Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution
Antibiotic concentrations in surface waters far exceed the pollution limit due to the abuse of pharmaceuticals, resulting in an urgent need for an approach with potential efficiency, sustainability and eco-friendliness to remove antibiotic pollutants. A novel biochar-based nanomaterial was synthesiz...
Saved in:
Published in | The Science of the total environment Vol. 648; pp. 206 - 217 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antibiotic concentrations in surface waters far exceed the pollution limit due to the abuse of pharmaceuticals, resulting in an urgent need for an approach with potential efficiency, sustainability and eco-friendliness to remove antibiotic pollutants. A novel biochar-based nanomaterial was synthesized by hydrothermal synthesis and was investigated for its removal potential for tetracycline hydrochloride (TC) from both artificial and real wastewater. The associative facilitation between biochar and g-MoS2 nanosheets was proposed, revealing the favorable surface structures and adsorption properties of the composite. The related adsorption kinetics, isotherms and thermodynamics were studied by several models with adsorption experimental data, turning out that biochar decorated by g-MoS2 exhibited optimum TC removal with adsorption capacity up to 249.45 mg/g at 298 K. The adsorption behavior of TC molecules on g-MoS2-BC can be interpreted well by three-step process, and it is dominated by several mechanisms containing pore-filling, electrostatic force, hydrogen bond and π-π interaction. In addition, the cost-effective g-MoS2-BC nanocomposites demonstrated excellent adsorption and recycling performance in TC-contaminated river water, which might provide the underlying insights needed to guide the design of promising approach for contaminant removal on a large scale in practical application.
[Display omitted]
•Hierarchical g-MoS2 nanosheets were successfully loaded onto the surface of biochar.•Pore structures and surface properties of biochar were improved by decorated with g-MoS2.•Sustainable efficient removal for TC by novel g-MoS2-biochar nanocomposite was confirmed.•Several mechanisms participated in the antibiotic removal were also discussed.•Further research focuses on the catalytic degradation ability of nanocomposite for its regeneration. |
---|---|
AbstractList | Antibiotic concentrations in surface waters far exceed the pollution limit due to the abuse of pharmaceuticals, resulting in an urgent need for an approach with potential efficiency, sustainability and eco-friendliness to remove antibiotic pollutants. A novel biochar-based nanomaterial was synthesized by hydrothermal synthesis and was investigated for its removal potential for tetracycline hydrochloride (TC) from both artificial and real wastewater. The associative facilitation between biochar and g-MoS2 nanosheets was proposed, revealing the favorable surface structures and adsorption properties of the composite. The related adsorption kinetics, isotherms and thermodynamics were studied by several models with adsorption experimental data, turning out that biochar decorated by g-MoS2 exhibited optimum TC removal with adsorption capacity up to 249.45 mg/g at 298 K. The adsorption behavior of TC molecules on g-MoS2-BC can be interpreted well by three-step process, and it is dominated by several mechanisms containing pore-filling, electrostatic force, hydrogen bond and π-π interaction. In addition, the cost-effective g-MoS2-BC nanocomposites demonstrated excellent adsorption and recycling performance in TC-contaminated river water, which might provide the underlying insights needed to guide the design of promising approach for contaminant removal on a large scale in practical application.Antibiotic concentrations in surface waters far exceed the pollution limit due to the abuse of pharmaceuticals, resulting in an urgent need for an approach with potential efficiency, sustainability and eco-friendliness to remove antibiotic pollutants. A novel biochar-based nanomaterial was synthesized by hydrothermal synthesis and was investigated for its removal potential for tetracycline hydrochloride (TC) from both artificial and real wastewater. The associative facilitation between biochar and g-MoS2 nanosheets was proposed, revealing the favorable surface structures and adsorption properties of the composite. The related adsorption kinetics, isotherms and thermodynamics were studied by several models with adsorption experimental data, turning out that biochar decorated by g-MoS2 exhibited optimum TC removal with adsorption capacity up to 249.45 mg/g at 298 K. The adsorption behavior of TC molecules on g-MoS2-BC can be interpreted well by three-step process, and it is dominated by several mechanisms containing pore-filling, electrostatic force, hydrogen bond and π-π interaction. In addition, the cost-effective g-MoS2-BC nanocomposites demonstrated excellent adsorption and recycling performance in TC-contaminated river water, which might provide the underlying insights needed to guide the design of promising approach for contaminant removal on a large scale in practical application. Antibiotic concentrations in surface waters far exceed the pollution limit due to the abuse of pharmaceuticals, resulting in an urgent need for an approach with potential efficiency, sustainability and eco-friendliness to remove antibiotic pollutants. A novel biochar-based nanomaterial was synthesized by hydrothermal synthesis and was investigated for its removal potential for tetracycline hydrochloride (TC) from both artificial and real wastewater. The associative facilitation between biochar and g-MoS2 nanosheets was proposed, revealing the favorable surface structures and adsorption properties of the composite. The related adsorption kinetics, isotherms and thermodynamics were studied by several models with adsorption experimental data, turning out that biochar decorated by g-MoS2 exhibited optimum TC removal with adsorption capacity up to 249.45 mg/g at 298 K. The adsorption behavior of TC molecules on g-MoS2-BC can be interpreted well by three-step process, and it is dominated by several mechanisms containing pore-filling, electrostatic force, hydrogen bond and π-π interaction. In addition, the cost-effective g-MoS2-BC nanocomposites demonstrated excellent adsorption and recycling performance in TC-contaminated river water, which might provide the underlying insights needed to guide the design of promising approach for contaminant removal on a large scale in practical application. [Display omitted] •Hierarchical g-MoS2 nanosheets were successfully loaded onto the surface of biochar.•Pore structures and surface properties of biochar were improved by decorated with g-MoS2.•Sustainable efficient removal for TC by novel g-MoS2-biochar nanocomposite was confirmed.•Several mechanisms participated in the antibiotic removal were also discussed.•Further research focuses on the catalytic degradation ability of nanocomposite for its regeneration. Antibiotic concentrations in surface waters far exceed the pollution limit due to the abuse of pharmaceuticals, resulting in an urgent need for an approach with potential efficiency, sustainability and eco-friendliness to remove antibiotic pollutants. A novel biochar-based nanomaterial was synthesized by hydrothermal synthesis and was investigated for its removal potential for tetracycline hydrochloride (TC) from both artificial and real wastewater. The associative facilitation between biochar and g-MoS₂ nanosheets was proposed, revealing the favorable surface structures and adsorption properties of the composite. The related adsorption kinetics, isotherms and thermodynamics were studied by several models with adsorption experimental data, turning out that biochar decorated by g-MoS₂ exhibited optimum TC removal with adsorption capacity up to 249.45 mg/g at 298 K. The adsorption behavior of TC molecules on g-MoS₂-BC can be interpreted well by three-step process, and it is dominated by several mechanisms containing pore-filling, electrostatic force, hydrogen bond and π-π interaction. In addition, the cost-effective g-MoS₂-BC nanocomposites demonstrated excellent adsorption and recycling performance in TC-contaminated river water, which might provide the underlying insights needed to guide the design of promising approach for contaminant removal on a large scale in practical application. |
Author | Zeng, Guangming Fang, Yilong Yu, Jiangfang Zeng, Zhuotong Wu, Haipeng Liang, Jie Song, Biao Zhang, Chang Ye, Shujing Xiao, Rong |
Author_xml | – sequence: 1 givenname: Zhuotong surname: Zeng fullname: Zeng, Zhuotong organization: Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China – sequence: 2 givenname: Shujing surname: Ye fullname: Ye, Shujing organization: College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China – sequence: 3 givenname: Haipeng surname: Wu fullname: Wu, Haipeng organization: Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China – sequence: 4 givenname: Rong surname: Xiao fullname: Xiao, Rong email: xiaorong65@csu.edu.cn organization: Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China – sequence: 5 givenname: Guangming orcidid: 0000-0002-4230-7647 surname: Zeng fullname: Zeng, Guangming email: zgming@hnu.edu.cn organization: Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China – sequence: 6 givenname: Jie surname: Liang fullname: Liang, Jie organization: College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China – sequence: 7 givenname: Chang surname: Zhang fullname: Zhang, Chang organization: College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China – sequence: 8 givenname: Jiangfang surname: Yu fullname: Yu, Jiangfang organization: College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China – sequence: 9 givenname: Yilong surname: Fang fullname: Fang, Yilong organization: College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China – sequence: 10 givenname: Biao surname: Song fullname: Song, Biao organization: College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China |
BookMark | eNqNkc2OVCEQhYkZE3tGn0GWbm4L9w_uwsVkoqPJGBN_1oQLxTQdLtUC3Uk_jm8qN21cuBlZQCp1vpOizjW5ihiBkNecbTnj49v9NhtfsEA8bVvG5ZbJ2pDPyIZLMTWcteMV2TDWy2YaJ_GCXOe8Z_UIyTfk11fIoJPZUYy07IDmYy7aRz0HoOCcN9qcKTr62HzGby21YDDpApbOHs1OJxp1RIPLAbMvkKnDRBMsePLxkRYoqfIm-Ah0d7apIgGTt0BdwoXqWHz1Kd40BwzhuPrqn0fAY6YZa-0xviTPnQ4ZXv15b8iPD--_331sHr7cf7q7fWhMJ3lpwM6iNyNjrpeutW6A2VreaTkPnYBpFD0b5nobox1wK-Tcdq4XQs-DccbZ7oa8ufgeEtYRclGLzwZC0HGdR7V86EbOJW-fljI5yUF23VCl7y5SkzDnBE7VsPT6r7oZHxRnak1R7dXfFNWaomKyNmTlxT_8IflFp_N_kLcXEurSTh7SqoNowPoEpiiL_kmP316Fxb0 |
CitedBy_id | crossref_primary_10_3390_molecules29051005 crossref_primary_10_1016_j_jece_2024_112458 crossref_primary_10_1007_s13399_024_06216_7 crossref_primary_10_1016_j_cej_2022_139542 crossref_primary_10_1016_j_jwpe_2024_106450 crossref_primary_10_1016_j_envres_2025_121405 crossref_primary_10_1016_j_wse_2023_02_002 crossref_primary_10_1016_j_apsusc_2024_160898 crossref_primary_10_1016_j_eti_2024_103611 crossref_primary_10_1016_j_mtsust_2023_100525 crossref_primary_10_1016_j_biortech_2020_123950 crossref_primary_10_1007_s13399_022_03652_1 crossref_primary_10_1016_j_cej_2024_158621 crossref_primary_10_1016_j_seppur_2024_131311 crossref_primary_10_1007_s13399_024_06364_w crossref_primary_10_1016_j_dyepig_2022_110687 crossref_primary_10_1016_j_cej_2019_123290 crossref_primary_10_1016_j_jece_2021_107024 crossref_primary_10_1016_j_seppur_2023_125034 crossref_primary_10_3390_ijerph20031679 crossref_primary_10_1016_j_jphotochem_2019_112217 crossref_primary_10_1016_j_matchemphys_2020_123060 crossref_primary_10_1016_j_jece_2024_115279 crossref_primary_10_1016_j_molstruc_2023_136846 crossref_primary_10_3389_fmats_2023_1234981 crossref_primary_10_1016_j_eti_2021_101385 crossref_primary_10_1016_j_wri_2024_100245 crossref_primary_10_1016_j_jece_2024_112208 crossref_primary_10_1007_s42773_020_00044_4 crossref_primary_10_1016_j_microc_2023_109666 crossref_primary_10_1016_j_envint_2019_03_012 crossref_primary_10_1016_j_colsurfa_2020_125730 crossref_primary_10_1016_j_seppur_2022_121625 crossref_primary_10_1039_C9NJ05396D crossref_primary_10_13005_ojc_380202 crossref_primary_10_1038_s41545_022_00172_3 crossref_primary_10_1007_s11356_021_18220_9 crossref_primary_10_1016_j_seppur_2018_11_030 crossref_primary_10_1007_s11270_023_06223_w crossref_primary_10_1016_j_mtsust_2024_100705 crossref_primary_10_1016_j_apcatb_2020_118850 crossref_primary_10_1016_j_molliq_2022_120866 crossref_primary_10_1039_D1NJ02686K crossref_primary_10_1016_j_scitotenv_2020_141925 crossref_primary_10_1016_j_apsusc_2023_158390 crossref_primary_10_1016_j_chemosphere_2020_127057 crossref_primary_10_1016_j_jwpe_2022_103089 crossref_primary_10_1016_j_chemosphere_2022_133981 crossref_primary_10_1016_j_jece_2023_110526 crossref_primary_10_1016_j_cej_2022_137027 crossref_primary_10_1016_j_chemosphere_2022_136213 crossref_primary_10_1016_j_talanta_2024_126291 crossref_primary_10_1016_j_jenvman_2022_115900 crossref_primary_10_1016_j_carbon_2019_01_003 crossref_primary_10_1016_j_apsusc_2018_11_207 crossref_primary_10_1016_j_jece_2020_103762 crossref_primary_10_1016_j_cej_2023_145242 crossref_primary_10_1016_j_powtec_2019_10_107 crossref_primary_10_1016_j_micromeso_2020_110135 crossref_primary_10_1021_acs_iecr_1c01311 crossref_primary_10_1016_j_apcatb_2019_03_004 crossref_primary_10_1016_j_apsusc_2023_158842 crossref_primary_10_1016_j_chemosphere_2020_126995 crossref_primary_10_3390_su15054412 crossref_primary_10_1007_s10570_019_02521_x crossref_primary_10_1016_j_clay_2019_105175 crossref_primary_10_1016_j_ijbiomac_2023_128610 crossref_primary_10_1016_j_jclepro_2024_141983 crossref_primary_10_1007_s42773_023_00299_7 crossref_primary_10_1016_j_jhazmat_2021_126046 crossref_primary_10_2139_ssrn_4151694 crossref_primary_10_1016_j_cej_2023_142762 crossref_primary_10_1016_j_biortech_2022_126672 crossref_primary_10_1016_j_jece_2024_112343 crossref_primary_10_3390_toxics12100691 crossref_primary_10_1016_j_biortech_2023_128593 crossref_primary_10_1007_s00289_021_03812_9 crossref_primary_10_1007_s11164_024_05451_x crossref_primary_10_1016_j_cej_2021_129807 crossref_primary_10_1071_CH23170 crossref_primary_10_1016_j_molliq_2024_125322 crossref_primary_10_1016_j_chemosphere_2022_134047 crossref_primary_10_1016_j_apsusc_2021_152417 crossref_primary_10_1021_acsestwater_2c00597 crossref_primary_10_1016_j_chemosphere_2021_133454 crossref_primary_10_1016_j_cej_2025_160891 crossref_primary_10_1007_s11356_023_29345_4 crossref_primary_10_1016_j_envres_2022_114925 crossref_primary_10_1016_j_fuel_2023_130485 crossref_primary_10_3390_catal13010061 crossref_primary_10_1016_j_jhazmat_2019_121769 crossref_primary_10_1002_mabi_202000185 crossref_primary_10_1007_s11356_023_30900_2 crossref_primary_10_1016_j_envres_2023_117227 crossref_primary_10_1016_j_jclepro_2021_128759 crossref_primary_10_1016_j_envres_2024_119488 crossref_primary_10_1016_j_jclepro_2021_128875 crossref_primary_10_1016_j_surfin_2025_106270 crossref_primary_10_3389_fenvs_2020_00062 crossref_primary_10_1007_s13399_023_04171_3 crossref_primary_10_1016_j_jece_2022_109002 crossref_primary_10_1007_s42773_021_00101_6 crossref_primary_10_1016_j_seppur_2023_125510 crossref_primary_10_1021_acs_langmuir_2c00975 crossref_primary_10_1021_acs_langmuir_2c00731 crossref_primary_10_1016_j_jece_2021_105324 crossref_primary_10_2166_wst_2020_283 crossref_primary_10_1039_D3NJ03731B crossref_primary_10_1016_j_memsci_2021_119964 crossref_primary_10_1080_10643389_2021_1929001 crossref_primary_10_3390_app10217810 crossref_primary_10_1016_j_chemosphere_2021_129902 crossref_primary_10_3390_molecules28083478 crossref_primary_10_1016_j_apsusc_2023_159119 crossref_primary_10_4236_msce_2024_129002 crossref_primary_10_1016_j_biortech_2022_127384 crossref_primary_10_1016_j_envres_2018_10_017 crossref_primary_10_1016_j_jwpe_2023_104585 crossref_primary_10_1016_j_scitotenv_2018_10_131 crossref_primary_10_1007_s11356_024_33085_4 crossref_primary_10_1016_j_jhazmat_2023_133143 crossref_primary_10_1016_j_scitotenv_2020_144253 crossref_primary_10_1021_acs_langmuir_2c03219 crossref_primary_10_1016_j_fuel_2021_120629 crossref_primary_10_1016_j_inoche_2025_113977 crossref_primary_10_1016_j_jcis_2019_05_078 crossref_primary_10_1016_j_envres_2023_117566 crossref_primary_10_1016_j_seppur_2021_120286 crossref_primary_10_1016_j_chemosphere_2020_128624 crossref_primary_10_1016_j_enmm_2024_101018 crossref_primary_10_2478_ahr_2022_0020 crossref_primary_10_1016_j_cej_2021_130028 crossref_primary_10_1016_j_scitotenv_2021_147397 crossref_primary_10_1021_acs_langmuir_8b04179 crossref_primary_10_1016_j_chemosphere_2024_142855 crossref_primary_10_1016_j_biortech_2022_128385 crossref_primary_10_1016_j_biortech_2022_126884 crossref_primary_10_1016_j_jcis_2023_02_097 crossref_primary_10_1016_j_jwpe_2023_104215 crossref_primary_10_2139_ssrn_4188609 crossref_primary_10_1038_s41598_021_04430_1 crossref_primary_10_1016_j_jclepro_2021_128412 crossref_primary_10_1016_j_ibiod_2018_12_005 crossref_primary_10_1016_j_envpol_2023_121758 crossref_primary_10_1016_j_biortech_2020_123455 crossref_primary_10_1016_j_cej_2019_123350 crossref_primary_10_1016_j_chemosphere_2022_136258 crossref_primary_10_1021_acsomega_3c07804 crossref_primary_10_1016_j_envres_2022_114339 crossref_primary_10_1016_j_jece_2021_106557 crossref_primary_10_1016_j_chemosphere_2018_11_181 crossref_primary_10_1021_acsomega_2c07377 crossref_primary_10_1016_j_jclepro_2023_138495 crossref_primary_10_1016_j_biortech_2019_122152 crossref_primary_10_3390_polym13020226 crossref_primary_10_1016_j_envres_2024_120489 crossref_primary_10_3390_w17020235 crossref_primary_10_1016_j_apcatb_2019_118572 crossref_primary_10_1016_j_eti_2022_102914 crossref_primary_10_3390_pr9122160 crossref_primary_10_5004_dwt_2023_29501 crossref_primary_10_1007_s11356_021_16329_5 crossref_primary_10_1016_j_biortech_2022_128018 crossref_primary_10_1016_j_jiec_2023_06_037 crossref_primary_10_1016_j_seppur_2024_129096 crossref_primary_10_1016_j_ecoenv_2025_117979 crossref_primary_10_1016_j_jwpe_2024_106122 crossref_primary_10_1016_j_biortech_2022_127717 crossref_primary_10_1016_j_jhazmat_2019_121095 crossref_primary_10_1007_s11270_022_05891_4 crossref_primary_10_1016_j_seppur_2024_128313 crossref_primary_10_1016_j_biortech_2021_124949 crossref_primary_10_1038_s41598_019_45695_x crossref_primary_10_1016_j_colsurfa_2020_125792 crossref_primary_10_1016_j_jece_2021_105912 crossref_primary_10_1007_s11270_023_06709_7 crossref_primary_10_1016_j_jenvman_2024_123956 crossref_primary_10_1016_j_scitotenv_2024_174679 crossref_primary_10_1016_j_envres_2019_108899 crossref_primary_10_1007_s10163_022_01391_z crossref_primary_10_1016_j_seppur_2021_119314 crossref_primary_10_1016_j_biortech_2022_127477 crossref_primary_10_1016_j_coelec_2021_100833 crossref_primary_10_1016_j_seppur_2020_117536 crossref_primary_10_1016_j_chemosphere_2021_130926 crossref_primary_10_1016_j_ijbiomac_2025_139565 crossref_primary_10_1016_j_jhazmat_2020_122836 crossref_primary_10_1142_S1793292022500850 crossref_primary_10_1021_acsanm_1c00442 crossref_primary_10_1016_j_seppur_2024_130187 crossref_primary_10_1039_D0EN01048K crossref_primary_10_1016_j_jwpe_2024_105517 crossref_primary_10_1080_03067319_2020_1843646 crossref_primary_10_1016_j_jhazmat_2022_129467 crossref_primary_10_2166_wst_2022_118 crossref_primary_10_1016_j_jenvman_2022_116614 crossref_primary_10_1007_s11356_021_15124_6 crossref_primary_10_1016_j_envpol_2021_117600 crossref_primary_10_1016_j_jclepro_2023_136174 crossref_primary_10_1016_j_jece_2024_113377 crossref_primary_10_1002_slct_202302788 crossref_primary_10_1007_s11802_021_4611_9 crossref_primary_10_1016_j_jclepro_2021_126005 crossref_primary_10_1016_j_solidstatesciences_2020_106188 crossref_primary_10_1016_j_biortech_2018_10_053 crossref_primary_10_1016_j_jhazmat_2019_01_009 crossref_primary_10_1016_j_jwpe_2022_103111 crossref_primary_10_1016_j_biortech_2021_124922 crossref_primary_10_1016_j_chemosphere_2022_136884 crossref_primary_10_1016_j_jiec_2019_03_046 crossref_primary_10_1016_j_biortech_2020_124199 crossref_primary_10_1016_j_cjche_2021_09_025 crossref_primary_10_3390_molecules27206782 crossref_primary_10_1016_j_matdes_2023_111620 crossref_primary_10_1016_j_molliq_2021_117237 crossref_primary_10_1021_acsomega_3c01196 crossref_primary_10_1016_j_biortech_2019_122102 crossref_primary_10_1039_C9RA05427H crossref_primary_10_1016_j_molstruc_2025_141395 crossref_primary_10_1016_j_chemosphere_2024_143980 crossref_primary_10_1016_j_matchemphys_2020_122710 crossref_primary_10_1016_j_cherd_2022_11_053 crossref_primary_10_1016_j_jhazmat_2020_124909 crossref_primary_10_1016_j_scitotenv_2020_144124 crossref_primary_10_1016_j_cej_2024_154767 crossref_primary_10_1016_j_biortech_2020_123092 crossref_primary_10_1080_10601325_2019_1565549 crossref_primary_10_1016_j_ceramint_2024_01_392 crossref_primary_10_1016_j_jenvman_2024_122757 crossref_primary_10_1039_D2DT00737A crossref_primary_10_1016_j_ijbiomac_2023_124273 crossref_primary_10_1186_s12302_022_00650_y crossref_primary_10_1016_j_seppur_2021_119548 crossref_primary_10_1016_j_chemosphere_2022_133902 crossref_primary_10_1016_j_ibiod_2024_105886 crossref_primary_10_1016_j_scitotenv_2020_141755 crossref_primary_10_1016_j_solidstatesciences_2022_107014 crossref_primary_10_1016_j_apsusc_2020_146757 crossref_primary_10_1016_j_jclepro_2022_135839 crossref_primary_10_1016_j_seppur_2023_125583 crossref_primary_10_1016_j_scitotenv_2022_160860 crossref_primary_10_1016_j_envpol_2023_122637 crossref_primary_10_1016_j_scitotenv_2021_150647 crossref_primary_10_1016_j_jclepro_2019_119523 crossref_primary_10_1016_j_jcis_2021_05_080 crossref_primary_10_1002_slct_202403556 crossref_primary_10_1080_09593330_2018_1549104 crossref_primary_10_1007_s11270_023_06625_w crossref_primary_10_1016_j_chemosphere_2021_131260 crossref_primary_10_1016_j_jes_2024_04_044 crossref_primary_10_1016_j_seppur_2023_125356 crossref_primary_10_1016_j_cej_2020_127195 crossref_primary_10_1016_j_seppur_2022_122806 crossref_primary_10_1016_j_jenvman_2024_122670 crossref_primary_10_1002_jssc_201900871 crossref_primary_10_1007_s42773_022_00161_2 crossref_primary_10_1016_j_catena_2019_01_008 crossref_primary_10_1007_s11356_021_13199_9 crossref_primary_10_1016_j_molliq_2021_116698 crossref_primary_10_1016_j_seppur_2024_128988 crossref_primary_10_1016_j_jpcs_2022_110732 crossref_primary_10_1016_j_micromeso_2019_109984 crossref_primary_10_1016_j_resconrec_2018_10_004 crossref_primary_10_1016_j_seppur_2020_118098 crossref_primary_10_1016_j_scitotenv_2023_169035 crossref_primary_10_1016_j_biortech_2019_03_086 crossref_primary_10_1016_j_materresbull_2021_111650 crossref_primary_10_1007_s11356_021_12696_1 crossref_primary_10_1016_j_cej_2024_150387 crossref_primary_10_1016_j_jhazmat_2024_136871 crossref_primary_10_1016_j_jwpe_2024_105215 crossref_primary_10_1016_j_seppur_2024_128063 crossref_primary_10_1007_s11356_021_17435_0 crossref_primary_10_1016_j_chemosphere_2019_124432 crossref_primary_10_1016_j_jclepro_2022_131819 crossref_primary_10_1016_j_cej_2022_136006 crossref_primary_10_1016_j_apsusc_2021_149313 crossref_primary_10_1016_j_cej_2024_152310 crossref_primary_10_1016_j_conbuildmat_2018_12_096 crossref_primary_10_1016_j_jwpe_2022_103426 crossref_primary_10_1016_j_colsurfa_2024_134830 crossref_primary_10_1016_j_jclepro_2022_134769 crossref_primary_10_1016_j_seppur_2021_120118 crossref_primary_10_1016_j_jhazmat_2022_128584 crossref_primary_10_1016_j_envres_2022_113779 crossref_primary_10_1039_D0RA04264A crossref_primary_10_1016_j_scitotenv_2019_136282 crossref_primary_10_1016_j_jcis_2020_12_014 crossref_primary_10_1002_slct_202300658 crossref_primary_10_1039_D4NJ05076B crossref_primary_10_1007_s11270_023_06856_x crossref_primary_10_1016_j_jiec_2023_11_050 crossref_primary_10_3390_w15132392 crossref_primary_10_1039_D3RA00745F crossref_primary_10_1016_j_biortech_2023_129119 crossref_primary_10_1016_j_jwpe_2023_103519 crossref_primary_10_1016_j_chemosphere_2022_135688 crossref_primary_10_1016_j_watres_2020_115876 crossref_primary_10_1016_j_jclepro_2022_130734 crossref_primary_10_1016_j_eti_2023_103363 crossref_primary_10_1016_j_chemosphere_2019_02_004 crossref_primary_10_1016_S1872_2067_19_63486_8 crossref_primary_10_1016_j_seppur_2024_126429 crossref_primary_10_1016_j_jece_2021_105868 crossref_primary_10_1016_j_jenvman_2023_118210 crossref_primary_10_1016_j_jhazmat_2021_127971 crossref_primary_10_1007_s10854_020_03271_4 crossref_primary_10_1016_j_molstruc_2022_133897 crossref_primary_10_2166_wst_2019_259 crossref_primary_10_1016_j_wen_2023_07_003 crossref_primary_10_1016_j_fuel_2021_122510 crossref_primary_10_1016_j_carbpol_2023_121265 crossref_primary_10_1016_j_jes_2025_01_020 crossref_primary_10_1016_j_cclet_2024_109764 crossref_primary_10_1016_j_jece_2021_106167 crossref_primary_10_1021_acs_langmuir_4c02959 crossref_primary_10_1007_s11356_024_35457_2 crossref_primary_10_1016_j_inoche_2023_111577 crossref_primary_10_1007_s42773_022_00197_4 crossref_primary_10_1007_s13399_020_00683_4 crossref_primary_10_1021_acs_langmuir_3c02973 crossref_primary_10_1007_s11356_020_09713_0 crossref_primary_10_1016_j_ecoenv_2021_111993 crossref_primary_10_1007_s42452_020_2514_9 crossref_primary_10_1016_j_seppur_2024_127865 crossref_primary_10_1007_s42773_022_00201_x crossref_primary_10_1016_j_jwpe_2020_101908 |
Cites_doi | 10.1039/C4NR03716B 10.1016/j.chemosphere.2014.12.058 10.1002/ep.12391 10.1021/nl403661s 10.1080/07388551.2016.1232696 10.1016/j.jenvman.2016.08.070 10.1080/07388551.2017.1304357 10.1016/j.jhazmat.2017.01.045 10.1016/j.cej.2017.11.048 10.1016/j.cej.2012.07.048 10.1016/j.bios.2016.05.078 10.1007/s00339-004-3003-5 10.1016/j.biortech.2017.04.042 10.1016/j.jenvman.2011.05.023 10.1016/j.scitotenv.2017.08.089 10.1016/j.watres.2014.09.026 10.1080/10643389.2017.1386951 10.1039/c4ta01898b 10.1021/ac503472p 10.1016/j.jhazmat.2008.09.072 10.1016/j.cej.2011.07.072 10.1021/acs.cgd.7b00474 10.1016/j.biortech.2016.11.042 10.1021/es803268b 10.1016/j.cej.2016.12.041 10.1016/j.foodchem.2018.02.011 10.1039/C5RA04834F 10.1016/j.cej.2011.03.102 10.1016/j.scitotenv.2012.07.038 10.1016/j.jssc.2017.04.041 10.1016/j.cej.2013.12.048 10.1016/j.chemosphere.2017.04.081 10.1016/j.jhazmat.2017.09.053 10.1039/C7TA08399H 10.1016/j.apsusc.2016.03.143 10.1039/C5RA24328A 10.1016/j.cej.2013.04.045 10.1016/j.scitotenv.2012.02.023 10.1016/j.biotechadv.2015.05.003 10.1016/j.jhazmat.2017.04.012 10.1186/1735-2746-10-5 10.1007/s11270-017-3320-x 10.1016/j.scitotenv.2017.03.087 10.1016/j.apcatb.2017.08.055 10.1038/srep39691 10.1016/j.scitotenv.2013.09.044 10.1016/j.apsusc.2017.03.181 10.1016/j.spmi.2016.10.012 10.1016/j.foodchem.2018.02.143 10.1016/j.watres.2016.03.014 10.1021/nn200659w 10.1016/j.cej.2015.09.001 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier B.V. |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier B.V. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2018.08.108 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 217 |
ExternalDocumentID | 10_1016_j_scitotenv_2018_08_108 S0048969718330729 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c381t-edb74c600f48f2df5ebdd13a8b537e967405b674ccafe1d78b23f477ab5cfcfd3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Tue Aug 05 11:21:28 EDT 2025 Fri Jul 11 16:13:15 EDT 2025 Tue Jul 01 01:21:49 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tetracycline hydrochloride Sustainable application Removal mechanisms Biochar-based nanocomposite g-MoS2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-edb74c600f48f2df5ebdd13a8b537e967405b674ccafe1d78b23f477ab5cfcfd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4230-7647 |
PQID | 2089858335 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2153611812 proquest_miscellaneous_2089858335 crossref_citationtrail_10_1016_j_scitotenv_2018_08_108 crossref_primary_10_1016_j_scitotenv_2018_08_108 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_08_108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-15 |
PublicationDateYYYYMMDD | 2019-01-15 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhao, Zhang, Wang, Zhao, Zhou, Li, Jin (bb0250) 2017; 412 Voiry, Salehi, Silva, Fujita, Chen, Asefa, Shenoy, Eda, Chhowalla (bb0150) 2013; 13 Zhang, Zeng, Tang, Chen, Zhu, He, He (bb0235) 2015; 87 Han, Liu, Hu, Teng, Yu, Zhu (bb0050) 2017; 7 Wan, Zeng, Huang, Hu, Xu, Huang, Deng, Xue, Lai, Zhou, Zheng, Ren, Gong (bb0155) 2018; 343 Yang, Zheng, Liu, Luo, Luo, Li (bb0195) 2017; 329 Tang, Zeng, Gong, Liang, Xu, Zhang, Huang (bb0125) 2014; 468 Wu, Lai, Zeng, Liang, Chen, Xu, Dai, Li, Liu, Chen, Lu, Hu, Wan (bb0180) 2017; 37 Xu, Zeng, Huang, Lai, Zhao, Wei, Li, Huang, Xie (bb0185) 2012; 203 Wang, Wen, Chen, Sun, Meng, Zhang (bb0160) 2016; 85 Homem, Santos (bb0055) 2011; 92 Liu, Wang, Zheng, He (bb0080) 2017; 228 Jahangiri-Rad, Nadafi, Mesdaghinia, Nabizadeh, Younesian, Rafiee (bb0060) 2013; 10 Zhao, Li, Wang (bb0245) 2011; 173 Ye, Zeng, Wu, Zhang, Liang, Dai, Liu, Xiong, Wan, Xu, Cheng (bb0220) 2017; 47 Chao, Zhu, Wu, Hou, Xun, Wu, Ji, Xu, Li (bb0020) 2014; 243 Ye, Zeng, Wu, Zhang, Dai, Liang, Yu, Ren, Yi, Cheng, Zhang (bb0215) 2017; 37 Tan, Liu, Zeng, Wang, Hu, Gu, Yang (bb0110) 2015; 125 Cheng, Zeng, Huang, Lai, Xu, Zhang, Liu (bb0035) 2016; 284 Zhou, Hou, Sang, Yao, Zhou, Li, Li, Liu, Chen (bb0255) 2014; 2 Theerthagiri, Senthil, Senthilkumar, Reddy Polu, Madhavan, Ashokkumar (bb0135) 2017; 252 Qiao, Zhang, Tian, Hou, Tian, Li, Zhang (bb0100) 2017; 17 Ahmed, Zhou, Ngo, Guo, Johir, Belhaj (bb0005) 2017; 238 Zhang, Gao, Yao, Xue, Inyang (bb0230) 2012; 435–436 Tang, Yu, Pang, Zeng, Deng, Wang, Ren, Ye, Peng, Feng (bb0130) 2018; 336 Kiran, Mukherjee, Jenjeti, Sampath (bb0070) 2014; 6 Wu, Zhong, Yuan, Wang, Wang, Chen, Zeng, Wu (bb0175) 2014; 2014 Tiwari, Sellamuthu, Ouarda, Drogui, Tyagi, Buelna (bb0140) 2017; 224 Liu, Xu, Liu, Tan, Zeng, Li, Liang, Zhou, Yan, Cai (bb0085) 2017; 592 Yang, Wang, Chen, Yang, Pei, Hu, Li, Suo, Li, Wang (bb0210) 2018; 6 Zeng, Wu, Liang, Guo, Hu, Xu, Liu, Yuan, He, He (bb0225) 2015; 5 Chen, Xu, Zeng, Yang, Huang, Zhang (bb0030) 2015; 33 Ren, Zeng, Tang, Wang, Wan, Liu, Yu, Yi, Ye, Deng (bb0105) 2018; 610 Xu, Zeng, Huang, Feng, Hu, Zhao, Lai, Wei, Huang, Xie, Liu (bb0190) 2012; 424 Zhang, Lai, Zeng, Huang, Yang, Wang, Zhou, Cheng (bb0240) 2016; 95 Chang, Chen (bb0015) 2011; 5 Wang, Wang, Ma (bb0165) 2017; 336 Tan, Liu, Liu, Gu, Zeng, Cai, Yan, Yang, Hu, Chen (bb0115) 2016; 6 Vattikuti, Byon (bb0145) 2016; 100 Yang, Wang, Wang, Liu, Hu, Pei, Yang, Li, Suo, Wang (bb0205) 2018; 254 Tan, Liu, Gu, Liu, Zeng, Cai, Hu, Wang, Liu, Jiang (bb0120) 2016; 184 Deng, Zhang, Zeng, Gong, Niu, Liang (bb0040) 2013; 226 Ji, Chen, Duan, Zhu (bb0065) 2009; 43 Liang, Yang, Tang, Zeng, Yu, Li, Wu, Qian, Li, Luo (bb0075) 2017; 181 Qiao, Hu, Tian, Hou, Li (bb0095) 2016; 6 Zhu, Zhang, Jiang, Zheng, Hu, Li, Wu, Wu (bb0265) 2016; 377 Chao, Yang, Ji, Zhu, Pang, Han, Li (bb0025) 2017; 36 Zhou, Lai, Huang, Zeng, Zhang, Cheng, Hu, Wan, Xiong, Wen, Wen, Qin (bb0260) 2018; 220 Gong, Wang, Zeng, Yang, Niu, Niu, Zhou, Liang (bb0045) 2009; 164 Long, Gong, Zeng, Chen, Wang, Deng, Niu, Zhang, Zhang (bb0090) 2011; 171 Yang, Wang, Zhang, Liu, Yue, Liu, Yang, Li, Wang (bb0200) 2017; 313 Berdinsky, Chadderton, Yoo, Gutakovsky, Fedorov, Mazalov, Fink (bb0010) 2005; 80 Wang, Yang, Zhang, Liu, Hu, Zhang, Zhu, Wang, Suo, Wang (bb0170) 2018; 257 Deng (10.1016/j.scitotenv.2018.08.108_bb0040) 2013; 226 Long (10.1016/j.scitotenv.2018.08.108_bb0090) 2011; 171 Xu (10.1016/j.scitotenv.2018.08.108_bb0185) 2012; 203 Han (10.1016/j.scitotenv.2018.08.108_bb0050) 2017; 7 Tan (10.1016/j.scitotenv.2018.08.108_bb0120) 2016; 184 Wu (10.1016/j.scitotenv.2018.08.108_bb0175) 2014; 2014 Kiran (10.1016/j.scitotenv.2018.08.108_bb0070) 2014; 6 Tang (10.1016/j.scitotenv.2018.08.108_bb0130) 2018; 336 Tiwari (10.1016/j.scitotenv.2018.08.108_bb0140) 2017; 224 Yang (10.1016/j.scitotenv.2018.08.108_bb0210) 2018; 6 Ye (10.1016/j.scitotenv.2018.08.108_bb0220) 2017; 47 Zhao (10.1016/j.scitotenv.2018.08.108_bb0250) 2017; 412 Zhou (10.1016/j.scitotenv.2018.08.108_bb0260) 2018; 220 Wang (10.1016/j.scitotenv.2018.08.108_bb0160) 2016; 85 Vattikuti (10.1016/j.scitotenv.2018.08.108_bb0145) 2016; 100 Zhou (10.1016/j.scitotenv.2018.08.108_bb0255) 2014; 2 Voiry (10.1016/j.scitotenv.2018.08.108_bb0150) 2013; 13 Qiao (10.1016/j.scitotenv.2018.08.108_bb0095) 2016; 6 Chao (10.1016/j.scitotenv.2018.08.108_bb0025) 2017; 36 Tang (10.1016/j.scitotenv.2018.08.108_bb0125) 2014; 468 Yang (10.1016/j.scitotenv.2018.08.108_bb0205) 2018; 254 Homem (10.1016/j.scitotenv.2018.08.108_bb0055) 2011; 92 Chang (10.1016/j.scitotenv.2018.08.108_bb0015) 2011; 5 Zhang (10.1016/j.scitotenv.2018.08.108_bb0230) 2012; 435–436 Wan (10.1016/j.scitotenv.2018.08.108_bb0155) 2018; 343 Cheng (10.1016/j.scitotenv.2018.08.108_bb0035) 2016; 284 Zeng (10.1016/j.scitotenv.2018.08.108_bb0225) 2015; 5 Liang (10.1016/j.scitotenv.2018.08.108_bb0075) 2017; 181 Zhang (10.1016/j.scitotenv.2018.08.108_bb0240) 2016; 95 Wang (10.1016/j.scitotenv.2018.08.108_bb0170) 2018; 257 Zhu (10.1016/j.scitotenv.2018.08.108_bb0265) 2016; 377 Wang (10.1016/j.scitotenv.2018.08.108_bb0165) 2017; 336 Xu (10.1016/j.scitotenv.2018.08.108_bb0190) 2012; 424 Yang (10.1016/j.scitotenv.2018.08.108_bb0200) 2017; 313 Ren (10.1016/j.scitotenv.2018.08.108_bb0105) 2018; 610 Yang (10.1016/j.scitotenv.2018.08.108_bb0195) 2017; 329 Zhang (10.1016/j.scitotenv.2018.08.108_bb0235) 2015; 87 Tan (10.1016/j.scitotenv.2018.08.108_bb0115) 2016; 6 Gong (10.1016/j.scitotenv.2018.08.108_bb0045) 2009; 164 Liu (10.1016/j.scitotenv.2018.08.108_bb0080) 2017; 228 Ahmed (10.1016/j.scitotenv.2018.08.108_bb0005) 2017; 238 Chao (10.1016/j.scitotenv.2018.08.108_bb0020) 2014; 243 Jahangiri-Rad (10.1016/j.scitotenv.2018.08.108_bb0060) 2013; 10 Zhao (10.1016/j.scitotenv.2018.08.108_bb0245) 2011; 173 Ye (10.1016/j.scitotenv.2018.08.108_bb0215) 2017; 37 Berdinsky (10.1016/j.scitotenv.2018.08.108_bb0010) 2005; 80 Qiao (10.1016/j.scitotenv.2018.08.108_bb0100) 2017; 17 Wu (10.1016/j.scitotenv.2018.08.108_bb0180) 2017; 37 Ji (10.1016/j.scitotenv.2018.08.108_bb0065) 2009; 43 Chen (10.1016/j.scitotenv.2018.08.108_bb0030) 2015; 33 Theerthagiri (10.1016/j.scitotenv.2018.08.108_bb0135) 2017; 252 Tan (10.1016/j.scitotenv.2018.08.108_bb0110) 2015; 125 Liu (10.1016/j.scitotenv.2018.08.108_bb0085) 2017; 592 |
References_xml | – volume: 610 start-page: 1154 year: 2018 end-page: 1163 ident: bb0105 article-title: Sorption, transport and biodegradation - an insight into bioavailability of persistent organic pollutants in soil publication-title: Sci. Total Environ. – volume: 17 start-page: 3538 year: 2017 end-page: 3547 ident: bb0100 article-title: Enhanced catalytic reduction of p-nitrophenol on ultrathin MoS2 nanosheets decorated with noble metal nanoparticles publication-title: Cryst. Growth Des. – volume: 171 start-page: 448 year: 2011 end-page: 455 ident: bb0090 article-title: Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide publication-title: Chem. Eng. J. – volume: 10 start-page: 5 year: 2013 ident: bb0060 article-title: Sequential study on reactive blue 29 dye removal from aqueous solution by peroxy acid and single wall carbon nanotubes: experiment and theory publication-title: Iran. J Environ. Health Sci. Eng. – volume: 92 start-page: 2304 year: 2011 end-page: 2347 ident: bb0055 article-title: Degradation and removal methods of antibiotics from aqueous matrices—a review publication-title: J. Environ. Manag. – volume: 468 start-page: 1014 year: 2014 end-page: 1027 ident: bb0125 article-title: Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review publication-title: Sci. Total Environ. – volume: 203 start-page: 423 year: 2012 end-page: 431 ident: bb0185 article-title: Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis publication-title: Chem. Eng. J. – volume: 435–436 start-page: 567 year: 2012 end-page: 572 ident: bb0230 article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar publication-title: Sci. Total Environ. – volume: 36 start-page: 815 year: 2017 end-page: 821 ident: bb0025 article-title: Graphene-analogue molybdenum disulfide for adsorptive removal of tetracycline from aqueous solution: equilibrium, kinetic, and thermodynamic studies publication-title: Environ. Prog. Sustain. Energy – volume: 226 start-page: 189 year: 2013 end-page: 200 ident: bb0040 article-title: Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent publication-title: Chem. Eng. J. – volume: 224 start-page: 1 year: 2017 end-page: 12 ident: bb0140 article-title: Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach publication-title: Bioresour. Technol. – volume: 47 start-page: 1528 year: 2017 end-page: 1553 ident: bb0220 article-title: Co-occurrence and interactions of pollutants, and their impacts on soil remediation-a review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 33 start-page: 745 year: 2015 end-page: 755 ident: bb0030 article-title: Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides,chlorophenols andheavymetalsby composting: applications, microbes and future research needs publication-title: Biotechnol. Adv. – volume: 184 start-page: 85 year: 2016 end-page: 93 ident: bb0120 article-title: Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass ( publication-title: J. Environ. Manag. – volume: 5 start-page: 34541 year: 2015 end-page: 34548 ident: bb0225 article-title: Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil publication-title: RSC Adv. – volume: 85 start-page: 692 year: 2016 end-page: 697 ident: bb0160 article-title: Electrocatalytic determination of nitrite based on straw cellulose/molybdenum sulfide nanocomposite publication-title: Biosens. Bioelectron. – volume: 313 start-page: 19 year: 2017 end-page: 26 ident: bb0200 article-title: Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide publication-title: Chem. Eng. J. – volume: 6 start-page: 2184 year: 2018 end-page: 2192 ident: bb0210 article-title: The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent publication-title: J. Mater. Chem. A – volume: 284 start-page: 582 year: 2016 end-page: 598 ident: bb0035 article-title: Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review publication-title: Chem. Eng. J. – volume: 243 start-page: 60 year: 2014 end-page: 67 ident: bb0020 article-title: Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic publication-title: Chem. Eng. J. – volume: 6 start-page: 11631 year: 2016 end-page: 11636 ident: bb0095 article-title: Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets publication-title: RSC Adv. – volume: 173 start-page: 185 year: 2011 end-page: 190 ident: bb0245 article-title: Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets publication-title: Chem. Eng. J. – volume: 343 start-page: 332 year: 2018 end-page: 339 ident: bb0155 article-title: Rhamnolipid stabilized nano-chlorapatite: synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment publication-title: J. Hazard. Mater. – volume: 257 start-page: 155 year: 2018 end-page: 162 ident: bb0170 article-title: A hybrid monolithic column based on layered double hydroxide-alginate hydrogel for selective solid phase extraction of lead ions in food and water samples publication-title: Food Chem. – volume: 238 start-page: 306 year: 2017 end-page: 312 ident: bb0005 article-title: Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment publication-title: Bioresour. Technol. – volume: 254 start-page: 241 year: 2018 end-page: 248 ident: bb0205 article-title: High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67) publication-title: Food Chem. – volume: 2014 start-page: 330 year: 2014 end-page: 344 ident: bb0175 article-title: Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater publication-title: Water Res. – volume: 592 start-page: 546 year: 2017 end-page: 553 ident: bb0085 article-title: Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water publication-title: Sci. Total Environ. – volume: 164 start-page: 1517 year: 2009 end-page: 1522 ident: bb0045 article-title: Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent publication-title: J. Hazard. Mater. – volume: 228 start-page: 129 year: 2017 ident: bb0080 article-title: Sorption of sulfadiazine, norfloxacin, metronidazole, and tetracycline by granular activated carbon: kinetics, mechanisms, and isotherms publication-title: Water Air Soil Pollut. – volume: 7 year: 2017 ident: bb0050 article-title: Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure publication-title: Sci. Rep. – volume: 2 start-page: 11358 year: 2014 end-page: 11364 ident: bb0255 article-title: MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction publication-title: J. Mater. Chem. A – volume: 252 start-page: 43 year: 2017 end-page: 71 ident: bb0135 article-title: Recent advances in MoS 2 nanostructured materials for energy and environmental applications – a review publication-title: J. Solid State Chem. – volume: 336 start-page: 160 year: 2018 end-page: 169 ident: bb0130 article-title: Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal publication-title: Chem. Eng. J. – volume: 5 start-page: 4720 year: 2011 end-page: 4728 ident: bb0015 article-title: -Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries publication-title: ACS Nano – volume: 336 start-page: 81 year: 2017 end-page: 92 ident: bb0165 article-title: Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites publication-title: J. Hazard. Mater. – volume: 80 start-page: 61 year: 2005 end-page: 67 ident: bb0010 article-title: Structural changes of MoS2 nano-powder in dependence on the annealing temperature publication-title: Appl. Phys. A Mater. Sci. Process. – volume: 37 start-page: 1062 year: 2017 end-page: 1076 ident: bb0215 article-title: Biological technologies for the remediation of co-contaminated soil publication-title: Crit. Rev. Biotechnol. – volume: 377 start-page: 99 year: 2016 end-page: 108 ident: bb0265 article-title: Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation publication-title: Appl. Surf. Sci. – volume: 220 start-page: 202 year: 2018 end-page: 210 ident: bb0260 article-title: Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven publication-title: Appl. Catal. B Environ. – volume: 100 start-page: 514 year: 2016 end-page: 525 ident: bb0145 article-title: Bi2S3 nanorods embedded with MoS2 nanosheets composite for photodegradation of phenol red under visible light irradiation publication-title: Superlattice. Microst. – volume: 424 start-page: 1 year: 2012 end-page: 10 ident: bb0190 article-title: Use of iron oxide nanomaterials in wastewater treatment: a review publication-title: Sci. Total Environ. – volume: 6 year: 2016 ident: bb0115 article-title: One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste publication-title: Sci. Rep. – volume: 6 start-page: 12856 year: 2014 end-page: 12863 ident: bb0070 article-title: Active guests in the MoS2/MoSe2 host lattice: efficient hydrogen evolution using few-layer alloys of MoS2(1 − x)Se2x publication-title: Nanoscale – volume: 13 start-page: 6222 year: 2013 end-page: 6227 ident: bb0150 article-title: Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction publication-title: Nano Lett. – volume: 412 start-page: 207 year: 2017 end-page: 213 ident: bb0250 article-title: The synthesis of hierarchical nanostructured MoS2/graphene composites with enhanced visible-light photo-degradation property publication-title: Appl. Surf. Sci. – volume: 43 start-page: 2322 year: 2009 end-page: 2327 ident: bb0065 article-title: Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents publication-title: Environ. Sci. Technol. – volume: 329 start-page: 230 year: 2017 end-page: 240 ident: bb0195 article-title: Fast photoelectro-reduction of CrVI over MoS2@TiO2 nanotubes on Ti wire publication-title: J. Hazard. Mater. – volume: 181 start-page: 281 year: 2017 end-page: 288 ident: bb0075 article-title: Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost publication-title: Chemosphere – volume: 37 start-page: 754 year: 2017 end-page: 764 ident: bb0180 article-title: The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review publication-title: Crit. Rev. Biotechnol. – volume: 125 start-page: 70 year: 2015 end-page: 85 ident: bb0110 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere – volume: 87 start-page: 989 year: 2015 end-page: 996 ident: bb0235 article-title: Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection publication-title: Anal. Chem. – volume: 95 start-page: 103 year: 2016 end-page: 112 ident: bb0240 article-title: Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution publication-title: Water Res. – volume: 6 start-page: 12856 issue: 21 year: 2014 ident: 10.1016/j.scitotenv.2018.08.108_bb0070 article-title: Active guests in the MoS2/MoSe2 host lattice: efficient hydrogen evolution using few-layer alloys of MoS2(1 − x)Se2x publication-title: Nanoscale doi: 10.1039/C4NR03716B – volume: 125 start-page: 70 year: 2015 ident: 10.1016/j.scitotenv.2018.08.108_bb0110 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.058 – volume: 36 start-page: 815 issue: 3 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0025 article-title: Graphene-analogue molybdenum disulfide for adsorptive removal of tetracycline from aqueous solution: equilibrium, kinetic, and thermodynamic studies publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.12391 – volume: 13 start-page: 6222 issue: 12 year: 2013 ident: 10.1016/j.scitotenv.2018.08.108_bb0150 article-title: Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction publication-title: Nano Lett. doi: 10.1021/nl403661s – volume: 37 start-page: 754 issue: 6 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0180 article-title: The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2016.1232696 – volume: 184 start-page: 85 issue: Pt 1 year: 2016 ident: 10.1016/j.scitotenv.2018.08.108_bb0120 article-title: Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): characterization and application for crystal violet removal publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.08.070 – volume: 37 start-page: 1062 issue: 8 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0215 article-title: Biological technologies for the remediation of co-contaminated soil publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2017.1304357 – volume: 329 start-page: 230 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0195 article-title: Fast photoelectro-reduction of CrVI over MoS2@TiO2 nanotubes on Ti wire publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.01.045 – volume: 336 start-page: 160 year: 2018 ident: 10.1016/j.scitotenv.2018.08.108_bb0130 article-title: Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.048 – volume: 203 start-page: 423 issue: 5 year: 2012 ident: 10.1016/j.scitotenv.2018.08.108_bb0185 article-title: Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.07.048 – volume: 85 start-page: 692 year: 2016 ident: 10.1016/j.scitotenv.2018.08.108_bb0160 article-title: Electrocatalytic determination of nitrite based on straw cellulose/molybdenum sulfide nanocomposite publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.05.078 – volume: 80 start-page: 61 issue: 1 year: 2005 ident: 10.1016/j.scitotenv.2018.08.108_bb0010 article-title: Structural changes of MoS2 nano-powder in dependence on the annealing temperature publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-004-3003-5 – volume: 238 start-page: 306 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0005 article-title: Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.042 – volume: 92 start-page: 2304 issue: 10 year: 2011 ident: 10.1016/j.scitotenv.2018.08.108_bb0055 article-title: Degradation and removal methods of antibiotics from aqueous matrices—a review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2011.05.023 – volume: 610 start-page: 1154 year: 2018 ident: 10.1016/j.scitotenv.2018.08.108_bb0105 article-title: Sorption, transport and biodegradation - an insight into bioavailability of persistent organic pollutants in soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.089 – volume: 2014 start-page: 330 issue: 67 year: 2014 ident: 10.1016/j.scitotenv.2018.08.108_bb0175 article-title: Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater publication-title: Water Res. doi: 10.1016/j.watres.2014.09.026 – volume: 47 start-page: 1528 issue: 16 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0220 article-title: Co-occurrence and interactions of pollutants, and their impacts on soil remediation-a review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2017.1386951 – volume: 2 start-page: 11358 issue: 29 year: 2014 ident: 10.1016/j.scitotenv.2018.08.108_bb0255 article-title: MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01898b – volume: 87 start-page: 989 issue: 2 year: 2015 ident: 10.1016/j.scitotenv.2018.08.108_bb0235 article-title: Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection publication-title: Anal. Chem. doi: 10.1021/ac503472p – volume: 164 start-page: 1517 issue: 2–3 year: 2009 ident: 10.1016/j.scitotenv.2018.08.108_bb0045 article-title: Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.09.072 – volume: 173 start-page: 185 issue: 1 year: 2011 ident: 10.1016/j.scitotenv.2018.08.108_bb0245 article-title: Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.07.072 – volume: 17 start-page: 3538 issue: 6 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0100 article-title: Enhanced catalytic reduction of p-nitrophenol on ultrathin MoS2 nanosheets decorated with noble metal nanoparticles publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b00474 – volume: 224 start-page: 1 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0140 article-title: Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.11.042 – volume: 43 start-page: 2322 issue: 7 year: 2009 ident: 10.1016/j.scitotenv.2018.08.108_bb0065 article-title: Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents publication-title: Environ. Sci. Technol. doi: 10.1021/es803268b – volume: 313 start-page: 19 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0200 article-title: Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.041 – volume: 254 start-page: 241 year: 2018 ident: 10.1016/j.scitotenv.2018.08.108_bb0205 article-title: High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67) publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.02.011 – volume: 5 start-page: 34541 issue: 44 year: 2015 ident: 10.1016/j.scitotenv.2018.08.108_bb0225 article-title: Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil publication-title: RSC Adv. doi: 10.1039/C5RA04834F – volume: 171 start-page: 448 issue: 2 year: 2011 ident: 10.1016/j.scitotenv.2018.08.108_bb0090 article-title: Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.03.102 – volume: 435–436 start-page: 567 year: 2012 ident: 10.1016/j.scitotenv.2018.08.108_bb0230 article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.07.038 – volume: 252 start-page: 43 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0135 article-title: Recent advances in MoS 2 nanostructured materials for energy and environmental applications – a review publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2017.04.041 – volume: 243 start-page: 60 year: 2014 ident: 10.1016/j.scitotenv.2018.08.108_bb0020 article-title: Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.12.048 – volume: 181 start-page: 281 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0075 article-title: Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.04.081 – volume: 343 start-page: 332 year: 2018 ident: 10.1016/j.scitotenv.2018.08.108_bb0155 article-title: Rhamnolipid stabilized nano-chlorapatite: synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.09.053 – volume: 6 start-page: 2184 issue: 5 year: 2018 ident: 10.1016/j.scitotenv.2018.08.108_bb0210 article-title: The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08399H – volume: 377 start-page: 99 year: 2016 ident: 10.1016/j.scitotenv.2018.08.108_bb0265 article-title: Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.143 – volume: 7 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0050 article-title: Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure publication-title: Sci. Rep. – volume: 6 start-page: 11631 issue: 14 year: 2016 ident: 10.1016/j.scitotenv.2018.08.108_bb0095 article-title: Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets publication-title: RSC Adv. doi: 10.1039/C5RA24328A – volume: 226 start-page: 189 issue: 8 year: 2013 ident: 10.1016/j.scitotenv.2018.08.108_bb0040 article-title: Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.04.045 – volume: 424 start-page: 1 year: 2012 ident: 10.1016/j.scitotenv.2018.08.108_bb0190 article-title: Use of iron oxide nanomaterials in wastewater treatment: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.02.023 – volume: 33 start-page: 745 issue: 6 year: 2015 ident: 10.1016/j.scitotenv.2018.08.108_bb0030 article-title: Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides,chlorophenols andheavymetalsby composting: applications, microbes and future research needs publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.05.003 – volume: 336 start-page: 81 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0165 article-title: Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.04.012 – volume: 10 start-page: 5 issue: 1 year: 2013 ident: 10.1016/j.scitotenv.2018.08.108_bb0060 article-title: Sequential study on reactive blue 29 dye removal from aqueous solution by peroxy acid and single wall carbon nanotubes: experiment and theory publication-title: Iran. J Environ. Health Sci. Eng. doi: 10.1186/1735-2746-10-5 – volume: 228 start-page: 129 issue: 4 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0080 article-title: Sorption of sulfadiazine, norfloxacin, metronidazole, and tetracycline by granular activated carbon: kinetics, mechanisms, and isotherms publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-017-3320-x – volume: 592 start-page: 546 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0085 article-title: Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.087 – volume: 220 start-page: 202 year: 2018 ident: 10.1016/j.scitotenv.2018.08.108_bb0260 article-title: Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.08.055 – volume: 6 year: 2016 ident: 10.1016/j.scitotenv.2018.08.108_bb0115 article-title: One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste publication-title: Sci. Rep. doi: 10.1038/srep39691 – volume: 468 start-page: 1014 year: 2014 ident: 10.1016/j.scitotenv.2018.08.108_bb0125 article-title: Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.09.044 – volume: 412 start-page: 207 year: 2017 ident: 10.1016/j.scitotenv.2018.08.108_bb0250 article-title: The synthesis of hierarchical nanostructured MoS2/graphene composites with enhanced visible-light photo-degradation property publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.03.181 – volume: 100 start-page: 514 year: 2016 ident: 10.1016/j.scitotenv.2018.08.108_bb0145 article-title: Bi2S3 nanorods embedded with MoS2 nanosheets composite for photodegradation of phenol red under visible light irradiation publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2016.10.012 – volume: 257 start-page: 155 year: 2018 ident: 10.1016/j.scitotenv.2018.08.108_bb0170 article-title: A hybrid monolithic column based on layered double hydroxide-alginate hydrogel for selective solid phase extraction of lead ions in food and water samples publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.02.143 – volume: 95 start-page: 103 year: 2016 ident: 10.1016/j.scitotenv.2018.08.108_bb0240 article-title: Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution publication-title: Water Res. doi: 10.1016/j.watres.2016.03.014 – volume: 5 start-page: 4720 issue: 6 year: 2011 ident: 10.1016/j.scitotenv.2018.08.108_bb0015 article-title: l-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries publication-title: ACS Nano doi: 10.1021/nn200659w – volume: 284 start-page: 582 year: 2016 ident: 10.1016/j.scitotenv.2018.08.108_bb0035 article-title: Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.09.001 |
SSID | ssj0000781 |
Score | 2.6668103 |
Snippet | Antibiotic concentrations in surface waters far exceed the pollution limit due to the abuse of pharmaceuticals, resulting in an urgent need for an approach... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 206 |
SubjectTerms | adsorption aqueous solutions biochar Biochar-based nanocomposite cost effectiveness drugs electrostatic interactions g-MoS2 hydrogen bonding nanocomposites nanosheets pollutants pollution pollution control Removal mechanisms river water surface water Sustainable application tetracycline Tetracycline hydrochloride thermodynamics wastewater |
Title | Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution |
URI | https://dx.doi.org/10.1016/j.scitotenv.2018.08.108 https://www.proquest.com/docview/2089858335 https://www.proquest.com/docview/2153611812 |
Volume | 648 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_EUiiU0p6VWlsZoa9bc5dNNumbiHLtoQ-tom9hP9sTTY67KNxL_5f-p53Jh4dS6oMvFy7sLElmZ-a3yfxmAD5FBJFNbp0wOe1NKOIZkZMPFKT_1KpY-aSpU3B8ko7P5LeL5GINDnouDKdVdr6_9emNt-7O7HVPc282nTLHV2Z5mpNzpT05YURmsEvFq_zz71WaBxezab8yk2HT6Hs5XjRvXRE2veUcr4xreQ65z-S_I9QDX90EoKPX8KpDjrjfXtwbWPPlAJ63vSSXA9g8XFHWaFhns4sBvGzfzGFLONqAP32yHVYlEvzDxYpDhZ4rSmi7xCrgT3Fc_Rih4w0qIVKHZloxSQtLXVacis75Xn6BBHtx7q-bVxNY-3pO8ky49Phr6bgjFyf5OY_MZEFS5JTmoXsQM-6yzPNqut_qZoG9GbyFs6PD04Ox6Bo1CEsBvxbeGSUtQacgszByIfHGuWGsM5OQtvNUESo09EurJfihU5kZxUEqpU1igw0u3oT1sir9O0AvGypurqxkKa2DDioJUex05GQcb0HaK6ewXRVzbqZxVfTpapfFnVYL1moRZVwFdQuiO8FZW8jjcZEvvfaLe2uyoHDzuPBuv14Kslj-DKNLfpg0KMuzhuz2nzEUiFLmBI_eP-UituEF_eOEODFMPsB6Pb_xHwlE1WansZIdeLb_dTI-4ePk-_nkL3kNJSM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTgikCUFhYmzAIfFqLW2cONnbNG3q2NoXNmlvlh3bUARJ1WZI_XP4T7nLj1VDiD3wkofEZyU5393n5L47gI8RQWSbF07YnPYmFPGsyMkHCtJ_WqhY-aSpUzCdpZNr-ekmudmCk54Lw2mVne9vfXrjrbszh93bPFzM58zxlVme5uRcaU9OGPERbHN1qmQA28fnF5PZxiGrrG2cJ8m2SeBemhdNXVcET39ymlfG5TxH3Gry70HqD3fdxKCz5_CsA4943N7fC9jy5RAet-0k10PYPd2w1mhYZ7arIey0H-ew5Ry9hF99vh1WJRICxNWGRoWei0qYYo1VwC9iWn0eo-M9KoFSh3ZeMU8LS1NWnI3OKV9-hYR8cel_NF8nsPb1kuSZc-nx69pxUy7O83MemcyCpMs5zUPPIBbcaJnnNfS81e0Ke0t4Bddnp1cnE9H1ahAFxfxaeGeVLAg9BZmFsQuJt86NYpPZhBSep4qAoaUjLZjgR05ldhwHqZSxSRGK4OJdGJRV6V8DetmwcXNVSJYyJpigkhDFzkROxvEepL1ydNEVMud-Gt91n7H2Td9pVbNWdZRxIdQ9iO4EF20tj4dFjnrt63vLUlPEeVj4Q79eNBkt_4kxJb9MGpTlWcN3-8cYikUp04LHb_7nJt7Dk8nV9FJfns8u9uEpXeH8ODFKDmBQL2_9W8JUtX3X2cxvKm4mMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+sustainable+efficacy+of+g-MoS2+decorated+biochar+nanocomposites+for+removing+tetracycline+hydrochloride+from+antibiotic-polluted+aqueous+solution&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zeng%2C+Zhuotong&rft.au=Ye%2C+Shujing&rft.au=Wu%2C+Haipeng&rft.au=Xiao%2C+Rong&rft.date=2019-01-15&rft.issn=0048-9697&rft.volume=648&rft.spage=206&rft.epage=217&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.08.108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2018_08_108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |