Predicting woodrat (Neotoma) responses to anthropogenic warming from studies of the palaeomidden record
Aim The influence of anthropogenic climate change on organisms is an area of great scientific concern. Increasingly there is recognition that abrupt climate transitions have occurred over the late Quaternary; studies of these shifts may yield insights into likely biotic responses to contemporary wa...
Saved in:
Published in | Journal of biogeography Vol. 33; no. 12; pp. 2061 - 2076 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.12.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim The influence of anthropogenic climate change on organisms is an area of great scientific concern. Increasingly there is recognition that abrupt climate transitions have occurred over the late Quaternary; studies of these shifts may yield insights into likely biotic responses to contemporary warming. Here, we review research undertaken over the past decade investigating the response of Neotoma (woodrats) body size and distribution to climate change over the late Quaternary (the last 40,000 years). By integrating information from woodrat palaeomiddens, historical museum specimens and field studies of modern populations, we identify potential evolutionary responses to climate change occurring over a variety of temporal and spatial scales. Specifically, we characterize climatic thresholds in the past that led to local species extirpation and/or range alterations rather than in situ adaptation, and apply them to anticipate potential biotic responses to anthropogenic climate change.
Location Middens were collected at about 55 sites scattered across the western United States, ranging from about 34 to 46° N and about 104 to 116° W, respectively. Data for modern populations were drawn from studies conducted in Death Valley, California, Missoula, Montana and the Sevilleta LTER site in central New Mexico.
Methods We analysed faecal pellets from midden series collected at numerous cave sites across the western United States. From these we estimated body mass using techniques validated in earlier studies. We compared body size fluctuations at different elevations in different regions and integrated these results with studies investigating temperature–body size tradeoffs in modern animals. We also quantify the rapidity of the size changes over the late Quaternary to estimate the evolutionary capacity of woodrats to deal with predicted rates of anthropogenic climate change over the next century.
Results We find remarkable similarities across the geographical range to late Quaternary climate change. In the middle of the geographical range woodrats respond in accordance to Bergmann's rule: colder climatic conditions select for larger body size and warmer conditions select for smaller body size. Patterns are more complicated at range boundaries, and local environmental conditions influence the observed response. In general, woodrat body size fluctuates with approximately the same amplitude and frequency as climate; there is a significant and positive correlation between woodrat body size and generalized climate proxies (such as ice core records). Woodrats have achieved evolutionary rates of change equal to or greater than those needed to adapt in situ to anthropogenic climate change.
Main conclusions In situ body size evolution is a likely outcome of climate change, and such shifts are part of a normal spectrum of adaptation. Woodrats appear to be subject to ongoing body size selection in response to fluctuating environmental conditions. Allometric considerations suggest that these shifts in body size lead to substantial changes in the physiology, life history and ecology of woodrats, and on their direct and indirect interactions with other organisms in the ecosystem. Our work highlights the importance of a finely resolved and long‐term record in understanding biotic responses to climatic shifts. |
---|---|
AbstractList | The influence of anthropogenic climate change on organisms, which is an area of great scientific concern, is reported. Increasingly there is recognition that abrupt climate transitions have occurred over the late Quaternary; studies of these shifts may yield insights into likely biotic responses to contemporary warming. By integrating information from woodrat palaeomiddens, historical museum specimens and field studies of modern populations, the potential evolutionary responses to climate change occurring over a variety of temporal and spatial scales are identified. Middens are collected at about 55 sites scattered across the western United States, ranging from about 34 to 46 degree N and about 104 to 116 degree W, respectively. Remarkable similarities are found across the geographical range to late Quaternary climate change. Aim The influence of anthropogenic climate change on organisms is an area of great scientific concern. Increasingly there is recognition that abrupt climate transitions have occurred over the late Quaternary; studies of these shifts may yield insights into likely biotic responses to contemporary warming. Here, we review research undertaken over the past decade investigating the response of Neotoma (woodrats) body size and distribution to climate change over the late Quaternary (the last 40,000 years). By integrating information from woodrat palaeomiddens, historical museum specimens and field studies of modern populations, we identify potential evolutionary responses to climate change occurring over a variety of temporal and spatial scales. Specifically, we characterize climatic thresholds in the past that led to local species extirpation and/or range alterations rather than in situ adaptation, and apply them to anticipate potential biotic responses to anthropogenic climate change. Location Middens were collected at about 55 sites scattered across the western United States, ranging from about 34 to 46° N and about 104 to 116° W, respectively. Data for modern populations were drawn from studies conducted in Death Valley, California, Missoula, Montana and the Sevilleta LTER site in central New Mexico. Methods We analysed faecal pellets from midden series collected at numerous cave sites across the western United States. From these we estimated body mass using techniques validated in earlier studies. We compared body size fluctuations at different elevations in different regions and integrated these results with studies investigating temperature–body size tradeoffs in modern animals. We also quantify the rapidity of the size changes over the late Quaternary to estimate the evolutionary capacity of woodrats to deal with predicted rates of anthropogenic climate change over the next century. Results We find remarkable similarities across the geographical range to late Quaternary climate change. In the middle of the geographical range woodrats respond in accordance to Bergmann's rule: colder climatic conditions select for larger body size and warmer conditions select for smaller body size. Patterns are more complicated at range boundaries, and local environmental conditions influence the observed response. In general, woodrat body size fluctuates with approximately the same amplitude and frequency as climate; there is a significant and positive correlation between woodrat body size and generalized climate proxies (such as ice core records). Woodrats have achieved evolutionary rates of change equal to or greater than those needed to adapt in situ to anthropogenic climate change. Main conclusions In situ body size evolution is a likely outcome of climate change, and such shifts are part of a normal spectrum of adaptation. Woodrats appear to be subject to ongoing body size selection in response to fluctuating environmental conditions. Allometric considerations suggest that these shifts in body size lead to substantial changes in the physiology, life history and ecology of woodrats, and on their direct and indirect interactions with other organisms in the ecosystem. Our work highlights the importance of a finely resolved and long‐term record in understanding biotic responses to climatic shifts. Aim The influence of anthropogenic climate change on organisms is an area of great scientific concern. Increasingly there is recognition that abrupt climate transitions have occurred over the late Quaternary; studies of these shifts may yield insights into likely biotic responses to contemporary warming. Here, we review research undertaken over the past decade investigating the response of Neotoma (woodrats) body size and distribution to climate change over the late Quaternary (the last 40,000 years). By integrating information from woodrat palaeomiddens, historical museum specimens and field studies of modern populations, we identify potential evolutionary responses to climate change occurring over a variety of temporal and spatial scales. Specifically, we characterize climatic thresholds in the past that led to local species extirpation and/or range alterations rather than in situ adaptation, and apply them to anticipate potential biotic responses to anthropogenic climate change. Location Middens were collected at about 55 sites scattered across the western United States, ranging from about 34 to 46° N and about 104 to 116° W, respectively. Data for modern populations were drawn from studies conducted in Death Valley, California, Missoula, Montana and the Sevilleta LTER site in central New Mexico. Methods We analysed faecal pellets from midden series collected at numerous cave sites across the western United States. From these we estimated body mass using techniques validated in earlier studies. We compared body size fluctuations at different elevations in different regions and integrated these results with studies investigating temperature–body size tradeoffs in modern animals. We also quantify the rapidity of the size changes over the late Quaternary to estimate the evolutionary capacity of woodrats to deal with predicted rates of anthropogenic climate change over the next century. Results We find remarkable similarities across the geographical range to late Quaternary climate change. In the middle of the geographical range woodrats respond in accordance to Bergmann's rule: colder climatic conditions select for larger body size and warmer conditions select for smaller body size. Patterns are more complicated at range boundaries, and local environmental conditions influence the observed response. In general, woodrat body size fluctuates with approximately the same amplitude and frequency as climate; there is a significant and positive correlation between woodrat body size and generalized climate proxies (such as ice core records). Woodrats have achieved evolutionary rates of change equal to or greater than those needed to adapt in situ to anthropogenic climate change. Main conclusions In situ body size evolution is a likely outcome of climate change, and such shifts are part of a normal spectrum of adaptation. Woodrats appear to be subject to ongoing body size selection in response to fluctuating environmental conditions. Allometric considerations suggest that these shifts in body size lead to substantial changes in the physiology, life history and ecology of woodrats, and on their direct and indirect interactions with other organisms in the ecosystem. Our work highlights the importance of a finely resolved and long‐term record in understanding biotic responses to climatic shifts. |
Author | Betancourt, Julio L. Smith, Felisa A. |
Author_xml | – sequence: 1 givenname: Felisa A. surname: Smith fullname: Smith, Felisa A. email: fasmith@unm.edu organization: Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA – sequence: 2 givenname: Julio L. surname: Betancourt fullname: Betancourt, Julio L. organization: US Geological Survey, 1675 W. Anklam Road, Tucson, AZ 85745, USA |
BookMark | eNqNkE1v1DAQhi1UJLaF_-ATgkOCP-I4PoAEFZR-sggQR8sbj7dekji1vdrtv2_Coh44dS4z0rzPe3iO0dEQBkAIU1LSad5tSsprUbBaqZIRUpeE1pyW-2do8fg4QgvCiSgIk-QFOk5pQwhRglcLtF5GsL7NfljjXQg2mozf3EDIoTdvcYQ0hiFBwjlgM-TbGMawhsG3eGdiP0Muhh6nvLV-SgWH8y3g0XQGQu-thWHqaEO0L9FzZ7oEr_7tE_Try-efp1-Lq29n56cfr4qWN4wWEhRlplarlbStkI6Dg1Y2jZO0blStqGBVQypqKuFWlbCN4NRyyRyrpFVuxU_Q60PvGMPdFlLWvU8tdJ0ZIGyTppVUUjVsCn44BNsYUorgdOuzyT4MORrfaUr07Fdv9KxRzxr17Ff_9av3U0HzX8EYfW_i_VPQ9wd05zu4fzKnLz6dz9fEFwfepwz7R97EP7qWXAr9--ZMf7_8cVktr5f6mj8ArsalMw |
CitedBy_id | crossref_primary_10_1098_rsbl_2009_0424 crossref_primary_10_1645_GE_1676_1 crossref_primary_10_1073_pnas_1424315112 crossref_primary_10_1371_journal_pone_0101927 crossref_primary_10_1098_rspb_2015_2387 crossref_primary_10_1644_14_MAMM_S_064 crossref_primary_10_1073_pnas_1409646111 crossref_primary_10_1111_ecog_07556 crossref_primary_10_1086_595757 crossref_primary_10_1017_pab_2021_12 crossref_primary_10_1086_588490 crossref_primary_10_1111_oik_03698 crossref_primary_10_1007_s10914_012_9187_0 crossref_primary_10_1093_jmammal_gyaa107 crossref_primary_10_1098_rstb_2011_0067 crossref_primary_10_1093_jmammal_gyac108 crossref_primary_10_1177_0309133308094425 crossref_primary_10_1111_j_1600_0706_2009_18349_x crossref_primary_10_1111_j_1365_2699_2007_01836_x crossref_primary_10_1017_qua_2019_13 crossref_primary_10_1093_jmammal_gyab038 crossref_primary_10_1644_13_MAMM_S_070 crossref_primary_10_1017_ext_2023_6 crossref_primary_10_1080_01916122_2019_1702118 crossref_primary_10_1111_mec_13529 crossref_primary_10_1016_j_tree_2023_12_003 crossref_primary_10_1111_j_1469_185X_2011_00207_x crossref_primary_10_1177_0309133308094081 crossref_primary_10_1098_rspb_2013_1007 crossref_primary_10_1038_s41598_020_61996_y crossref_primary_10_1098_rsbl_2008_0154 crossref_primary_10_1007_s10914_013_9232_7 crossref_primary_10_1093_jmammal_gyaa041 crossref_primary_10_1146_annurev_earth_040809_152524 crossref_primary_10_1111_j_1365_2699_2011_02616_x crossref_primary_10_1007_s00382_013_1911_9 crossref_primary_10_1016_j_quaint_2009_09_004 crossref_primary_10_1016_j_yqres_2009_06_003 crossref_primary_10_1656_045_019_0213 crossref_primary_10_1073_pnas_1403662111 crossref_primary_10_1016_j_isci_2022_105101 crossref_primary_10_1016_j_gloplacha_2008_10_015 crossref_primary_10_1016_j_jaridenv_2016_08_004 crossref_primary_10_1017_S1089332600001844 crossref_primary_10_1644_13_MAMM_S_079 |
Cites_doi | 10.1126/science.204.4394.701 10.1126/science.222.4620.159 10.1890/0012-9658(1999)080[2793:CSFRGI]2.0.CO;2 10.2307/2390577 10.1126/science.270.5244.2012 10.1098/rspb.2003.2543 10.1111/j.1469-7998.1977.tb03914.x 10.1016/0033-5894(91)90055-A 10.1038/nature02121 10.1111/j.1558-5646.1969.tb03515.x 10.1017/S0094837300003821 10.1017/CBO9781139167826 10.1006/qres.1998.1970 10.1111/j.1600-0587.1998.tb00668.x 10.1111/j.1095-8312.1986.tb00278.x 10.1029/2002PA000831 10.2307/1936032 10.1073/pnas.95.12.6893 10.1006/qres.1996.0068 10.1126/science.1101706 10.1111/j.1461-0248.2006.00928.x 10.1038/nature02805 10.1016/j.gloplacha.2003.10.004 10.1046/j.1365-2699.2000.00383.x 10.1016/0169-5347(90)90080-W 10.1098/rsta.2004.1465 10.1111/j.0030-1299.2006.14183.x 10.1038/18158 10.1111/j.1744-7429.2007.00272.x 10.1073/pnas.0502286102 10.2307/2389516 10.1007/s00442-002-1059-5 10.1126/science.278.5339.825 10.1038/34346 10.1126/science.272.5268.1601 10.1017/CBO9780511565052.007 10.1006/qres.2001.2276 10.1111/j.0022-1112.2004.00433.x 10.1017/S0016672300013094 10.1111/j.1558-5646.1956.tb02836.x 10.1126/science.260.5116.1920 10.1086/303400 10.1111/j.1095-8312.1938.tb00182k.x 10.1111/j.1558-5646.1988.tb04106.x 10.1525/9780520349018 10.1111/j.1558-5646.1949.tb00004.x 10.1016/S0169-5347(99)01764-4 10.1016/0033-5894(80)90032-0 10.1126/science.282.5387.268 10.1126/science.292.5517.673 10.1093/genetics/75.4.709 10.1006/qres.1998.1982 10.1038/364218a0 10.1126/science.6505682 10.1130/0091-7613(1995)023<1071:TAARPI>2.3.CO;2 10.1017/S0094837300026932 10.1086/285333 10.1644/1545-1542(2003)084<0354:MRTGWO>2.0.CO;2 10.1007/BF02982939 10.1046/j.1365-2699.2003.00837.x 10.1016/S0033-5894(03)00004-8 10.1890/03-0788 10.1038/nature01286 10.1130/DNAG-GNA-K3.323 10.1080/10292389409380476 10.2307/3504384 10.2307/2423529 10.1644/1545-1542(2000)081<1100:BIORLE>2.0.CO;2 10.1007/978-94-007-0632-3 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION 7ST C1K SOI |
DOI | 10.1111/j.1365-2699.2006.01631.x |
DatabaseName | Istex CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Environment Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Biology Ecology |
EISSN | 1365-2699 |
EndPage | 2076 |
ExternalDocumentID | 10_1111_j_1365_2699_2006_01631_x JBI1631 ark_67375_WNG_QKSK4PMP_M |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AI. AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SAMSI SUPJJ TN5 UB1 VH1 VOH VQP W8V W99 WBKPD WIH WIK WMRSR WOHZO WQJ WRC WSUWO WXSBR XG1 YQT ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACHIC ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABSQW AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST AAMMB AEFGJ AGXDD AIDQK AIDYY C1K SOI |
ID | FETCH-LOGICAL-c3821-7e912a69bb7dc57f3efec788f716896915248041a45fb45d8531d372f247d9fb3 |
IEDL.DBID | DR2 |
ISSN | 0305-0270 |
IngestDate | Fri Jul 11 07:16:25 EDT 2025 Tue Jul 01 01:13:57 EDT 2025 Thu Apr 24 23:05:19 EDT 2025 Wed Jan 22 16:54:14 EST 2025 Wed Oct 30 10:06:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3821-7e912a69bb7dc57f3efec788f716896915248041a45fb45d8531d372f247d9fb3 |
Notes | ark:/67375/WNG-QKSK4PMP-M istex:D35CA23DAC077B3D565FB2C4922A323ABA61451F ArticleID:JBI1631 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 14797982 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_14797982 crossref_citationtrail_10_1111_j_1365_2699_2006_01631_x crossref_primary_10_1111_j_1365_2699_2006_01631_x wiley_primary_10_1111_j_1365_2699_2006_01631_x_JBI1631 istex_primary_ark_67375_WNG_QKSK4PMP_M |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-12 December 2006 2006-12-00 20061201 |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: 2006-12 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | Journal of biogeography |
PublicationYear | 2006 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Grayson, D.K. & Madsen, D.B. (2000) Biogeographic implications of recent low-elevation recolonization by Neotoma cinerea in the Great Basin. Journal of Mammalogy, 81, 1100-1105. Davis, S.J. (1981) The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals of Israel. Paleobiology, 7, 101-114. Harris, A.H. (1985) Late Pleistocene vertebrate paleoecology of the west. University of Texas Press, Austin, TX. Smith, F.A. & Charnov, E.L. (2001) Fitness tradeoffs select for semelparous (suicidal) reproduction in an extreme environment. Evolutionary Ecology Research, 3, 595-602. Cronin, T.M. & Schneider, C.E. (1990) Climatic influences on species: evidence from the fossil record. Trends in Ecology & Evolution, 5, 275-279. Hadly, E.A., Ramakrishnan, U., Chan, Y.L., Van Tuinen, M., O'Keefe, K., Spaeth, P.A. & Conroy, C.J. (2004) Genetic response to climatic change: insights from ancient DNA and phylochronology. Public Library of Science Biology, 2, 1600-1609. Rial, J.A. (2004) Abrupt climate change: chaos and order at orbital and millennial scales. Global and Planetary Change, 41, 95-109. Grootes, P.M., Steig, E.J., Stuiver, M., Waddington, E.D. & Morse, D.L. (2001) The Taylor dome Antarctic O-18 record and globally synchronous changes in climate. Quaternary Research, 56, 289-298. Linsdale, T.M. & Tevis, L.P. (1951) The dusky-footed woodrat. University of California Press, Berkeley, CA, USA. Mayr, E. (1956) Geographic character gradients and climatic adaptation. Evolution, 10, 105-108. Smith, F.A. (1992) Evolution of body size among woodrats from Baja California, Mexico. Functional Ecology, 6, 265-273. Davis, M.B., Shaw, R.G. & Etterson, J.R. (2005) Evolutionary responses to changing climate. Ecology, 86, 1704-1714. Mayr, E. (1963) Animal species and evolution. Harvard University Press, Cambridge, MA. Brown, J.H. & Lee, A.K. (1969) Bergmann's rule and climatic adaptation in woodrats (Neotoma). Evolution, 23, 329-338. Millien, V., Lyons, S.K., Olson, L., Smith, F.A., Wilson, A.B. & Yom-Tov, Y. (2006) Ecotypic variation in the context of global climate change: revisiting the rules. Ecology Letters, 9, 853-869. Rensch, B. (1938) Some problems of geographical variation and species-formation. Proceedings of the Linnean Society of London, 150, 275-285. Schwartz, M.D. (2003) Phenology: an integrative environmental science. Springer, New York. Purdue, J.R. (1980) Clinal variation of some mammals during the Holocene in Missouri. Quaternary Research, 13, 242-258. Root, T., MacMynowski, D., Mastrandrea, M.D. & Schneider, S.H. (2005) Human modified temperatures induce species changes: joint attribution. Proceedings of the National Academy of Sciences of the United States of America, 102, 7465-7469. Bergmann, C. (1847) Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 1, 595-708. North Greenland Ice Core Project Members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147-151. Falconer, D.S. (1973) Replicated selection for body weight in mice. Genetic Research, 22, 291-321. Allen, B.D. & Anderson, R.Y. (1993) Evidence from western North America for rapid shifts in climate during the last glacial maximum. Science, 260, 1920-1923. Grayson, D.K. (1998) Moisture history and small mammal community richness during the latest Pleistocene and Holocene, northern Bonneville Basin, Utah. Quaternary Research, 49, 330-334. Smith, F.A. & Betancourt, J.L. (1998) Response of bushy-tailed woodrats (Neotoma cinerea) to late Quaternary climatic change in the Colorado Plateau. Quaternary Research, 47, 1-11. National Research Council, Committee on the Geological Record of Biosphere Dynamics (2005) The geologic record of ecological dynamics: understanding the biotic consequences of global change. National Academy Press, Washington, DC. Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42. Davis, M.B. & Shaw, R.G. (2001) Range shifts and adaptive responses to Quaternary climate change. Science, 292, 673-679. Tracy, R.L. & Walsberg, G.E. (2002) Kangaroo rats revisited: re-evaluating a classic case of desert survival. Oecologia, 133, 449-457. Barnosky, A.D., Hadly, E.A. & Bell, C.J. (2003) Mammalian response to global warming on varied temporal scales. Journal of Mammalogy, 84, 354-368. Roy, K., Jablonski, D. & Valentine, J.W. (1995) Thermally anomalous assemblages revisited - patterns in the extraprovincial latitudinal range shifts of Pleistocene marine mollusks. Geology, 23, 1071-1074. Barnosky, A.D. (1994) Defining climate's role in ecosystem evolution: clues from late Quaternary mammals. Historical Biology, 8, 173-190. Ashton, K.G., Tracy, M.C. & De Queiroz, A. (2000) Is Bergmann's rule valid for mammals? The American Naturalist, 156, 390-415. Van Tuinen, M., Ramakrishnan, U. & Hadly, E.A. (2004) Studying the effect of environmental change on biotic evolution: past genetic contributions, current work and future directions. Philosophical Transactions of the Royal Society of London, Physical Sciences, 362, 2795-2820. Barnosky, A.D. (ed.) (2004) Biodiversity response to climatic change in the middle Pleistocene: the Porcupine Cave fauna from Colorado. University of California Press, Berkeley, CA, USA. Grayson, D.K. (2000) Mammalian responses to Middle Holocene climatic change in the Great Basin of the western United States. Journal of Biogeography, 27, 181-192. Smith, F.A. (1996) Den characteristics and survivorship of woodrats (Neotoma lepida) in the eastern Mojave desert. Southwestern Naturalist, 41, 366-372. Gingerich, P.D. (1983) Rates of evolution: effects of time and temporal scaling. Science, 222, 159-161. Rosenzweig, M.L. (1968) The strategy of body size in mammalian carnivores. American Midland Naturalist, 80, 299-315. Jackson, S.T. & Overpeck, J.T. (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194-220. McNab, B. (1971) On the ecological significance of Bergmann's rule. Ecology, 52, 845-854. Schmidt, D.N., Renaud, S. & Bollmann, J. (2003) Response of planktonic foraminiferal size to late Quaternary climate change. Paleoceanography, 18, 1039. Peters, R.H. (1983) The ecological implications of body size. Cambridge University Press, Cambridge. Smith, F.A. & Betancourt, J.L. (2003) The effect of Holocene temperature fluctuations on the evolution and ecology of Neotoma (woodrats) in Idaho and northwestern Utah. Quaternary Research, 59, 160-171. MacMillen, R.E. (1964) Population ecology, water relations, and social behavior of a southern California semidesert rodent fauna. University of California Press, Berkeley, CA. Indermühle, A., Stocker, T.F., Joos, F., Fischer, H., Smith, J.H., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R. & Stauffer, B. (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature, 398, 121-126. Gould, S.J. (1984) Smooth curve of evolutionary rate: a psychological and mathematical artifact. Science, 226, 994-995. Smith, F.A., Betancourt, J.L. & Brown, J.H. (1995) Evolution of woodrat body size tracks 20,000 years of climate change. Science, 270, 2012-2014. Hadly, E.A., Kohn, M.H., Leonard, J.A. & Wayne, R.K. (1998) A genetic record of population isolation in pocket gophers during Holocene climate change. Proceedings of the National Academy of Sciences of the United States of America, 95, 6893-6896. Taylor, K.C., Mayewski, P.A., Alley, R.B., Brook, E.J., Gow, A.J., Grootes, P.M., Meese, D.A., Saltzman, E.S., Severinghaus, J.P., Twickler, M.S., White, J.W.C., Whitlow, S. & Zielinski, G.A. (1997) The Holocene Younger Dryas transition recorded at Summit, Greenland. Science, 278, 825-827. Lee, A.K. (1963) The adaptations to arid environments in woodrats of the genus Neotoma. University of California Publications in Zoology, 64, 57-96. Martrat, B., Grimalt, J.O., Lopez-Martinez, C., Cacho, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Curtis, J.H. & Hodell, D.A. (2004) Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science, 306, 1762-1765. Yom-Tov, Y. & Nix, H. (1986) Climatological correlates for body size of five species of Australian mammals. Biological Journal of the Linnean Society, 29, 245-262. Barnosky, A.D. & Bell, C.J. (2003) Evolution, climatic change, and species boundaries: perspectives from tracing Lemmiscus curtatus populations through time and space. Proceedings of the Royal Society of London Series B, Biological Sciences, 270, 2585-2590. Severinghaus, J.P., Sowers, T., Brook, E.J., Alley, R.B. & Bender, M.L. (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391, 141-146. Spaulding, W.G. (1991) A middle Holocene vegetation record from the Mojave Desert of North America and its paleoclimatic significance. Quaternary Research, 35, 427-437. Smith, F.A. (1997) Neotoma cinerea. Mammalian Species, 564, 1-8. Betancourt, J.L., Van Devender, T.R. & Martin, P.S. (eds) (1990) Packrat middens: the last 40,000 years of biotic change. University of Arizona Press, Tucson, AZ. Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G.D., Johnsen, S.J., Hansen, A.W. & Balling, N. (1998) Past temperatures directly from the Greenland ice sheet. Science, 282, 268-271. Smith, F.A. (1995) Scaling of digestive efficiency and body size in Neotoma (woodrats). Functional Ecology, 9, 299-305. Calder, W.A. (1984) Size, function and life history. Harvard University Press, Cambridge, MA. Davis, S.J. (1977) Size variation of the fox, Vulpes vulpes, in the Palaearctic region today, and in Israel during the late Quaternary. Journal of the Zoological Society, London, 182, 343-351. Graham, R.W., Lundelius, E.L., Graham, M.A., Schroeder, E.K., Toomey, R.S., Anderson, E., Barnosky, A.D., Burns, J.A., Churcher, C.S., Gr 1998; 49 1997; 278 2004; 362 1949; 3 1956; 10 2003; 270 2003; 59 2003; 18 2004; 2 1993; 2 1998; 47 1993; 364 1992; 6 1971; 52 1977; 182 1983; 222 1990 2001 2000; 15 2001; 292 2005; 102 1995; 23 1987 1986 1985 1984 1983 1981 1988; 42 2001; 56 1998; 95 2003; 84 1998; 282 1995; 9 1938; 150 2004; 41 1979; 204 1963; 64 2000; 27 1973; 75 2000; 26 1991; 35 1984; 226 2006; 9 2002; 133 1993; 260 1981; 7 1953; 51 2005; 86 1951 2005 2004 1993 1968; 80 2003 2000; 156 2004; 306 2004; 427 1998; 21 2003; 30 2006; 112 1995; 270 2004; 431 1997; 564 1994; 8 1998; 391 1973; 22 1984; 8 1980; 13 1968; 135 1969; 23 1996; 272 1992; 139 1964 2000; 81 1963 1996; 41 1986; 29 2001; 3 1847; 1 1999; 398 1996; 46 2003; 421 1990; 5 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_30_1 e_1_2_6_72_1 Smith F.A. (e_1_2_6_79_1) 2001; 3 Rhode D. (e_1_2_6_63_1) 2001 Betancourt J.L. (e_1_2_6_9_1) 2004 e_1_2_6_19_1 MacMillen R.E. (e_1_2_6_49_1) 1964 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 Smith F.A. (e_1_2_6_80_1) 1995; 270 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_60_1 Houghton J.T. (e_1_2_6_41_1) 2001 Barnosky A.D. (e_1_2_6_5_1) 2004 e_1_2_6_7_1 Brown J.H. (e_1_2_6_11_1) 1968; 135 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_45_1 Harris A.H. (e_1_2_6_37_1) 1984 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 Smith F.A. (e_1_2_6_75_1) 1996; 41 Patton J.L. (e_1_2_6_59_1) 2004 e_1_2_6_54_1 Spaulding W.G. (e_1_2_6_83_1) 1990 Webb R.H. (e_1_2_6_92_1) 1990 e_1_2_6_31_1 e_1_2_6_94_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_90_1 Hall E.R. (e_1_2_6_36_1) 1981 Bergmann C. (e_1_2_6_8_1) 1847; 1 Hadly E.A. (e_1_2_6_34_1) 2004; 2 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_77_1 Graham R.W. (e_1_2_6_26_1) 1986 e_1_2_6_16_1 e_1_2_6_58_1 Calder W.A. (e_1_2_6_13_1) 1984 e_1_2_6_84_1 e_1_2_6_42_1 Linsdale T.M. (e_1_2_6_48_1) 1951 e_1_2_6_65_1 e_1_2_6_21_1 Harris A.H. (e_1_2_6_39_1) 1993 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 Van Valkenburgh B. (e_1_2_6_91_1) 1990 National Research Council, Committee on the Geological Record of Biosphere Dynamics (e_1_2_6_56_1) 2005 e_1_2_6_4_1 Harris A.H. (e_1_2_6_38_1) 1985 Lee A.K. (e_1_2_6_47_1) 1963; 64 Thompson R.S. (e_1_2_6_86_1) 1993 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 Betancourt J.L. (e_1_2_6_10_1) 1990 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Smith, F.A. & Betancourt, J.L. (1998) Response of bushy-tailed woodrats (Neotoma cinerea) to late Quaternary climatic change in the Colorado Plateau. Quaternary Research, 47, 1-11. – reference: Peters, R.H. (1983) The ecological implications of body size. Cambridge University Press, Cambridge. – reference: Tracy, R.L. & Walsberg, G.E. (2002) Kangaroo rats revisited: re-evaluating a classic case of desert survival. Oecologia, 133, 449-457. – reference: Indermühle, A., Stocker, T.F., Joos, F., Fischer, H., Smith, J.H., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R. & Stauffer, B. (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature, 398, 121-126. – reference: Severinghaus, J.P., Sowers, T., Brook, E.J., Alley, R.B. & Bender, M.L. (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391, 141-146. – reference: Smith, F.A. & Charnov, E.L. (2001) Fitness tradeoffs select for semelparous (suicidal) reproduction in an extreme environment. Evolutionary Ecology Research, 3, 595-602. – reference: Taylor, K.C., Mayewski, P.A., Alley, R.B., Brook, E.J., Gow, A.J., Grootes, P.M., Meese, D.A., Saltzman, E.S., Severinghaus, J.P., Twickler, M.S., White, J.W.C., Whitlow, S. & Zielinski, G.A. (1997) The Holocene Younger Dryas transition recorded at Summit, Greenland. Science, 278, 825-827. – reference: Graham, R.W., Lundelius, E.L., Graham, M.A., Schroeder, E.K., Toomey, R.S., Anderson, E., Barnosky, A.D., Burns, J.A., Churcher, C.S., Grayson, D.K., Gutherie, R.D., Harington, C.R., Jefferson, G.T., Martin, L.D., McDonald, H.G., Morlan, R.E., Semken, H.A., Webb, S.D., Werdelin, L. & Wilson, M.C. (1996) Spatial response of mammals to late Quaternary environmental fluctuations. Science, 272, 1601-1606. – reference: Haldane, J.B.S. (1949) Suggestions as to a quantitative measurement of rates of evolution. Evolution, 3, 51-56. – reference: Purdue, J.R. (1980) Clinal variation of some mammals during the Holocene in Missouri. Quaternary Research, 13, 242-258. – reference: Van Devender, T.R. & Spaulding, W.G. (1979) Development of vegetation and climate in the southwestern United States. Science, 204, 701-710. – reference: Barnosky, A.D. (ed.) (2004) Biodiversity response to climatic change in the middle Pleistocene: the Porcupine Cave fauna from Colorado. University of California Press, Berkeley, CA, USA. – reference: Gould, S.J. (1984) Smooth curve of evolutionary rate: a psychological and mathematical artifact. Science, 226, 994-995. – reference: Linsdale, T.M. & Tevis, L.P. (1951) The dusky-footed woodrat. University of California Press, Berkeley, CA, USA. – reference: Martrat, B., Grimalt, J.O., Lopez-Martinez, C., Cacho, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Curtis, J.H. & Hodell, D.A. (2004) Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science, 306, 1762-1765. – reference: Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C.J.R. & DuFeu, R. (2006) Recent changes in body weight and wing length among some British passerine birds. Oikos, 112, 91-101. – reference: Allen, B.D. & Anderson, R.Y. (1993) Evidence from western North America for rapid shifts in climate during the last glacial maximum. Science, 260, 1920-1923. – reference: Lee, A.K. (1963) The adaptations to arid environments in woodrats of the genus Neotoma. University of California Publications in Zoology, 64, 57-96. – reference: Betancourt, J.L., Van Devender, T.R. & Martin, P.S. (eds) (1990) Packrat middens: the last 40,000 years of biotic change. University of Arizona Press, Tucson, AZ. – reference: Davis, M.B., Shaw, R.G. & Etterson, J.R. (2005) Evolutionary responses to changing climate. Ecology, 86, 1704-1714. – reference: Smith, F.A., Betancourt, J.L. & Brown, J.H. (1995) Evolution of woodrat body size tracks 20,000 years of climate change. Science, 270, 2012-2014. – reference: MacMillen, R.E. (1964) Population ecology, water relations, and social behavior of a southern California semidesert rodent fauna. University of California Press, Berkeley, CA. – reference: Mayr, E. (1956) Geographic character gradients and climatic adaptation. Evolution, 10, 105-108. – reference: Grayson, D.K. (1998) Moisture history and small mammal community richness during the latest Pleistocene and Holocene, northern Bonneville Basin, Utah. Quaternary Research, 49, 330-334. – reference: Bergmann, C. (1847) Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 1, 595-708. – reference: Mayr, E. (1963) Animal species and evolution. Harvard University Press, Cambridge, MA. – reference: Falconer, D.S. (1973) Replicated selection for body weight in mice. Genetic Research, 22, 291-321. – reference: Schmidt, D.N., Renaud, S. & Bollmann, J. (2003) Response of planktonic foraminiferal size to late Quaternary climate change. Paleoceanography, 18, 1039. – reference: Smith, F.A. (1992) Evolution of body size among woodrats from Baja California, Mexico. Functional Ecology, 6, 265-273. – reference: Ashton, K.G., Tracy, M.C. & De Queiroz, A. (2000) Is Bergmann's rule valid for mammals? The American Naturalist, 156, 390-415. – reference: National Research Council, Committee on the Geological Record of Biosphere Dynamics (2005) The geologic record of ecological dynamics: understanding the biotic consequences of global change. National Academy Press, Washington, DC. – reference: Brown, J.H. (1968) Adaptation to environmental temperature in two species of woodrats, Neotoma cinerea and N. Albigula. Miscellaneous Publications of the Museum of Zoology, University of Michigan, 135, 1-48. – reference: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van Der Linden, P.J., Dai, X., Maskell, K. & Johnson, C.A. (2001). Climate change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. – reference: Jackson, S.T. & Overpeck, J.T. (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194-220. – reference: Grayson, D.K. (2000) Mammalian responses to Middle Holocene climatic change in the Great Basin of the western United States. Journal of Biogeography, 27, 181-192. – reference: Hall, E.R. (1981) The mammals of North America. John Wiley & Sons, New York. – reference: Hughes, L. (2000) Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution, 15, 56-61. – reference: Van Tuinen, M., Ramakrishnan, U. & Hadly, E.A. (2004) Studying the effect of environmental change on biotic evolution: past genetic contributions, current work and future directions. Philosophical Transactions of the Royal Society of London, Physical Sciences, 362, 2795-2820. – reference: Falconer, D.S. (1953) Selection for large and small size in mice. Journal of Genetics, 51, 470-501. – reference: Schwartz, M.D. (2003) Phenology: an integrative environmental science. Springer, New York. – reference: Roy, K., Jablonski, D. & Valentine, J.W. (1995) Thermally anomalous assemblages revisited - patterns in the extraprovincial latitudinal range shifts of Pleistocene marine mollusks. Geology, 23, 1071-1074. – reference: Smith, F.A. (1996) Den characteristics and survivorship of woodrats (Neotoma lepida) in the eastern Mojave desert. Southwestern Naturalist, 41, 366-372. – reference: Barnosky, A.D., Hadly, E.A. & Bell, C.J. (2003) Mammalian response to global warming on varied temporal scales. Journal of Mammalogy, 84, 354-368. – reference: Gingerich, P.D. (1983) Rates of evolution: effects of time and temporal scaling. Science, 222, 159-161. – reference: Meiri, S. & Dayan, T. (2003) On the validity of Bergmann's rule. Journal of Biogeography, 30, 331-351. – reference: Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., De Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. & Williams, S.E. (2004) Extinction risk from climate change. Nature, 427, 145-148. – reference: Calder, W.A. (1984) Size, function and life history. Harvard University Press, Cambridge, MA. – reference: Rial, J.A. (2004) Abrupt climate change: chaos and order at orbital and millennial scales. Global and Planetary Change, 41, 95-109. – reference: Smith, F.A. (1997) Neotoma cinerea. Mammalian Species, 564, 1-8. – reference: Brown, J.H. & Lee, A.K. (1969) Bergmann's rule and climatic adaptation in woodrats (Neotoma). Evolution, 23, 329-338. – reference: Schmidt-Nielsen, K. (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge. – reference: Hadly, E.A. (1996) Influence of Late Holocene Climate on Northern Rocky Mountain Mammals. Quaternary Research, 46, 298-310. – reference: Leamy, L. (1988) Genetic and maternal influences on brain and body size in random breed house mice. Evolution, 42, 42-53. – reference: Rutledge, J.J., Eisen, E.J. & Legates, J.E. (1973) An experimental evaluation of genetic correlation. Genetics, 75, 709-726. – reference: Spaulding, W.G. (1991) A middle Holocene vegetation record from the Mojave Desert of North America and its paleoclimatic significance. Quaternary Research, 35, 427-437. – reference: Smith, F.A. & Betancourt, J.L. (2003) The effect of Holocene temperature fluctuations on the evolution and ecology of Neotoma (woodrats) in Idaho and northwestern Utah. Quaternary Research, 59, 160-171. – reference: Barnosky, A.D. (1994) Defining climate's role in ecosystem evolution: clues from late Quaternary mammals. Historical Biology, 8, 173-190. – reference: Smith, F.A. (1995) Scaling of digestive efficiency and body size in Neotoma (woodrats). Functional Ecology, 9, 299-305. – reference: Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42. – reference: Barnosky, A.D. & Bell, C.J. (2003) Evolution, climatic change, and species boundaries: perspectives from tracing Lemmiscus curtatus populations through time and space. Proceedings of the Royal Society of London Series B, Biological Sciences, 270, 2585-2590. – reference: Cronin, T.M. & Schneider, C.E. (1990) Climatic influences on species: evidence from the fossil record. Trends in Ecology & Evolution, 5, 275-279. – reference: Holt, R.D. (1990) The microevolutionary consequences of climate change. Trends in Ecology & Evolution, 5, 311-315. – reference: Millien, V., Lyons, S.K., Olson, L., Smith, F.A., Wilson, A.B. & Yom-Tov, Y. (2006) Ecotypic variation in the context of global climate change: revisiting the rules. Ecology Letters, 9, 853-869. – reference: Justice, K.E. & Smith, F.A. (1992) A model of dietary fiber utilization by small mammalian herbivores with empirical results for Neotoma. The American Naturalist, 139, 398-416. – reference: Hadly, E.A., Kohn, M.H., Leonard, J.A. & Wayne, R.K. (1998) A genetic record of population isolation in pocket gophers during Holocene climate change. Proceedings of the National Academy of Sciences of the United States of America, 95, 6893-6896. – reference: Grootes, P.M., Steig, E.J., Stuiver, M., Waddington, E.D. & Morse, D.L. (2001) The Taylor dome Antarctic O-18 record and globally synchronous changes in climate. Quaternary Research, 56, 289-298. – reference: Davis, S.J. (1977) Size variation of the fox, Vulpes vulpes, in the Palaearctic region today, and in Israel during the late Quaternary. Journal of the Zoological Society, London, 182, 343-351. – reference: Yom-Tov, Y. & Nix, H. (1986) Climatological correlates for body size of five species of Australian mammals. Biological Journal of the Linnean Society, 29, 245-262. – reference: Rensch, B. (1938) Some problems of geographical variation and species-formation. Proceedings of the Linnean Society of London, 150, 275-285. – reference: Grayson, D.K. & Madsen, D.B. (2000) Biogeographic implications of recent low-elevation recolonization by Neotoma cinerea in the Great Basin. Journal of Mammalogy, 81, 1100-1105. – reference: Harris, A.H. (1985) Late Pleistocene vertebrate paleoecology of the west. University of Texas Press, Austin, TX. – reference: Smith, F.A., Browning, H. & Shepherd, U.L. (1998) The influence of climatic change on the body mass of woodrats (Neotoma albigula) in an arid region of New Mexico, USA. Ecography, 21, 140-148. – reference: Davis, S.J. (1981) The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals of Israel. Paleobiology, 7, 101-114. – reference: Root, T., MacMynowski, D., Mastrandrea, M.D. & Schneider, S.H. (2005) Human modified temperatures induce species changes: joint attribution. Proceedings of the National Academy of Sciences of the United States of America, 102, 7465-7469. – reference: Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G.D., Johnsen, S.J., Hansen, A.W. & Balling, N. (1998) Past temperatures directly from the Greenland ice sheet. Science, 282, 268-271. – reference: Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahljensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J. & Bond, G. (1993) Evidence for general instability of past climate from a 250 kyr ice-core record. Nature, 364, 218-220. – reference: McNab, B. (1971) On the ecological significance of Bergmann's rule. Ecology, 52, 845-854. – reference: North Greenland Ice Core Project Members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147-151. – reference: Davis, M.B. & Shaw, R.G. (2001) Range shifts and adaptive responses to Quaternary climate change. Science, 292, 673-679. – reference: Hadly, E.A., Ramakrishnan, U., Chan, Y.L., Van Tuinen, M., O'Keefe, K., Spaeth, P.A. & Conroy, C.J. (2004) Genetic response to climatic change: insights from ancient DNA and phylochronology. Public Library of Science Biology, 2, 1600-1609. – reference: Rosenzweig, M.L. (1968) The strategy of body size in mammalian carnivores. American Midland Naturalist, 80, 299-315. – year: 1985 – start-page: 27 year: 2004 end-page: 46 – volume: 15 start-page: 56 year: 2000 end-page: 61 article-title: Biological consequences of global warming: is the signal already apparent publication-title: Trends in Ecology & Evolution – volume: 7 start-page: 101 year: 1981 end-page: 114 article-title: The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals of Israel publication-title: Paleobiology – year: 1981 – volume: 10 start-page: 105 year: 1956 end-page: 108 article-title: Geographic character gradients and climatic adaptation publication-title: Evolution – year: 2005 – volume: 41 start-page: 366 year: 1996 end-page: 372 article-title: Den characteristics and survivorship of woodrats ( ) in the eastern Mojave desert publication-title: Southwestern Naturalist – volume: 29 start-page: 245 year: 1986 end-page: 262 article-title: Climatological correlates for body size of five species of Australian mammals publication-title: Biological Journal of the Linnean Society – year: 2001 – volume: 398 start-page: 121 year: 1999 end-page: 126 article-title: Holocene carbon‐cycle dynamics based on CO trapped in ice at Taylor Dome, Antarctica publication-title: Nature – volume: 59 start-page: 160 year: 2003 end-page: 171 article-title: The effect of Holocene temperature fluctuations on the evolution and ecology of (woodrats) in Idaho and northwestern Utah publication-title: Quaternary Research – volume: 22 start-page: 291 year: 1973 end-page: 321 article-title: Replicated selection for body weight in mice publication-title: Genetic Research – start-page: 85 year: 1990 end-page: 103 – volume: 150 start-page: 275 year: 1938 end-page: 285 article-title: Some problems of geographical variation and species‐formation publication-title: Proceedings of the Linnean Society of London – volume: 260 start-page: 1920 year: 1993 end-page: 1923 article-title: Evidence from western North America for rapid shifts in climate during the last glacial maximum publication-title: Science – volume: 292 start-page: 673 year: 2001 end-page: 679 article-title: Range shifts and adaptive responses to Quaternary climate change publication-title: Science – year: 1990 – volume: 3 start-page: 595 year: 2001 end-page: 602 article-title: Fitness tradeoffs select for semelparous (suicidal) reproduction in an extreme environment publication-title: Evolutionary Ecology Research – start-page: 257 year: 2001 end-page: 293 – volume: 51 start-page: 470 year: 1953 end-page: 501 article-title: Selection for large and small size in mice publication-title: Journal of Genetics – start-page: 300 year: 1986 end-page: 313 – volume: 182 start-page: 343 year: 1977 end-page: 351 article-title: Size variation of the fox, , in the Palaearctic region today, and in Israel during the late Quaternary publication-title: Journal of the Zoological Society, London – volume: 46 start-page: 298 year: 1996 end-page: 310 article-title: Influence of Late Holocene Climate on Northern Rocky Mountain Mammals publication-title: Quaternary Research – volume: 270 start-page: 2585 year: 2003 end-page: 2590 article-title: Evolution, climatic change, and species boundaries: perspectives from tracing populations through time and space publication-title: Proceedings of the Royal Society of London Series B, Biological Sciences – volume: 21 start-page: 140 year: 1998 end-page: 148 article-title: The influence of climatic change on the body mass of woodrats ( ) in an arid region of New Mexico, USA publication-title: Ecography – volume: 27 start-page: 181 year: 2000 end-page: 192 article-title: Mammalian responses to Middle Holocene climatic change in the Great Basin of the western United States publication-title: Journal of Biogeography – volume: 35 start-page: 427 year: 1991 end-page: 437 article-title: A middle Holocene vegetation record from the Mojave Desert of North America and its paleoclimatic significance publication-title: Quaternary Research – year: 2004 – volume: 2 start-page: 179 year: 1993 end-page: 197 – volume: 47 start-page: 1 year: 1998 end-page: 11 article-title: Response of bushy‐tailed woodrats ( ) to late Quaternary climatic change in the Colorado Plateau publication-title: Quaternary Research – volume: 3 start-page: 51 year: 1949 end-page: 56 article-title: Suggestions as to a quantitative measurement of rates of evolution publication-title: Evolution – volume: 5 start-page: 311 year: 1990 end-page: 315 article-title: The microevolutionary consequences of climate change publication-title: Trends in Ecology & Evolution – volume: 9 start-page: 853 year: 2006 end-page: 869 article-title: Ecotypic variation in the context of global climate change: revisiting the rules publication-title: Ecology Letters – start-page: 181 year: 1990 end-page: 206 – volume: 306 start-page: 1762 year: 2004 end-page: 1765 article-title: Abrupt temperature changes in the Western Mediterranean over the past 250,000 years publication-title: Science – volume: 13 start-page: 242 year: 1980 end-page: 258 article-title: Clinal variation of some mammals during the Holocene in Missouri publication-title: Quaternary Research – volume: 75 start-page: 709 year: 1973 end-page: 726 article-title: An experimental evaluation of genetic correlation publication-title: Genetics – year: 1951 – volume: 64 start-page: 57 year: 1963 end-page: 96 article-title: The adaptations to arid environments in woodrats of the genus publication-title: University of California Publications in Zoology – volume: 270 start-page: 2012 year: 1995 end-page: 2014 article-title: Evolution of woodrat body size tracks 20,000 years of climate change publication-title: Science – volume: 49 start-page: 330 year: 1998 end-page: 334 article-title: Moisture history and small mammal community richness during the latest Pleistocene and Holocene, northern Bonneville Basin, Utah publication-title: Quaternary Research – volume: 362 start-page: 2795 year: 2004 end-page: 2820 article-title: Studying the effect of environmental change on biotic evolution: past genetic contributions, current work and future directions publication-title: Philosophical Transactions of the Royal Society of London, Physical Sciences – volume: 8 start-page: 164 year: 1984 end-page: 178 – volume: 81 start-page: 1100 year: 2000 end-page: 1105 article-title: Biogeographic implications of recent low‐elevation recolonization by in the Great Basin publication-title: Journal of Mammalogy – volume: 133 start-page: 449 year: 2002 end-page: 457 article-title: Kangaroo rats revisited: re‐evaluating a classic case of desert survival publication-title: Oecologia – volume: 135 start-page: 1 year: 1968 end-page: 48 article-title: Adaptation to environmental temperature in two species of woodrats, and publication-title: Miscellaneous Publications of the Museum of Zoology, University of Michigan – volume: 112 start-page: 91 year: 2006 end-page: 101 article-title: Recent changes in body weight and wing length among some British passerine birds publication-title: Oikos – start-page: 468 year: 1993 end-page: 513 – year: 1983 – volume: 23 start-page: 329 year: 1969 end-page: 338 article-title: Bergmann's rule and climatic adaptation in woodrats ( ) publication-title: Evolution – year: 1964 – start-page: 107 year: 1993 end-page: 133 – volume: 2 start-page: 1600 year: 2004 end-page: 1609 article-title: Genetic response to climatic change: insights from ancient DNA and phylochronology publication-title: Public Library of Science Biology – volume: 80 start-page: 299 year: 1968 end-page: 315 article-title: The strategy of body size in mammalian carnivores publication-title: American Midland Naturalist – volume: 5 start-page: 275 year: 1990 end-page: 279 article-title: Climatic influences on species: evidence from the fossil record publication-title: Trends in Ecology & Evolution – volume: 30 start-page: 331 year: 2003 end-page: 351 article-title: On the validity of Bergmann's rule publication-title: Journal of Biogeography – year: 2003 – volume: 9 start-page: 299 year: 1995 end-page: 305 article-title: Scaling of digestive efficiency and body size in (woodrats) publication-title: Functional Ecology – start-page: 323 year: 1987 end-page: 352 – volume: 222 start-page: 159 year: 1983 end-page: 161 article-title: Rates of evolution: effects of time and temporal scaling publication-title: Science – volume: 56 start-page: 289 year: 2001 end-page: 298 article-title: The Taylor dome Antarctic O‐18 record and globally synchronous changes in climate publication-title: Quaternary Research – volume: 6 start-page: 265 year: 1992 end-page: 273 article-title: Evolution of body size among woodrats from Baja California, Mexico publication-title: Functional Ecology – volume: 8 start-page: 173 year: 1994 end-page: 190 article-title: Defining climate's role in ecosystem evolution: clues from late Quaternary mammals publication-title: Historical Biology – volume: 26 start-page: 194 year: 2000 end-page: 220 article-title: Responses of plant populations and communities to environmental changes of the late Quaternary publication-title: Paleobiology – volume: 421 start-page: 37 year: 2003 end-page: 42 article-title: A globally coherent fingerprint of climate change impacts across natural systems publication-title: Nature – volume: 23 start-page: 1071 year: 1995 end-page: 1074 article-title: Thermally anomalous assemblages revisited ‐ patterns in the extraprovincial latitudinal range shifts of Pleistocene marine mollusks publication-title: Geology – volume: 95 start-page: 6893 year: 1998 end-page: 6896 article-title: A genetic record of population isolation in pocket gophers during Holocene climate change publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 102 start-page: 7465 year: 2005 end-page: 7469 article-title: Human modified temperatures induce species changes: joint attribution publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 1 start-page: 595 year: 1847 end-page: 708 article-title: Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse publication-title: Göttinger Studien – volume: 52 start-page: 845 year: 1971 end-page: 854 article-title: On the ecological significance of Bergmann's rule publication-title: Ecology – volume: 84 start-page: 354 year: 2003 end-page: 368 article-title: Mammalian response to global warming on varied temporal scales publication-title: Journal of Mammalogy – start-page: 59 year: 1990 end-page: 84 – year: 1984 – volume: 282 start-page: 268 year: 1998 end-page: 271 article-title: Past temperatures directly from the Greenland ice sheet publication-title: Science – volume: 364 start-page: 218 year: 1993 end-page: 220 article-title: Evidence for general instability of past climate from a 250 kyr ice‐core record publication-title: Nature – volume: 156 start-page: 390 year: 2000 end-page: 415 article-title: Is Bergmann's rule valid for mammals publication-title: The American Naturalist – volume: 272 start-page: 1601 year: 1996 end-page: 1606 article-title: Spatial response of mammals to late Quaternary environmental fluctuations publication-title: Science – year: 1963 – volume: 431 start-page: 147 year: 2004 end-page: 151 article-title: High‐resolution record of Northern Hemisphere climate extending into the last interglacial period publication-title: Nature – volume: 226 start-page: 994 year: 1984 end-page: 995 article-title: Smooth curve of evolutionary rate: a psychological and mathematical artifact publication-title: Science – volume: 18 start-page: 1039 year: 2003 article-title: Response of planktonic foraminiferal size to late Quaternary climate change publication-title: Paleoceanography – volume: 41 start-page: 95 year: 2004 end-page: 109 article-title: Abrupt climate change: chaos and order at orbital and millennial scales publication-title: Global and Planetary Change – volume: 204 start-page: 701 year: 1979 end-page: 710 article-title: Development of vegetation and climate in the southwestern United States publication-title: Science – volume: 564 start-page: 1 year: 1997 end-page: 8 publication-title: Mammalian Species – volume: 427 start-page: 145 year: 2004 end-page: 148 article-title: Extinction risk from climate change publication-title: Nature – volume: 278 start-page: 825 year: 1997 end-page: 827 article-title: The Holocene Younger Dryas transition recorded at Summit, Greenland publication-title: Science – start-page: 375 year: 2004 end-page: 388 – volume: 42 start-page: 42 year: 1988 end-page: 53 article-title: Genetic and maternal influences on brain and body size in random breed house mice publication-title: Evolution – volume: 86 start-page: 1704 year: 2005 end-page: 1714 article-title: Evolutionary responses to changing climate publication-title: Ecology – volume: 139 start-page: 398 year: 1992 end-page: 416 article-title: A model of dietary fiber utilization by small mammalian herbivores with empirical results for publication-title: The American Naturalist – volume: 391 start-page: 141 year: 1998 end-page: 146 article-title: Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice publication-title: Nature – ident: e_1_2_6_89_1 doi: 10.1126/science.204.4394.701 – volume-title: Packrat middens: the last 40,000 years of biotic change year: 1990 ident: e_1_2_6_10_1 – ident: e_1_2_6_23_1 doi: 10.1126/science.222.4620.159 – ident: e_1_2_6_40_1 doi: 10.1890/0012-9658(1999)080[2793:CSFRGI]2.0.CO;2 – start-page: 181 volume-title: Body size in mammalian paleobiology year: 1990 ident: e_1_2_6_91_1 – ident: e_1_2_6_74_1 doi: 10.2307/2390577 – volume-title: Climate change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change year: 2001 ident: e_1_2_6_41_1 – volume: 270 start-page: 2012 year: 1995 ident: e_1_2_6_80_1 article-title: Evolution of woodrat body size tracks 20,000 years of climate change publication-title: Science doi: 10.1126/science.270.5244.2012 – ident: e_1_2_6_6_1 doi: 10.1098/rspb.2003.2543 – ident: e_1_2_6_17_1 doi: 10.1111/j.1469-7998.1977.tb03914.x – ident: e_1_2_6_82_1 doi: 10.1016/0033-5894(91)90055-A – ident: e_1_2_6_85_1 doi: 10.1038/nature02121 – ident: e_1_2_6_12_1 doi: 10.1111/j.1558-5646.1969.tb03515.x – start-page: 375 volume-title: Contribuciones mastozoologicas en homenaje a Bernardo Villa year: 2004 ident: e_1_2_6_59_1 – ident: e_1_2_6_18_1 doi: 10.1017/S0094837300003821 – start-page: 179 volume-title: Vertebrate paleontology in New Mexico year: 1993 ident: e_1_2_6_39_1 – ident: e_1_2_6_70_1 doi: 10.1017/CBO9781139167826 – ident: e_1_2_6_28_1 doi: 10.1006/qres.1998.1970 – ident: e_1_2_6_81_1 doi: 10.1111/j.1600-0587.1998.tb00668.x – ident: e_1_2_6_93_1 doi: 10.1111/j.1095-8312.1986.tb00278.x – ident: e_1_2_6_69_1 doi: 10.1029/2002PA000831 – volume: 3 start-page: 595 year: 2001 ident: e_1_2_6_79_1 article-title: Fitness tradeoffs select for semelparous (suicidal) reproduction in an extreme environment publication-title: Evolutionary Ecology Research – ident: e_1_2_6_53_1 doi: 10.2307/1936032 – ident: e_1_2_6_33_1 doi: 10.1073/pnas.95.12.6893 – ident: e_1_2_6_32_1 doi: 10.1006/qres.1996.0068 – ident: e_1_2_6_50_1 doi: 10.1126/science.1101706 – ident: e_1_2_6_55_1 doi: 10.1111/j.1461-0248.2006.00928.x – ident: e_1_2_6_57_1 doi: 10.1038/nature02805 – ident: e_1_2_6_64_1 doi: 10.1016/j.gloplacha.2003.10.004 – volume: 2 start-page: 1600 year: 2004 ident: e_1_2_6_34_1 article-title: Genetic response to climatic change: insights from ancient DNA and phylochronology publication-title: Public Library of Science Biology – volume-title: The geologic record of ecological dynamics: understanding the biotic consequences of global change year: 2005 ident: e_1_2_6_56_1 – ident: e_1_2_6_29_1 doi: 10.1046/j.1365-2699.2000.00383.x – volume-title: Late Pleistocene vertebrate paleoecology of the west year: 1985 ident: e_1_2_6_38_1 – ident: e_1_2_6_14_1 doi: 10.1016/0169-5347(90)90080-W – ident: e_1_2_6_88_1 doi: 10.1098/rsta.2004.1465 – ident: e_1_2_6_94_1 doi: 10.1111/j.0030-1299.2006.14183.x – ident: e_1_2_6_43_1 doi: 10.1038/18158 – volume: 135 start-page: 1 year: 1968 ident: e_1_2_6_11_1 article-title: Adaptation to environmental temperature in two species of woodrats, Neotoma cinerea and N. Albigula publication-title: Miscellaneous Publications of the Museum of Zoology, University of Michigan – ident: e_1_2_6_60_1 doi: 10.1111/j.1744-7429.2007.00272.x – ident: e_1_2_6_65_1 doi: 10.1073/pnas.0502286102 – volume-title: Size, function and life history year: 1984 ident: e_1_2_6_13_1 – ident: e_1_2_6_73_1 doi: 10.2307/2389516 – ident: e_1_2_6_87_1 doi: 10.1007/s00442-002-1059-5 – ident: e_1_2_6_84_1 doi: 10.1126/science.278.5339.825 – ident: e_1_2_6_72_1 doi: 10.1038/34346 – ident: e_1_2_6_27_1 doi: 10.1126/science.272.5268.1601 – ident: e_1_2_6_24_1 doi: 10.1017/CBO9780511565052.007 – ident: e_1_2_6_31_1 doi: 10.1006/qres.2001.2276 – ident: e_1_2_6_52_1 doi: 10.1111/j.0022-1112.2004.00433.x – ident: e_1_2_6_22_1 doi: 10.1017/S0016672300013094 – ident: e_1_2_6_51_1 doi: 10.1111/j.1558-5646.1956.tb02836.x – ident: e_1_2_6_2_1 doi: 10.1126/science.260.5116.1920 – ident: e_1_2_6_3_1 doi: 10.1086/303400 – ident: e_1_2_6_62_1 doi: 10.1111/j.1095-8312.1938.tb00182k.x – start-page: 468 volume-title: Global climates since the Last Glacial Maximum year: 1993 ident: e_1_2_6_86_1 – ident: e_1_2_6_46_1 doi: 10.1111/j.1558-5646.1988.tb04106.x – volume-title: The mammals of North America year: 1981 ident: e_1_2_6_36_1 – volume: 1 start-page: 595 year: 1847 ident: e_1_2_6_8_1 article-title: Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse publication-title: Göttinger Studien – volume: 41 start-page: 366 year: 1996 ident: e_1_2_6_75_1 article-title: Den characteristics and survivorship of woodrats (Neotoma lepida) in the eastern Mojave desert publication-title: Southwestern Naturalist – volume-title: The dusky‐footed woodrat year: 1951 ident: e_1_2_6_48_1 doi: 10.1525/9780520349018 – start-page: 257 volume-title: Historical ecology handbook: a restorationist's guide to reference ecosystems year: 2001 ident: e_1_2_6_63_1 – ident: e_1_2_6_35_1 doi: 10.1111/j.1558-5646.1949.tb00004.x – ident: e_1_2_6_42_1 doi: 10.1016/S0169-5347(99)01764-4 – volume-title: Population ecology, water relations, and social behavior of a southern California semidesert rodent fauna year: 1964 ident: e_1_2_6_49_1 – ident: e_1_2_6_61_1 doi: 10.1016/0033-5894(80)90032-0 – ident: e_1_2_6_15_1 doi: 10.1126/science.282.5387.268 – ident: e_1_2_6_19_1 doi: 10.1126/science.292.5517.673 – ident: e_1_2_6_68_1 doi: 10.1093/genetics/75.4.709 – ident: e_1_2_6_77_1 doi: 10.1006/qres.1998.1982 – volume-title: Biodiversity response to climatic change in the middle Pleistocene: the Porcupine Cave fauna from Colorado year: 2004 ident: e_1_2_6_5_1 – start-page: 164 volume-title: Contributions to Quaternary vertebrate paleontology: a volume in memorial to John E. Guilday year: 1984 ident: e_1_2_6_37_1 – ident: e_1_2_6_16_1 doi: 10.1038/364218a0 – start-page: 59 volume-title: Packrat middens: the last 40,000 years of biotic change year: 1990 ident: e_1_2_6_83_1 – ident: e_1_2_6_25_1 doi: 10.1126/science.6505682 – ident: e_1_2_6_67_1 doi: 10.1130/0091-7613(1995)023<1071:TAARPI>2.3.CO;2 – ident: e_1_2_6_44_1 doi: 10.1017/S0094837300026932 – ident: e_1_2_6_45_1 doi: 10.1086/285333 – ident: e_1_2_6_7_1 doi: 10.1644/1545-1542(2003)084<0354:MRTGWO>2.0.CO;2 – ident: e_1_2_6_21_1 doi: 10.1007/BF02982939 – ident: e_1_2_6_54_1 doi: 10.1046/j.1365-2699.2003.00837.x – start-page: 85 volume-title: Packrat middens – the last 40,000 years of biotic change year: 1990 ident: e_1_2_6_92_1 – ident: e_1_2_6_78_1 doi: 10.1016/S0033-5894(03)00004-8 – start-page: 300 volume-title: Community ecology year: 1986 ident: e_1_2_6_26_1 – ident: e_1_2_6_20_1 doi: 10.1890/03-0788 – volume: 64 start-page: 57 year: 1963 ident: e_1_2_6_47_1 article-title: The adaptations to arid environments in woodrats of the genus Neotoma publication-title: University of California Publications in Zoology – ident: e_1_2_6_58_1 doi: 10.1038/nature01286 – ident: e_1_2_6_90_1 doi: 10.1130/DNAG-GNA-K3.323 – ident: e_1_2_6_4_1 doi: 10.1080/10292389409380476 – start-page: 27 volume-title: Frontiers in biogeography: new directions in the geography of nature year: 2004 ident: e_1_2_6_9_1 – ident: e_1_2_6_76_1 doi: 10.2307/3504384 – ident: e_1_2_6_66_1 doi: 10.2307/2423529 – ident: e_1_2_6_30_1 doi: 10.1644/1545-1542(2000)081<1100:BIORLE>2.0.CO;2 – ident: e_1_2_6_71_1 doi: 10.1007/978-94-007-0632-3 |
SSID | ssj0009534 |
Score | 2.05814 |
Snippet | Aim The influence of anthropogenic climate change on organisms is an area of great scientific concern. Increasingly there is recognition that abrupt climate... Aim The influence of anthropogenic climate change on organisms is an area of great scientific concern. Increasingly there is recognition that abrupt climate... The influence of anthropogenic climate change on organisms, which is an area of great scientific concern, is reported. Increasingly there is recognition that... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2061 |
SubjectTerms | Adaptation body size darwins evolutionary change global climate change late Quaternary temperature western North America woodrat middens |
Title | Predicting woodrat (Neotoma) responses to anthropogenic warming from studies of the palaeomidden record |
URI | https://api.istex.fr/ark:/67375/WNG-QKSK4PMP-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2699.2006.01631.x https://www.proquest.com/docview/14797982 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQCLUXKH2IAKU-VFV72CjrfTg-AuKtROkDlZvl19IqsIuSjXj8embWTpRUPaCqN0sre-XZGfub9edvCPmomVNJomwE2N5FsEPrSCvBIpVmQjEE4I2Aaa-fn1ykZ5fZZeA_4V0Yrw8x--GGkdGs1xjgSo8Xg9wztIQIZwoALeI24kl8gPjoG5vT3028khRy1RjvLJJ6_jrQwk61gka_X4Ch82C22Y2O1slwOg9PQhm2J7Vum8c_JB7_z0RfkbUAWume97INsuTK12TVl7F8gNahCa0Xoab6r4c35GowwkMgpFVTJPaAq9HPfVfV1Y36Qkeem-vGtK6oCtUawJl_G3qnkJ9zRfHmCx17niOtCgpQld6qa-WqG9Q9Kan_wfSWXBwd_jg4iUJZh8gkXRZH3ImYqVxoza3JeJG4whnIxAtI3boiF4AoUlRFAncpdJpZ8JbYJpwVLOVWFDp5R5bLqnSbhGpYnaxlhqVJjsiom-W2UwAoMwoG07ZF-PQTShM0z7H0xrWcy33AuBKNixU5c9kYV963SDzreet1P57R51PjJbMOajRE3hzP5M_-sfx6_v08HfQGstciH6ZuJCGa8YhGla6ajCER44KLLmuRvHGJZ79bnu2fYmvrXztuk5cs1GTqxDtkuR5N3HvAW7XebSLpCVdlGYs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUQqKKXfldNS8GHqmoPG2W9H46PUAGBkChtQeVm-WtpRdhFyUYFfn1n1k6UVBxQ1Zsv9sremfUb--17hHzQzKkkUTYCbO8i2KF1pJVgkUozoRgC8EbAdDDMe2fp8Xl2HuyA8F8Yrw-xOHDDzGi-15jgeCC9muWeoiVEuFQAbBG3AVBuoMF3U199Y0sKvInXkkK2GuOdVVrPvSOt7FUbuOw3K0B0Gc42-9HBUzKez8TTUC7bs1q3zd1fIo__aarPyJOAW-muD7TnZM2VL8gj72R5C619E1qbwVb95-1LcjGa4D0QMqspcnsg2uinoavq6kp9phNPz3VTWldUBcMGiOdfhv5WSNG5oPjzC516qiOtCgpolV6rsXLVFUqflNSfMb0iZwf7p196UXB2iEzSZXHEnYiZyoXW3JqMF4krnIFivIDqrStyAaAiRWEkiJhCp5mFgIltwlnBUm5FoZPXZL2sSveGUA0fKGuZYWmSIzjqZrntFIDLjILBtG0RPn-H0gTZc3TfGMul8gcWV-LioilnLpvFlTctEi96Xnvpjwf0-diEyaKDmlwidY5n8sfwUH7tf--no8FIDlpkZx5HEhIab2lU6arZFGoxLrjoshbJm5h48LPl8d4Rtt7-a8cdstk7HZzIk6Nh_x15zIJFUyfeIuv1ZObeA_yq9XaTVn8A_Ukdpg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JbxMxGLVQK5YLOyJlqQ8IwWGijGfx-Ai0oW1IFJaK3iyvpUo7EyUT0fLr-b7xJEoQhwpx88Ue2fM--9l-fh8hrzRzKkmUjYDbuwhWaB1pJVik0kwohgS8MTAdjvKD4_ToJDtp9U_4Fib4Q6wO3DAymvkaA3xq_WaQB4WWEO2dAlCLuAt8cjvNewUifO8LWzPgTYKVFIrVGO9tqnr-2tLGUrWNo365wUPX2WyzHPXvkcmyI0GFMukuat01v_7wePw_Pb1P7raslb4LMHtAbrjyIbkZ8lheQWnftKXbbVL1H1ePyOl4hrdAqKumqOwBrNE3I1fV1YV6S2dBnOvmtK6oatM1AJrPDP2pUKBzSvHpC50HoSOtPAWuSqfqXLnqAo1PShpOmB6T4_7-tw8HUZvXITJJweKIOxEzlQutuTUZ94nzzsBW3MPerRC5AEqRoi0S4MXrNLMAl9gmnHmWciu8Tp6QrbIq3VNCNUxP1jLD0iRHalRkue15YGVGQWPadghf_kJpWtNzzL1xLtc2PzC4EgcXU3Lmshlcedkh8armNBh_XKPO6wYlqwpqNkHhHM_k99FH-XnwdZCOh2M57JDdJYwkhDPe0ajSVYs57MS44KJgHZI3kLj2t-XR-0Ms7fxrxV1ya7zXl58OR4Nn5A5r8zP14udkq54t3AvgXrV-2QTVb5NFHF4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+woodrat+%28Neotoma%29+responses+to+anthropogenic+warming+from+studies+of+the+palaeomidden+record&rft.jtitle=Journal+of+biogeography&rft.au=Smith%2C+Felisa+A.&rft.au=Betancourt%2C+Julio+L.&rft.date=2006-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=33&rft.issue=12&rft.spage=2061&rft.epage=2076&rft_id=info:doi/10.1111%2Fj.1365-2699.2006.01631.x&rft.externalDBID=10.1111%252Fj.1365-2699.2006.01631.x&rft.externalDocID=JBI1631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon |