Buildings’ Heating and Cooling Load Prediction for Hot Arid Climates: A Novel Intelligent Data-Driven Approach
An important aspect in improving the energy efficiency of buildings is the effective use of building heating and cooling load prediction models. A lot of studies have been undertaken in recent years to anticipate cooling and heating loads. Choosing the most effective input parameters as well as deve...
Saved in:
Published in | Buildings (Basel) Vol. 12; no. 10; p. 1677 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An important aspect in improving the energy efficiency of buildings is the effective use of building heating and cooling load prediction models. A lot of studies have been undertaken in recent years to anticipate cooling and heating loads. Choosing the most effective input parameters as well as developing a high-accuracy forecasting model are the most difficult and important aspects of prediction. The goal of this research is to create an intelligent data-driven load forecast model for residential construction heating and cooling load intensities. In this paper, the shuffled shepherd red deer optimization linked self-systematized intelligent fuzzy reasoning-based neural network (SSRD-SsIF-NN) is introduced as a novel intelligent data-driven load prediction method. To test the suggested approaches, a simulated dataset based on the climate of Dhahran, Saudi Arabia will be employed, with building system parameters as input factors and heating and cooling loads as output results for each system. The simulation of this research is executed using MATLAB software. Finally, the theoretical and experimental results demonstrate the efficacy of the presented techniques. In terms of Mean Square Error (MSE), Root Mean Square Error (RMSE), Regression (R) values, Mean Absolute Error (MAE), coefficient of determination (R2), and other metrics, their prediction performance is compared to that of other conventional methods. It shows that the proposed method has achieved the finest performance of load prediction compared with the conventional methods. |
---|---|
AbstractList | An important aspect in improving the energy efficiency of buildings is the effective use of building heating and cooling load prediction models. A lot of studies have been undertaken in recent years to anticipate cooling and heating loads. Choosing the most effective input parameters as well as developing a high-accuracy forecasting model are the most difficult and important aspects of prediction. The goal of this research is to create an intelligent data-driven load forecast model for residential construction heating and cooling load intensities. In this paper, the shuffled shepherd red deer optimization linked self-systematized intelligent fuzzy reasoning-based neural network (SSRD-SsIF-NN) is introduced as a novel intelligent data-driven load prediction method. To test the suggested approaches, a simulated dataset based on the climate of Dhahran, Saudi Arabia will be employed, with building system parameters as input factors and heating and cooling loads as output results for each system. The simulation of this research is executed using MATLAB software. Finally, the theoretical and experimental results demonstrate the efficacy of the presented techniques. In terms of Mean Square Error (MSE), Root Mean Square Error (RMSE), Regression (R) values, Mean Absolute Error (MAE), coefficient of determination (R2), and other metrics, their prediction performance is compared to that of other conventional methods. It shows that the proposed method has achieved the finest performance of load prediction compared with the conventional methods. |
Author | Shaik, Mahaboob Sharief Irshad, Kashif Ali, Amjad Zahir, Md. Hasan |
Author_xml | – sequence: 1 givenname: Kashif orcidid: 0000-0001-6493-0969 surname: Irshad fullname: Irshad, Kashif – sequence: 2 givenname: Md. Hasan orcidid: 0000-0002-6752-9318 surname: Zahir fullname: Zahir, Md. Hasan – sequence: 3 givenname: Mahaboob Sharief surname: Shaik fullname: Shaik, Mahaboob Sharief – sequence: 4 givenname: Amjad orcidid: 0000-0002-3610-9716 surname: Ali fullname: Ali, Amjad |
BookMark | eNplUctuFDEQtKIgJYR8QG6WOA_4MTPu4bbZBHalFXAgZ8tjtxevBnvj8Ubixm_we3wJDgtRJPrSpVZ1dbXqJTmNKSIhV5y9kXJgb8dDmFyI25kLzniv1Ak5F0x1TSfZcPoMn5HLed6xWtAJ0bXnZH_9b_fXj590haZUTE10dJnS9Ig3yTj6OaMLtoQUqU-ZrlKhixwqaQrfTMH5HV3Qj-kBJ7qOBacpbDEWemOKaW5yeMBIF_t9TsZ-fUVeeDPNePm3X5C797dflqtm8-nDernYNFaCKA1n1guQba-sGhDtOIyC9V723QAD434A4XsFoxhB-t5b0RsH1jgH0AHvQF6Q9VHXJbPT-1x95u86maD_DFLeapNLsBNqK4exSnGBnW-Vh9E7ycD3QhmGCk3Ven3Uqi_cH3AuepcOOVb7WigBbQugWGXxI8vmNM8Z_dNVzvRjTvq_nORviVeKKQ |
CitedBy_id | crossref_primary_10_1016_j_ijrefrig_2024_01_012 crossref_primary_10_3390_buildings13010142 crossref_primary_10_3390_en15228750 crossref_primary_10_1016_j_est_2024_112126 crossref_primary_10_3390_app14093810 crossref_primary_10_3390_buildings14020534 |
Cites_doi | 10.3390/en11061570 10.1016/j.aei.2018.06.004 10.1016/j.apenergy.2021.116814 10.3390/su14031278 10.1016/j.energy.2019.116552 10.1016/j.jclepro.2019.118714 10.3390/su14010065 10.1016/j.csite.2022.101958 10.1016/j.enbuild.2018.01.016 10.1016/j.chemosphere.2022.135065 10.1016/j.energy.2021.122692 10.3390/en14051331 10.1007/s12053-019-09806-x 10.1007/s11356-022-20915-6 10.1016/j.energy.2020.119605 10.1016/j.energy.2020.119542 10.20944/preprints201906.0299.v1 10.1016/j.est.2020.101772 10.1016/j.energy.2021.122073 10.1016/j.jobe.2019.101054 10.1016/j.enbuild.2020.110705 10.1016/j.enbuild.2021.110740 10.1109/ACCESS.2020.2985036 10.1016/j.jobe.2019.100790 10.1016/j.esd.2021.01.001 10.1016/j.scs.2019.101484 10.1016/j.measurement.2020.108837 10.1016/j.energy.2021.120950 10.1016/j.jclepro.2020.120082 10.3390/s20226419 10.1016/j.rser.2021.110714 10.3390/su132112302 10.1016/j.scs.2021.103511 10.1016/j.energy.2017.05.084 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PIMPY PQEST PQQKQ PQUKI PTHSS PYCSY DOA |
DOI | 10.3390/buildings12101677 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-5309 |
ExternalDocumentID | oai_doaj_org_article_c39b78b12e5f47f8bfd308f627a0e7ea 10_3390_buildings12101677 |
GeographicLocations | Saudi Arabia |
GeographicLocations_xml | – name: Saudi Arabia |
GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PIMPY PROAC PTHSS PYCSY RIG TUS 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c382t-10cf283467c79eecb9b206f36598901f982f678b2b83f6fc26ad8cadd88581583 |
IEDL.DBID | DOA |
ISSN | 2075-5309 |
IngestDate | Tue Oct 22 14:58:21 EDT 2024 Mon Nov 04 15:35:15 EST 2024 Wed Aug 14 12:34:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-10cf283467c79eecb9b206f36598901f982f678b2b83f6fc26ad8cadd88581583 |
ORCID | 0000-0002-6752-9318 0000-0001-6493-0969 0000-0002-3610-9716 |
OpenAccessLink | https://doaj.org/article/c39b78b12e5f47f8bfd308f627a0e7ea |
PQID | 2728448870 |
PQPubID | 2032422 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c39b78b12e5f47f8bfd308f627a0e7ea proquest_journals_2728448870 crossref_primary_10_3390_buildings12101677 |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Buildings (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Alassery (ref_4) 2022; 52 Xu (ref_26) 2022; 240 Zeng (ref_12) 2020; 28 Chaturvedi (ref_23) 2022; 57 Mokhtara (ref_22) 2021; 219 ref_10 Singaravel (ref_35) 2018; 38 ref_17 Wei (ref_37) 2021; 231 Malik (ref_13) 2022; 16 Irshad (ref_11) 2020; 8 Irshad (ref_3) 2022; 34 Moayedi (ref_18) 2021; 172 Zhou (ref_32) 2020; 254 Krarti (ref_2) 2017; 134 Islam (ref_8) 2021; 218 Feng (ref_9) 2021; 291 Safikhani (ref_14) 2020; 32 Seyedzadeh (ref_33) 2019; 47 ref_25 Wang (ref_19) 2020; 245 ref_21 Almalawi (ref_24) 2022; 303 ref_1 Tran (ref_31) 2020; 191 Amasyali (ref_15) 2021; 142 Esmaeil (ref_7) 2019; 12 ref_27 Kim (ref_30) 2021; 61 Sharif (ref_34) 2019; 25 Rana (ref_28) 2022; 76 Li (ref_29) 2021; 235 Green (ref_20) 2021; 235 Gao (ref_36) 2022; 238 ref_5 Tsoka (ref_16) 2018; 165 ref_6 |
References_xml | – ident: ref_17 doi: 10.3390/en11061570 – volume: 38 start-page: 81 year: 2018 ident: ref_35 article-title: Deep-learning neural-network architectures and methods: Using component-based models in building-design energy prediction publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2018.06.004 contributor: fullname: Singaravel – volume: 291 start-page: 116814 year: 2021 ident: ref_9 article-title: Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116814 contributor: fullname: Feng – volume: 57 start-page: 49 year: 2022 ident: ref_23 article-title: Application of PSO and GA stochastic algorithms to select optimum building envelope and air conditioner size—A case of a residential building prototype publication-title: Mater. Today: Proc. contributor: fullname: Chaturvedi – ident: ref_5 doi: 10.3390/su14031278 – volume: 191 start-page: 116552 year: 2020 ident: ref_31 article-title: Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings publication-title: Energy doi: 10.1016/j.energy.2019.116552 contributor: fullname: Tran – volume: 245 start-page: 118714 year: 2020 ident: ref_19 article-title: Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118714 contributor: fullname: Wang – ident: ref_25 doi: 10.3390/su14010065 – volume: 34 start-page: 101958 year: 2022 ident: ref_3 article-title: Parametric Analysis and Optimization of a Novel Photovoltaic Trombe Wall System with Venetian Blinds: Experimental and Computational Study publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.101958 contributor: fullname: Irshad – volume: 165 start-page: 270 year: 2018 ident: ref_16 article-title: A method to account for the urban microclimate on the creation of ‘typical weather year’ datasets for building energy simulation, using stochastically generated data publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.01.016 contributor: fullname: Tsoka – volume: 303 start-page: 135065 year: 2022 ident: ref_24 article-title: Modeling of remora optimization with deep learning enabled heavy metal sorption efficiency prediction onto biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135065 contributor: fullname: Almalawi – volume: 240 start-page: 122692 year: 2022 ident: ref_26 article-title: Prediction and optimization of heating and cooling loads in a residential building based on multi-layer Perceptron neural network and different optimization algorithms publication-title: Energy doi: 10.1016/j.energy.2021.122692 contributor: fullname: Xu – ident: ref_27 doi: 10.3390/en14051331 – volume: 12 start-page: 2123 year: 2019 ident: ref_7 article-title: Analysis of energy consumption pattern in Saudi Arabia’s residential buildings with specific reference to qassim region publication-title: Energy Effic. doi: 10.1007/s12053-019-09806-x contributor: fullname: Esmaeil – ident: ref_6 doi: 10.1007/s11356-022-20915-6 – volume: 219 start-page: 119605 year: 2021 ident: ref_22 article-title: Design optimization of off-grid hybrid renewable energy systems considering the effects of building energy performance and climate change: Case study of Algeria publication-title: Energy doi: 10.1016/j.energy.2020.119605 contributor: fullname: Mokhtara – volume: 218 start-page: 119542 year: 2021 ident: ref_8 article-title: Numerical and experimental study on the performance of a photovoltaic Trombe wall system with Venetian blinds publication-title: Energy doi: 10.1016/j.energy.2020.119542 contributor: fullname: Islam – ident: ref_1 doi: 10.20944/preprints201906.0299.v1 – volume: 32 start-page: 101772 year: 2020 ident: ref_14 article-title: Multi-objective optimization of cooling and heating loads in residential buildings integrated with phase change materials using the artificial neural network and genetic algorithm publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101772 contributor: fullname: Safikhani – volume: 238 start-page: 122073 year: 2022 ident: ref_36 article-title: A hybrid method of cooling load forecasting for large commercial building based on Extreme Learning Machine publication-title: Energy doi: 10.1016/j.energy.2021.122073 contributor: fullname: Gao – volume: 28 start-page: 101054 year: 2020 ident: ref_12 article-title: Prediction of building electricity usage using gaussian process regression publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2019.101054 contributor: fullname: Zeng – volume: 235 start-page: 110705 year: 2021 ident: ref_20 article-title: Residential microgrid optimization using grey-box and black-box modeling methods publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110705 contributor: fullname: Green – volume: 235 start-page: 110740 year: 2021 ident: ref_29 article-title: Modelling heating and cooling energy demand for building stock using a hybrid approach publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.110740 contributor: fullname: Li – volume: 8 start-page: 99709 year: 2020 ident: ref_11 article-title: Utilizing artificial neural network for prediction of Occupants thermal comfort: A case study of a test room fitted with a thermoelectric air-conditioning system publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985036 contributor: fullname: Irshad – volume: 25 start-page: 100790 year: 2019 ident: ref_34 article-title: Developing surrogate ANN for selecting near-optimal building energy renovation methods considering energy consumption, LCC and LCA publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2019.100790 contributor: fullname: Sharif – volume: 61 start-page: 1 year: 2021 ident: ref_30 article-title: Heating and cooling energy consumption prediction model for high-rise apartment buildings considering design parameters publication-title: Energy Sustain. Dev. doi: 10.1016/j.esd.2021.01.001 contributor: fullname: Kim – volume: 47 start-page: 101484 year: 2019 ident: ref_33 article-title: Tuning machine learning models for prediction of building energy loads publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101484 contributor: fullname: Seyedzadeh – volume: 172 start-page: 108837 year: 2021 ident: ref_18 article-title: Imperialist competitive algorithm hybridized with multilayer perceptron to predict the load-settlement of square footing on layered soils publication-title: Measurement doi: 10.1016/j.measurement.2020.108837 contributor: fullname: Moayedi – volume: 231 start-page: 120950 year: 2021 ident: ref_37 article-title: Prediction of residential district heating load based on machine learning: A case study publication-title: Energy doi: 10.1016/j.energy.2021.120950 contributor: fullname: Wei – volume: 254 start-page: 120082 year: 2020 ident: ref_32 article-title: Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120082 contributor: fullname: Zhou – ident: ref_10 doi: 10.3390/s20226419 – volume: 142 start-page: 110714 year: 2021 ident: ref_15 article-title: Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110714 contributor: fullname: Amasyali – ident: ref_21 doi: 10.3390/su132112302 – volume: 16 start-page: 570 year: 2022 ident: ref_13 article-title: Deep learning versus gradient boosting machine for Pan evaporation prediction publication-title: Eng. Appl. Comput. Fluid Mech. contributor: fullname: Malik – volume: 76 start-page: 103511 year: 2022 ident: ref_28 article-title: A data-driven approach based on quantile regression forest to forecast cooling load for commercial buildings publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.103511 contributor: fullname: Rana – volume: 134 start-page: 595 year: 2017 ident: ref_2 article-title: Evaluation of Building Energy Efficiency Investment Options for the Kingdom of Saudi Arabia publication-title: Energy doi: 10.1016/j.energy.2017.05.084 contributor: fullname: Krarti – volume: 52 start-page: 102060 year: 2022 ident: ref_4 article-title: An Artificial Intelligence-Based Solar Radiation Prophesy Model for Green Energy Utilization in Energy Management System publication-title: Sustain. Energy Technol. Assess. contributor: fullname: Alassery |
SSID | ssj0000852254 |
Score | 2.3096282 |
Snippet | An important aspect in improving the energy efficiency of buildings is the effective use of building heating and cooling load prediction models. A lot of... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1677 |
SubjectTerms | Algorithms Arid climates Aridity Artificial intelligence building Buildings Climate change Construction Construction industry cooling load Cooling loads Cooling systems data-driven Energy consumption Energy efficiency Forecasting Fuzzy logic Green buildings Heating Heating load Investigations Load Machine learning Model accuracy Neural networks Optimization Optimization techniques Parameters Performance prediction prediction Prediction models Residential areas Residential buildings Root-mean-square errors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELXKcikHVEoR29LKh54qRWTtxHZ6QfsBWqpqhRBI3CJ_rpAg2e4GzvwN_h6_hJmsdylC4ppYSTQev3n2TN4Q8jNTEAYM1umklicZD0ViPCx3oVG_XDmIyG2B7ESML7M_V_lVPHBbxLLKFSa2QO1qi2fkh0wCkIK3yfRo9i_BrlGYXY0tNDbIJoOdQtohm4Pjydn5-pQFCAU4bLZMZ3LY3x-a2G16gcpZPSHlq4DU6va_geU21px8ItuRJNL-clZ3yAdffSZb_0kH7pLZYPWGp4dHOkbmV02prhwd1tiHZ0r_1trRszkmYtD4FNgpHdcNPPUaBt1c3yLL_E37dFLf-xt6utbmbOhINzoZzREIaT-Kjn8hlyfHF8NxErsnJJYr1gC-2gDcAYDQysJ7awrDUhG4yAsFJCAUigWIVIYZxYMIlgntlAW4UypXvVzxPdKp6srvEyq8S00QHuUFMxu4ks5Yo7MsyCJ1QXTJr5UJy9lSJKOEzQXau3xj7y4ZoJHXA1Hfur1Qz6dlXC6l5YWBb-sxn4dMBmWC46kKgkmdeul1lxyspqiMi25RvrjI1_dvfyMfGf7F0NbkHZBOM7_z34FbNOZHdKBnXYfQ8g priority: 102 providerName: ProQuest |
Title | Buildings’ Heating and Cooling Load Prediction for Hot Arid Climates: A Novel Intelligent Data-Driven Approach |
URI | https://www.proquest.com/docview/2728448870 https://doaj.org/article/c39b78b12e5f47f8bfd308f627a0e7ea |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWgLDAgnqJQKg9MSFFdO7Edtj4pCFUVAoktih0bFUGC2sDMb_B7fAnXSVoVMbCwRlYc3WufcyzfnIvQmS-BBpSr0yGaeT6zoacMbHceO_9ymQAjFwWyYz66968fgoeVVl-uJqy0By4D19IsVEKqNjWB9YWVyiaMSMupiIkRppRGJFw5TD2V1VewUP3yGpPBub6lqi7Tc-eY1eZC_CCiwq__FxwXHDPcQduVOMSd8qN20ZpJ99DWimXgPnrtLmb4-vjEI6f40kccpwnuZa7_ziO-yeIET2buAsYFHYMqxaMsh7dOYdDz9MWpywvcwePs3Tzjq6UnZ477cR57_ZkDQNypzMYP0P1wcNcbeVXXBE8zSXPAVW1BMwAAahEao1WoKOGW8SCUQP42lNQCQymqJLPcasrjRGqAOSkD2Q4kO0S1NEvNEcLcJERZbpytoK8tkyJRWsW-b0VIEsvr6HwRwui1NMeI4FDh4h39incddV2QlwOdr3XxALIdVdmO_sp2HTUWKYqqzTaPqACOBSAS5Pg_5jhBm9T941BU7DVQLZ-9mVNQHrlqonU5vGyije5gPLltFkvuG7Yg23g |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVKewAOiE91oYAPnJCiZm3HdnpB25YlbZcVh1bqLfLnqlJJlt3AuX-jf6-_hJmsdwFV4ppYTjQev3m2x28I-SA0hAGLeTq545ngscxsgOkuDeqXaw8RuU-QncrqQpxeFpdpw22Z0irXmNgDtW8d7pHvMwVACt6m8k_zHxlWjcLT1VRC4wHZERxiNd4UH3_Z7LEAnQB3FavDTA6r-32bak0vUTdrKJX6Jxz1qv33QLmPNOOn5EmiiHS0GtNnZCs0z8njv4QDX5D54foLdze3tELe18yoaTw9arEKz4xOWuPptwUew6DpKXBTWrUd9HoFja6vviPHPKAjOm1_hWt6slHm7Oix6Ux2vEAYpKMkOf6SXIw_nx9VWaqdkDmuWQfo6iIwB4BBp8oQnC0ty2Xksig1UIBYahYhTllmNY8yOiaN1w7ATutCDwvNX5Htpm3CLqEy-NxGGVBcULjItfLWWSNEVGXuoxyQj2sT1vOVREYNSwu0d33P3gNyiEbeNER16_5Bu5jVabLUjpcW_m3IQhGFitpGz3MdJVMmDyqYAdlbD1Gdptyy_uMgr___-j15WJ1_ndSTk-nZG_KI4X2GPjtvj2x3i5_hLbCMzr7rXek30K7SfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaKlXlgOhLXaDUh54qRZu1E9vhUu2D7dKiFYcicYv8XCHRZNkNnPkb_D1-CTNZ79IKqdfESqKZ8Tef7ck3hHzNFKQBg3U6qeVJxkORGA_TXWjUL1cOMnJbIDsVk_Ps50V-EeuflrGsco2JLVC72uIeeZdJAFKINpl2QyyLOBuNv8-vE-wghSetsZ3GS_IKsqLACFfjH5v9FqAWELrZ6mCTw0q_a2Lf6SVqaPWElP-kplbB_xlAt1lnvEt2Il2k_ZV_35IXvnpHtv8SEXxP5oP1Gx7u7ukEOWA1o7pydFhjR54ZPa21o2cLPJJBN1DgqXRSN_DUSxh0dfkH-eYR7dNpfeuv6MlGpbOhI93oZLRASKT9KD_-gZyPj38PJ0nso5BYrlgDSGsDsAiARCsL760pDEtF4CIvFNCBUCgWIGcZZhQPIlgmtFMWgE-pXPVyxT-Sraqu_CdChXepCcKj0GBmA1fSGWt0lgVZpC6IDvm2NmE5X8lllLDMQHuXz-zdIQM08mYgKl23F-rFrIwTp7S8MPBtPebzkMmgTHA8VUEwqVMvve6Qg7WLyjj9luVTsOz9__YX8hqiqDw9mf7aJ28Y_trQFuodkK1mceM_A-FozGEbSY92Oda7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buildings%E2%80%99+Heating+and+Cooling+Load+Prediction+for+Hot+Arid+Climates%3A+A+Novel+Intelligent+Data-Driven+Approach&rft.jtitle=Buildings+%28Basel%29&rft.au=Kashif+Irshad&rft.au=Md.+Hasan+Zahir&rft.au=Mahaboob+Sharief+Shaik&rft.au=Amjad+Ali&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2075-5309&rft.volume=12&rft.issue=10&rft.spage=1677&rft_id=info:doi/10.3390%2Fbuildings12101677&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c39b78b12e5f47f8bfd308f627a0e7ea |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |