o7pydFhjR54ZPa21o2cLPJJBN1DgqXRSN_DUSxh0dfkH-eYR7dNpfeuv6MlGpbOhI93oZLRASKT9KD_-gZyPj38PJ0nso5BYrlgDSGsDsAiARCsL760pDEtF4CIvFNCBUCgWIGcZZhQPIlgmtFMWgE-pXPVyxT-Sraqu_CdChXepCcKj0GBmA1fSGWt0lgVZpC6IDvm2NmE5X8lllLDMQHuXz-zdIQM08mYgKl23F-rFrIwTp7S8MPBtPebzkMmgTHA8VUEwqVMvve6Qg7WLyjj9luVTsOz9__YX8hqiqDw9mf7aJ28Y_trQFuodkK1mceM_A-FozGEbSY92Oda7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buildings%E2%80%99+Heating+and+Cooling+Load+Prediction+for+Hot+Arid+Climates%3A+A+Novel+Intelligent+Data-Driven+Approach&rft.jtitle=Buildings+%28Basel%29&rft.au=Kashif+Irshad&rft.au=Md.+Hasan+Zahir&rft.au=Mahaboob+Sharief+Shaik&rft.au=Amjad+Ali&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2075-5309&rft.volume=12&rft.issue=10&rft.spage=1677&rft_id=info:doi/10.3390%2Fbuildings12101677&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c39b78b12e5f47f8bfd308f627a0e7ea
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon