Future global socioeconomic risk to droughts based on estimates of hazard, exposure, and vulnerability in a changing climate

A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 751; p. 142159
Main Authors Liu, Yujie, Chen, Jie
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.01.2021
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2020.142159

Cover

Abstract A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause consequential damages to socioeconomic systems. The risk assessment of drought caused by climate change can be a bridge between impacts and adaptation. To assess the socioeconomic risk to droughts in a base period and two future periods (2016 to 2035 and 2046 to 2065), the projections of five general circulation models and population and gross domestic product (GDP), land cover, and water resources data were used to analyze the socioeconomic risk under three scenarios combining representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). The socioeconomic risk was calculated as the product of three determinants: hazard, exposure, and vulnerability. The risk of the global population to drought was projected to be highest in 2046 to 2065 under scenario RCP8.5–SSP3, with up to 1.45 × 109 persons affected, a 63% increase compared with the base period. The highest risk to GDP (4.29 × 1013 purchasing power parity $) was possibly in 2046 to 2065 under scenario RCP2.6–SSP1, with the risk increasing 5.64 times compared to the base period. Regions with high socioeconomic risk were primarily concentrated in the East and South Asia, Midwestern Europe, eastern US, and the coastal areas of South America. With climate change, the inequality in future socioeconomic risk to drought among countries is predicted to increase. The ten countries with the highest risks to population and GDP accounted for nearly 70% of the global risk. [Display omitted] •Population risk potentially be highest in RCP8.5–SSP3, with 1.45 × 109 persons affected.•The highest GDP risk is likely in RCP2.6–SSP1 with 5.64 times higher than base period.•Socioeconomic risk distributes unequally and highest in the east and south of Asia.
AbstractList A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause consequential damages to socioeconomic systems. The risk assessment of drought caused by climate change can be a bridge between impacts and adaptation. To assess the socioeconomic risk to droughts in a base period and two future periods (2016 to 2035 and 2046 to 2065), the projections of five general circulation models and population and gross domestic product (GDP), land cover, and water resources data were used to analyze the socioeconomic risk under three scenarios combining representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). The socioeconomic risk was calculated as the product of three determinants: hazard, exposure, and vulnerability. The risk of the global population to drought was projected to be highest in 2046 to 2065 under scenario RCP8.5-SSP3, with up to 1.45 × 109 persons affected, a 63% increase compared with the base period. The highest risk to GDP (4.29 × 1013 purchasing power parity $) was possibly in 2046 to 2065 under scenario RCP2.6-SSP1, with the risk increasing 5.64 times compared to the base period. Regions with high socioeconomic risk were primarily concentrated in the East and South Asia, Midwestern Europe, eastern US, and the coastal areas of South America. With climate change, the inequality in future socioeconomic risk to drought among countries is predicted to increase. The ten countries with the highest risks to population and GDP accounted for nearly 70% of the global risk.A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause consequential damages to socioeconomic systems. The risk assessment of drought caused by climate change can be a bridge between impacts and adaptation. To assess the socioeconomic risk to droughts in a base period and two future periods (2016 to 2035 and 2046 to 2065), the projections of five general circulation models and population and gross domestic product (GDP), land cover, and water resources data were used to analyze the socioeconomic risk under three scenarios combining representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). The socioeconomic risk was calculated as the product of three determinants: hazard, exposure, and vulnerability. The risk of the global population to drought was projected to be highest in 2046 to 2065 under scenario RCP8.5-SSP3, with up to 1.45 × 109 persons affected, a 63% increase compared with the base period. The highest risk to GDP (4.29 × 1013 purchasing power parity $) was possibly in 2046 to 2065 under scenario RCP2.6-SSP1, with the risk increasing 5.64 times compared to the base period. Regions with high socioeconomic risk were primarily concentrated in the East and South Asia, Midwestern Europe, eastern US, and the coastal areas of South America. With climate change, the inequality in future socioeconomic risk to drought among countries is predicted to increase. The ten countries with the highest risks to population and GDP accounted for nearly 70% of the global risk.
A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause consequential damages to socioeconomic systems. The risk assessment of drought caused by climate change can be a bridge between impacts and adaptation. To assess the socioeconomic risk to droughts in a base period and two future periods (2016 to 2035 and 2046 to 2065), the projections of five general circulation models and population and gross domestic product (GDP), land cover, and water resources data were used to analyze the socioeconomic risk under three scenarios combining representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). The socioeconomic risk was calculated as the product of three determinants: hazard, exposure, and vulnerability. The risk of the global population to drought was projected to be highest in 2046 to 2065 under scenario RCP8.5–SSP3, with up to 1.45 × 109 persons affected, a 63% increase compared with the base period. The highest risk to GDP (4.29 × 1013 purchasing power parity $) was possibly in 2046 to 2065 under scenario RCP2.6–SSP1, with the risk increasing 5.64 times compared to the base period. Regions with high socioeconomic risk were primarily concentrated in the East and South Asia, Midwestern Europe, eastern US, and the coastal areas of South America. With climate change, the inequality in future socioeconomic risk to drought among countries is predicted to increase. The ten countries with the highest risks to population and GDP accounted for nearly 70% of the global risk. [Display omitted] •Population risk potentially be highest in RCP8.5–SSP3, with 1.45 × 109 persons affected.•The highest GDP risk is likely in RCP2.6–SSP1 with 5.64 times higher than base period.•Socioeconomic risk distributes unequally and highest in the east and south of Asia.
A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause consequential damages to socioeconomic systems. The risk assessment of drought caused by climate change can be a bridge between impacts and adaptation. To assess the socioeconomic risk to droughts in a base period and two future periods (2016 to 2035 and 2046 to 2065), the projections of five general circulation models and population and gross domestic product (GDP), land cover, and water resources data were used to analyze the socioeconomic risk under three scenarios combining representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). The socioeconomic risk was calculated as the product of three determinants: hazard, exposure, and vulnerability. The risk of the global population to drought was projected to be highest in 2046 to 2065 under scenario RCP8.5–SSP3, with up to 1.45 × 10⁹ persons affected, a 63% increase compared with the base period. The highest risk to GDP (4.29 × 10¹³ purchasing power parity $) was possibly in 2046 to 2065 under scenario RCP2.6–SSP1, with the risk increasing 5.64 times compared to the base period. Regions with high socioeconomic risk were primarily concentrated in the East and South Asia, Midwestern Europe, eastern US, and the coastal areas of South America. With climate change, the inequality in future socioeconomic risk to drought among countries is predicted to increase. The ten countries with the highest risks to population and GDP accounted for nearly 70% of the global risk.
ArticleNumber 142159
Author Liu, Yujie
Chen, Jie
Author_xml – sequence: 1
  givenname: Yujie
  orcidid: 0000-0002-0751-6857
  surname: Liu
  fullname: Liu, Yujie
  email: liuyujie@igsnrr.ac.cn
  organization: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
– sequence: 2
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
BookMark eNqNkUGPFCEQhYlZE2dXf4N19LA9At0NzcHDZuOqySZe9ExounqGkYER6Im78cfLOMaDl5VLEfK-V1S9S3IRYkBCXjO6ZpSJt7t1tq7EguG45pTX146zXj0jKzZI1TDKxQVZUdoNjRJKviCXOe9oPXJgK_LzbilLQtj4OBoPOVoX0cYQ985CcvkblAhTistmWzKMJuMEMQDm4vamYIY4w9Y8mjRdA_44xFzNrsGECY6LD5jM6LwrD-ACGLBbEzYubMD63_RL8nw2PuOrP_WKfL17_-X2Y3P_-cOn25v7xrYDKw3aeVKj7QeGVGAn6nzdqMQkpZCStb2YWVtvfBYU-15Z2o1cjBKV4kwJju0VeXP2PaT4fal_13uXLXpvAsYla64GwbmszZ6WdoJK0TLOq_TdWWpTzDnhrGsOprgYSjLOa0b1KSC9038D0qeA9Dmgyst_-EOqa0kP_0HenEmsSzs6TCcdBouTS2iLnqJ70uMXqF6zmw
CitedBy_id crossref_primary_10_1007_s11625_023_01298_0
crossref_primary_10_3389_fmars_2022_945901
crossref_primary_10_1002_wat2_1586
crossref_primary_10_1016_j_ijdrr_2023_103764
crossref_primary_10_1088_1748_9326_ad4402
crossref_primary_10_3390_agriculture12070980
crossref_primary_10_1007_s10113_022_01982_4
crossref_primary_10_1016_j_ijdrr_2023_103800
crossref_primary_10_1088_1748_9326_ac58ac
crossref_primary_10_1016_j_jclepro_2023_135929
crossref_primary_10_1016_j_jenvman_2022_115494
crossref_primary_10_1007_s10750_023_05165_y
crossref_primary_10_3389_feart_2024_1369523
crossref_primary_10_1007_s00704_024_05048_9
crossref_primary_10_1016_j_earscirev_2020_103501
crossref_primary_10_1038_s41612_024_00579_4
crossref_primary_10_1016_j_landurbplan_2023_104888
crossref_primary_10_3390_agronomy12092071
crossref_primary_10_1016_j_agwat_2022_107956
crossref_primary_10_1016_j_ecolind_2023_110712
crossref_primary_10_1007_s00477_022_02197_z
crossref_primary_10_1029_2022EF003469
crossref_primary_10_1016_j_heliyon_2024_e35134
crossref_primary_10_3390_cli12090131
crossref_primary_10_1038_s43247_023_00840_3
crossref_primary_10_1007_s11069_022_05429_1
crossref_primary_10_1029_2022EF003420
crossref_primary_10_1177_00307270221103289
crossref_primary_10_1007_s00704_024_05085_4
crossref_primary_10_1016_j_scitotenv_2024_176867
crossref_primary_10_1016_j_jhydrol_2023_129321
crossref_primary_10_1007_s11356_021_14100_4
crossref_primary_10_1016_j_catena_2022_106904
crossref_primary_10_3390_jrfm16030151
crossref_primary_10_1142_S1464333223500084
crossref_primary_10_1016_j_jclepro_2025_144694
crossref_primary_10_1002_joc_8229
crossref_primary_10_1016_j_jhydrol_2024_132315
crossref_primary_10_1002_joc_7933
crossref_primary_10_1016_j_jhydrol_2024_131669
crossref_primary_10_1016_j_ejrh_2025_102296
crossref_primary_10_1016_j_jhydrol_2025_132971
crossref_primary_10_1002_ecy_3850
crossref_primary_10_3390_ijerph181910437
crossref_primary_10_1016_j_scitotenv_2023_165591
crossref_primary_10_1061_NHREFO_NHENG_2102
crossref_primary_10_3390_land11112029
crossref_primary_10_1016_j_envexpbot_2024_105859
crossref_primary_10_1002_joc_7386
crossref_primary_10_1016_j_gloenvcha_2021_102393
crossref_primary_10_1007_s41101_024_00281_9
crossref_primary_10_1029_2023EF003872
crossref_primary_10_3390_jmse9040386
crossref_primary_10_3390_su13031042
crossref_primary_10_1088_1748_9326_ad0a1c
crossref_primary_10_1016_j_jenvman_2022_115751
crossref_primary_10_1016_j_lana_2023_100580
crossref_primary_10_1016_j_ijdrr_2023_104152
crossref_primary_10_3390_data8020036
crossref_primary_10_3390_su17072912
crossref_primary_10_3390_atmos13091423
crossref_primary_10_1016_j_ecolind_2025_113160
crossref_primary_10_1016_j_jclepro_2023_136719
crossref_primary_10_1016_j_scitotenv_2022_160371
crossref_primary_10_3389_fcosc_2022_946669
crossref_primary_10_1016_j_aej_2024_01_008
crossref_primary_10_1016_j_gfs_2022_100625
crossref_primary_10_1016_j_ecolind_2023_110654
crossref_primary_10_1038_s41467_021_27490_3
crossref_primary_10_1007_s41660_021_00188_1
crossref_primary_10_1016_j_scitotenv_2024_170187
crossref_primary_10_5861_ijrse_2023_49
crossref_primary_10_3390_ijerph192013411
crossref_primary_10_1007_s11069_021_04854_y
crossref_primary_10_1016_j_ijdrr_2024_104789
crossref_primary_10_1007_s11356_022_20028_0
crossref_primary_10_1038_s41612_024_00820_0
crossref_primary_10_1088_1748_9326_ac8755
crossref_primary_10_3390_su131810102
crossref_primary_10_1038_s41612_023_00401_7
crossref_primary_10_1016_j_apsoil_2022_104588
crossref_primary_10_1016_j_ijdrr_2022_102961
crossref_primary_10_1080_19475705_2025_2481996
crossref_primary_10_1007_s10661_022_10547_1
crossref_primary_10_3390_su13052651
crossref_primary_10_1007_s00477_024_02675_6
crossref_primary_10_1016_j_nhres_2025_02_006
crossref_primary_10_1088_2515_7620_ad0210
crossref_primary_10_1002_wcc_761
crossref_primary_10_1016_j_jhydrol_2023_130093
crossref_primary_10_3390_su14042442
Cites_doi 10.1038/s41467-019-12663-y
10.1007/s10584-006-9180-9
10.1002/2014GL061055
10.1016/j.jhydrol.2014.12.011
10.1016/j.wace.2014.01.002
10.1016/j.jhydrol.2017.05.004
10.1088/1748-9326/aaaa99
10.1002/2017GL074117
10.5194/esd-4-219-2013
10.1175/JCLI3952.1
10.1029/2020GL087809
10.1016/j.scitotenv.2018.02.200
10.1007/s10584-016-1716-z
10.1016/j.jhydrol.2015.01.006
10.1007/s10584-013-0905-2
10.1016/j.gloenvcha.2016.04.012
10.1007/s10584-013-0974-2
10.1016/j.gloenvcha.2015.01.004
10.1007/s00704-015-1503-1
10.5194/esd-9-1097-2018
10.1073/pnas.1312330110
10.1038/nclimate2631
10.1002/2016RG000549
10.1002/2016WR019638
10.5194/esd-9-267-2018
10.1038/465142a
10.1038/nclimate1633
10.1007/s00382-014-2075-y
10.1038/srep43909
10.3390/atmos9070239
10.1016/j.jhydrol.2017.05.019
10.1073/pnas.1421533112
10.1126/science.aau1864
10.1016/j.atmosres.2018.07.002
10.1002/2014GL062308
10.1038/s41598-020-67146-8
10.5194/nhess-20-695-2020
10.1175/2009JCLI2909.1
10.1007/s11111-014-0205-4
10.5194/nhess-9-1149-2009
10.1007/s11434-016-1148-1
10.1126/science.aal4369
10.1016/j.jag.2012.11.003
10.1038/nature11575
10.3390/su11072106
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2020.142159
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2020_142159
S0048969720356886
GeographicLocations South America
Eastern United States
Europe
South Asia
GeographicLocations_xml – name: South Asia
– name: Eastern United States
– name: South America
– name: Europe
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSH
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAQXK
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
WUQ
XPP
ZXP
ZY4
7X8
EFKBS
EFLBG
7S9
L.6
ID FETCH-LOGICAL-c381t-ecfd9bc581e06e464214b96d776771356f136772f60e559c04b26b7e9921962e3
IEDL.DBID AIKHN
ISSN 0048-9697
1879-1026
IngestDate Fri Sep 05 10:55:16 EDT 2025
Thu Sep 04 16:45:27 EDT 2025
Tue Jul 01 04:24:33 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Sun Apr 06 06:53:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Climate change
Drought risk assessment
Exposure
Vulnerability
RCP–SSP
Hazard
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-ecfd9bc581e06e464214b96d776771356f136772f60e559c04b26b7e9921962e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0751-6857
PQID 2460763122
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2986227381
proquest_miscellaneous_2460763122
crossref_citationtrail_10_1016_j_scitotenv_2020_142159
crossref_primary_10_1016_j_scitotenv_2020_142159
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_142159
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-10
PublicationDateYYYYMMDD 2021-01-10
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-10
  day: 10
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hao, Singh, Xia (bb0080) 2018; 56
Castle, Thomas, Reager, Rodell, Swenson, Famiglietti (bb0045) 2014; 41
Sheffield, Wood, Roderick (bb0235) 2012; 491
Diermanse, Mens, Macian-Sorribes, Schasfoort (bb0070) 2018
Palmer (bb0205) 1965
IPCC (bb0105) 2014
WMO (bb0310) 2013
Howitt, MacEwan, Medellín-Azuara, Lund, Sumner (bb2020) 2015
O’Neill (bb0195) 2014; 122
Meza, Siebert, Döll, Kusche, Herbert, Eyshi Rezaei, Hagenlocher (bb0180) 2020; 20
Peduzzi, Dao, Herold, Mouton (bb0210) 2009; 9
Bouwer (bb0030) 2013; vol. 33
Ma, Yuan, Jiao, Ji (bb0165) 2020; 47
Allen, Pereira, Raes, Smith (bb0015) 1998; vol. 300
Wu, Zhou, Liu, Zhang, Leng, Diao (bb0320) 2013; 23
Liu, Sun, Lim, Jie, Zhang (bb0155) 2018; 9
Svoboda, Fuchs, Poulsen, Nothwehr (bb0255) 2015; 526
UNISDR (bb0275) 2004; vol. Volume 1
Harrington, Otto (bb0085) 2018; 13
Kelley, Shahrzad, Cane, Richard, Yochanan (bb0120) 2015; 112
Union E, Commission JRC-E (bb0270) 2008
Liu, Anderson, Yan, Dong, Liao, Shi (bb0150) 2017; 7
Samir, Lutz (bb0225) 2014; 35
Aghakouchak, Cheng, Mazdiyasni, Farahmand (bb0005) 2014; 41
Gollier (bb0075) 2012; 1
Murakami, Yamagata (bb0185) 2019; 11
Van Dijk (bb0285) 2013
Jones, O’Neill, Mcdaniel, Mcginnis, Mearns, Tebaldi (bb0115) 2015; 5
Dai (bb0065) 2013; 3
Shiru, Shahid, Dewan, Chung, Hassan (bb0240) 2020; 10
Cardona, van Aalst, Birkmann, Fordham, McGregor, Perez, Pulwarty, Schipper, Sinh (bb2000) 2012
Smirnov, Zhang, Xiao, Orbell, Lobben, Gordon (bb0245) 2016; 138
Soden, Collins, Feldman (bb0250) 2018; 361
Carrao, Naumann, Barbosa (bb0040) 2016; 39
Jiang, Yang, ID, Zhao (bb0110) 2018; 9
Mckee, Doesken, Kleist (bb0175) 1993; vol. 17
UNISDR (bb0280) 2009
Yin, Wang, Ren, Li, Guo (bb0330) 2019; 2019
Vicenteserrano, Beguería, Lópezmoreno (bb0290) 2010; 23
Alamgir, Khan, Shahid, Yaseen, Rasheed (bb0010) 2020; 1
Hsiang (bb0095) 2017; 356
Knorr, Scholze (bb0125) 2008
Lopez-Nicolas, Pulido-Velazquez, Macian-Sorribes (bb0160) 2017; 550
Li, Yu, Sohl, Clinton, Li, Zhu, Liu, Gong (bb0140) 2016; 61
Warszawski, Frieler, Huber, Piontek, Serdeczny, Schewe (bb0300) 2014; 111
Li, Pan (bb0135) 2016
Hempel, Frieler, Warszawski, Schewe, Piontek (bb0090) 2013; 4
Vuuren, Carter (bb0295) 2014; 122
Ayantobo (bb0025) 2017; 550
IPCC (bb0100) 2013
Lehner, Coats, Stocker, Pendergrass, Sanderson, Raible, Smerdon (bb0130) 2017; 44
Zhou, Yu (bb0340) 2006; 19
Byakatonda, Parida, Moalafhi, Kenabatho (bb0035) 2018; 213
Naumann, Barbosa, Garrote, Iglesias, Vogt (bb0190) 2014
Touma, Ashfaq, Nayak, Kao, Diffenbaugh (bb0260) 2015; 526
Samir, Lutz (bb0230) 2017
Checchi (bb0050) 2013
O’Neill, Kriegler, Ebi, Kemp-Benedict, Riahi, Rothman, Solecki (bb0200) 2017; 42
Cook, Smerdon, Seager, Coats (bb0060) 2014; 43
Liu, Jiang (bb0145) 2015; 39
Chen, Liu, Pan, Liu, Sun, Ge (bb0055) 2018; 9
Udall, Overpeck (bb0265) 2017; 53
Maurer (bb0170) 2007; 82
WMO (bb0315) 2020
Qiu (bb0215) 2010; 465
Zhang, Han, Jia, Song, Wang (bb0335) 2016; 125
Yao, Zhao, Chen, Yu, Zhang (bb0325) 2018; 630
Wilhite, Sivakumar, Pulwarty (bb0305) 2014; 3
Aghakouchak (10.1016/j.scitotenv.2020.142159_bb0005) 2014; 41
Yao (10.1016/j.scitotenv.2020.142159_bb0325) 2018; 630
Checchi (10.1016/j.scitotenv.2020.142159_bb0050) 2013
Palmer (10.1016/j.scitotenv.2020.142159_bb0205) 1965
Li (10.1016/j.scitotenv.2020.142159_bb0135) 2016
Peduzzi (10.1016/j.scitotenv.2020.142159_bb0210) 2009; 9
UNISDR (10.1016/j.scitotenv.2020.142159_bb0280) 2009
Diermanse (10.1016/j.scitotenv.2020.142159_bb0070) 2018
Union E, Commission JRC-E (10.1016/j.scitotenv.2020.142159_bb0270) 2008
Gollier (10.1016/j.scitotenv.2020.142159_bb0075) 2012; 1
Howitt (10.1016/j.scitotenv.2020.142159_bb2020) 2015
Murakami (10.1016/j.scitotenv.2020.142159_bb0185) 2019; 11
Cardona (10.1016/j.scitotenv.2020.142159_bb2000) 2012
Svoboda (10.1016/j.scitotenv.2020.142159_bb0255) 2015; 526
Vuuren (10.1016/j.scitotenv.2020.142159_bb0295) 2014; 122
Chen (10.1016/j.scitotenv.2020.142159_bb0055) 2018; 9
Maurer (10.1016/j.scitotenv.2020.142159_bb0170) 2007; 82
Samir (10.1016/j.scitotenv.2020.142159_bb0225) 2014; 35
Samir (10.1016/j.scitotenv.2020.142159_bb0230) 2017
Soden (10.1016/j.scitotenv.2020.142159_bb0250) 2018; 361
Zhou (10.1016/j.scitotenv.2020.142159_bb0340) 2006; 19
IPCC (10.1016/j.scitotenv.2020.142159_bb0105) 2014
Dai (10.1016/j.scitotenv.2020.142159_bb0065) 2013; 3
Smirnov (10.1016/j.scitotenv.2020.142159_bb0245) 2016; 138
Wilhite (10.1016/j.scitotenv.2020.142159_bb0305) 2014; 3
Wu (10.1016/j.scitotenv.2020.142159_bb0320) 2013; 23
Alamgir (10.1016/j.scitotenv.2020.142159_bb0010) 2020; 1
Sheffield (10.1016/j.scitotenv.2020.142159_bb0235) 2012; 491
Warszawski (10.1016/j.scitotenv.2020.142159_bb0300) 2014; 111
Carrao (10.1016/j.scitotenv.2020.142159_bb0040) 2016; 39
Van Dijk (10.1016/j.scitotenv.2020.142159_bb0285) 2013
Udall (10.1016/j.scitotenv.2020.142159_bb0265) 2017; 53
Jiang (10.1016/j.scitotenv.2020.142159_bb0110) 2018; 9
Vicenteserrano (10.1016/j.scitotenv.2020.142159_bb0290) 2010; 23
Touma (10.1016/j.scitotenv.2020.142159_bb0260) 2015; 526
O’Neill (10.1016/j.scitotenv.2020.142159_bb0195) 2014; 122
Hsiang (10.1016/j.scitotenv.2020.142159_bb0095) 2017; 356
IPCC (10.1016/j.scitotenv.2020.142159_bb0100) 2013
Byakatonda (10.1016/j.scitotenv.2020.142159_bb0035) 2018; 213
Lopez-Nicolas (10.1016/j.scitotenv.2020.142159_bb0160) 2017; 550
Ma (10.1016/j.scitotenv.2020.142159_bb0165) 2020; 47
O’Neill (10.1016/j.scitotenv.2020.142159_bb0200) 2017; 42
Zhang (10.1016/j.scitotenv.2020.142159_bb0335) 2016; 125
Bouwer (10.1016/j.scitotenv.2020.142159_bb0030) 2013; vol. 33
Harrington (10.1016/j.scitotenv.2020.142159_bb0085) 2018; 13
Jones (10.1016/j.scitotenv.2020.142159_bb0115) 2015; 5
Cook (10.1016/j.scitotenv.2020.142159_bb0060) 2014; 43
Hempel (10.1016/j.scitotenv.2020.142159_bb0090) 2013; 4
Kelley (10.1016/j.scitotenv.2020.142159_bb0120) 2015; 112
WMO (10.1016/j.scitotenv.2020.142159_bb0310) 2013
Castle (10.1016/j.scitotenv.2020.142159_bb0045) 2014; 41
Shiru (10.1016/j.scitotenv.2020.142159_bb0240) 2020; 10
Mckee (10.1016/j.scitotenv.2020.142159_bb0175) 1993; vol. 17
Knorr (10.1016/j.scitotenv.2020.142159_bb0125) 2008
Liu (10.1016/j.scitotenv.2020.142159_bb0150) 2017; 7
Hao (10.1016/j.scitotenv.2020.142159_bb0080) 2018; 56
Allen (10.1016/j.scitotenv.2020.142159_bb0015) 1998; vol. 300
WMO (10.1016/j.scitotenv.2020.142159_bb0315)
Ayantobo (10.1016/j.scitotenv.2020.142159_bb0025) 2017; 550
Liu (10.1016/j.scitotenv.2020.142159_bb0155) 2018; 9
Liu (10.1016/j.scitotenv.2020.142159_bb0145) 2015; 39
Yin (10.1016/j.scitotenv.2020.142159_bb0330) 2019; 2019
UNISDR (10.1016/j.scitotenv.2020.142159_bb0275) 2004; vol. Volume 1
Lehner (10.1016/j.scitotenv.2020.142159_bb0130) 2017; 44
Li (10.1016/j.scitotenv.2020.142159_bb0140) 2016; 61
Meza (10.1016/j.scitotenv.2020.142159_bb0180) 2020; 20
Qiu (10.1016/j.scitotenv.2020.142159_bb0215) 2010; 465
Naumann (10.1016/j.scitotenv.2020.142159_bb0190) 2014
References_xml – volume: 526
  start-page: 196
  year: 2015
  end-page: 207
  ident: bb0260
  article-title: A multi-model and multi-index evaluation of drought characteristics in the 21st century
  publication-title: J. Hydrol.
– year: 2013
  ident: bb0285
  article-title: The Millennium Drought in Southeast Australia (2001–2009): Natural and Human Causes and Implications for Water Resources, Ecosystems, Economy, and Society
– volume: 9
  start-page: 1097
  year: 2018
  end-page: 1106
  ident: bb0055
  article-title: Population exposure to droughts in China under the 1.5° C global warming target
  publication-title: Earth System Dynamics
– volume: 5
  start-page: 592
  year: 2015
  end-page: 597
  ident: bb0115
  article-title: Future population exposure to US heat extremes
  publication-title: Nat. Clim. Chang.
– start-page: 181
  year: 2017
  end-page: 192
  ident: bb0230
  article-title: The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100
  publication-title: Global Environmental Change-human and Policy Dimensions
– volume: 61
  start-page: 1651
  year: 2016
  end-page: 1661
  ident: bb0140
  article-title: A cellular automata downscaling based 1 km global land use datasets (2010−2100)
  publication-title: Science Bulletin
– volume: 3
  start-page: 52
  year: 2013
  end-page: 58
  ident: bb0065
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nat. Clim. Chang.
– volume: 125
  start-page: 187
  year: 2016
  end-page: 196
  ident: bb0335
  article-title: Management of drought risk under global warming
  publication-title: Theoretical & Applied Climatology
– volume: 19
  start-page: 5843
  year: 2006
  end-page: 5858
  ident: bb0340
  article-title: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models
  publication-title: J. Clim.
– volume: 112
  start-page: 3241
  year: 2015
  end-page: 3246
  ident: bb0120
  article-title: Climate change in the Fertile Crescent and implications of the recent Syrian drought
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 465
  start-page: 142
  year: 2010
  end-page: 143
  ident: bb0215
  article-title: China drought highlights future climate threats
  publication-title: Nature
– volume: 630
  start-page: 444
  year: 2018
  end-page: 452
  ident: bb0325
  article-title: Multi-scale assessments of droughts: a case study in Xinjiang, China
  publication-title: Sci. Total Environ.
– year: 2020
  ident: bb0315
  article-title: WMO statement on the state of the global climate in 2019
– volume: 4
  start-page: 219
  year: 2013
  end-page: 236
  ident: bb0090
  article-title: A trend-preserving bias correction - the ISI-MIP approach
  publication-title: Earth System Dynamics
– year: 2015
  ident: bb2020
  article-title: Economic Analysis of the 2015 Drought for California Agriculture
– volume: 361
  year: 2018
  ident: bb0250
  article-title: Reducing uncertainties in climate models
  publication-title: Science
– volume: 20
  start-page: 695
  year: 2020
  end-page: 712
  ident: bb0180
  article-title: Global-scale drought risk assessment for agricultural systems
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 56
  start-page: 108
  year: 2018
  end-page: 141
  ident: bb0080
  article-title: Seasonal drought prediction: advances, challenges, and future prospects
  publication-title: Rev. Geophys.
– volume: 9
  start-page: 239
  year: 2018
  ident: bb0110
  article-title: Analysis of drought vulnerability characteristics and risk assessment based on information distribution and diffusion in Southwest China
  publication-title: Atmosphere
– volume: 11
  start-page: 2106
  year: 2019
  ident: bb0185
  article-title: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling
  publication-title: Sustainability
– volume: vol. Volume 1
  year: 2004
  ident: bb0275
  article-title: Living with Risk: A Global Review of Disaster Reduction Initiatives. Review
– volume: 23
  start-page: 397
  year: 2013
  end-page: 410
  ident: bb0320
  article-title: Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China
  publication-title: International Journal of Applied Earth Observation & Geoinformation
– year: 2008
  ident: bb0125
  article-title: A Global Climate Change Risk Assessment of Droughts and Floods. Economics and Management of Climate Change
– volume: 23
  start-page: 1696
  year: 2010
  end-page: 1718
  ident: bb0290
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: J. Clim.
– volume: 39
  start-page: 23
  year: 2015
  end-page: 26
  ident: bb0145
  article-title: Analysis of dryness/wetness over China using standardized precipitation evapotranspiration index based on two evapotranspiration algorithms
  publication-title: Chin. J. Atmos. Sci.
– volume: 9
  year: 2018
  ident: bb0155
  article-title: Global drought and severe drought affected population in 1.5 °C and 2 °C warmer worlds
  publication-title: Earth System Dynamics
– volume: 526
  start-page: 274
  year: 2015
  end-page: 286
  ident: bb0255
  article-title: The drought risk atlas: enhancing decision support for drought risk management in the United States
  publication-title: J. Hydrol.
– year: 2008
  ident: bb0270
  article-title: Handbook on Constructing Composite Indicators: Methodology and User Guide
– volume: 41
  start-page: 5904
  year: 2014
  end-page: 5911
  ident: bb0045
  article-title: Groundwater depletion during drought threatens future water security of the Colorado River Basin
  publication-title: Geophys. Res. Lett.
– volume: 3
  start-page: 4
  year: 2014
  end-page: 13
  ident: bb0305
  article-title: Managing drought risk in a changing climate: the role of national drought policy
  publication-title: Weather & Climate Extremes
– start-page: 1
  year: 2016
  end-page: 19
  ident: bb0135
  article-title: Risk Assessment of Meteorological Drought in China under RCP Scenarios from 2016 to 2050
– volume: 82
  start-page: 309
  year: 2007
  end-page: 325
  ident: bb0170
  article-title: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios
  publication-title: Clim. Chang.
– volume: 550
  start-page: 580
  year: 2017
  end-page: 589
  ident: bb0160
  article-title: Economic risk assessment of drought impacts on irrigated agriculture
  publication-title: J. Hydrol.
– volume: vol. 17
  start-page: 179
  year: 1993
  end-page: 183
  ident: bb0175
  article-title: The relationship of drought frequency and duration to time scales
  publication-title: Proceedings of the 8th Conference on Applied Climatology
– volume: 122
  start-page: 415
  year: 2014
  end-page: 429
  ident: bb0295
  article-title: Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old
  publication-title: Clim. Chang.
– volume: 213
  start-page: 492
  year: 2018
  end-page: 508
  ident: bb0035
  article-title: Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices
  publication-title: Atmos. Res.
– volume: 491
  start-page: 435
  year: 2012
  end-page: 438
  ident: bb0235
  article-title: Little change in global drought over the past 60 years
  publication-title: Nature
– volume: 1
  year: 2020
  ident: bb0010
  article-title: Evaluating severity–area–frequency (saf) of seasonal droughts in Bangladesh under climate change scenarios
  publication-title: Stoch. Env. Res. Risk A.
– volume: 356
  start-page: 1362
  year: 2017
  ident: bb0095
  article-title: Estimating economic damage from climate change in the United States
  publication-title: Science
– volume: 35
  start-page: 243
  year: 2014
  end-page: 260
  ident: bb0225
  article-title: Demographic scenarios by age, sex and education corresponding to the SSP narratives
  publication-title: Popul. Environ.
– volume: 42
  start-page: 169
  year: 2017
  end-page: 180
  ident: bb0200
  article-title: The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century
  publication-title: Glob. Environ. Chang.
– volume: 1
  start-page: 185
  year: 2012
  ident: bb0075
  article-title: Pricing the planet’s future: the economics of discounting in an uncertain world
  publication-title: J. Econ. Lit.
– volume: 44
  start-page: 7419
  year: 2017
  end-page: 7428
  ident: bb0130
  article-title: Projected drought risk in 1.5°C and 2°C warmer climates
  publication-title: Geophys. Res. Lett.
– year: 1965
  ident: bb0205
  article-title: Meteorological Drought Usdepartment of Commerce Weather Bureau Research Paper
– volume: 2019
  start-page: 4640
  year: 2019
  ident: bb0330
  article-title: Mapping the increased minimum mortality temperatures in the context of global climate change
  publication-title: Nat. Commun.
– year: 2013
  ident: bb0050
  article-title: Mortality among Populations of Southern and Central Somalia Affected by Severe Food Insecurity and Famine during 2010–2012
– volume: 138
  start-page: 1
  year: 2016
  end-page: 13
  ident: bb0245
  article-title: The relative importance of climate change and population growth for exposure to future extreme droughts
  publication-title: Clim. Chang.
– volume: 41
  start-page: 8847
  year: 2014
  end-page: 8852
  ident: bb0005
  article-title: Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought
  publication-title: Geophys. Res. Lett.
– start-page: 1
  year: 2018
  end-page: 20
  ident: bb0070
  article-title: A stochastic model for drought risk analysis in the Netherlands
  publication-title: Hydrology & Earth System Sciences Discussions
– year: 2013
  ident: bb0310
  article-title: The Global Climate 2001–2010: A Decade of Climate Extremes
– volume: 122
  start-page: 401
  year: 2014
  end-page: 414
  ident: bb0195
  article-title: A new scenario framework for climate change research: the concept of shared socioeconomic pathways
  publication-title: Clim. Chang.
– volume: 43
  start-page: 2607
  year: 2014
  end-page: 2627
  ident: bb0060
  article-title: Global warming and 21 st century drying
  publication-title: Clim. Dyn.
– volume: 53
  start-page: 2404
  year: 2017
  end-page: 2418
  ident: bb0265
  article-title: The 21st century Colorado River hot drought and implications for the future
  publication-title: Water Resour. Res.
– year: 2014
  ident: bb0190
  article-title: Exploring Drought Vulnerability in Africa: An Indicator Based Analysis to Be Used in Early Warning Systems
– volume: 111
  start-page: 3228
  year: 2014
  end-page: 3232
  ident: bb0300
  article-title: The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  start-page: 10107
  year: 2020
  ident: bb0240
  article-title: Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios
  publication-title: Sci. Rep.
– start-page: 65
  year: 2012
  end-page: 108
  ident: bb2000
  article-title: Determinants of risk: exposure and vulnerability
  publication-title: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation
– volume: 13
  year: 2018
  ident: bb0085
  article-title: Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5
  publication-title: Environ. Res. Lett.
– volume: vol. 300
  start-page: D05109
  year: 1998
  ident: bb0015
  article-title: Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56 Fao, Rome
– year: 2009
  ident: bb0280
  article-title: Drought Risk Reduction Framework and Practices: Contributing to the Implementation of the Hyogo Framework for Action. United Nations Secretariat of the International Strategy for Disaster 5 Reduction (UNISDR), Geneva, Switzerland
– volume: vol. 33
  start-page: 915
  year: 2013
  end-page: 930
  ident: bb0030
  article-title: Projections of Future Extreme Weather Losses Under Changes in Climate and Exposure Risk Analysis an Official Publication of the Society for Risk Analysis
– volume: 7
  start-page: 43909
  year: 2017
  ident: bb0150
  article-title: Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change
  publication-title: Sci. Rep.
– year: 2014
  ident: bb0105
  article-title: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and 248 Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 249 Intergovernmental Panel on Climate Change
– year: 2013
  ident: bb0100
  article-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 550
  start-page: 549
  year: 2017
  end-page: 567
  ident: bb0025
  article-title: Spatial comparability of drought characteristics and related return periods in mainland China over 1961-2013
  publication-title: J. Hydrol.
– volume: 47
  year: 2020
  ident: bb0165
  article-title: Unprecedented Europe heat in June–July 2019: risk in the historical and future context
  publication-title: Geophys. Res. Lett.
– volume: 39
  start-page: 108
  year: 2016
  end-page: 124
  ident: bb0040
  article-title: Mapping global patterns of drought risk: an empirical framework based on sub-national estimates of hazard, exposure and vulnerability
  publication-title: Glob. Environ. Chang.
– volume: 9
  year: 2009
  ident: bb0210
  article-title: Assessing global exposure and vulnerability towards natural hazards: the disaster risk index
  publication-title: Natural Hazards & Earth System Sciences
– volume: vol. Volume 1
  year: 2004
  ident: 10.1016/j.scitotenv.2020.142159_bb0275
– volume: 2019
  start-page: 4640
  year: 2019
  ident: 10.1016/j.scitotenv.2020.142159_bb0330
  article-title: Mapping the increased minimum mortality temperatures in the context of global climate change
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12663-y
– volume: 82
  start-page: 309
  year: 2007
  ident: 10.1016/j.scitotenv.2020.142159_bb0170
  article-title: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-006-9180-9
– volume: 41
  start-page: 5904
  year: 2014
  ident: 10.1016/j.scitotenv.2020.142159_bb0045
  article-title: Groundwater depletion during drought threatens future water security of the Colorado River Basin
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL061055
– volume: 526
  start-page: 196
  year: 2015
  ident: 10.1016/j.scitotenv.2020.142159_bb0260
  article-title: A multi-model and multi-index evaluation of drought characteristics in the 21st century
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.12.011
– volume: 3
  start-page: 4
  year: 2014
  ident: 10.1016/j.scitotenv.2020.142159_bb0305
  article-title: Managing drought risk in a changing climate: the role of national drought policy
  publication-title: Weather & Climate Extremes
  doi: 10.1016/j.wace.2014.01.002
– volume: 550
  start-page: 580
  year: 2017
  ident: 10.1016/j.scitotenv.2020.142159_bb0160
  article-title: Economic risk assessment of drought impacts on irrigated agriculture
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.05.004
– volume: 13
  year: 2018
  ident: 10.1016/j.scitotenv.2020.142159_bb0085
  article-title: Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5°C and 2°C of warming
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aaaa99
– year: 2013
  ident: 10.1016/j.scitotenv.2020.142159_bb0100
– volume: 44
  start-page: 7419
  year: 2017
  ident: 10.1016/j.scitotenv.2020.142159_bb0130
  article-title: Projected drought risk in 1.5°C and 2°C warmer climates
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074117
– volume: 4
  start-page: 219
  issue: 2
  year: 2013
  ident: 10.1016/j.scitotenv.2020.142159_bb0090
  article-title: A trend-preserving bias correction - the ISI-MIP approach
  publication-title: Earth System Dynamics
  doi: 10.5194/esd-4-219-2013
– volume: 19
  start-page: 5843
  year: 2006
  ident: 10.1016/j.scitotenv.2020.142159_bb0340
  article-title: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models
  publication-title: J. Clim.
  doi: 10.1175/JCLI3952.1
– volume: 47
  issue: 11
  year: 2020
  ident: 10.1016/j.scitotenv.2020.142159_bb0165
  article-title: Unprecedented Europe heat in June–July 2019: risk in the historical and future context
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL087809
– year: 2009
  ident: 10.1016/j.scitotenv.2020.142159_bb0280
– volume: 630
  start-page: 444
  year: 2018
  ident: 10.1016/j.scitotenv.2020.142159_bb0325
  article-title: Multi-scale assessments of droughts: a case study in Xinjiang, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.200
– volume: vol. 17
  start-page: 179
  year: 1993
  ident: 10.1016/j.scitotenv.2020.142159_bb0175
  article-title: The relationship of drought frequency and duration to time scales
– volume: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2020.142159_bb0010
  article-title: Evaluating severity–area–frequency (saf) of seasonal droughts in Bangladesh under climate change scenarios
  publication-title: Stoch. Env. Res. Risk A.
– volume: 138
  start-page: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2020.142159_bb0245
  article-title: The relative importance of climate change and population growth for exposure to future extreme droughts
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-016-1716-z
– volume: 526
  start-page: 274
  year: 2015
  ident: 10.1016/j.scitotenv.2020.142159_bb0255
  article-title: The drought risk atlas: enhancing decision support for drought risk management in the United States
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.01.006
– volume: 122
  start-page: 401
  year: 2014
  ident: 10.1016/j.scitotenv.2020.142159_bb0195
  article-title: A new scenario framework for climate change research: the concept of shared socioeconomic pathways
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-013-0905-2
– volume: 39
  start-page: 108
  year: 2016
  ident: 10.1016/j.scitotenv.2020.142159_bb0040
  article-title: Mapping global patterns of drought risk: an empirical framework based on sub-national estimates of hazard, exposure and vulnerability
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2016.04.012
– start-page: 181
  year: 2017
  ident: 10.1016/j.scitotenv.2020.142159_bb0230
  article-title: The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100
  publication-title: Global Environmental Change-human and Policy Dimensions
– volume: 122
  start-page: 415
  year: 2014
  ident: 10.1016/j.scitotenv.2020.142159_bb0295
  article-title: Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-013-0974-2
– volume: 42
  start-page: 169
  year: 2017
  ident: 10.1016/j.scitotenv.2020.142159_bb0200
  article-title: The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2015.01.004
– year: 2008
  ident: 10.1016/j.scitotenv.2020.142159_bb0125
– volume: 125
  start-page: 187
  issue: 1–2
  year: 2016
  ident: 10.1016/j.scitotenv.2020.142159_bb0335
  article-title: Management of drought risk under global warming
  publication-title: Theoretical & Applied Climatology
  doi: 10.1007/s00704-015-1503-1
– volume: 9
  start-page: 1097
  year: 2018
  ident: 10.1016/j.scitotenv.2020.142159_bb0055
  article-title: Population exposure to droughts in China under the 1.5° C global warming target
  publication-title: Earth System Dynamics
  doi: 10.5194/esd-9-1097-2018
– year: 2015
  ident: 10.1016/j.scitotenv.2020.142159_bb2020
– volume: 111
  start-page: 3228
  year: 2014
  ident: 10.1016/j.scitotenv.2020.142159_bb0300
  article-title: The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1312330110
– year: 2014
  ident: 10.1016/j.scitotenv.2020.142159_bb0105
– year: 2008
  ident: 10.1016/j.scitotenv.2020.142159_bb0270
– year: 1965
  ident: 10.1016/j.scitotenv.2020.142159_bb0205
– volume: 5
  start-page: 592
  issue: 7
  year: 2015
  ident: 10.1016/j.scitotenv.2020.142159_bb0115
  article-title: Future population exposure to US heat extremes
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2631
– volume: 56
  start-page: 108
  year: 2018
  ident: 10.1016/j.scitotenv.2020.142159_bb0080
  article-title: Seasonal drought prediction: advances, challenges, and future prospects
  publication-title: Rev. Geophys.
  doi: 10.1002/2016RG000549
– volume: 53
  start-page: 2404
  year: 2017
  ident: 10.1016/j.scitotenv.2020.142159_bb0265
  article-title: The 21st century Colorado River hot drought and implications for the future
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019638
– start-page: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2020.142159_bb0135
– volume: 9
  year: 2018
  ident: 10.1016/j.scitotenv.2020.142159_bb0155
  article-title: Global drought and severe drought affected population in 1.5 °C and 2 °C warmer worlds
  publication-title: Earth System Dynamics
  doi: 10.5194/esd-9-267-2018
– volume: 465
  start-page: 142
  year: 2010
  ident: 10.1016/j.scitotenv.2020.142159_bb0215
  article-title: China drought highlights future climate threats
  publication-title: Nature
  doi: 10.1038/465142a
– year: 2013
  ident: 10.1016/j.scitotenv.2020.142159_bb0310
– volume: 3
  start-page: 52
  year: 2013
  ident: 10.1016/j.scitotenv.2020.142159_bb0065
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1633
– volume: vol. 33
  start-page: 915
  year: 2013
  ident: 10.1016/j.scitotenv.2020.142159_bb0030
– volume: 43
  start-page: 2607
  year: 2014
  ident: 10.1016/j.scitotenv.2020.142159_bb0060
  article-title: Global warming and 21 st century drying
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-014-2075-y
– year: 2013
  ident: 10.1016/j.scitotenv.2020.142159_bb0050
– volume: 1
  start-page: 185
  year: 2012
  ident: 10.1016/j.scitotenv.2020.142159_bb0075
  article-title: Pricing the planet’s future: the economics of discounting in an uncertain world
  publication-title: J. Econ. Lit.
– volume: 7
  start-page: 43909
  year: 2017
  ident: 10.1016/j.scitotenv.2020.142159_bb0150
  article-title: Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change
  publication-title: Sci. Rep.
  doi: 10.1038/srep43909
– volume: 9
  start-page: 239
  year: 2018
  ident: 10.1016/j.scitotenv.2020.142159_bb0110
  article-title: Analysis of drought vulnerability characteristics and risk assessment based on information distribution and diffusion in Southwest China
  publication-title: Atmosphere
  doi: 10.3390/atmos9070239
– start-page: 65
  year: 2012
  ident: 10.1016/j.scitotenv.2020.142159_bb2000
  article-title: Determinants of risk: exposure and vulnerability
– volume: 550
  start-page: 549
  year: 2017
  ident: 10.1016/j.scitotenv.2020.142159_bb0025
  article-title: Spatial comparability of drought characteristics and related return periods in mainland China over 1961-2013
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.05.019
– volume: 112
  start-page: 3241
  year: 2015
  ident: 10.1016/j.scitotenv.2020.142159_bb0120
  article-title: Climate change in the Fertile Crescent and implications of the recent Syrian drought
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1421533112
– volume: 361
  year: 2018
  ident: 10.1016/j.scitotenv.2020.142159_bb0250
  article-title: Reducing uncertainties in climate models
  publication-title: Science
  doi: 10.1126/science.aau1864
– volume: 213
  start-page: 492
  year: 2018
  ident: 10.1016/j.scitotenv.2020.142159_bb0035
  article-title: Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2018.07.002
– volume: 41
  start-page: 8847
  year: 2014
  ident: 10.1016/j.scitotenv.2020.142159_bb0005
  article-title: Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL062308
– start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2020.142159_bb0070
  article-title: A stochastic model for drought risk analysis in the Netherlands
  publication-title: Hydrology & Earth System Sciences Discussions
– volume: 10
  start-page: 10107
  issue: 2020
  year: 2020
  ident: 10.1016/j.scitotenv.2020.142159_bb0240
  article-title: Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67146-8
– volume: 39
  start-page: 23
  year: 2015
  ident: 10.1016/j.scitotenv.2020.142159_bb0145
  article-title: Analysis of dryness/wetness over China using standardized precipitation evapotranspiration index based on two evapotranspiration algorithms
  publication-title: Chin. J. Atmos. Sci.
– volume: 20
  start-page: 695
  issue: 2
  year: 2020
  ident: 10.1016/j.scitotenv.2020.142159_bb0180
  article-title: Global-scale drought risk assessment for agricultural systems
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-20-695-2020
– volume: 23
  start-page: 1696
  year: 2010
  ident: 10.1016/j.scitotenv.2020.142159_bb0290
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: J. Clim.
  doi: 10.1175/2009JCLI2909.1
– volume: 35
  start-page: 243
  issue: 3
  year: 2014
  ident: 10.1016/j.scitotenv.2020.142159_bb0225
  article-title: Demographic scenarios by age, sex and education corresponding to the SSP narratives
  publication-title: Popul. Environ.
  doi: 10.1007/s11111-014-0205-4
– year: 2014
  ident: 10.1016/j.scitotenv.2020.142159_bb0190
– volume: 9
  issue: 4
  year: 2009
  ident: 10.1016/j.scitotenv.2020.142159_bb0210
  article-title: Assessing global exposure and vulnerability towards natural hazards: the disaster risk index
  publication-title: Natural Hazards & Earth System Sciences
  doi: 10.5194/nhess-9-1149-2009
– volume: 61
  start-page: 1651
  year: 2016
  ident: 10.1016/j.scitotenv.2020.142159_bb0140
  article-title: A cellular automata downscaling based 1 km global land use datasets (2010−2100)
  publication-title: Science Bulletin
  doi: 10.1007/s11434-016-1148-1
– year: 2013
  ident: 10.1016/j.scitotenv.2020.142159_bb0285
– volume: vol. 300
  start-page: D05109
  year: 1998
  ident: 10.1016/j.scitotenv.2020.142159_bb0015
– volume: 356
  start-page: 1362
  year: 2017
  ident: 10.1016/j.scitotenv.2020.142159_bb0095
  article-title: Estimating economic damage from climate change in the United States
  publication-title: Science
  doi: 10.1126/science.aal4369
– volume: 23
  start-page: 397
  year: 2013
  ident: 10.1016/j.scitotenv.2020.142159_bb0320
  article-title: Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China
  publication-title: International Journal of Applied Earth Observation & Geoinformation
  doi: 10.1016/j.jag.2012.11.003
– ident: 10.1016/j.scitotenv.2020.142159_bb0315
– volume: 491
  start-page: 435
  year: 2012
  ident: 10.1016/j.scitotenv.2020.142159_bb0235
  article-title: Little change in global drought over the past 60 years
  publication-title: Nature
  doi: 10.1038/nature11575
– volume: 11
  start-page: 2106
  year: 2019
  ident: 10.1016/j.scitotenv.2020.142159_bb0185
  article-title: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling
  publication-title: Sustainability
  doi: 10.3390/su11072106
SSID ssj0000781
Score 2.6050856
Snippet A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 142159
SubjectTerms climate
Climate change
drought
Drought risk assessment
Eastern United States
environment
Europe
Exposure
gross domestic product
Hazard
land cover
RCP–SSP
risk
risk assessment
South America
South Asia
Vulnerability
Title Future global socioeconomic risk to droughts based on estimates of hazard, exposure, and vulnerability in a changing climate
URI https://dx.doi.org/10.1016/j.scitotenv.2020.142159
https://www.proquest.com/docview/2460763122
https://www.proquest.com/docview/2986227381
Volume 751
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RSxwxEB70pFAopb1WqrUyhT66dTdmcxvfRDyuPfChVOrbks1m6cl19-jtiZbS396ZZFdRsD70aSFklpBJ5pskM98AfKDzGXn2VkaEH1UkhdORIaCPmFfGcMXCxPpoi1M1OZOfz9PzNTjuc2E4rLKz_cGme2vdtex3s7m_mM04x1dmWml-R0xVlql12BAHWqUD2Dj6NJ2c3hrkURYK50na2yRwJ8yLft025J5e0llRUKskDNQPgdQ9c-0xaPwCnnfOIx6F8b2ENVcP4UkoJ3k9hM2T26w16tZt2-UQnoXLOQw5R6_g99gziWBgA0FWUOO6DGXkYHNsGyx9AZ92iQx0JTY1MiHHD_ZNsanwu_lFi2sP3dWi4VvGPTR1iZerOdNY-4jba5zVaNCnFhNAop176ddwNj75ejyJujIMkSU4byNnq1IXNs0SFysnOTNWFlqVzAPEBf5UxbRvI1Gp2NH5xMayEKoYOa3JGirhDjZhUDe1ewNYxVWSGut5v2SaOqNVZakhtVaS6TBboPp5z23HUc6lMuZ5H4x2kd8oLGeF5UFhWxDfCC4CTcfjIoe9YvM7Ky4nMHlc-H2_FHLaj_zIYmrXrJa5kComm50I8Y8-ms6RnBOVbP_PIN7CU8ERNjEHJe7AoP25cu_IRWqLXVj_-CfZ7TYCf6dfvk3_AlqfFAw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RSxwxEB7sSalQpL1WalvbKfTRxd00m9v0TcTjrPaeFHwLu9ksPbnuHr090dIf35lsVrGgPvQ1ZELIJPNNkplvAD7T_Yw8eysjwo8qksLpKCegj5hXJueKhYn10RZTNTmT387T8zU46HNhOKwy2P7OpntrHVr2wmruLWYzzvGVmVaa_xFTlWXqCazLlIYfwPr-0fFkemuQR1lXOE_S2SaBO2FeNHTbkHt6SXdFQa2SMFDfB1L_mGuPQeMXsBmcR9zv5vcS1lw9hKddOcnrIWwd3matUbdwbJdDeN49zmGXc_QK_ow9kwh2bCDICmpcyFBGDjbHtsHSF_Bpl8hAV2JTIxNy_GTfFJsKf-S_aXPtortaNPzKuIt5XeLlas401j7i9hpnNeboU4sJINHOvfRrOBsfnh5MolCGIbIE523kbFXqwqZZ4mLlJGfGykKrknmAuMCfqpj2bSQqFTu6n9hYFkIVI6c1WUMl3JctGNRN7d4AVnGVpLn1vF8yTV2uVWWpIbVWkunIt0H1625s4CjnUhlz0wejXZgbhRlWmOkUtg3xjeCio-l4XORrr1hzZ8cZApPHhT_1W8HQeeRPlrx2zWpphFQx2exEiAf6aLpHck5U8vZ_JvERnk1Ov5-Yk6Pp8TvYEBxtE3OA4nsYtL9Wbofcpbb4EI7DX1LqFFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+global+socioeconomic+risk+to+droughts+based+on+estimates+of+hazard%2C+exposure%2C+and+vulnerability+in+a+changing+climate&rft.jtitle=The+Science+of+the+total+environment&rft.au=Liu%2C+Yujie&rft.au=Chen%2C+Jie&rft.date=2021-01-10&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.volume=751&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.142159&rft.externalDocID=S0048969720356886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon