Lucidone inhibits autophagy and MDR1 via HMGB1/RAGE/PI3K/Akt signaling pathway in pancreatic cancer cells

Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, t...

Full description

Saved in:
Bibliographic Details
Published inPhytotherapy research Vol. 36; no. 4; pp. 1664 - 1677
Main Authors Chen, Sheng‐Yi, Hsu, Yi‐Hao, Wang, Sheng‐Yang, Chen, Ying‐Yin, Hong, Cheng‐Jie, Yen, Gow‐Chin
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.04.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high‐mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE‐initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin‐1, LC3‐II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca‐2 cells and MIA Paca‐2GEMR cells (GEM‐resistant cells). Notably, convincing data were also obtained in experiments involving RAGE‐specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca‐2GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE‐initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC.
AbstractList Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high‐mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE‐initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin‐1, LC3‐II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca‐2 cells and MIA Paca‐2GEMR cells (GEM‐resistant cells). Notably, convincing data were also obtained in experiments involving RAGE‐specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca‐2GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE‐initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC.
Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high-mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE-initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin-1, LC3-II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca-2 cells and MIA Paca-2GEMR cells (GEM-resistant cells). Notably, convincing data were also obtained in experiments involving RAGE-specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca-2GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE-initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC.Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high-mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE-initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin-1, LC3-II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca-2 cells and MIA Paca-2GEMR cells (GEM-resistant cells). Notably, convincing data were also obtained in experiments involving RAGE-specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca-2GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE-initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC.
Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high-mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE-initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin-1, LC3-II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca-2 cells and MIA Paca-2 cells (GEM-resistant cells). Notably, convincing data were also obtained in experiments involving RAGE-specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca-2 cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE-initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC.
Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high‐mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE‐initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin‐1, LC3‐II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca‐2 cells and MIA Paca‐2ᴳᴱᴹᴿ cells (GEM‐resistant cells). Notably, convincing data were also obtained in experiments involving RAGE‐specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca‐2ᴳᴱᴹᴿ cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE‐initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC.
Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high‐mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE‐initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin‐1, LC3‐II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca‐2 cells and MIA Paca‐2 GEMR cells (GEM‐resistant cells). Notably, convincing data were also obtained in experiments involving RAGE‐specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca‐2 GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE‐initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC.
Author Hsu, Yi‐Hao
Chen, Ying‐Yin
Hong, Cheng‐Jie
Chen, Sheng‐Yi
Yen, Gow‐Chin
Wang, Sheng‐Yang
Author_xml – sequence: 1
  givenname: Sheng‐Yi
  surname: Chen
  fullname: Chen, Sheng‐Yi
  organization: National Chung Hsing University
– sequence: 2
  givenname: Yi‐Hao
  surname: Hsu
  fullname: Hsu, Yi‐Hao
  organization: National Chung Hsing University
– sequence: 3
  givenname: Sheng‐Yang
  orcidid: 0000-0002-8579-3569
  surname: Wang
  fullname: Wang, Sheng‐Yang
  organization: National Chung Hsing University
– sequence: 4
  givenname: Ying‐Yin
  surname: Chen
  fullname: Chen, Ying‐Yin
  organization: National Chung Hsing University
– sequence: 5
  givenname: Cheng‐Jie
  surname: Hong
  fullname: Hong, Cheng‐Jie
  organization: National Chung Hsing University
– sequence: 6
  givenname: Gow‐Chin
  orcidid: 0000-0001-9538-4219
  surname: Yen
  fullname: Yen, Gow‐Chin
  email: gcyen@nchu.edu.tw
  organization: National Chung Hsing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35224793$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1OGzEUBWCroiqBVuoTVJbYdDOJf8axvQwUAmpQUUSl7iyPx0lMJ57B9oDy9jgEioSoxMp38fnIPvcA7PnWWwC-YjTECJFRl8KQU8E-gAFGUhaYcboHBkgyXJRY_NkHBzHeIIQkQeUnsE8ZISWXdADcrDeuzmnQ-ZWrXIpQ96ntVnq5gdrX8PLHHMM7p-H55fQYj-aT6eno6oL-HE3-Jhjd0uvG-SXsdFrd601OyaM3werkDDR5tAEa2zTxM_i40E20X57OQ_D77PT65LyY_ZpenExmhaGCsEKMtTEVYrLGRFd0MbYCE4ZrYRAXCNWY1ZxTKinmxBAtSmKRWXCGLBI1KSt6CL7vcrvQ3vY2JrV2cfsC7W3bR0XG49yZFJy9g9KS5a4kzvToFb1p-5A_v1UMUyEEJ1l9e1J9tba16oJb67BRz31nMNwBE9oYg10o41KuqvUpaNcojNR2oSovVG0X-vLEfxeeM9-gxY7eu8Zu_uvU1fX80T8AA2SrKA
CitedBy_id crossref_primary_10_1186_s12943_024_02128_2
crossref_primary_10_1016_j_cellsig_2023_110904
crossref_primary_10_3892_ijmm_2023_5272
crossref_primary_10_1007_s10571_022_01240_5
crossref_primary_10_3390_ijms23084436
crossref_primary_10_1089_ars_2024_0672
crossref_primary_10_1016_j_tranon_2024_101977
crossref_primary_10_1016_j_cellsig_2024_111342
crossref_primary_10_1039_D3BM00598D
crossref_primary_10_3390_cancers16193310
crossref_primary_10_1016_j_phrs_2023_106822
crossref_primary_10_4239_wjd_v14_i7_977
crossref_primary_10_1017_erm_2023_5
crossref_primary_10_3389_fonc_2024_1336191
crossref_primary_10_3390_molecules29194754
crossref_primary_10_1016_j_bbcan_2024_189105
Cites_doi 10.1038/s41419-018-1019-6
10.1038/nature20815
10.3892/ijo.2015.2985
10.1016/j.cell.2017.07.008
10.1016/j.jfda.2019.07.001
10.1016/j.tcb.2010.03.002
10.1242/jcs.103333
10.1002/jcb.27406
10.1016/j.semcancer.2017.07.010
10.1038/srep15085
10.1016/j.ctrv.2016.03.004
10.1007/s13277-014-1797-0
10.1038/onc.2012.631
10.1158/0008-5472.CAN-11-2001
10.1038/nrc.2017.53
10.1158/0008-5472.CAN-14-0155
10.2147/OTT.S239243
10.3390/ijms21010254
10.1002/ptr.3018
10.3322/caac.21551
10.1002/ptr.2289
10.1038/cdd.2009.149
10.1016/j.bbamcr.2016.10.021
10.1038/ajg.2016.610
10.1016/j.bmc.2005.06.029
10.1073/pnas.1113865109
10.1016/j.tiv.2012.03.012
10.1016/j.fct.2013.04.055
10.18632/oncotarget.17796
10.7150/thno.30308
10.1186/s13046-017-0495-3
10.3390/biom10050709
10.3389/fonc.2021.739145
10.3748/wjg.v27.i39.6527
10.1002/cam4.2330
10.1038/s41419-018-0626-6
10.1073/pnas.1112848109
10.1186/1476-4598-13-165
10.1016/j.drup.2015.10.002
10.1055/s-0029-1185309
10.4161/auto.7.1.13852
10.1080/13880209.2019.1701044
10.1002/ptr.6669
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
7X8
7S9
L.6
DOI 10.1002/ptr.7385
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA
Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
Botany
EISSN 1099-1573
EndPage 1677
ExternalDocumentID 35224793
10_1002_ptr_7385
PTR7385
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 109‐2320‐B‐005‐009
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2320-B-005-009
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
ECGQY
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WWP
WXI
WXSBR
XG1
XV2
YCJ
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3825-86accb059d12ab3f6e81251d8c07800d15d773393172c2a842e0cf750e08d24b3
IEDL.DBID DR2
ISSN 0951-418X
1099-1573
IngestDate Fri Jul 11 18:32:08 EDT 2025
Fri Jul 11 10:28:06 EDT 2025
Fri Jul 25 12:20:14 EDT 2025
Thu Apr 03 06:57:23 EDT 2025
Thu Apr 24 23:12:14 EDT 2025
Tue Jul 01 01:15:41 EDT 2025
Wed Jan 22 16:26:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords MDR1
gemcitabine
autophagy
lucidone
pancreatic ductal adenocarcinoma
Language English
License 2022 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3825-86accb059d12ab3f6e81251d8c07800d15d773393172c2a842e0cf750e08d24b3
Notes Funding information
Sheng‐Yi Chen and Yi‐Hao Hsu contributed equally to this work.
Ministry of Science and Technology, Taiwan, Grant/Award Number: MOST 109‐2320‐B‐005‐009
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9538-4219
0000-0002-8579-3569
PMID 35224793
PQID 2651388872
PQPubID 1036338
PageCount 14
ParticipantIDs proquest_miscellaneous_2661009875
proquest_miscellaneous_2634535291
proquest_journals_2651388872
pubmed_primary_35224793
crossref_citationtrail_10_1002_ptr_7385
crossref_primary_10_1002_ptr_7385
wiley_primary_10_1002_ptr_7385_PTR7385
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
2022-Apr
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Bognor Regis
PublicationSubtitle PTR
PublicationTitle Phytotherapy research
PublicationTitleAlternate Phytother Res
PublicationYear 2022
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2019; 8
2021; 27
2017; 8
2019; 9
2015; 5
2010; 17
2017; 1864
2021; 29
2017; 170
2020; 58
2020; 13
2020; 34
2020; 10
2012; 125
2017; 112
2018; 49
2011; 7
2012; 109
2019; 120
2012; 72
2015; 23
2018; 9
2010; 20
2015; 47
2013; 59
2010; 24
2021; 11
2009; 75
2017; 36
2017; 17
2019; 21
2019; 69
2019; 27
2014; 35
2014; 13
2008; 22
2012; 26
2014; 74
2017; 541
2014; 33
2005; 13
2016; 45
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Li Z. Y. (e_1_2_9_24_1) 2021; 29
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 34
  start-page: 2053
  issue: 8
  year: 2020
  end-page: 2066
  article-title: Ursolic acid promotes apoptosis, autophagy, and chemosensitivity in gemcitabine‐resistant human pancreatic cancer cells
  publication-title: Phytotherapy Research
– volume: 35
  start-page: 6021
  issue: 6
  year: 2014
  end-page: 6028
  article-title: miR‐22 targets the 3′ UTR of HMGB1 and inhibits the HMGB1‐associated autophagy in osteosarcoma cells during chemotherapy
  publication-title: Tumor Biology
– volume: 125
  start-page: 2359
  year: 2012
  end-page: 2368
  article-title: Autophagy and cell growth—the yin and yang of nutrient responses
  publication-title: Journal of Cell Science
– volume: 72
  start-page: 230
  issue: 1
  year: 2012
  end-page: 238
  article-title: HMGB1 promotes drug resistance in osteosarcoma
  publication-title: Cancer Research
– volume: 13
  start-page: 165
  year: 2014
  article-title: HMGB1‐mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma
  publication-title: Molecular Cancer
– volume: 24
  start-page: 1158
  issue: 8
  year: 2010
  end-page: 1165
  article-title: Lucidone, a novel melanin inhibitor from the fruit of Makino
  publication-title: Phytotherapy Research
– volume: 13
  start-page: 6182
  issue: 22
  year: 2005
  end-page: 6187
  article-title: Cyclopentenediones, inhibitors of farnesyl protein transferase and anti‐tumor compounds, isolated from the fruit of Makino
  publication-title: Bioorganic & Medicinal Chemistry
– volume: 22
  start-page: 213
  issue: 2
  year: 2008
  end-page: 216
  article-title: Antiinflammatory activity of Lindera erythrocarpa fruits
  publication-title: Phytotherapy Research
– volume: 29
  start-page: 262
  issue: 2
  year: 2021
  end-page: 274
  article-title: Ursolic acid restores sensitivity to gemcitabine through the RAGE/NF‐kappa B/MDR1 axis in pancreatic cancer cells and in a mouse xenograft model
  publication-title: Journal of Food and Drug Analysis
– volume: 36
  start-page: 27
  issue: 1
  year: 2017
  article-title: Cancer cells increase endothelial cell tube formation and survival by activating the PI3K/Akt signalling pathway
  publication-title: Journal of Experimental & Clinical Cancer Research
– volume: 47
  start-page: 161
  issue: 1
  year: 2015
  end-page: 170
  article-title: HMGB1 translocation is involved in the transformation of autophagy complexes and promotes chemoresistance in leukaemia
  publication-title: International Journal of Oncology
– volume: 27
  start-page: 6527
  issue: 39
  year: 2021
  end-page: 6550
  article-title: Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities
  publication-title: World Journal of Gastroenterology
– volume: 26
  start-page: 700
  issue: 5
  year: 2012
  end-page: 708
  article-title: Hepatoprotective effect of lucidone against alcohol‐induced oxidative stress in human hepatic HepG2 cells through the up‐regulation of HO‐1/Nrf‐2 antioxidant genes
  publication-title: Toxicology in Vitro
– volume: 8
  start-page: 4292
  issue: 9
  year: 2019
  end-page: 4303
  article-title: Modulated electro‐hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer
  publication-title: Cancer Medicine
– volume: 11
  year: 2021
  article-title: HMGB1 promotes resistance to doxorubicin in human hepatocellular carcinoma cells by inducing autophagy via the AMPK/mTOR signaling pathway
  publication-title: Frontiers in Oncology
– volume: 13
  start-page: 4189
  year: 2020
  end-page: 4199
  article-title: Inhibition of HMGB1 overcomes resistance to radiation and chemotherapy in nasopharyngeal carcinoma
  publication-title: Oncotargets and Therapy
– volume: 1864
  start-page: 151
  issue: 1
  year: 2017
  end-page: 168
  article-title: Lucidone promotes the cutaneous wound healing process via activation of the PI3K/AKT, Wnt/beta‐catenin and NF‐kappaB signaling pathways
  publication-title: Biochimica et Biophysica Acta‐Molecular Cell Research
– volume: 23
  start-page: 55
  year: 2015
  end-page: 68
  article-title: Gemcitabine resistance in pancreatic ductal adenocarcinoma
  publication-title: Drug Resistance Updates
– volume: 33
  start-page: 567
  issue: 5
  year: 2014
  end-page: 577
  article-title: The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics
  publication-title: Oncogene
– volume: 10
  start-page: 709
  issue: 5
  year: 2020
  article-title: Pterostilbene enhances cytotoxicity and chemosensitivity in human pancreatic cancer cells
  publication-title: Biomolecules
– volume: 69
  start-page: 7
  issue: 1
  year: 2019
  end-page: 34
  article-title: Cancer statistics, 2019
  publication-title: CA: A Cancer Journal for Clinicians
– volume: 20
  start-page: 355
  issue: 6
  year: 2010
  end-page: 362
  article-title: The Beclin 1‐VPS34 complex—At the crossroads of autophagy and beyond
  publication-title: Trends in Cell Biology
– volume: 75
  start-page: 494
  issue: 5
  year: 2009
  end-page: 500
  article-title: Lucidone inhibits iNOS and COX‐2 expression in LPS‐induced RAW 264.7 murine macrophage cells via NF‐kappaB and MAPKs signaling pathways
  publication-title: Planta Medica
– volume: 8
  start-page: 71642
  issue: 42
  year: 2017
  end-page: 71656
  article-title: HMGB1‐mediated autophagy attenuates gemcitabine‐induced apoptosis in bladder cancer cells involving JNK and ERK activation
  publication-title: Oncotarget
– volume: 59
  start-page: 55
  year: 2013
  end-page: 66
  article-title: Lucidone protects human skin keratinocytes against free radical‐induced oxidative damage and inflammation through the up‐regulation of HO‐1/Nrf2 antioxidant genes and down‐regulation of NF‐kappaB signaling pathway
  publication-title: Food and Chemical Toxicology
– volume: 21
  start-page: 254
  issue: 1
  year: 2019
  article-title: Role of metastasis‐related genes in cisplatin chemoresistance in gastric cancer
  publication-title: International Journal of Molecular Sciences
– volume: 109
  start-page: 7031
  issue: 18
  year: 2012
  end-page: 7036
  article-title: The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 120
  start-page: 507
  issue: 1
  year: 2019
  end-page: 518
  article-title: Med19 is involved in chemoresistance by mediating autophagy through HMGB1 in breast cancer
  publication-title: Journal of Cellular Biochemistry
– volume: 27
  start-page: 887
  issue: 4
  year: 2019
  end-page: 896
  article-title: Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells
  publication-title: Journal of Food and Drug Analysis
– volume: 109
  start-page: 2003
  issue: 6
  year: 2012
  end-page: 2008
  article-title: Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 17
  start-page: 528
  issue: 9
  year: 2017
  end-page: 542
  article-title: Targeting autophagy in cancer
  publication-title: Nature Reviews Cancer
– volume: 74
  start-page: 2913
  issue: 11
  year: 2014
  end-page: 2921
  article-title: Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States
  publication-title: Cancer Research
– volume: 170
  start-page: 548
  issue: 3
  year: 2017
  end-page: 563 e516
  article-title: promotes chemoresistance to colorectal cancer by modulating autophagy
  publication-title: Cell
– volume: 541
  start-page: 417
  issue: 7637
  year: 2017
  end-page: 420
  article-title: Microenvironmental autophagy promotes tumour growth
  publication-title: Nature
– volume: 45
  start-page: 87
  year: 2016
  end-page: 96
  article-title: New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer
  publication-title: Cancer Treatment Reviews
– volume: 5
  start-page: 15085
  year: 2015
  article-title: HMGB1 induction of clusterin creates a chemoresistant niche in human prostate tumor cells
  publication-title: Scientific Reports
– volume: 9
  start-page: 648
  issue: 6
  year: 2018
  article-title: HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect
  publication-title: Cell Death and Disease
– volume: 9
  start-page: 104
  issue: 1
  year: 2019
  end-page: 125
  article-title: Selective autophagy regulates cell cycle in cancer therapy
  publication-title: Theranostics
– volume: 9
  start-page: 1004
  issue: 10
  year: 2018
  article-title: HMGB1 promotes ERK‐mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer
  publication-title: Cell Death and Disease
– volume: 7
  start-page: 91
  issue: 1
  year: 2011
  end-page: 93
  article-title: Apoptosis to autophagy switch triggered by the MHC class III‐encoded receptor for advanced glycation endproducts (RAGE)
  publication-title: Autophagy
– volume: 49
  start-page: 37
  year: 2018
  end-page: 43
  article-title: The receptor for advanced glycation end products: A fuel to pancreatic cancer
  publication-title: Seminars in Cancer Biology
– volume: 58
  start-page: 51
  issue: 1
  year: 2020
  end-page: 59
  article-title: Methyl lucidone induces apoptosis and G2/M phase arrest via the PI3K/Akt/NF‐kappaB pathway in ovarian cancer cells
  publication-title: Pharmaceutical Biology
– volume: 17
  start-page: 666
  issue: 4
  year: 2010
  end-page: 676
  article-title: The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival
  publication-title: Cell Death and Disease
– volume: 112
  start-page: 537
  issue: 4
  year: 2017
  end-page: 554
  article-title: A multidisciplinary approach to pancreas cancer in 2016: A review
  publication-title: American Journal of Gastroenterology
– ident: e_1_2_9_8_1
  doi: 10.1038/s41419-018-1019-6
– ident: e_1_2_9_16_1
  doi: 10.1038/nature20815
– ident: e_1_2_9_17_1
  doi: 10.3892/ijo.2015.2985
– ident: e_1_2_9_42_1
  doi: 10.1016/j.cell.2017.07.008
– ident: e_1_2_9_20_1
  doi: 10.1016/j.jfda.2019.07.001
– ident: e_1_2_9_5_1
  doi: 10.1016/j.tcb.2010.03.002
– ident: e_1_2_9_27_1
  doi: 10.1242/jcs.103333
– ident: e_1_2_9_26_1
  doi: 10.1002/jcb.27406
– ident: e_1_2_9_34_1
  doi: 10.1016/j.semcancer.2017.07.010
– ident: e_1_2_9_44_1
  doi: 10.1038/srep15085
– ident: e_1_2_9_39_1
  doi: 10.1016/j.ctrv.2016.03.004
– ident: e_1_2_9_23_1
  doi: 10.1007/s13277-014-1797-0
– ident: e_1_2_9_15_1
  doi: 10.1038/onc.2012.631
– ident: e_1_2_9_9_1
  doi: 10.1158/0008-5472.CAN-11-2001
– ident: e_1_2_9_21_1
  doi: 10.1038/nrc.2017.53
– ident: e_1_2_9_31_1
  doi: 10.1158/0008-5472.CAN-14-0155
– ident: e_1_2_9_45_1
  doi: 10.2147/OTT.S239243
– ident: e_1_2_9_28_1
  doi: 10.3390/ijms21010254
– ident: e_1_2_9_19_1
  doi: 10.1002/ptr.3018
– ident: e_1_2_9_35_1
  doi: 10.3322/caac.21551
– ident: e_1_2_9_37_1
  doi: 10.1002/ptr.2289
– ident: e_1_2_9_14_1
  doi: 10.1038/cdd.2009.149
– ident: e_1_2_9_38_1
  doi: 10.1016/j.bbamcr.2016.10.021
– ident: e_1_2_9_4_1
  doi: 10.1038/ajg.2016.610
– ident: e_1_2_9_29_1
  doi: 10.1016/j.bmc.2005.06.029
– ident: e_1_2_9_12_1
  doi: 10.1073/pnas.1113865109
– ident: e_1_2_9_32_1
  doi: 10.1016/j.tiv.2012.03.012
– ident: e_1_2_9_18_1
  doi: 10.1016/j.fct.2013.04.055
– ident: e_1_2_9_40_1
  doi: 10.18632/oncotarget.17796
– ident: e_1_2_9_43_1
  doi: 10.7150/thno.30308
– ident: e_1_2_9_3_1
  doi: 10.1186/s13046-017-0495-3
– ident: e_1_2_9_7_1
  doi: 10.3390/biom10050709
– ident: e_1_2_9_22_1
  doi: 10.3389/fonc.2021.739145
– ident: e_1_2_9_11_1
  doi: 10.3748/wjg.v27.i39.6527
– volume: 29
  start-page: 262
  issue: 2
  year: 2021
  ident: e_1_2_9_24_1
  article-title: Ursolic acid restores sensitivity to gemcitabine through the RAGE/NF‐kappa B/MDR1 axis in pancreatic cancer cells and in a mouse xenograft model
  publication-title: Journal of Food and Drug Analysis
– ident: e_1_2_9_36_1
  doi: 10.1002/cam4.2330
– ident: e_1_2_9_6_1
  doi: 10.1038/s41419-018-0626-6
– ident: e_1_2_9_10_1
  doi: 10.1073/pnas.1112848109
– ident: e_1_2_9_30_1
  doi: 10.1186/1476-4598-13-165
– ident: e_1_2_9_2_1
  doi: 10.1016/j.drup.2015.10.002
– ident: e_1_2_9_33_1
  doi: 10.1055/s-0029-1185309
– ident: e_1_2_9_13_1
  doi: 10.4161/auto.7.1.13852
– ident: e_1_2_9_41_1
  doi: 10.1080/13880209.2019.1701044
– ident: e_1_2_9_25_1
  doi: 10.1002/ptr.6669
SSID ssj0009204
Score 2.446315
Snippet Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1664
SubjectTerms 1-Phosphatidylinositol 3-kinase
Adenocarcinoma
Advanced glycosylation end products
AKT protein
Apoptosis
ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism
Autophagy
Carcinoma, Pancreatic Ductal
Cell death
Cell Line, Tumor
Cell proliferation
Cyclopentanes
Cytotoxicity
Drug resistance
Gemcitabine
Glycosylation
HMGB1 Protein
Humans
Kinases
Lindera erythrocarpa
lucidone
MDR1
MDR1 protein
Multidrug resistance
nucleoproteins
P-Glycoprotein
P-glycoproteins
Pancreatic cancer
pancreatic ductal adenocarcinoma
Pancreatic Neoplasms
Pancreatic Neoplasms - pathology
Phosphatidylinositol 3-Kinases - metabolism
phytotherapy
Proteins
Proto-Oncogene Proteins c-akt - metabolism
Receptor for Advanced Glycation End Products
Signal Transduction
Signaling
siRNA
Toxicity
Transfection
Tumors
Title Lucidone inhibits autophagy and MDR1 via HMGB1/RAGE/PI3K/Akt signaling pathway in pancreatic cancer cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fptr.7385
https://www.ncbi.nlm.nih.gov/pubmed/35224793
https://www.proquest.com/docview/2651388872
https://www.proquest.com/docview/2634535291
https://www.proquest.com/docview/2661009875
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbQCiFeOMpVWJCRUHnZNIntpMljF3a3HEVV1ZUq8RD5CkSL0lWTgMKvZyZHq-US4imJMrEce8b-bM98Q8gLIZVsNqomKWeOiD3rKMVDeNSAh7X1bNPT8w_h7Fy8XQfrzqsSY2FafojdhhtaRjNeo4FLVbh70tDLcjtGKhYYftFVC_HQcs8cFbMmc2CTRV740brnnfWY2394dSb6BV5eRavNdHN6m3zsK9p6mVyMq1KN9fefOBz_70_ukFsdCqXTVm3ukms2H5DrxxtAivWA3Jh3B-4DMlq01Nb1EV3tI7WKIzqiiz3pdX2PZO8rnZlNbmmWf85UVhZUVkhaID_VVOaGzl8vffo1k3Q2Pzv23eX07MRdvOHv3OlFSdGLRGJgPMUMyd9kDaXAbd5CWk016uaW4ilDcZ-cn56sXs2cLo2DozmsP50olForgHHGZ1LxNLQRoioTaYAnnmf8wEwmnMeAZJhmMhLMejoFJGO9yDCh-ANykEP9HxFqmQ0lrBEBRHJhTCDT1DdWBCYOrW8EH5KXfZcmuuM4x1QbX5KWnZkl0NYJtvWQPN9JXra8Hr-ROey1Iuksu0hYGPg8gqGZQRG712CT2AQyt5sKZbhA2pzY_5sMAFcvhuXikDxsNW5XEQTFuOM5JKNGb_5Yw2SxWuL18b8KPiE3GcZvNK5Hh-Sg3Fb2KaCqUj1r7OcHMDgcZA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALj_AKFFgkaC9NYu86jn3gkJK2CUmqKEql3Mx6dwNWkVMlDpX5S_wVfhQzfiQqL3HpgZNjZbRa7c7sfLOe-QbgtSNDmV1UtWaC1xzfMrUwFC6-KsTDylgm2-nhids9dd5Pm9Mt-FbWwuT8EOsLN7KM7LwmA6cL6caGNfQ8WdSJi6XIqOyb9ALjteXbXgc39w3nR4eTd91a0VKgpgTGQjXPlUqFCCm0zWUoZq7xyMNrT6GrtCxtN3WrJYSPXpUrLj2HG0vN0Ksay9PcCQWOew2uUwNxIurvjDdcVT7PehVmfesd25uWTLcWb5Qzvez7fgG0l_Fx5uCO7sL3cmnyvJaz-ioJ6-rrT6yR_8na3YM7BdBm7dwy7sOWiStw42COYDitwM1hkVNQgd1Rzt6d7rPJphhtuc922WjD650-gGiwUpGex4ZF8acojJIlkyviZZAfUyZjzYadsc2-RJJ1h8cHdmPcPj5sjHqi32ifJYwSZSTV_jNqAn0hUxwFf8Y5aldMkfktGH1IWT6E0ytZmkewHeP8nwAz3LgSw2DEycLRuilnM1sbp6l919jaEVXYK3UoUAWNO3UT-RzkBNQ8wL0NaG-r8GoteZ5Tl_xGZqdUw6A4vJYBR-0WHnofjkOs_8Zjh5ZAxma-IhnhEDOQb_9NBrG55WNEXIXHuYqvJ0K4ny51q7CbKeofZxiMJmN6Pv1XwZdwqzsZDoJB76T_DG5zKlfJMq12YDtZrMxzBJFJ-CIzXgYfrlrjfwAo3ne7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgiouPMIrUGCRIFyaxN7dOPaBQ0qaJqSpoiiVcnPXu2uwipwocajMT-Kv8KeY9SNReYlLD5wcK6PVanZm55v17DcAr7kIRHZQ1Q4ZrXPP0vUgYA6-SsTDUls6W-nRqdM_4x9mrdkOfCvvwuT8EJsDN-MZ2X5tHHyhwuaWNHSRLBuGiqUoqBzq9BLTtdW7QRfX9g2lvaPp-3696ChQlwxTobrrCCkDRBTKpiJgoaNdE-CVKzFSWpayW6rdZszDoEolFS6n2pIhBlVtuYrygOG4N-AmdyzPtInoTrZUVR7NWhVmbeu57c5KoluLNsuZXg19v-DZq_A4i2-9u_C91Exe1nLRWCdBQ379iTTy_1DdPbhTwGzSyf3iPuzouAK3DucIhdMK7I2KioIK1MY5d3d6QKbbq2irA1Ij4y2rd_oAopO1jNQ81iSKP0VBlKyIWBtWBvExJSJWZNSd2ORLJEh_dHxoNyed46PmeMCGzc5FQkyZjDA3_4lpAX0pUhwFf8Y5ZpdEGudbEvMZZfUQzq5FNY9gN8b5PwGiqXYEJsGIkhlXqiXC0Faat5TnaFtxVoW3pQn5siBxN71EPvs5_TT1cW19s7ZVeLWRXOTEJb-R2S-t0C-2rpVPnZbNXIw9FIfY_I2bjlGBiPV8bWQYN7xAnv03GUTmlof5cBUe5xa-mYhB_eZItwq1zE7_OEN_PJ2Y59N_FXwJe-Nuzz8ZnA6fwW1q7qpkZVb7sJss1_o5IsgkeJG5LoHz6zb4HyuPdmo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lucidone+inhibits+autophagy+and+MDR1+via+HMGB1%2FRAGE%2FPI3K%2FAkt+signaling+pathway+in+pancreatic+cancer+cells&rft.jtitle=Phytotherapy+research&rft.au=Chen%2C+Sheng-Yi&rft.au=Hsu%2C+Yi-Hao&rft.au=Wang%2C+Sheng-Yang&rft.au=Chen%2C+Ying-Yin&rft.date=2022-04-01&rft.issn=1099-1573&rft.eissn=1099-1573&rft.volume=36&rft.issue=4&rft.spage=1664&rft_id=info:doi/10.1002%2Fptr.7385&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-418X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-418X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-418X&client=summon