Lucidone inhibits autophagy and MDR1 via HMGB1/RAGE/PI3K/Akt signaling pathway in pancreatic cancer cells
Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, t...
Saved in:
Published in | Phytotherapy research Vol. 36; no. 4; pp. 1664 - 1677 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.04.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high‐mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE‐initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin‐1, LC3‐II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca‐2 cells and MIA Paca‐2GEMR cells (GEM‐resistant cells). Notably, convincing data were also obtained in experiments involving RAGE‐specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca‐2GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE‐initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC. |
---|---|
AbstractList | Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high‐mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE‐initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin‐1, LC3‐II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca‐2 cells and MIA Paca‐2GEMR cells (GEM‐resistant cells). Notably, convincing data were also obtained in experiments involving RAGE‐specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca‐2GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE‐initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC. Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high-mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE-initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin-1, LC3-II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca-2 cells and MIA Paca-2GEMR cells (GEM-resistant cells). Notably, convincing data were also obtained in experiments involving RAGE-specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca-2GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE-initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC.Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high-mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE-initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin-1, LC3-II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca-2 cells and MIA Paca-2GEMR cells (GEM-resistant cells). Notably, convincing data were also obtained in experiments involving RAGE-specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca-2GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE-initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC. Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high-mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE-initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin-1, LC3-II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca-2 cells and MIA Paca-2 cells (GEM-resistant cells). Notably, convincing data were also obtained in experiments involving RAGE-specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca-2 cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE-initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC. Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high‐mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE‐initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin‐1, LC3‐II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca‐2 cells and MIA Paca‐2ᴳᴱᴹᴿ cells (GEM‐resistant cells). Notably, convincing data were also obtained in experiments involving RAGE‐specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca‐2ᴳᴱᴹᴿ cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE‐initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC. Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high‐mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE‐initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin‐1, LC3‐II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca‐2 cells and MIA Paca‐2 GEMR cells (GEM‐resistant cells). Notably, convincing data were also obtained in experiments involving RAGE‐specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca‐2 GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE‐initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC. |
Author | Hsu, Yi‐Hao Chen, Ying‐Yin Hong, Cheng‐Jie Chen, Sheng‐Yi Yen, Gow‐Chin Wang, Sheng‐Yang |
Author_xml | – sequence: 1 givenname: Sheng‐Yi surname: Chen fullname: Chen, Sheng‐Yi organization: National Chung Hsing University – sequence: 2 givenname: Yi‐Hao surname: Hsu fullname: Hsu, Yi‐Hao organization: National Chung Hsing University – sequence: 3 givenname: Sheng‐Yang orcidid: 0000-0002-8579-3569 surname: Wang fullname: Wang, Sheng‐Yang organization: National Chung Hsing University – sequence: 4 givenname: Ying‐Yin surname: Chen fullname: Chen, Ying‐Yin organization: National Chung Hsing University – sequence: 5 givenname: Cheng‐Jie surname: Hong fullname: Hong, Cheng‐Jie organization: National Chung Hsing University – sequence: 6 givenname: Gow‐Chin orcidid: 0000-0001-9538-4219 surname: Yen fullname: Yen, Gow‐Chin email: gcyen@nchu.edu.tw organization: National Chung Hsing University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35224793$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c1OGzEUBWCroiqBVuoTVJbYdDOJf8axvQwUAmpQUUSl7iyPx0lMJ57B9oDy9jgEioSoxMp38fnIPvcA7PnWWwC-YjTECJFRl8KQU8E-gAFGUhaYcboHBkgyXJRY_NkHBzHeIIQkQeUnsE8ZISWXdADcrDeuzmnQ-ZWrXIpQ96ntVnq5gdrX8PLHHMM7p-H55fQYj-aT6eno6oL-HE3-Jhjd0uvG-SXsdFrd601OyaM3werkDDR5tAEa2zTxM_i40E20X57OQ_D77PT65LyY_ZpenExmhaGCsEKMtTEVYrLGRFd0MbYCE4ZrYRAXCNWY1ZxTKinmxBAtSmKRWXCGLBI1KSt6CL7vcrvQ3vY2JrV2cfsC7W3bR0XG49yZFJy9g9KS5a4kzvToFb1p-5A_v1UMUyEEJ1l9e1J9tba16oJb67BRz31nMNwBE9oYg10o41KuqvUpaNcojNR2oSovVG0X-vLEfxeeM9-gxY7eu8Zu_uvU1fX80T8AA2SrKA |
CitedBy_id | crossref_primary_10_1186_s12943_024_02128_2 crossref_primary_10_1016_j_cellsig_2023_110904 crossref_primary_10_3892_ijmm_2023_5272 crossref_primary_10_1007_s10571_022_01240_5 crossref_primary_10_3390_ijms23084436 crossref_primary_10_1089_ars_2024_0672 crossref_primary_10_1016_j_tranon_2024_101977 crossref_primary_10_1016_j_cellsig_2024_111342 crossref_primary_10_1039_D3BM00598D crossref_primary_10_3390_cancers16193310 crossref_primary_10_1016_j_phrs_2023_106822 crossref_primary_10_4239_wjd_v14_i7_977 crossref_primary_10_1017_erm_2023_5 crossref_primary_10_3389_fonc_2024_1336191 crossref_primary_10_3390_molecules29194754 crossref_primary_10_1016_j_bbcan_2024_189105 |
Cites_doi | 10.1038/s41419-018-1019-6 10.1038/nature20815 10.3892/ijo.2015.2985 10.1016/j.cell.2017.07.008 10.1016/j.jfda.2019.07.001 10.1016/j.tcb.2010.03.002 10.1242/jcs.103333 10.1002/jcb.27406 10.1016/j.semcancer.2017.07.010 10.1038/srep15085 10.1016/j.ctrv.2016.03.004 10.1007/s13277-014-1797-0 10.1038/onc.2012.631 10.1158/0008-5472.CAN-11-2001 10.1038/nrc.2017.53 10.1158/0008-5472.CAN-14-0155 10.2147/OTT.S239243 10.3390/ijms21010254 10.1002/ptr.3018 10.3322/caac.21551 10.1002/ptr.2289 10.1038/cdd.2009.149 10.1016/j.bbamcr.2016.10.021 10.1038/ajg.2016.610 10.1016/j.bmc.2005.06.029 10.1073/pnas.1113865109 10.1016/j.tiv.2012.03.012 10.1016/j.fct.2013.04.055 10.18632/oncotarget.17796 10.7150/thno.30308 10.1186/s13046-017-0495-3 10.3390/biom10050709 10.3389/fonc.2021.739145 10.3748/wjg.v27.i39.6527 10.1002/cam4.2330 10.1038/s41419-018-0626-6 10.1073/pnas.1112848109 10.1186/1476-4598-13-165 10.1016/j.drup.2015.10.002 10.1055/s-0029-1185309 10.4161/auto.7.1.13852 10.1080/13880209.2019.1701044 10.1002/ptr.6669 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 7S9 L.6 |
DOI | 10.1002/ptr.7385 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology Botany |
EISSN | 1099-1573 |
EndPage | 1677 |
ExternalDocumentID | 35224793 10_1002_ptr_7385 PTR7385 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: MOST 109‐2320‐B‐005‐009 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2320-B-005-009 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBD EBS ECGQY EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA GWYGA H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6Q MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WWP WXI WXSBR XG1 XV2 YCJ ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3825-86accb059d12ab3f6e81251d8c07800d15d773393172c2a842e0cf750e08d24b3 |
IEDL.DBID | DR2 |
ISSN | 0951-418X 1099-1573 |
IngestDate | Fri Jul 11 18:32:08 EDT 2025 Fri Jul 11 10:28:06 EDT 2025 Fri Jul 25 12:20:14 EDT 2025 Thu Apr 03 06:57:23 EDT 2025 Thu Apr 24 23:12:14 EDT 2025 Tue Jul 01 01:15:41 EDT 2025 Wed Jan 22 16:26:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | MDR1 gemcitabine autophagy lucidone pancreatic ductal adenocarcinoma |
Language | English |
License | 2022 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3825-86accb059d12ab3f6e81251d8c07800d15d773393172c2a842e0cf750e08d24b3 |
Notes | Funding information Sheng‐Yi Chen and Yi‐Hao Hsu contributed equally to this work. Ministry of Science and Technology, Taiwan, Grant/Award Number: MOST 109‐2320‐B‐005‐009 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9538-4219 0000-0002-8579-3569 |
PMID | 35224793 |
PQID | 2651388872 |
PQPubID | 1036338 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2661009875 proquest_miscellaneous_2634535291 proquest_journals_2651388872 pubmed_primary_35224793 crossref_citationtrail_10_1002_ptr_7385 crossref_primary_10_1002_ptr_7385 wiley_primary_10_1002_ptr_7385_PTR7385 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 2022-Apr 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: Bognor Regis |
PublicationSubtitle | PTR |
PublicationTitle | Phytotherapy research |
PublicationTitleAlternate | Phytother Res |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2019; 8 2021; 27 2017; 8 2019; 9 2015; 5 2010; 17 2017; 1864 2021; 29 2017; 170 2020; 58 2020; 13 2020; 34 2020; 10 2012; 125 2017; 112 2018; 49 2011; 7 2012; 109 2019; 120 2012; 72 2015; 23 2018; 9 2010; 20 2015; 47 2013; 59 2010; 24 2021; 11 2009; 75 2017; 36 2017; 17 2019; 21 2019; 69 2019; 27 2014; 35 2014; 13 2008; 22 2012; 26 2014; 74 2017; 541 2014; 33 2005; 13 2016; 45 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Li Z. Y. (e_1_2_9_24_1) 2021; 29 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 34 start-page: 2053 issue: 8 year: 2020 end-page: 2066 article-title: Ursolic acid promotes apoptosis, autophagy, and chemosensitivity in gemcitabine‐resistant human pancreatic cancer cells publication-title: Phytotherapy Research – volume: 35 start-page: 6021 issue: 6 year: 2014 end-page: 6028 article-title: miR‐22 targets the 3′ UTR of HMGB1 and inhibits the HMGB1‐associated autophagy in osteosarcoma cells during chemotherapy publication-title: Tumor Biology – volume: 125 start-page: 2359 year: 2012 end-page: 2368 article-title: Autophagy and cell growth—the yin and yang of nutrient responses publication-title: Journal of Cell Science – volume: 72 start-page: 230 issue: 1 year: 2012 end-page: 238 article-title: HMGB1 promotes drug resistance in osteosarcoma publication-title: Cancer Research – volume: 13 start-page: 165 year: 2014 article-title: HMGB1‐mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma publication-title: Molecular Cancer – volume: 24 start-page: 1158 issue: 8 year: 2010 end-page: 1165 article-title: Lucidone, a novel melanin inhibitor from the fruit of Makino publication-title: Phytotherapy Research – volume: 13 start-page: 6182 issue: 22 year: 2005 end-page: 6187 article-title: Cyclopentenediones, inhibitors of farnesyl protein transferase and anti‐tumor compounds, isolated from the fruit of Makino publication-title: Bioorganic & Medicinal Chemistry – volume: 22 start-page: 213 issue: 2 year: 2008 end-page: 216 article-title: Antiinflammatory activity of Lindera erythrocarpa fruits publication-title: Phytotherapy Research – volume: 29 start-page: 262 issue: 2 year: 2021 end-page: 274 article-title: Ursolic acid restores sensitivity to gemcitabine through the RAGE/NF‐kappa B/MDR1 axis in pancreatic cancer cells and in a mouse xenograft model publication-title: Journal of Food and Drug Analysis – volume: 36 start-page: 27 issue: 1 year: 2017 article-title: Cancer cells increase endothelial cell tube formation and survival by activating the PI3K/Akt signalling pathway publication-title: Journal of Experimental & Clinical Cancer Research – volume: 47 start-page: 161 issue: 1 year: 2015 end-page: 170 article-title: HMGB1 translocation is involved in the transformation of autophagy complexes and promotes chemoresistance in leukaemia publication-title: International Journal of Oncology – volume: 27 start-page: 6527 issue: 39 year: 2021 end-page: 6550 article-title: Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities publication-title: World Journal of Gastroenterology – volume: 26 start-page: 700 issue: 5 year: 2012 end-page: 708 article-title: Hepatoprotective effect of lucidone against alcohol‐induced oxidative stress in human hepatic HepG2 cells through the up‐regulation of HO‐1/Nrf‐2 antioxidant genes publication-title: Toxicology in Vitro – volume: 8 start-page: 4292 issue: 9 year: 2019 end-page: 4303 article-title: Modulated electro‐hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer publication-title: Cancer Medicine – volume: 11 year: 2021 article-title: HMGB1 promotes resistance to doxorubicin in human hepatocellular carcinoma cells by inducing autophagy via the AMPK/mTOR signaling pathway publication-title: Frontiers in Oncology – volume: 13 start-page: 4189 year: 2020 end-page: 4199 article-title: Inhibition of HMGB1 overcomes resistance to radiation and chemotherapy in nasopharyngeal carcinoma publication-title: Oncotargets and Therapy – volume: 1864 start-page: 151 issue: 1 year: 2017 end-page: 168 article-title: Lucidone promotes the cutaneous wound healing process via activation of the PI3K/AKT, Wnt/beta‐catenin and NF‐kappaB signaling pathways publication-title: Biochimica et Biophysica Acta‐Molecular Cell Research – volume: 23 start-page: 55 year: 2015 end-page: 68 article-title: Gemcitabine resistance in pancreatic ductal adenocarcinoma publication-title: Drug Resistance Updates – volume: 33 start-page: 567 issue: 5 year: 2014 end-page: 577 article-title: The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics publication-title: Oncogene – volume: 10 start-page: 709 issue: 5 year: 2020 article-title: Pterostilbene enhances cytotoxicity and chemosensitivity in human pancreatic cancer cells publication-title: Biomolecules – volume: 69 start-page: 7 issue: 1 year: 2019 end-page: 34 article-title: Cancer statistics, 2019 publication-title: CA: A Cancer Journal for Clinicians – volume: 20 start-page: 355 issue: 6 year: 2010 end-page: 362 article-title: The Beclin 1‐VPS34 complex—At the crossroads of autophagy and beyond publication-title: Trends in Cell Biology – volume: 75 start-page: 494 issue: 5 year: 2009 end-page: 500 article-title: Lucidone inhibits iNOS and COX‐2 expression in LPS‐induced RAW 264.7 murine macrophage cells via NF‐kappaB and MAPKs signaling pathways publication-title: Planta Medica – volume: 8 start-page: 71642 issue: 42 year: 2017 end-page: 71656 article-title: HMGB1‐mediated autophagy attenuates gemcitabine‐induced apoptosis in bladder cancer cells involving JNK and ERK activation publication-title: Oncotarget – volume: 59 start-page: 55 year: 2013 end-page: 66 article-title: Lucidone protects human skin keratinocytes against free radical‐induced oxidative damage and inflammation through the up‐regulation of HO‐1/Nrf2 antioxidant genes and down‐regulation of NF‐kappaB signaling pathway publication-title: Food and Chemical Toxicology – volume: 21 start-page: 254 issue: 1 year: 2019 article-title: Role of metastasis‐related genes in cisplatin chemoresistance in gastric cancer publication-title: International Journal of Molecular Sciences – volume: 109 start-page: 7031 issue: 18 year: 2012 end-page: 7036 article-title: The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 120 start-page: 507 issue: 1 year: 2019 end-page: 518 article-title: Med19 is involved in chemoresistance by mediating autophagy through HMGB1 in breast cancer publication-title: Journal of Cellular Biochemistry – volume: 27 start-page: 887 issue: 4 year: 2019 end-page: 896 article-title: Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells publication-title: Journal of Food and Drug Analysis – volume: 109 start-page: 2003 issue: 6 year: 2012 end-page: 2008 article-title: Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 17 start-page: 528 issue: 9 year: 2017 end-page: 542 article-title: Targeting autophagy in cancer publication-title: Nature Reviews Cancer – volume: 74 start-page: 2913 issue: 11 year: 2014 end-page: 2921 article-title: Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States publication-title: Cancer Research – volume: 170 start-page: 548 issue: 3 year: 2017 end-page: 563 e516 article-title: promotes chemoresistance to colorectal cancer by modulating autophagy publication-title: Cell – volume: 541 start-page: 417 issue: 7637 year: 2017 end-page: 420 article-title: Microenvironmental autophagy promotes tumour growth publication-title: Nature – volume: 45 start-page: 87 year: 2016 end-page: 96 article-title: New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer publication-title: Cancer Treatment Reviews – volume: 5 start-page: 15085 year: 2015 article-title: HMGB1 induction of clusterin creates a chemoresistant niche in human prostate tumor cells publication-title: Scientific Reports – volume: 9 start-page: 648 issue: 6 year: 2018 article-title: HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect publication-title: Cell Death and Disease – volume: 9 start-page: 104 issue: 1 year: 2019 end-page: 125 article-title: Selective autophagy regulates cell cycle in cancer therapy publication-title: Theranostics – volume: 9 start-page: 1004 issue: 10 year: 2018 article-title: HMGB1 promotes ERK‐mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer publication-title: Cell Death and Disease – volume: 7 start-page: 91 issue: 1 year: 2011 end-page: 93 article-title: Apoptosis to autophagy switch triggered by the MHC class III‐encoded receptor for advanced glycation endproducts (RAGE) publication-title: Autophagy – volume: 49 start-page: 37 year: 2018 end-page: 43 article-title: The receptor for advanced glycation end products: A fuel to pancreatic cancer publication-title: Seminars in Cancer Biology – volume: 58 start-page: 51 issue: 1 year: 2020 end-page: 59 article-title: Methyl lucidone induces apoptosis and G2/M phase arrest via the PI3K/Akt/NF‐kappaB pathway in ovarian cancer cells publication-title: Pharmaceutical Biology – volume: 17 start-page: 666 issue: 4 year: 2010 end-page: 676 article-title: The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival publication-title: Cell Death and Disease – volume: 112 start-page: 537 issue: 4 year: 2017 end-page: 554 article-title: A multidisciplinary approach to pancreas cancer in 2016: A review publication-title: American Journal of Gastroenterology – ident: e_1_2_9_8_1 doi: 10.1038/s41419-018-1019-6 – ident: e_1_2_9_16_1 doi: 10.1038/nature20815 – ident: e_1_2_9_17_1 doi: 10.3892/ijo.2015.2985 – ident: e_1_2_9_42_1 doi: 10.1016/j.cell.2017.07.008 – ident: e_1_2_9_20_1 doi: 10.1016/j.jfda.2019.07.001 – ident: e_1_2_9_5_1 doi: 10.1016/j.tcb.2010.03.002 – ident: e_1_2_9_27_1 doi: 10.1242/jcs.103333 – ident: e_1_2_9_26_1 doi: 10.1002/jcb.27406 – ident: e_1_2_9_34_1 doi: 10.1016/j.semcancer.2017.07.010 – ident: e_1_2_9_44_1 doi: 10.1038/srep15085 – ident: e_1_2_9_39_1 doi: 10.1016/j.ctrv.2016.03.004 – ident: e_1_2_9_23_1 doi: 10.1007/s13277-014-1797-0 – ident: e_1_2_9_15_1 doi: 10.1038/onc.2012.631 – ident: e_1_2_9_9_1 doi: 10.1158/0008-5472.CAN-11-2001 – ident: e_1_2_9_21_1 doi: 10.1038/nrc.2017.53 – ident: e_1_2_9_31_1 doi: 10.1158/0008-5472.CAN-14-0155 – ident: e_1_2_9_45_1 doi: 10.2147/OTT.S239243 – ident: e_1_2_9_28_1 doi: 10.3390/ijms21010254 – ident: e_1_2_9_19_1 doi: 10.1002/ptr.3018 – ident: e_1_2_9_35_1 doi: 10.3322/caac.21551 – ident: e_1_2_9_37_1 doi: 10.1002/ptr.2289 – ident: e_1_2_9_14_1 doi: 10.1038/cdd.2009.149 – ident: e_1_2_9_38_1 doi: 10.1016/j.bbamcr.2016.10.021 – ident: e_1_2_9_4_1 doi: 10.1038/ajg.2016.610 – ident: e_1_2_9_29_1 doi: 10.1016/j.bmc.2005.06.029 – ident: e_1_2_9_12_1 doi: 10.1073/pnas.1113865109 – ident: e_1_2_9_32_1 doi: 10.1016/j.tiv.2012.03.012 – ident: e_1_2_9_18_1 doi: 10.1016/j.fct.2013.04.055 – ident: e_1_2_9_40_1 doi: 10.18632/oncotarget.17796 – ident: e_1_2_9_43_1 doi: 10.7150/thno.30308 – ident: e_1_2_9_3_1 doi: 10.1186/s13046-017-0495-3 – ident: e_1_2_9_7_1 doi: 10.3390/biom10050709 – ident: e_1_2_9_22_1 doi: 10.3389/fonc.2021.739145 – ident: e_1_2_9_11_1 doi: 10.3748/wjg.v27.i39.6527 – volume: 29 start-page: 262 issue: 2 year: 2021 ident: e_1_2_9_24_1 article-title: Ursolic acid restores sensitivity to gemcitabine through the RAGE/NF‐kappa B/MDR1 axis in pancreatic cancer cells and in a mouse xenograft model publication-title: Journal of Food and Drug Analysis – ident: e_1_2_9_36_1 doi: 10.1002/cam4.2330 – ident: e_1_2_9_6_1 doi: 10.1038/s41419-018-0626-6 – ident: e_1_2_9_10_1 doi: 10.1073/pnas.1112848109 – ident: e_1_2_9_30_1 doi: 10.1186/1476-4598-13-165 – ident: e_1_2_9_2_1 doi: 10.1016/j.drup.2015.10.002 – ident: e_1_2_9_33_1 doi: 10.1055/s-0029-1185309 – ident: e_1_2_9_13_1 doi: 10.4161/auto.7.1.13852 – ident: e_1_2_9_41_1 doi: 10.1080/13880209.2019.1701044 – ident: e_1_2_9_25_1 doi: 10.1002/ptr.6669 |
SSID | ssj0009204 |
Score | 2.446315 |
Snippet | Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1664 |
SubjectTerms | 1-Phosphatidylinositol 3-kinase Adenocarcinoma Advanced glycosylation end products AKT protein Apoptosis ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism Autophagy Carcinoma, Pancreatic Ductal Cell death Cell Line, Tumor Cell proliferation Cyclopentanes Cytotoxicity Drug resistance Gemcitabine Glycosylation HMGB1 Protein Humans Kinases Lindera erythrocarpa lucidone MDR1 MDR1 protein Multidrug resistance nucleoproteins P-Glycoprotein P-glycoproteins Pancreatic cancer pancreatic ductal adenocarcinoma Pancreatic Neoplasms Pancreatic Neoplasms - pathology Phosphatidylinositol 3-Kinases - metabolism phytotherapy Proteins Proto-Oncogene Proteins c-akt - metabolism Receptor for Advanced Glycation End Products Signal Transduction Signaling siRNA Toxicity Transfection Tumors |
Title | Lucidone inhibits autophagy and MDR1 via HMGB1/RAGE/PI3K/Akt signaling pathway in pancreatic cancer cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fptr.7385 https://www.ncbi.nlm.nih.gov/pubmed/35224793 https://www.proquest.com/docview/2651388872 https://www.proquest.com/docview/2634535291 https://www.proquest.com/docview/2661009875 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbQCiFeOMpVWJCRUHnZNIntpMljF3a3HEVV1ZUq8RD5CkSL0lWTgMKvZyZHq-US4imJMrEce8b-bM98Q8gLIZVsNqomKWeOiD3rKMVDeNSAh7X1bNPT8w_h7Fy8XQfrzqsSY2FafojdhhtaRjNeo4FLVbh70tDLcjtGKhYYftFVC_HQcs8cFbMmc2CTRV740brnnfWY2394dSb6BV5eRavNdHN6m3zsK9p6mVyMq1KN9fefOBz_70_ukFsdCqXTVm3ukms2H5DrxxtAivWA3Jh3B-4DMlq01Nb1EV3tI7WKIzqiiz3pdX2PZO8rnZlNbmmWf85UVhZUVkhaID_VVOaGzl8vffo1k3Q2Pzv23eX07MRdvOHv3OlFSdGLRGJgPMUMyd9kDaXAbd5CWk016uaW4ilDcZ-cn56sXs2cLo2DozmsP50olForgHHGZ1LxNLQRoioTaYAnnmf8wEwmnMeAZJhmMhLMejoFJGO9yDCh-ANykEP9HxFqmQ0lrBEBRHJhTCDT1DdWBCYOrW8EH5KXfZcmuuM4x1QbX5KWnZkl0NYJtvWQPN9JXra8Hr-ROey1Iuksu0hYGPg8gqGZQRG712CT2AQyt5sKZbhA2pzY_5sMAFcvhuXikDxsNW5XEQTFuOM5JKNGb_5Yw2SxWuL18b8KPiE3GcZvNK5Hh-Sg3Fb2KaCqUj1r7OcHMDgcZA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALj_AKFFgkaC9NYu86jn3gkJK2CUmqKEql3Mx6dwNWkVMlDpX5S_wVfhQzfiQqL3HpgZNjZbRa7c7sfLOe-QbgtSNDmV1UtWaC1xzfMrUwFC6-KsTDylgm2-nhids9dd5Pm9Mt-FbWwuT8EOsLN7KM7LwmA6cL6caGNfQ8WdSJi6XIqOyb9ALjteXbXgc39w3nR4eTd91a0VKgpgTGQjXPlUqFCCm0zWUoZq7xyMNrT6GrtCxtN3WrJYSPXpUrLj2HG0vN0Ksay9PcCQWOew2uUwNxIurvjDdcVT7PehVmfesd25uWTLcWb5Qzvez7fgG0l_Fx5uCO7sL3cmnyvJaz-ioJ6-rrT6yR_8na3YM7BdBm7dwy7sOWiStw42COYDitwM1hkVNQgd1Rzt6d7rPJphhtuc922WjD650-gGiwUpGex4ZF8acojJIlkyviZZAfUyZjzYadsc2-RJJ1h8cHdmPcPj5sjHqi32ifJYwSZSTV_jNqAn0hUxwFf8Y5aldMkfktGH1IWT6E0ytZmkewHeP8nwAz3LgSw2DEycLRuilnM1sbp6l919jaEVXYK3UoUAWNO3UT-RzkBNQ8wL0NaG-r8GoteZ5Tl_xGZqdUw6A4vJYBR-0WHnofjkOs_8Zjh5ZAxma-IhnhEDOQb_9NBrG55WNEXIXHuYqvJ0K4ny51q7CbKeofZxiMJmN6Pv1XwZdwqzsZDoJB76T_DG5zKlfJMq12YDtZrMxzBJFJ-CIzXgYfrlrjfwAo3ne7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgiouPMIrUGCRIFyaxN7dOPaBQ0qaJqSpoiiVcnPXu2uwipwocajMT-Kv8KeY9SNReYlLD5wcK6PVanZm55v17DcAr7kIRHZQ1Q4ZrXPP0vUgYA6-SsTDUls6W-nRqdM_4x9mrdkOfCvvwuT8EJsDN-MZ2X5tHHyhwuaWNHSRLBuGiqUoqBzq9BLTtdW7QRfX9g2lvaPp-3696ChQlwxTobrrCCkDRBTKpiJgoaNdE-CVKzFSWpayW6rdZszDoEolFS6n2pIhBlVtuYrygOG4N-AmdyzPtInoTrZUVR7NWhVmbeu57c5KoluLNsuZXg19v-DZq_A4i2-9u_C91Exe1nLRWCdBQ379iTTy_1DdPbhTwGzSyf3iPuzouAK3DucIhdMK7I2KioIK1MY5d3d6QKbbq2irA1Ij4y2rd_oAopO1jNQ81iSKP0VBlKyIWBtWBvExJSJWZNSd2ORLJEh_dHxoNyed46PmeMCGzc5FQkyZjDA3_4lpAX0pUhwFf8Y5ZpdEGudbEvMZZfUQzq5FNY9gN8b5PwGiqXYEJsGIkhlXqiXC0Faat5TnaFtxVoW3pQn5siBxN71EPvs5_TT1cW19s7ZVeLWRXOTEJb-R2S-t0C-2rpVPnZbNXIw9FIfY_I2bjlGBiPV8bWQYN7xAnv03GUTmlof5cBUe5xa-mYhB_eZItwq1zE7_OEN_PJ2Y59N_FXwJe-Nuzz8ZnA6fwW1q7qpkZVb7sJss1_o5IsgkeJG5LoHz6zb4HyuPdmo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lucidone+inhibits+autophagy+and+MDR1+via+HMGB1%2FRAGE%2FPI3K%2FAkt+signaling+pathway+in+pancreatic+cancer+cells&rft.jtitle=Phytotherapy+research&rft.au=Chen%2C+Sheng-Yi&rft.au=Hsu%2C+Yi-Hao&rft.au=Wang%2C+Sheng-Yang&rft.au=Chen%2C+Ying-Yin&rft.date=2022-04-01&rft.issn=1099-1573&rft.eissn=1099-1573&rft.volume=36&rft.issue=4&rft.spage=1664&rft_id=info:doi/10.1002%2Fptr.7385&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-418X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-418X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-418X&client=summon |