A contribution to the definition of a new method to predict the catastrophic disintegration of spacecraft after collision with large orbital debris
The main limitation of the currently adopted method for predicting spacecraft catastrophic fragmentation due to a collision with large debris is the total independence of the critical value of the energy-to-target mass ratio from both the satellite configuration and the impact point; in fact these t...
Saved in:
Published in | Acta astronautica Vol. 127; pp. 95 - 102 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main limitation of the currently adopted method for predicting spacecraft catastrophic fragmentation due to a collision with large debris is the total independence of the critical value of the energy-to-target mass ratio from both the satellite configuration and the impact point; in fact these two issues are not accounted for by the classical 40J/g rule.
To go beyond this limitation, the method proposed in this paper evaluates the distribution of impact energy into the system using the mechanical properties of the structural parts and the knowledge of the impact location. In this way, it becomes possible to predict how impact energy is partitioned among some selected macroscopic structural parts, each of them is finally evaluated versus its own minimum value of impact energy for which the part is fragmented (shattering threshold). Energy partition is performed by solving a system of equations written according to Statistical Energy Analysis (SEA). The paper describes in detail the proposed energy-partition method and presents its application to a geometrical representative model of a spacecraft subject to impact at different points. Results are finally compared to those obtained by the application of the classical 40J/g rule. It is shown that the evaluation of spacecraft disintegration is highly influenced by the impact point and the structural properties of the components.
•A new method to predict catastrophic disintegration due to impact is presented.•It uses a strategy based on statistical energy analysis.•Impact consequences depend on impact location, S/C geometry and mechanical properties.•The method requires limited computational resources. |
---|---|
AbstractList | The main limitation of the currently adopted method for predicting spacecraft catastrophic fragmentation due to a collision with large debris is the total independence of the critical value of the energy-to-target mass ratio from both the satellite configuration and the impact point; in fact these two issues are not accounted for by the classical 40J/g rule. To go beyond this limitation, the method proposed in this paper evaluates the distribution of impact energy into the system using the mechanical properties of the structural parts and the knowledge of the impact location. In this way, it becomes possible to predict how impact energy is partitioned among some selected macroscopic structural parts, each of them is finally evaluated versus its own minimum value of impact energy for which the part is fragmented (shattering threshold). Energy partition is performed by solving a system of equations written according to Statistical Energy Analysis (SEA). The paper describes in detail the proposed energy-partition method and presents its application to a geometrical representative model of a spacecraft subject to impact at different points. Results are finally compared to those obtained by the application of the classical 40J/g rule. It is shown that the evaluation of spacecraft disintegration is highly influenced by the impact point and the structural properties of the components. The main limitation of the currently adopted method for predicting spacecraft catastrophic fragmentation due to a collision with large debris is the total independence of the critical value of the energy-to-target mass ratio from both the satellite configuration and the impact point; in fact these two issues are not accounted for by the classical 40J/g rule. To go beyond this limitation, the method proposed in this paper evaluates the distribution of impact energy into the system using the mechanical properties of the structural parts and the knowledge of the impact location. In this way, it becomes possible to predict how impact energy is partitioned among some selected macroscopic structural parts, each of them is finally evaluated versus its own minimum value of impact energy for which the part is fragmented (shattering threshold). Energy partition is performed by solving a system of equations written according to Statistical Energy Analysis (SEA). The paper describes in detail the proposed energy-partition method and presents its application to a geometrical representative model of a spacecraft subject to impact at different points. Results are finally compared to those obtained by the application of the classical 40J/g rule. It is shown that the evaluation of spacecraft disintegration is highly influenced by the impact point and the structural properties of the components. •A new method to predict catastrophic disintegration due to impact is presented.•It uses a strategy based on statistical energy analysis.•Impact consequences depend on impact location, S/C geometry and mechanical properties.•The method requires limited computational resources. |
Author | Galvanetto, U. Zaccariotto, M. Francesconi, A. |
Author_xml | – sequence: 1 givenname: M. surname: Zaccariotto fullname: Zaccariotto, M. email: mirco.zaccariotto@unipd.it organization: Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova, Italy – sequence: 2 givenname: A. surname: Francesconi fullname: Francesconi, A. organization: Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova, Italy – sequence: 3 givenname: U. surname: Galvanetto fullname: Galvanetto, U. organization: Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova, Italy |
BookMark | eNqNkc-OFCEQxolZE2dXn0GOXroFuuk_Bw-Tja4mm3jRM6muLnaY9EALjBufwxeWmVEPXtwDgRS_r6ryfdfsygdPjL2WopZCdm_3NWAGSDmGWpVCLXQtVPeMbeTQj5USjbhiGyHGttJ9p1-w65T2QoheDeOG_dxyDD5HNx2zC57nwPOO-EzWeXeuBMuBe3rkB8q7MJ-INdLsMJ9JhHyeve4c8tkl5zM9RPgjTSsgYQSbeTkUy7RlKVT5fXR5xxeID8RDnFyGpYydoksv2XMLS6JXv-8b9vXD-y-3H6v7z3efbrf3FTaDzBXN2Crdj2LAdhywa3orLcpJEOHYolCTBlneBJ2VMGhQPQAq0BZ6KdXU3LA3l75rDN-OlLI5uIS0LOApHJORQ6O1Htq2fQKqyiJN38iC9hcUY0gpkjVrdAeIP4wU5pSY2Zu_iZlTYkZoUxIrynf_KLG4cnIyR3DLE_Tbi56Kad8dRZPQkccSViTMZg7uvz1-AfcDvqc |
CitedBy_id | crossref_primary_10_15587_1729_4061_2019_161778 crossref_primary_10_1016_j_dt_2022_08_004 |
Cites_doi | 10.1016/j.ijimpeng.2011.01.002 10.1016/j.actaastro.2015.07.013 10.1002/(SICI)1097-0207(19960830)39:16<2725::AID-NME973>3.0.CO;2-9 10.1016/S0734-743X(03)00012-5 10.1007/s11831-010-9040-7 10.1002/eqe.4290010308 10.1016/0734-743X(95)99879-V 10.1109/8.142629 10.1098/rsta.1994.0027 10.1007/s00466-010-0564-3 10.1016/S0734-743X(01)00079-3 10.1016/j.ijimpeng.2003.09.020 10.1016/j.compstruc.2009.05.001 10.1016/S0734-743X(99)00076-7 10.1002/nme.2901 10.2140/jomms.2010.5.707 10.1016/j.compstruc.2012.01.001 10.1016/j.jsv.2012.08.020 10.1006/jsvi.1999.2812 |
ContentType | Journal Article |
Copyright | 2016 IAA |
Copyright_xml | – notice: 2016 IAA |
DBID | AAYXX CITATION 7TG KL. 7TB 8FD FR3 H8D L7M |
DOI | 10.1016/j.actaastro.2016.05.026 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2030 |
EndPage | 102 |
ExternalDocumentID | 10_1016_j_actaastro_2016_05_026 S0094576516304842 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TG KL. 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c381t-edc4257908c498c637f1fc1b0eec94c02b5a1eecea6f1a85a27aac2a5fa7112b3 |
IEDL.DBID | .~1 |
ISSN | 0094-5765 |
IngestDate | Fri Jul 11 09:14:40 EDT 2025 Fri Jul 11 01:10:24 EDT 2025 Tue Jul 01 01:39:32 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Fri Feb 23 02:22:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Space debris S/C SPH EMR SEA FEM RA M/OD Catastrophic disintegration HVI CLF Statistical energy analysis DLF |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-edc4257908c498c637f1fc1b0eec94c02b5a1eecea6f1a85a27aac2a5fa7112b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1827903731 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1835558444 proquest_miscellaneous_1827903731 crossref_primary_10_1016_j_actaastro_2016_05_026 crossref_citationtrail_10_1016_j_actaastro_2016_05_026 elsevier_sciencedirect_doi_10_1016_j_actaastro_2016_05_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October-November 2016 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October-November 2016 |
PublicationDecade | 2010 |
PublicationTitle | Acta astronautica |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kilic, Madenci (bib16) 2010; 5 A. Francesconi, C. Giacomuzzo, F. Feltrin, A. Antonello, L. Savioli, An engineering model to describe fragments clouds propagating inside spacecraft in consequence of space debris impact on sandwich panel structures, in: Proceedings of the 65th International Astronautical Congress, 29 September–3 October 2014, Toronto, (paper IAC-14-A6.3.5). Kacimi, Laghrouche (bib7) 2010; 84 Kohno, Bathe, Wright (bib8) 2010; 88 McKnight, Maher, Nagl (bib1) 1995; 17 Lyon, DeJong (bib17) 1995 Johnson, Stryk (bib12) 2003; 28 Bathe (bib2) 1996 Johnson, Beissel (bib10) 1996; 39 Fahrenthold, Shivarama (bib15) 2003; 29 Manik (bib24) 1998; 211 Francesconi, Giacomuzzo, Feltrin, Antonello, Savioli (bib27) 2015; 116 Robinson (bib29) 2012 Gregory (bib20) 2002 Mace, Shorter (bib18) 2000; 233 Fahrenthold, Horban (bib14) 2001; 26 Lee, Cangellaris (bib4) 1992; 40 Ham, Bathe (bib3) 2012; 94–95 Bathe, Wilson (bib5) 1973; 1 Keane, Price (bib19) 2005 X. Shilin, M. Boyong, Z. Xinong, Impact load identification of complex structure using transient statistical energy analysis method, in: Proceedings of the 20th Internatinal Congress on Sound and Vibration, 7–11 July 2013, Bangkok. Langley, Heron (bib28) 1990; 143-2 Seçgin (bib23) 2013; 332 Cremer, Heckl, Petersson (bib21) 2005 Idesman, Schmidt, Foley (bib6) 2011; 47 Liu, Liu (bib11) 2010; 17 Fahy (bib22) 1994; 346 Johnson, Beissel, Gerlach (bib9) 2011; 38 Fahrenthold, Horban (bib13) 1999; 23 Johnson (10.1016/j.actaastro.2016.05.026_bib12) 2003; 28 Mace (10.1016/j.actaastro.2016.05.026_bib18) 2000; 233 Bathe (10.1016/j.actaastro.2016.05.026_bib2) 1996 10.1016/j.actaastro.2016.05.026_bib26 Fahrenthold (10.1016/j.actaastro.2016.05.026_bib13) 1999; 23 10.1016/j.actaastro.2016.05.026_bib25 Kilic (10.1016/j.actaastro.2016.05.026_bib16) 2010; 5 Kohno (10.1016/j.actaastro.2016.05.026_bib8) 2010; 88 Cremer (10.1016/j.actaastro.2016.05.026_bib21) 2005 Francesconi (10.1016/j.actaastro.2016.05.026_bib27) 2015; 116 McKnight (10.1016/j.actaastro.2016.05.026_bib1) 1995; 17 Bathe (10.1016/j.actaastro.2016.05.026_bib5) 1973; 1 Johnson (10.1016/j.actaastro.2016.05.026_bib9) 2011; 38 Gregory (10.1016/j.actaastro.2016.05.026_bib20) 2002 Liu (10.1016/j.actaastro.2016.05.026_bib11) 2010; 17 Lyon (10.1016/j.actaastro.2016.05.026_bib17) 1995 Kacimi (10.1016/j.actaastro.2016.05.026_bib7) 2010; 84 Johnson (10.1016/j.actaastro.2016.05.026_bib10) 1996; 39 Robinson (10.1016/j.actaastro.2016.05.026_bib29) 2012 Fahrenthold (10.1016/j.actaastro.2016.05.026_bib15) 2003; 29 Fahrenthold (10.1016/j.actaastro.2016.05.026_bib14) 2001; 26 Fahy (10.1016/j.actaastro.2016.05.026_bib22) 1994; 346 Idesman (10.1016/j.actaastro.2016.05.026_bib6) 2011; 47 Keane (10.1016/j.actaastro.2016.05.026_bib19) 2005 Manik (10.1016/j.actaastro.2016.05.026_bib24) 1998; 211 Seçgin (10.1016/j.actaastro.2016.05.026_bib23) 2013; 332 Ham (10.1016/j.actaastro.2016.05.026_bib3) 2012; 94–95 Lee (10.1016/j.actaastro.2016.05.026_bib4) 1992; 40 Langley (10.1016/j.actaastro.2016.05.026_bib28) 1990; 143-2 |
References_xml | – volume: 346 start-page: 431 year: 1994 end-page: 447 ident: bib22 article-title: Statistical energy analysis: a critical overview publication-title: Philos. Trans. R. Soc. Lond. A – volume: 17 start-page: 547 year: 1995 end-page: 558 ident: bib1 article-title: Refined algorithms for structural breakup due to hypervelocity impact publication-title: Int. J. Impact Eng. – volume: 39 start-page: 2725 year: 1996 end-page: 2741 ident: bib10 article-title: Normalized smoothed functions for SPH impact computations publication-title: Int. J. Numer. Methods Eng. – volume: 143-2 start-page: 241 year: 1990 end-page: 253 ident: bib28 article-title: Elastic wave transmission through plate/beam junctions publication-title: J. Sound Vib. – volume: 211 start-page: 521 year: 1998 end-page: 526 ident: bib24 article-title: A new method for determining coupling loss factors for SEA publication-title: J. Sound Vib. – reference: A. Francesconi, C. Giacomuzzo, F. Feltrin, A. Antonello, L. Savioli, An engineering model to describe fragments clouds propagating inside spacecraft in consequence of space debris impact on sandwich panel structures, in: Proceedings of the 65th International Astronautical Congress, 29 September–3 October 2014, Toronto, (paper IAC-14-A6.3.5). – volume: 84 start-page: 330 year: 2010 end-page: 350 ident: bib7 article-title: Improvement of PUFEM for the numerical solution of high-frequency elastic wave scattering on unstructured triangular mesh grids publication-title: Int. J. Numer. Methods Eng. – volume: 23 start-page: 237 year: 1999 end-page: 248 ident: bib13 article-title: A hybrid particle-finite element method for hypervelocity impact simulation publication-title: Int. J. Impact Eng. – year: 2005 ident: bib19 publication-title: Statistical Energy Analysis: an Overview, with Applications in Structural Dynamics – volume: 233 start-page: 369 year: 2000 end-page: 389 ident: bib18 article-title: Energy flow models from finite element analysis publication-title: J. Sound Vib. – volume: 332 start-page: 361 year: 2013 end-page: 377 ident: bib23 article-title: Numerical determination of statistical energy analysis parameters of directly coupled composite plates using a modal-based approach publication-title: J. Sound Vib. – volume: 40 start-page: 542 year: 1992 end-page: 549 ident: bib4 article-title: A study of discretization error in the finite-element approximation of wave solutions publication-title: IEEE Trans. Antennas Propag. – volume: 116 start-page: 222 year: 2015 end-page: 228 ident: bib27 article-title: An engineering model to describe fragments clouds propagating inside spacecraft in consequence of space debris impact on sandwich panel structures publication-title: Acta Astronaut. – volume: 29 start-page: 237 year: 2003 end-page: 246 ident: bib15 article-title: Extension and validation of a hybrid particle finite element method for hypervelocity impact simulation publication-title: Int. J. Impact Eng. – volume: 5 start-page: 707 year: 2010 end-page: 733 ident: bib16 article-title: Coupling of peridynamic theory and the finite element method publication-title: J. Mech. Mater. Struct. – volume: 17 start-page: 25 year: 2010 end-page: 76 ident: bib11 article-title: Smoothed Particle Hydrodynamics (SPH): an overview and recent developments publication-title: Arch. Comput. Methods Eng. – year: 1995 ident: bib17 publication-title: Theory and Application of Statistical Energy Analysis – volume: 94–95 start-page: 1 year: 2012 end-page: 12 ident: bib3 article-title: A finite element method enriched for wave propagation problems publication-title: Comput. Struct. – volume: 1 start-page: 283 year: 1973 end-page: 291 ident: bib5 article-title: Stability and accuracy analysis of direct integration methods publication-title: Earthq. Eng. Struct. – volume: 88 start-page: 87 year: 2010 end-page: 94 ident: bib8 article-title: A finite element procedure for multiscale wave equations with application to plasma waves publication-title: Comput. Struct. – volume: 38 start-page: 397 year: 2011 end-page: 405 ident: bib9 article-title: Another approach to a hybrid particle-finite element algorithm for high-velocity impact publication-title: Int. J. Impact Eng. – year: 1996 ident: bib2 publication-title: Finite Element Procedures – volume: 47 start-page: 555 year: 2011 end-page: 572 ident: bib6 article-title: Accurate finite element modeling of linear elastodynamics problems with the reduced dispersion error publication-title: Comput. Mech. – year: 2002 ident: bib20 article-title: Identification of statistical energy analysis parameters from measured data – reference: X. Shilin, M. Boyong, Z. Xinong, Impact load identification of complex structure using transient statistical energy analysis method, in: Proceedings of the 20th Internatinal Congress on Sound and Vibration, 7–11 July 2013, Bangkok. – year: 2005 ident: bib21 article-title: Structure-borne sound: structural vibrations and sound radiation at audio frequencies – volume: 26 start-page: 169 year: 2001 end-page: 178 ident: bib14 article-title: An improved hybrid particle-element method for hypervelocity impact simulation publication-title: Int. J. Impact Eng. – volume: 28 start-page: 947 year: 2003 end-page: 966 ident: bib12 article-title: Conversion of 3d distorted elements into meshless particles during dynamic deformation publication-title: Int. J. Impact Eng. – year: 2012 ident: bib29 article-title: Prediction of sound and vibration response using transient statistical energy analysis – volume: 38 start-page: 397 issue: 5 year: 2011 ident: 10.1016/j.actaastro.2016.05.026_bib9 article-title: Another approach to a hybrid particle-finite element algorithm for high-velocity impact publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2011.01.002 – year: 1995 ident: 10.1016/j.actaastro.2016.05.026_bib17 – year: 2005 ident: 10.1016/j.actaastro.2016.05.026_bib21 – volume: 116 start-page: 222 year: 2015 ident: 10.1016/j.actaastro.2016.05.026_bib27 article-title: An engineering model to describe fragments clouds propagating inside spacecraft in consequence of space debris impact on sandwich panel structures publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.07.013 – volume: 39 start-page: 2725 year: 1996 ident: 10.1016/j.actaastro.2016.05.026_bib10 article-title: Normalized smoothed functions for SPH impact computations publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(19960830)39:16<2725::AID-NME973>3.0.CO;2-9 – volume: 28 start-page: 947 issue: 9 year: 2003 ident: 10.1016/j.actaastro.2016.05.026_bib12 article-title: Conversion of 3d distorted elements into meshless particles during dynamic deformation publication-title: Int. J. Impact Eng. doi: 10.1016/S0734-743X(03)00012-5 – volume: 17 start-page: 25 year: 2010 ident: 10.1016/j.actaastro.2016.05.026_bib11 article-title: Smoothed Particle Hydrodynamics (SPH): an overview and recent developments publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-010-9040-7 – volume: 1 start-page: 283 year: 1973 ident: 10.1016/j.actaastro.2016.05.026_bib5 article-title: Stability and accuracy analysis of direct integration methods publication-title: Earthq. Eng. Struct. doi: 10.1002/eqe.4290010308 – volume: 17 start-page: 547 year: 1995 ident: 10.1016/j.actaastro.2016.05.026_bib1 article-title: Refined algorithms for structural breakup due to hypervelocity impact publication-title: Int. J. Impact Eng. doi: 10.1016/0734-743X(95)99879-V – volume: 40 start-page: 542 year: 1992 ident: 10.1016/j.actaastro.2016.05.026_bib4 article-title: A study of discretization error in the finite-element approximation of wave solutions publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.142629 – volume: 346 start-page: 431 issue: 1681 year: 1994 ident: 10.1016/j.actaastro.2016.05.026_bib22 article-title: Statistical energy analysis: a critical overview publication-title: Philos. Trans. R. Soc. Lond. A doi: 10.1098/rsta.1994.0027 – volume: 47 start-page: 555 year: 2011 ident: 10.1016/j.actaastro.2016.05.026_bib6 article-title: Accurate finite element modeling of linear elastodynamics problems with the reduced dispersion error publication-title: Comput. Mech. doi: 10.1007/s00466-010-0564-3 – volume: 26 start-page: 169 year: 2001 ident: 10.1016/j.actaastro.2016.05.026_bib14 article-title: An improved hybrid particle-element method for hypervelocity impact simulation publication-title: Int. J. Impact Eng. doi: 10.1016/S0734-743X(01)00079-3 – volume: 29 start-page: 237 year: 2003 ident: 10.1016/j.actaastro.2016.05.026_bib15 article-title: Extension and validation of a hybrid particle finite element method for hypervelocity impact simulation publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2003.09.020 – year: 2002 ident: 10.1016/j.actaastro.2016.05.026_bib20 – year: 1996 ident: 10.1016/j.actaastro.2016.05.026_bib2 – volume: 88 start-page: 87 year: 2010 ident: 10.1016/j.actaastro.2016.05.026_bib8 article-title: A finite element procedure for multiscale wave equations with application to plasma waves publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2009.05.001 – ident: 10.1016/j.actaastro.2016.05.026_bib26 – volume: 23 start-page: 237 year: 1999 ident: 10.1016/j.actaastro.2016.05.026_bib13 article-title: A hybrid particle-finite element method for hypervelocity impact simulation publication-title: Int. J. Impact Eng. doi: 10.1016/S0734-743X(99)00076-7 – volume: 84 start-page: 330 year: 2010 ident: 10.1016/j.actaastro.2016.05.026_bib7 article-title: Improvement of PUFEM for the numerical solution of high-frequency elastic wave scattering on unstructured triangular mesh grids publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2901 – volume: 143-2 start-page: 241 year: 1990 ident: 10.1016/j.actaastro.2016.05.026_bib28 article-title: Elastic wave transmission through plate/beam junctions publication-title: J. Sound Vib. – volume: 211 start-page: 521 issue: 3 year: 1998 ident: 10.1016/j.actaastro.2016.05.026_bib24 article-title: A new method for determining coupling loss factors for SEA publication-title: J. Sound Vib. – year: 2012 ident: 10.1016/j.actaastro.2016.05.026_bib29 – volume: 5 start-page: 707 year: 2010 ident: 10.1016/j.actaastro.2016.05.026_bib16 article-title: Coupling of peridynamic theory and the finite element method publication-title: J. Mech. Mater. Struct. doi: 10.2140/jomms.2010.5.707 – volume: 94–95 start-page: 1 year: 2012 ident: 10.1016/j.actaastro.2016.05.026_bib3 article-title: A finite element method enriched for wave propagation problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.01.001 – year: 2005 ident: 10.1016/j.actaastro.2016.05.026_bib19 – ident: 10.1016/j.actaastro.2016.05.026_bib25 – volume: 332 start-page: 361 year: 2013 ident: 10.1016/j.actaastro.2016.05.026_bib23 article-title: Numerical determination of statistical energy analysis parameters of directly coupled composite plates using a modal-based approach publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2012.08.020 – volume: 233 start-page: 369 issue: 3 year: 2000 ident: 10.1016/j.actaastro.2016.05.026_bib18 article-title: Energy flow models from finite element analysis publication-title: J. Sound Vib. doi: 10.1006/jsvi.1999.2812 |
SSID | ssj0007289 |
Score | 2.096667 |
Snippet | The main limitation of the currently adopted method for predicting spacecraft catastrophic fragmentation due to a collision with large debris is the total... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 95 |
SubjectTerms | Catastrophic disintegration Disintegration Fragmentation Mathematical analysis Mathematical models Space debris Spacecraft Statistical energy analysis Systems analysis |
Title | A contribution to the definition of a new method to predict the catastrophic disintegration of spacecraft after collision with large orbital debris |
URI | https://dx.doi.org/10.1016/j.actaastro.2016.05.026 https://www.proquest.com/docview/1827903731 https://www.proquest.com/docview/1835558444 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcikHVKCIflAZiWvafExip7dVRbWA1BOVerPGji2CqmS1m175E_zhzjhJaStED9ySrK1YnsnM2-TNGyE--VyxzBMk3AIlgQwxscrqBBrK56ps8spFlu9ltbyCr9fl9ZY4n2thmFY5xf4xpsdoPV05nXbzdNW2XONbA6HlkhAFuSFwHAZQ7OUnv_7QPFSuRwhcQ8KjH3G80A2Im2HNVYBZFSU8WWXh7xnqSayOCehiV7yakKNcjIt7LbZ890a8fKAn-Fb8XshIPZ96WMmhl4TvZOND20VqluyDRElIWo6do3nEas3faoY4kl_m8EJXP1onm3Yzi0lMUyn6OIKZGAYZe4tL9qJYnC75fa68YVq57NeWO5HQbbmaYE9cXXz-fr5Mpq4LiaPsPSS-cfwc16l2UGtXFSpkwWU29d7V4NLclpjRsccqZKhLzBWiy7EMqAi82eKd2O76zr8XUgfXKKXpFxcAQdm6tipYFgTSUAS9L6p5p42bJMm5M8aNmblnP829iQybyKSlIRPti_R-4mpU5Xh-ytlsSvPIwQzljucnf5yNb-jx428q2Pn-dmPo7xltVaGK7F9jClZVA4CD_1nEodjhs5FJeCS2h_Wt_0CIaLDH0eWPxYvFl2_Lyzv9tRC5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELXQcoAeqpYWlbYUV-o1Ih9O7PS2QkVLgT2BxM0aO7aaCiWr3fBL-oc74zirUlVw6C2KPYrlsWde7Jk3jH1xuSSaJ5FQCZREZACJkUYlokF_Lssmr2yI8l1Wi1vx_a6822FnUy4MhVVG2z_a9GCt45vTOJunq7alHN9aIFouEVHgMhRoh3eJnaqcsd35xeViuTXIMlcjCq5FQgKPwrzADgCbYU2JgFkVWDyJaOHfTuovcx180Pkr9jKCRz4fx_ea7bjugL34g1LwDfs15yH6PJax4kPPEeLxxvm2C9FZvPccOIJpPhaPph6rNV3XDKEnnefQQFc_WsubdjPxSURRNEAWkSb4gYfy4pwWUshP53Sky-8pspz3a0PFSPCzlFDwlt2ef7s5WySx8EJi0YEPiWssbeU6VVbUylaF9Jm3mUmds7WwaW5KyPDZQeUzUCXkEsDmUHqQiN9McchmXd-5d4wrbxspFbZYL0BIU9dGekOcQEoUXh2xapppbSMrORXHuNdT-NlPvVWRJhXptNSooiOWbgVXIzHH8yJfJ1XqR2tMo_t4XvjzpHyNO5CuVaBz_cNG4x8aTlUhi-ypPgURqwkh3v_PIE7Y3uLm-kpfXSwvP7B9ahkDCz-y2bB-cMcIkAbzKW6A3zlwE2o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+contribution+to+the+definition+of+a+new+method+to+predict+the+catastrophic+disintegration+of+spacecraft+after+collision+with+large+orbital+debris&rft.jtitle=Acta+astronautica&rft.au=Zaccariotto%2C+M&rft.au=Francesconi%2C+A&rft.au=Galvanetto%2C+U&rft.date=2016-10-01&rft.issn=0094-5765&rft.volume=127&rft.spage=95&rft.epage=102&rft_id=info:doi/10.1016%2Fj.actaastro.2016.05.026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |