Final design of ITER vacuum vessel thermal shield

The final design of ITER vacuum vessel thermal shield (VVTS), which is planned to be procured completely by Korea, has been implemented after the procurement arrangement was signed. In this paper, the design and the supporting analysis are described for the key components of the VVTS such as joint,...

Full description

Saved in:
Bibliographic Details
Published inFusion engineering and design Vol. 88; no. 9-10; pp. 1896 - 1899
Main Authors Noh, Chang Hyun, Nam, Kwanwoo, Kang, Dong kwon, O Kang, Kyung, Chung, Wooho, Ahn, Hee Jae, Her, Nam Il, Yu, Jie, Hamlyn-Harris, Craig, Utin, Yuri, Choi, Chang Ho, Ioki, Kimihiro
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The final design of ITER vacuum vessel thermal shield (VVTS), which is planned to be procured completely by Korea, has been implemented after the procurement arrangement was signed. In this paper, the design and the supporting analysis are described for the key components of the VVTS such as joint, panel, support, and stopper. The VVTS design is revised and finalized based on the manufacturing feasibility, interface requirement and assemble feasibility. The inboard and the outboard supports of VVTS are designed in detail considering structural rigidity and assemble feasibility. The shape of in-pit joint, which is installed every 40° sector in toroidal direction for compensation of possible misalignment during sector assembly, is determined. Three types of joints are developed in accordance with their locations and assemble feasibilities are checked through the R&D. Stopper design is developed in order to prevent direct contact against adjacent components such as vacuum vessel and magnets. Structural rigidity of the whole VVTS is also validated by finite element analysis under various kinds of operating conditions, such as deadweight, electro-magnetic load, seismic load and load combinations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2013.02.063