Facile Synthesis of Multi-Branched Gold Nanostructures through a TBAB-Assisted Route in Aqueous Solution and Their SERS Property

Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one-step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemistry Vol. 29; no. 1; pp. 185 - 190
Main Author Wang, Luyan Wu, Xinzhou Pei, Meishan Wu, Zhiyan Li, Xiaonan Tao, Xutang
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 2011
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one-step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface-enhanced Raman scattering (SERS) properties. Low temperature (4 ℃) is unfavorable to the formation of multi-branched gold nanostructures, and only thin small irregular plate-like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS-TBAB system.
AbstractList Abstract Facile synthesis of multi‐branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one‐step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface‐enhanced Raman scattering (SERS) properties. Low temperature (4°C) is unfavorable to the formation of multi‐branched gold nanostructures, and only thin small irregular plate‐like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS‐TBAB system.
Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one-step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface-enhanced Raman scattering (SERS) properties. Low temperature (4°C) is unfavorable to the formation of multi-branched gold nanostructures, and only thin small irregular plate-like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS-TBAB system.
Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one-step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface-enhanced Raman scattering (SERS) properties. Low temperature (4 ℃) is unfavorable to the formation of multi-branched gold nanostructures, and only thin small irregular plate-like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS-TBAB system.
Facile synthesis of multi‐branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one‐step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface‐enhanced Raman scattering (SERS) properties. Low temperature (4°C) is unfavorable to the formation of multi‐branched gold nanostructures, and only thin small irregular plate‐like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS‐TBAB system. Multi‐branched gold nanoparticles with relatively long branches are synthesized in high yield (practically 100% of the particles have numerous branches) by using TBAB (1.4 mmol/L) as the capping agent in aqueous solutions at mild temperature.
Author Li, Xiaonan
Wu, Zhiyan
Wu, Xinzhou
Wang, Luyan
Pei, Meishan
Tao, Xutang
AuthorAffiliation School of Chemistry and Chemical Engineering, University ofJinan, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, Jinan, Shandong 250022, China State Key Laboratory of Crystal Materials, (Shandong University), Jinan, Shandong 250100, China
Author_xml – sequence: 1
  fullname: Wang, Luyan Wu, Xinzhou Pei, Meishan Wu, Zhiyan Li, Xiaonan Tao, Xutang
BookMark eNqFkMtuEzEUQEeoSLSFLWsL1hPs8SteJlGTgtoUNUHtznJsT2bSwU79EGTHp-MoVcWOlb04596rc1GdOe9sVX1EcIQgbL7ondejBiIkICTiTXWOGCI1h4yelT-EqGaQPL6rLmLcFZ7zhp1Xf-ZK94MFq4NLnY19BL4Ft3lIfT0NyunOGrDwgwFL5XxMIeuUg40gdcHnbQcUWE8n03oSi5oKe-9zsqB3YPKcrc8RrPyQU-8dUM6AdWf7AFZX9yvwPfi9DenwvnrbqiHaDy_vZfVjfrWeXdc3d4uvs8lNrfG4EbURUCPNW8YNYpqOBd0YoRGGljNhCdvYBnNmDYGKEKIMoZSPucUtV4JQw_Fl9fk0dx98OS0mufM5uLJSIs7YGDLMaKFGJ0oHH2OwrdyH_qcKB4mgPFaWx8rytXIRxEn4VSoe_kPL2be72b9ufXKP6X6_uio8ScYxp_JhuZCPdLmY3j4wOS_8p5fjOu-2z73byo3ST23ZLDHHkEIm8F9cM52n
CitedBy_id crossref_primary_10_1007_s10854_012_0793_7
crossref_primary_10_1134_S0040579515040302
crossref_primary_10_1021_jp202229y
crossref_primary_10_1007_s10854_012_0680_2
crossref_primary_10_1039_C8TB02753F
Cites_doi 10.1002/andp.19083300302
10.1016/j.jallcom.2006.06.053
10.1016/j.matchemphys.2005.08.072
10.1021/jp803102h
10.1016/j.matlet.2007.09.012
10.1021/cm020732l
10.1021/nl0351542
10.1246/bcsj.40.38
10.1016/j.jcis.2006.10.084
10.1021/la062500x
10.1021/jp8054747
10.1002/ange.200503762
10.1021/cm062046i
10.1021/cm060681i
10.1016/j.colsurfa.2004.07.009
10.1021/jp9058406
10.1021/ja038927x
10.1021/cm0515000
10.1021/nl052409y
10.1021/la703495s
10.1021/la0476332
10.1016/j.jcis.2008.10.004
10.1021/jp0620015
10.1002/cjoc.200990180
10.1021/jp0274076
10.1021/jp0449152
10.1021/la051252m
10.1021/nl034097
10.1088/0957-4484/19/01/015606
10.1088/0957-4484/17/18/038
10.1021/cm7019608
10.1016/j.colsurfa.2005.11.075
10.1021/la702694t
10.1016/j.matchemphys.2008.11.064
ContentType Journal Article
Copyright Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 2RA
92L
CQIGP
W94
~WA
BSCLL
AAYXX
CITATION
DOI 10.1002/cjoc.201190049
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Facile Synthesis of Multi-Branched Gold Nanostructures through a TBAB-Assisted Route in Aqueous Solution and Their SERS Property
EISSN 1614-7065
EndPage 190
ExternalDocumentID 3957965591
10_1002_cjoc_201190049
CJOC201190049
ark_67375_WNG_X5NGBMW6_F
37305069
Genre shortCommunication
GrantInformation_xml – fundername: Open Research Project from State Key Laboratory of Crystal Material (Shandong University)
  funderid: KF0802
– fundername: the National Natural Science Foundation of China
  funderid: 50872042, 51003040
– fundername: the Special Fund for Postdoctoral Innovation Program of Shandong Province
  funderid: 200703075
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29B
2RA
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VR
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92L
AAESR
AAEVG
AAHHS
AAONW
AAPBV
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFUIB
AFVGU
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
BZXJU
CCEZO
CDRFL
CDYEO
CHBEP
CQIGP
CS3
CW9
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RK2
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
W8V
W94
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WA
~WT
-SB
-S~
5XA
5XC
AANLZ
AAXDM
ABJNI
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
BSCLL
CAJEB
HGLYW
OIG
Q--
U1G
U5L
AAYXX
CITATION
ID FETCH-LOGICAL-c3829-d90c1c7f67d16c5895bd9c130e769e46be2376ed40a444ad455787e3f7a945d73
IEDL.DBID DR2
ISSN 1001-604X
IngestDate Thu Oct 10 19:35:12 EDT 2024
Fri Aug 23 00:41:24 EDT 2024
Sat Aug 24 01:03:18 EDT 2024
Wed Oct 30 09:48:34 EDT 2024
Fri Nov 25 17:00:44 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3829-d90c1c7f67d16c5895bd9c130e769e46be2376ed40a444ad455787e3f7a945d73
Notes 31-1547/O6
gold, multi-branched, nanostructures, tetrabutyl ammonium bromide, surface-enhanced Ramanscattering
O623.624
TB383
ark:/67375/WNG-X5NGBMW6-F
Open Research Project from State Key Laboratory of Crystal Material (Shandong University) - No. KF0802
the National Natural Science Foundation of China - No. 50872042, 51003040
ArticleID:CJOC201190049
the Special Fund for Postdoctoral Innovation Program of Shandong Province - No. 200703075
istex:6C5B6BE87E99FA585C79EA173E5496A30FDB14E9
PQID 1766806365
PQPubID 986331
PageCount 6
ParticipantIDs proquest_journals_1766806365
crossref_primary_10_1002_cjoc_201190049
wiley_primary_10_1002_cjoc_201190049_CJOC201190049
istex_primary_ark_67375_WNG_X5NGBMW6_F
chongqing_backfile_37305069
PublicationCentury 2000
PublicationDate 2011
2011-01
January, 2011
2011-01-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Shanghai
PublicationTitle Chinese journal of chemistry
PublicationTitleAlternate Chinese Journal of Chemistry
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Liu, S.; Liang, Z. S.; Gao, F.; Yu, J. H.; Luo, S. F.; Calata, J. N.; Lu, G. Q.. Chin. J. Chem., 2009, 27, 1079.
Kawamura, G.; Yang, Y.; Fukuda, K.; Nogami, M.. Mater. Chem. Phys., 2009, 115, 229.
Jeong, G. H.; Lee, Y. W.; Kim, M.; Han, S. W.. J. Colloid Interface Sci., 2009, 329, 97.
Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L.. J. Am. Chem. Soc., 2003, 125, 16186.
Guo, Z. R.; Zhang, Y.; Yu, M. D.; Xu, L. N.; Xe, S. L.; Gu, N.. Colloids Surf. A: Physicochem. Eng. Aspects, 2006, 278, 33.
Bikash, K. J.; Raj, C. R.. Chem. Mater., 2008, 20, 3546.
Kim, S. H.; Choi, B. S.; Kang, K.; Choi, Y. S.; Yang, S. I.. J. Alloys Compd., 2007, 433, 261.
Deng, J. P.; Wu, C. H.; Yang, C. H.; Mou, C. Y.. Langmuir, 2005, 21, 8947.
Bakr, O. M.; Wunsch, B. H.; Stellacci, F.. Chem. Mater., 2006, 18, 3297.
Yuan, H.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Liu, J. W.; Zhu, H. Y.; Gao, X. P.. Chem. Mater., 2007, 19, 1592.
Mie, G.. Ann. Phys., 1908, 330, 337.
Zhang, D. F.; Niu, L. Y.; Jiang, L.; Yin, P. G.; Sun, L. D.; Zhang, H.; Zhang, R.; Guo, L.; Yan, C. H.. J. Phys. Chem. C, 2008, 112, 16011.
Gabriella, S. M.; Cao, Y. C.; Jin, R. C.; Mirkin, C. A.. Nano Lett., 2003, 3, 519.
Tamaki, K.. Bull. Chem. Soc. Jpn., 1967, 40, 38.
Kuo, C. H.; Huang, M. H.. Langmuir, 2005, 21, 2012.
Christopher, G. K.; Tuan, V. D.. J. Phys. Chem. C, 2008, 112, 18849.
Wang, Y.; Chen, H.; Dong, S.; Wang, E. J.. Chem. Phys., 2006, 124, 1.
Olga, K.; Markovich, G.. Langmuir, 2007, 23, 1496.
Zhang, J.; Du, J.; Han, B.; Liu, Z.; Jiang, T.; Zhang, Z.. Angew. Chem., 2006, 45, 1134.
Nehl, C. L.; Liao, H.; Hafner, J. H.. Nano Lett., 2006, 6, 683.
Hao, E. C.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Y.. Nano Lett., 2004, 4, 327.
Li, L.; Chu, Y.; Liu, Y.; Song, J.; Wang, D.; Du, X.. Mater. Lett., 2008, 62, 1507.
Nikoobakht, B.; El-Sayed, M. A.. Chem. Mater., 2003, 15, 1957.
Jiang, G. H.; Wang, L.; Chen, T.; Yu, H. J.; Chen, C. L.. Mater. Chem. Phys., 2006, 98, 76.
Sosa, I. O.; Noguez, C.; Barrera, R. G.. J. Phys. Chem. B, 2003, 107, 6269.
Tang, X. L.; Jiang, P.; Ge, G. L.; Tsuji, M.; Xie, S. S.; Guo, Y. J.. Langmuir, 2008, 24, 1763.
Zou, X.; Ying, E.; Dong, S.. Nanotechnology, 2006, 17, 4758.
Pardinas, I.; Cristina, E.; Yolanda, H.; Arturo, M.; Rivas, J.. Langmuir, 2008, 24, 983.
Wang, L. Y.; Chen, X.; Zhan, J.; Chai, Y. C.; Yang, C. J.; Xu, L. M.; Zhuang, W. C.; Jing, B.. J. Phys. Chem. B, 2005, 109, 3189.
Yamamoto, M.; Kashiwagi, Y.; Sakata, T.; Mori, H.; Nakamoto, M.. Chem. Mater., 2005, 17, 5391.
Mata, J.; Varade, D.; Ghosh, G.; Bahadur, P.. Colloids Surf. A: Physicochem. Eng. Aspects, 2004, 245, 69.
Wang, T.; Zheng, R.; Hu, X.; Zhang, L.; Dong, S.. J. Phys. Chem. B, 2006, 110, 14179.
Zou, X.; Ying, E.; Dong, S.. J. Colloid Interface Sci., 2007, 306, 307.
Senthil, K. P.; Pastoriza-Santos, I.; Rodriguez-Gonzalez, B.; Garcia de Abajo, F. J.; Liz-Marzan, L. M.. Nanotechnology, 2008, 19, 015606.
Zhao, L. L.; Ji, X. H.; Sun, X. J.; Li, J.; Yang, W. S.; Peng, X. G.. J. Phys. Chem. C, 2009, 113, 16645.
Khoury, C. G.; Vo-Dinh, T.. J. Phys. Chem. C, 2008, 112, 18849.
2007; 19
2007; 306
2004; 245
2006; 98
2006; 17
2008; 19
1967; 40
2004; 4
2006; 18
2003; 15
2006; 110
2005; 21
2006; 6
2009; 113
2009; 27
2009; 115
2006; 278
2007; 433
2003; 107
2006; 45
2003; 3
2005; 109
2008; 24
2008; 20
2008; 112
2003; 125
2008; 62
2005; 17
2009; 329
2007; 23
1908; 330
2006; 124
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Wang Y. (e_1_2_1_35_2) 2006; 124
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – volume: 17
  start-page: 4758
  year: 2006
  publication-title: Nanotechnology
– volume: 329
  start-page: 97
  year: 2009
  publication-title: J. Colloid Interface Sci.
– volume: 24
  start-page: 983
  year: 2008
  publication-title: Langmuir
– volume: 125
  start-page: 16186
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 14179
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 98
  start-page: 76
  year: 2006
  publication-title: Mater. Chem. Phys.
– volume: 113
  start-page: 16645
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 24
  start-page: 1763
  year: 2008
  publication-title: Langmuir
– volume: 3
  start-page: 519
  year: 2003
  publication-title: Nano Lett.
– volume: 45
  start-page: 1134
  year: 2006
  publication-title: Angew. Chem.
– volume: 115
  start-page: 229
  year: 2009
  publication-title: Mater. Chem. Phys.
– volume: 330
  start-page: 337
  year: 1908
  publication-title: Ann. Phys.
– volume: 245
  start-page: 69
  year: 2004
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
– volume: 23
  start-page: 1496
  year: 2007
  publication-title: Langmuir
– volume: 109
  start-page: 3189
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 19
  start-page: 1592
  year: 2007
  publication-title: Chem. Mater.
– volume: 27
  start-page: 1079
  year: 2009
  publication-title: Chin. J. Chem.
– volume: 112
  start-page: 18849
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 62
  start-page: 1507
  year: 2008
  publication-title: Mater. Lett.
– volume: 40
  start-page: 38
  year: 1967
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 278
  start-page: 33
  year: 2006
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
– volume: 107
  start-page: 6269
  year: 2003
  publication-title: J. Phys. Chem. B
– volume: 306
  start-page: 307
  year: 2007
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 683
  year: 2006
  publication-title: Nano Lett.
– volume: 15
  start-page: 1957
  year: 2003
  publication-title: Chem. Mater.
– volume: 21
  start-page: 8947
  year: 2005
  publication-title: Langmuir
– volume: 112
  start-page: 16011
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 327
  year: 2004
  publication-title: Nano Lett.
– volume: 17
  start-page: 5391
  year: 2005
  publication-title: Chem. Mater.
– volume: 21
  start-page: 2012
  year: 2005
  publication-title: Langmuir
– volume: 20
  start-page: 3546
  year: 2008
  publication-title: Chem. Mater.
– volume: 18
  start-page: 3297
  year: 2006
  publication-title: Chem. Mater.
– volume: 433
  start-page: 261
  year: 2007
  publication-title: J. Alloys Compd.
– volume: 19
  start-page: 015606
  year: 2008
  publication-title: Nanotechnology
– volume: 124
  start-page: 1
  year: 2006
  publication-title: Chem. Phys.
– ident: e_1_2_1_29_2
  doi: 10.1002/andp.19083300302
– ident: e_1_2_1_21_2
  doi: 10.1016/j.jallcom.2006.06.053
– ident: e_1_2_1_32_2
  doi: 10.1016/j.matchemphys.2005.08.072
– ident: e_1_2_1_7_2
  doi: 10.1021/jp803102h
– ident: e_1_2_1_22_2
  doi: 10.1016/j.matlet.2007.09.012
– ident: e_1_2_1_27_2
  doi: 10.1021/cm020732l
– ident: e_1_2_1_8_2
  doi: 10.1021/nl0351542
– ident: e_1_2_1_23_2
  doi: 10.1246/bcsj.40.38
– ident: e_1_2_1_34_2
  doi: 10.1016/j.jcis.2006.10.084
– ident: e_1_2_1_4_2
  doi: 10.1021/la062500x
– ident: e_1_2_1_10_2
  doi: 10.1021/jp8054747
– ident: e_1_2_1_36_2
  doi: 10.1021/jp8054747
– ident: e_1_2_1_30_2
  doi: 10.1002/ange.200503762
– ident: e_1_2_1_9_2
  doi: 10.1021/cm062046i
– ident: e_1_2_1_5_2
  doi: 10.1021/cm060681i
– ident: e_1_2_1_24_2
  doi: 10.1016/j.colsurfa.2004.07.009
– ident: e_1_2_1_18_2
  doi: 10.1021/jp9058406
– volume: 124
  start-page: 1
  year: 2006
  ident: e_1_2_1_35_2
  publication-title: Chem. Phys.
  contributor:
    fullname: Wang Y.
– ident: e_1_2_1_14_2
  doi: 10.1021/ja038927x
– ident: e_1_2_1_17_2
  doi: 10.1021/cm0515000
– ident: e_1_2_1_16_2
  doi: 10.1021/nl052409y
– ident: e_1_2_1_20_2
  doi: 10.1021/la703495s
– ident: e_1_2_1_11_2
  doi: 10.1021/la0476332
– ident: e_1_2_1_19_2
  doi: 10.1016/j.jcis.2008.10.004
– ident: e_1_2_1_33_2
  doi: 10.1021/jp0620015
– ident: e_1_2_1_2_2
  doi: 10.1002/cjoc.200990180
– ident: e_1_2_1_6_2
  doi: 10.1021/jp0274076
– ident: e_1_2_1_25_2
  doi: 10.1021/jp0449152
– ident: e_1_2_1_31_2
  doi: 10.1021/la051252m
– ident: e_1_2_1_12_2
  doi: 10.1021/nl034097
– ident: e_1_2_1_37_2
  doi: 10.1088/0957-4484/19/01/015606
– ident: e_1_2_1_15_2
  doi: 10.1088/0957-4484/17/18/038
– ident: e_1_2_1_3_2
  doi: 10.1021/cm7019608
– ident: e_1_2_1_28_2
  doi: 10.1016/j.colsurfa.2005.11.075
– ident: e_1_2_1_26_2
  doi: 10.1021/la702694t
– ident: e_1_2_1_13_2
  doi: 10.1016/j.matchemphys.2008.11.064
SSID ssj0027726
Score 1.8949164
Snippet Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried...
Facile synthesis of multi‐branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried...
Abstract Facile synthesis of multi‐branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction...
Facile synthesis of multi-branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried...
SourceID proquest
crossref
wiley
istex
chongqing
SourceType Aggregation Database
Publisher
StartPage 185
SubjectTerms gold
multi-branched
nanostructures
SERS
surface-enhanced Raman scattering
TBAB
tetrabutyl ammonium bromide
水溶液
简便合成
纳米结构材料
表面增强拉曼散射
辅助线
Title Facile Synthesis of Multi-Branched Gold Nanostructures through a TBAB-Assisted Route in Aqueous Solution and Their SERS Property
URI http://lib.cqvip.com/qk/84126X/20111/37305069.html
https://api.istex.fr/ark:/67375/WNG-X5NGBMW6-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.201190049
https://www.proquest.com/docview/1766806365
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF8hShBfmA4JQ2Dz_i4-7S3apSF9TdqnuzHNtLy6KkNLsS5cSBH8Bv5Jcwk2zSLhckkHKJZDuxx575xh5_Q8hrQCA2M3kc5mBbwEGxMsyz2IaCOQH2BXw5jneHj8fi8JQdzfjs1i3-hh-i23DDlVHra1zgJq_2b0hD7afS1hScClEuKOE4lRjT9e4kufG4ZJ1vDXmGQhGxWcvaGCX7m9WRWeG8LD5-AXuxYaHu4mB_3YCft0FsbYWG28S0_98Enyz2Vst8z377g9rxfzr4kDxYQ1Taa-bUI3LHF4_JvUGbGe4J-TE0Flqkk-sC4GN1UdFyTuubvL--_-xjpo5z7-io_OwoKO-yoahdgV9P11mBqKHTfq8PpWF2YNcdxcgkTy8K2oP-l6uKtvt11BSOTvE4g04OTib0A54eXC2vn5LT4cF0cBiuszmENs0SFToV2djKuZAuFpZniudOWTChXgrlmcg9Buh4xyLDGDOOcVQmPp1Loxh3Mn1Gtoqy8M8JTRQ6ijGeZnumYmskg_ZYBk51zuc8C8hOJ01AA3aBHFc6BWXGI6EC8raVr75sKD10Q96caBxz3Y15QN7U4u-KmasFBsJJrs_GIz3j41H_-EzoYUB22_mh1zqg0ki9mQECFDwgSS3ov3xOD47eD7q3F_9SaYfcbza98dklWyBg_xJQ0zJ_Va-M33dyDks
link.rule.ids 315,783,787,1378,4031,27935,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELagPZQL_6jbFvABwWnb_bG962MSmoTSBNSkam6W13ZoCdotTSJRThx4AJ6RJ2FmN7slXJBA2stKa6_smfF8Y4-_IeQFIBCT6iz0M_AtEKCYxM_S0PiCWQH-BWI5jneHB0PRP2VHE15nE-JdmIofotlwQ8so12s0cNyQPrhhDTUfC1NycEqEubfJJth8jNUbXp9ENzFXUlZcQ6YhXwRsUvM2BtHBenvkVjgv8g-fwWOs-ahNnO4vawD0dxhb-qHuPZLVI6jST2b7y0W2b77-Qe74X0O8T-6uUCptVWr1gNxy-UOy1amLwz0i37vaQJd0dJ0DgpxfzGkxpeVl3p_ffrSxWMe5s7RXfLIU1u-iYqldQmhPV4WBqKbjdqsNX4OC4NgtxeQkRy9y2oIJKJZzWm_ZUZ1bOsYTDTo6PBnR93iAcLW4fkxOu4fjTt9fFXTwTZxG0rcyMKFJpiKxoTA8lTyz0oAXdYmQjonMYY6OsyzQjDFtGcf1xMXTREvGbRI_IRt5kbttQiOJsWKIB9qOydDohEF_LIW4OuNTnnpktxEnAAIzQ5orFYOC8EBIj7yqBawuK1YPVfE3RwrnXDVz7pGXpfybz_TVDHPhEq7Ohj014cNee3AmVNcje7WCqNUyMFfIvpkCCBTcI1Ep6b_8TnWO3nWat51_afScbPXHg2N1_Gb4dpfcqfbA8dkjGyBs9xRA1CJ7VprJL0ysEmM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaglYAL_xWhBXxAcEqbZG0nPu4uzZZCl6q7VfdmObZDy6KkdHclyokDD8Az8iTMJJu0ywUJpFwixY7GY898Y4-_IeQlIBCT6Cz0M_AtEKCY2M-S0PiCWQH-BWI5jneHD4Zi75jtT_jk2i3-mh-i3XDDlVHZa1zg5zbfuSINNZ9KU1FwSkS5N8k6EwB_ERYdRVchV1wVXEOiIV8EbNLQNgbRzmp7pFY4LYuPX8BhrLiodRztryv48zqKrdxQeo_oRoA6-2S6vZhn2-bbH9yO_yPhfXJ3iVFpt55UD8gNVzwkt_tNabhH5EeqDfRIR5cF4MfZ2YyWOa2u8v76_rOHpTpOnaWD8rOlYL3LmqN2AYE9XZYFopqOe90efA3TA0W3FFOTHD0raBfkLxcz2mzYUV1YOsbzDDraPRrRQzw-uJhfPibH6e64v-cvyzn4ppNE0rcyMKGJcxHbUBieSJ5ZacCHulhIx0TmMEPHWRZoxpi2jKM1cZ081pJxG3c2yFpRFu4JoZHESDHE42zHZGh0zKA_lkBUnfGcJx7ZbLUJcMBMkeRKdcCa8UBIj7xu9KvOa04PVbM3RwrHXLVj7pFXlfrbz_TFFDPhYq5OhgM14cNB7-BEqNQjW838UEsjMFPIvZkABBTcI1Gl6L_8TvX3P_Tbt6f_0ugFuXX4JlXv3w7fbZI79QY4PltkDXTtngGCmmfPq0XyGwLiERI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Synthesis+of+Multi-Branched+Gold+Nanostructures+through+a+TBAB-Assisted+Route+in+Aqueous+Solution+and+Their+SERS+Property&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Wang%2C+Luyan+Wu%2C+Xinzhou+Pei%2C+Meishan+Wu%2C+Zhiyan+Li%2C+Xiaonan+Tao%2C+Xutang&rft.date=2011&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=29&rft.issue=1&rft.spage=185&rft.epage=190&rft_id=info:doi/10.1002%2Fcjoc.201190049&rft.externalDocID=37305069
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84126X%2F84126X.jpg