Facile Synthesis of Multi-Branched Gold Nanostructures through a TBAB-Assisted Route in Aqueous Solution and Their SERS Property
Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one-step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are...
Saved in:
Published in | Chinese journal of chemistry Vol. 29; no. 1; pp. 185 - 190 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
2011
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one-step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface-enhanced Raman scattering (SERS) properties. Low temperature (4 ℃) is unfavorable to the formation of multi-branched gold nanostructures, and only thin small irregular plate-like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS-TBAB system. |
---|---|
AbstractList | Abstract
Facile synthesis of multi‐branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one‐step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface‐enhanced Raman scattering (SERS) properties. Low temperature (4°C) is unfavorable to the formation of multi‐branched gold nanostructures, and only thin small irregular plate‐like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS‐TBAB system. Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one-step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface-enhanced Raman scattering (SERS) properties. Low temperature (4°C) is unfavorable to the formation of multi-branched gold nanostructures, and only thin small irregular plate-like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS-TBAB system. Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one-step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface-enhanced Raman scattering (SERS) properties. Low temperature (4 ℃) is unfavorable to the formation of multi-branched gold nanostructures, and only thin small irregular plate-like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS-TBAB system. Facile synthesis of multi‐branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one‐step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface‐enhanced Raman scattering (SERS) properties. Low temperature (4°C) is unfavorable to the formation of multi‐branched gold nanostructures, and only thin small irregular plate‐like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS‐TBAB system. Multi‐branched gold nanoparticles with relatively long branches are synthesized in high yield (practically 100% of the particles have numerous branches) by using TBAB (1.4 mmol/L) as the capping agent in aqueous solutions at mild temperature. |
Author | Li, Xiaonan Wu, Zhiyan Wu, Xinzhou Wang, Luyan Pei, Meishan Tao, Xutang |
AuthorAffiliation | School of Chemistry and Chemical Engineering, University ofJinan, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, Jinan, Shandong 250022, China State Key Laboratory of Crystal Materials, (Shandong University), Jinan, Shandong 250100, China |
Author_xml | – sequence: 1 fullname: Wang, Luyan Wu, Xinzhou Pei, Meishan Wu, Zhiyan Li, Xiaonan Tao, Xutang |
BookMark | eNqFkMtuEzEUQEeoSLSFLWsL1hPs8SteJlGTgtoUNUHtznJsT2bSwU79EGTHp-MoVcWOlb04596rc1GdOe9sVX1EcIQgbL7ondejBiIkICTiTXWOGCI1h4yelT-EqGaQPL6rLmLcFZ7zhp1Xf-ZK94MFq4NLnY19BL4Ft3lIfT0NyunOGrDwgwFL5XxMIeuUg40gdcHnbQcUWE8n03oSi5oKe-9zsqB3YPKcrc8RrPyQU-8dUM6AdWf7AFZX9yvwPfi9DenwvnrbqiHaDy_vZfVjfrWeXdc3d4uvs8lNrfG4EbURUCPNW8YNYpqOBd0YoRGGljNhCdvYBnNmDYGKEKIMoZSPucUtV4JQw_Fl9fk0dx98OS0mufM5uLJSIs7YGDLMaKFGJ0oHH2OwrdyH_qcKB4mgPFaWx8rytXIRxEn4VSoe_kPL2be72b9ufXKP6X6_uio8ScYxp_JhuZCPdLmY3j4wOS_8p5fjOu-2z73byo3ST23ZLDHHkEIm8F9cM52n |
CitedBy_id | crossref_primary_10_1007_s10854_012_0793_7 crossref_primary_10_1134_S0040579515040302 crossref_primary_10_1021_jp202229y crossref_primary_10_1007_s10854_012_0680_2 crossref_primary_10_1039_C8TB02753F |
Cites_doi | 10.1002/andp.19083300302 10.1016/j.jallcom.2006.06.053 10.1016/j.matchemphys.2005.08.072 10.1021/jp803102h 10.1016/j.matlet.2007.09.012 10.1021/cm020732l 10.1021/nl0351542 10.1246/bcsj.40.38 10.1016/j.jcis.2006.10.084 10.1021/la062500x 10.1021/jp8054747 10.1002/ange.200503762 10.1021/cm062046i 10.1021/cm060681i 10.1016/j.colsurfa.2004.07.009 10.1021/jp9058406 10.1021/ja038927x 10.1021/cm0515000 10.1021/nl052409y 10.1021/la703495s 10.1021/la0476332 10.1016/j.jcis.2008.10.004 10.1021/jp0620015 10.1002/cjoc.200990180 10.1021/jp0274076 10.1021/jp0449152 10.1021/la051252m 10.1021/nl034097 10.1088/0957-4484/19/01/015606 10.1088/0957-4484/17/18/038 10.1021/cm7019608 10.1016/j.colsurfa.2005.11.075 10.1021/la702694t 10.1016/j.matchemphys.2008.11.064 |
ContentType | Journal Article |
Copyright | Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 2RA 92L CQIGP W94 ~WA BSCLL AAYXX CITATION |
DOI | 10.1002/cjoc.201190049 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Facile Synthesis of Multi-Branched Gold Nanostructures through a TBAB-Assisted Route in Aqueous Solution and Their SERS Property |
EISSN | 1614-7065 |
EndPage | 190 |
ExternalDocumentID | 3957965591 10_1002_cjoc_201190049 CJOC201190049 ark_67375_WNG_X5NGBMW6_F 37305069 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Open Research Project from State Key Laboratory of Crystal Material (Shandong University) funderid: KF0802 – fundername: the National Natural Science Foundation of China funderid: 50872042, 51003040 – fundername: the Special Fund for Postdoctoral Innovation Program of Shandong Province funderid: 200703075 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29B 2RA 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VR 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92L AAESR AAEVG AAHHS AAONW AAPBV AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABHUG ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFUIB AFVGU AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 BZXJU CCEZO CDRFL CDYEO CHBEP CQIGP CS3 CW9 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2W P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RK2 RNS ROL RWI RX1 RYL SAMSI SUPJJ W8V W94 W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WA ~WT -SB -S~ 5XA 5XC AANLZ AAXDM ABJNI AEIGN AEUYR AFFPM AHBTC AITYG BSCLL CAJEB HGLYW OIG Q-- U1G U5L AAYXX CITATION |
ID | FETCH-LOGICAL-c3829-d90c1c7f67d16c5895bd9c130e769e46be2376ed40a444ad455787e3f7a945d73 |
IEDL.DBID | DR2 |
ISSN | 1001-604X |
IngestDate | Thu Oct 10 19:35:12 EDT 2024 Fri Aug 23 00:41:24 EDT 2024 Sat Aug 24 01:03:18 EDT 2024 Wed Oct 30 09:48:34 EDT 2024 Fri Nov 25 17:00:44 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3829-d90c1c7f67d16c5895bd9c130e769e46be2376ed40a444ad455787e3f7a945d73 |
Notes | 31-1547/O6 gold, multi-branched, nanostructures, tetrabutyl ammonium bromide, surface-enhanced Ramanscattering O623.624 TB383 ark:/67375/WNG-X5NGBMW6-F Open Research Project from State Key Laboratory of Crystal Material (Shandong University) - No. KF0802 the National Natural Science Foundation of China - No. 50872042, 51003040 ArticleID:CJOC201190049 the Special Fund for Postdoctoral Innovation Program of Shandong Province - No. 200703075 istex:6C5B6BE87E99FA585C79EA173E5496A30FDB14E9 |
PQID | 1766806365 |
PQPubID | 986331 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1766806365 crossref_primary_10_1002_cjoc_201190049 wiley_primary_10_1002_cjoc_201190049_CJOC201190049 istex_primary_ark_67375_WNG_X5NGBMW6_F chongqing_backfile_37305069 |
PublicationCentury | 2000 |
PublicationDate | 2011 2011-01 January, 2011 2011-01-00 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Shanghai |
PublicationTitle | Chinese journal of chemistry |
PublicationTitleAlternate | Chinese Journal of Chemistry |
PublicationYear | 2011 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Liu, S.; Liang, Z. S.; Gao, F.; Yu, J. H.; Luo, S. F.; Calata, J. N.; Lu, G. Q.. Chin. J. Chem., 2009, 27, 1079. Kawamura, G.; Yang, Y.; Fukuda, K.; Nogami, M.. Mater. Chem. Phys., 2009, 115, 229. Jeong, G. H.; Lee, Y. W.; Kim, M.; Han, S. W.. J. Colloid Interface Sci., 2009, 329, 97. Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L.. J. Am. Chem. Soc., 2003, 125, 16186. Guo, Z. R.; Zhang, Y.; Yu, M. D.; Xu, L. N.; Xe, S. L.; Gu, N.. Colloids Surf. A: Physicochem. Eng. Aspects, 2006, 278, 33. Bikash, K. J.; Raj, C. R.. Chem. Mater., 2008, 20, 3546. Kim, S. H.; Choi, B. S.; Kang, K.; Choi, Y. S.; Yang, S. I.. J. Alloys Compd., 2007, 433, 261. Deng, J. P.; Wu, C. H.; Yang, C. H.; Mou, C. Y.. Langmuir, 2005, 21, 8947. Bakr, O. M.; Wunsch, B. H.; Stellacci, F.. Chem. Mater., 2006, 18, 3297. Yuan, H.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Liu, J. W.; Zhu, H. Y.; Gao, X. P.. Chem. Mater., 2007, 19, 1592. Mie, G.. Ann. Phys., 1908, 330, 337. Zhang, D. F.; Niu, L. Y.; Jiang, L.; Yin, P. G.; Sun, L. D.; Zhang, H.; Zhang, R.; Guo, L.; Yan, C. H.. J. Phys. Chem. C, 2008, 112, 16011. Gabriella, S. M.; Cao, Y. C.; Jin, R. C.; Mirkin, C. A.. Nano Lett., 2003, 3, 519. Tamaki, K.. Bull. Chem. Soc. Jpn., 1967, 40, 38. Kuo, C. H.; Huang, M. H.. Langmuir, 2005, 21, 2012. Christopher, G. K.; Tuan, V. D.. J. Phys. Chem. C, 2008, 112, 18849. Wang, Y.; Chen, H.; Dong, S.; Wang, E. J.. Chem. Phys., 2006, 124, 1. Olga, K.; Markovich, G.. Langmuir, 2007, 23, 1496. Zhang, J.; Du, J.; Han, B.; Liu, Z.; Jiang, T.; Zhang, Z.. Angew. Chem., 2006, 45, 1134. Nehl, C. L.; Liao, H.; Hafner, J. H.. Nano Lett., 2006, 6, 683. Hao, E. C.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Y.. Nano Lett., 2004, 4, 327. Li, L.; Chu, Y.; Liu, Y.; Song, J.; Wang, D.; Du, X.. Mater. Lett., 2008, 62, 1507. Nikoobakht, B.; El-Sayed, M. A.. Chem. Mater., 2003, 15, 1957. Jiang, G. H.; Wang, L.; Chen, T.; Yu, H. J.; Chen, C. L.. Mater. Chem. Phys., 2006, 98, 76. Sosa, I. O.; Noguez, C.; Barrera, R. G.. J. Phys. Chem. B, 2003, 107, 6269. Tang, X. L.; Jiang, P.; Ge, G. L.; Tsuji, M.; Xie, S. S.; Guo, Y. J.. Langmuir, 2008, 24, 1763. Zou, X.; Ying, E.; Dong, S.. Nanotechnology, 2006, 17, 4758. Pardinas, I.; Cristina, E.; Yolanda, H.; Arturo, M.; Rivas, J.. Langmuir, 2008, 24, 983. Wang, L. Y.; Chen, X.; Zhan, J.; Chai, Y. C.; Yang, C. J.; Xu, L. M.; Zhuang, W. C.; Jing, B.. J. Phys. Chem. B, 2005, 109, 3189. Yamamoto, M.; Kashiwagi, Y.; Sakata, T.; Mori, H.; Nakamoto, M.. Chem. Mater., 2005, 17, 5391. Mata, J.; Varade, D.; Ghosh, G.; Bahadur, P.. Colloids Surf. A: Physicochem. Eng. Aspects, 2004, 245, 69. Wang, T.; Zheng, R.; Hu, X.; Zhang, L.; Dong, S.. J. Phys. Chem. B, 2006, 110, 14179. Zou, X.; Ying, E.; Dong, S.. J. Colloid Interface Sci., 2007, 306, 307. Senthil, K. P.; Pastoriza-Santos, I.; Rodriguez-Gonzalez, B.; Garcia de Abajo, F. J.; Liz-Marzan, L. M.. Nanotechnology, 2008, 19, 015606. Zhao, L. L.; Ji, X. H.; Sun, X. J.; Li, J.; Yang, W. S.; Peng, X. G.. J. Phys. Chem. C, 2009, 113, 16645. Khoury, C. G.; Vo-Dinh, T.. J. Phys. Chem. C, 2008, 112, 18849. 2007; 19 2007; 306 2004; 245 2006; 98 2006; 17 2008; 19 1967; 40 2004; 4 2006; 18 2003; 15 2006; 110 2005; 21 2006; 6 2009; 113 2009; 27 2009; 115 2006; 278 2007; 433 2003; 107 2006; 45 2003; 3 2005; 109 2008; 24 2008; 20 2008; 112 2003; 125 2008; 62 2005; 17 2009; 329 2007; 23 1908; 330 2006; 124 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 Wang Y. (e_1_2_1_35_2) 2006; 124 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_14_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – volume: 17 start-page: 4758 year: 2006 publication-title: Nanotechnology – volume: 329 start-page: 97 year: 2009 publication-title: J. Colloid Interface Sci. – volume: 24 start-page: 983 year: 2008 publication-title: Langmuir – volume: 125 start-page: 16186 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 14179 year: 2006 publication-title: J. Phys. Chem. B – volume: 98 start-page: 76 year: 2006 publication-title: Mater. Chem. Phys. – volume: 113 start-page: 16645 year: 2009 publication-title: J. Phys. Chem. C – volume: 24 start-page: 1763 year: 2008 publication-title: Langmuir – volume: 3 start-page: 519 year: 2003 publication-title: Nano Lett. – volume: 45 start-page: 1134 year: 2006 publication-title: Angew. Chem. – volume: 115 start-page: 229 year: 2009 publication-title: Mater. Chem. Phys. – volume: 330 start-page: 337 year: 1908 publication-title: Ann. Phys. – volume: 245 start-page: 69 year: 2004 publication-title: Colloids Surf. A: Physicochem. Eng. Aspects – volume: 23 start-page: 1496 year: 2007 publication-title: Langmuir – volume: 109 start-page: 3189 year: 2005 publication-title: J. Phys. Chem. B – volume: 19 start-page: 1592 year: 2007 publication-title: Chem. Mater. – volume: 27 start-page: 1079 year: 2009 publication-title: Chin. J. Chem. – volume: 112 start-page: 18849 year: 2008 publication-title: J. Phys. Chem. C – volume: 62 start-page: 1507 year: 2008 publication-title: Mater. Lett. – volume: 40 start-page: 38 year: 1967 publication-title: Bull. Chem. Soc. Jpn. – volume: 278 start-page: 33 year: 2006 publication-title: Colloids Surf. A: Physicochem. Eng. Aspects – volume: 107 start-page: 6269 year: 2003 publication-title: J. Phys. Chem. B – volume: 306 start-page: 307 year: 2007 publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 683 year: 2006 publication-title: Nano Lett. – volume: 15 start-page: 1957 year: 2003 publication-title: Chem. Mater. – volume: 21 start-page: 8947 year: 2005 publication-title: Langmuir – volume: 112 start-page: 16011 year: 2008 publication-title: J. Phys. Chem. C – volume: 4 start-page: 327 year: 2004 publication-title: Nano Lett. – volume: 17 start-page: 5391 year: 2005 publication-title: Chem. Mater. – volume: 21 start-page: 2012 year: 2005 publication-title: Langmuir – volume: 20 start-page: 3546 year: 2008 publication-title: Chem. Mater. – volume: 18 start-page: 3297 year: 2006 publication-title: Chem. Mater. – volume: 433 start-page: 261 year: 2007 publication-title: J. Alloys Compd. – volume: 19 start-page: 015606 year: 2008 publication-title: Nanotechnology – volume: 124 start-page: 1 year: 2006 publication-title: Chem. Phys. – ident: e_1_2_1_29_2 doi: 10.1002/andp.19083300302 – ident: e_1_2_1_21_2 doi: 10.1016/j.jallcom.2006.06.053 – ident: e_1_2_1_32_2 doi: 10.1016/j.matchemphys.2005.08.072 – ident: e_1_2_1_7_2 doi: 10.1021/jp803102h – ident: e_1_2_1_22_2 doi: 10.1016/j.matlet.2007.09.012 – ident: e_1_2_1_27_2 doi: 10.1021/cm020732l – ident: e_1_2_1_8_2 doi: 10.1021/nl0351542 – ident: e_1_2_1_23_2 doi: 10.1246/bcsj.40.38 – ident: e_1_2_1_34_2 doi: 10.1016/j.jcis.2006.10.084 – ident: e_1_2_1_4_2 doi: 10.1021/la062500x – ident: e_1_2_1_10_2 doi: 10.1021/jp8054747 – ident: e_1_2_1_36_2 doi: 10.1021/jp8054747 – ident: e_1_2_1_30_2 doi: 10.1002/ange.200503762 – ident: e_1_2_1_9_2 doi: 10.1021/cm062046i – ident: e_1_2_1_5_2 doi: 10.1021/cm060681i – ident: e_1_2_1_24_2 doi: 10.1016/j.colsurfa.2004.07.009 – ident: e_1_2_1_18_2 doi: 10.1021/jp9058406 – volume: 124 start-page: 1 year: 2006 ident: e_1_2_1_35_2 publication-title: Chem. Phys. contributor: fullname: Wang Y. – ident: e_1_2_1_14_2 doi: 10.1021/ja038927x – ident: e_1_2_1_17_2 doi: 10.1021/cm0515000 – ident: e_1_2_1_16_2 doi: 10.1021/nl052409y – ident: e_1_2_1_20_2 doi: 10.1021/la703495s – ident: e_1_2_1_11_2 doi: 10.1021/la0476332 – ident: e_1_2_1_19_2 doi: 10.1016/j.jcis.2008.10.004 – ident: e_1_2_1_33_2 doi: 10.1021/jp0620015 – ident: e_1_2_1_2_2 doi: 10.1002/cjoc.200990180 – ident: e_1_2_1_6_2 doi: 10.1021/jp0274076 – ident: e_1_2_1_25_2 doi: 10.1021/jp0449152 – ident: e_1_2_1_31_2 doi: 10.1021/la051252m – ident: e_1_2_1_12_2 doi: 10.1021/nl034097 – ident: e_1_2_1_37_2 doi: 10.1088/0957-4484/19/01/015606 – ident: e_1_2_1_15_2 doi: 10.1088/0957-4484/17/18/038 – ident: e_1_2_1_3_2 doi: 10.1021/cm7019608 – ident: e_1_2_1_28_2 doi: 10.1016/j.colsurfa.2005.11.075 – ident: e_1_2_1_26_2 doi: 10.1021/la702694t – ident: e_1_2_1_13_2 doi: 10.1016/j.matchemphys.2008.11.064 |
SSID | ssj0027726 |
Score | 1.8949164 |
Snippet | Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried... Facile synthesis of multi‐branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried... Abstract Facile synthesis of multi‐branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction... Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried... |
SourceID | proquest crossref wiley istex chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 185 |
SubjectTerms | gold multi-branched nanostructures SERS surface-enhanced Raman scattering TBAB tetrabutyl ammonium bromide 水溶液 简便合成 纳米结构材料 表面增强拉曼散射 辅助线 |
Title | Facile Synthesis of Multi-Branched Gold Nanostructures through a TBAB-Assisted Route in Aqueous Solution and Their SERS Property |
URI | http://lib.cqvip.com/qk/84126X/20111/37305069.html https://api.istex.fr/ark:/67375/WNG-X5NGBMW6-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.201190049 https://www.proquest.com/docview/1766806365 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF8hShBfmA4JQ2Dz_i4-7S3apSF9TdqnuzHNtLy6KkNLsS5cSBH8Bv5Jcwk2zSLhckkHKJZDuxx575xh5_Q8hrQCA2M3kc5mBbwEGxMsyz2IaCOQH2BXw5jneHj8fi8JQdzfjs1i3-hh-i23DDlVHra1zgJq_2b0hD7afS1hScClEuKOE4lRjT9e4kufG4ZJ1vDXmGQhGxWcvaGCX7m9WRWeG8LD5-AXuxYaHu4mB_3YCft0FsbYWG28S0_98Enyz2Vst8z377g9rxfzr4kDxYQ1Taa-bUI3LHF4_JvUGbGe4J-TE0Flqkk-sC4GN1UdFyTuubvL--_-xjpo5z7-io_OwoKO-yoahdgV9P11mBqKHTfq8PpWF2YNcdxcgkTy8K2oP-l6uKtvt11BSOTvE4g04OTib0A54eXC2vn5LT4cF0cBiuszmENs0SFToV2djKuZAuFpZniudOWTChXgrlmcg9Buh4xyLDGDOOcVQmPp1Loxh3Mn1Gtoqy8M8JTRQ6ijGeZnumYmskg_ZYBk51zuc8C8hOJ01AA3aBHFc6BWXGI6EC8raVr75sKD10Q96caBxz3Y15QN7U4u-KmasFBsJJrs_GIz3j41H_-EzoYUB22_mh1zqg0ki9mQECFDwgSS3ov3xOD47eD7q3F_9SaYfcbza98dklWyBg_xJQ0zJ_Va-M33dyDks |
link.rule.ids | 315,783,787,1378,4031,27935,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELagPZQL_6jbFvABwWnb_bG962MSmoTSBNSkam6W13ZoCdotTSJRThx4AJ6RJ2FmN7slXJBA2stKa6_smfF8Y4-_IeQFIBCT6iz0M_AtEKCYxM_S0PiCWQH-BWI5jneHB0PRP2VHE15nE-JdmIofotlwQ8so12s0cNyQPrhhDTUfC1NycEqEubfJJth8jNUbXp9ENzFXUlZcQ6YhXwRsUvM2BtHBenvkVjgv8g-fwWOs-ahNnO4vawD0dxhb-qHuPZLVI6jST2b7y0W2b77-Qe74X0O8T-6uUCptVWr1gNxy-UOy1amLwz0i37vaQJd0dJ0DgpxfzGkxpeVl3p_ffrSxWMe5s7RXfLIU1u-iYqldQmhPV4WBqKbjdqsNX4OC4NgtxeQkRy9y2oIJKJZzWm_ZUZ1bOsYTDTo6PBnR93iAcLW4fkxOu4fjTt9fFXTwTZxG0rcyMKFJpiKxoTA8lTyz0oAXdYmQjonMYY6OsyzQjDFtGcf1xMXTREvGbRI_IRt5kbttQiOJsWKIB9qOydDohEF_LIW4OuNTnnpktxEnAAIzQ5orFYOC8EBIj7yqBawuK1YPVfE3RwrnXDVz7pGXpfybz_TVDHPhEq7Ohj014cNee3AmVNcje7WCqNUyMFfIvpkCCBTcI1Ep6b_8TnWO3nWat51_afScbPXHg2N1_Gb4dpfcqfbA8dkjGyBs9xRA1CJ7VprJL0ysEmM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaglYAL_xWhBXxAcEqbZG0nPu4uzZZCl6q7VfdmObZDy6KkdHclyokDD8Az8iTMJJu0ywUJpFwixY7GY898Y4-_IeQlIBCT6Cz0M_AtEKCY2M-S0PiCWQH-BWI5jneHD4Zi75jtT_jk2i3-mh-i3XDDlVHZa1zg5zbfuSINNZ9KU1FwSkS5N8k6EwB_ERYdRVchV1wVXEOiIV8EbNLQNgbRzmp7pFY4LYuPX8BhrLiodRztryv48zqKrdxQeo_oRoA6-2S6vZhn2-bbH9yO_yPhfXJ3iVFpt55UD8gNVzwkt_tNabhH5EeqDfRIR5cF4MfZ2YyWOa2u8v76_rOHpTpOnaWD8rOlYL3LmqN2AYE9XZYFopqOe90efA3TA0W3FFOTHD0raBfkLxcz2mzYUV1YOsbzDDraPRrRQzw-uJhfPibH6e64v-cvyzn4ppNE0rcyMKGJcxHbUBieSJ5ZacCHulhIx0TmMEPHWRZoxpi2jKM1cZ081pJxG3c2yFpRFu4JoZHESDHE42zHZGh0zKA_lkBUnfGcJx7ZbLUJcMBMkeRKdcCa8UBIj7xu9KvOa04PVbM3RwrHXLVj7pFXlfrbz_TFFDPhYq5OhgM14cNB7-BEqNQjW838UEsjMFPIvZkABBTcI1Gl6L_8TvX3P_Tbt6f_0ugFuXX4JlXv3w7fbZI79QY4PltkDXTtngGCmmfPq0XyGwLiERI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Synthesis+of+Multi-Branched+Gold+Nanostructures+through+a+TBAB-Assisted+Route+in+Aqueous+Solution+and+Their+SERS+Property&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Wang%2C+Luyan+Wu%2C+Xinzhou+Pei%2C+Meishan+Wu%2C+Zhiyan+Li%2C+Xiaonan+Tao%2C+Xutang&rft.date=2011&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=29&rft.issue=1&rft.spage=185&rft.epage=190&rft_id=info:doi/10.1002%2Fcjoc.201190049&rft.externalDocID=37305069 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84126X%2F84126X.jpg |