Future global socioeconomic risk to droughts based on estimates of hazard, exposure, and vulnerability in a changing climate
A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause...
Saved in:
Published in | The Science of the total environment Vol. 751; p. 142159 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2020.142159 |
Cover
Abstract | A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause consequential damages to socioeconomic systems. The risk assessment of drought caused by climate change can be a bridge between impacts and adaptation. To assess the socioeconomic risk to droughts in a base period and two future periods (2016 to 2035 and 2046 to 2065), the projections of five general circulation models and population and gross domestic product (GDP), land cover, and water resources data were used to analyze the socioeconomic risk under three scenarios combining representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). The socioeconomic risk was calculated as the product of three determinants: hazard, exposure, and vulnerability. The risk of the global population to drought was projected to be highest in 2046 to 2065 under scenario RCP8.5–SSP3, with up to 1.45 × 109 persons affected, a 63% increase compared with the base period. The highest risk to GDP (4.29 × 1013 purchasing power parity $) was possibly in 2046 to 2065 under scenario RCP2.6–SSP1, with the risk increasing 5.64 times compared to the base period. Regions with high socioeconomic risk were primarily concentrated in the East and South Asia, Midwestern Europe, eastern US, and the coastal areas of South America. With climate change, the inequality in future socioeconomic risk to drought among countries is predicted to increase. The ten countries with the highest risks to population and GDP accounted for nearly 70% of the global risk.
[Display omitted]
•Population risk potentially be highest in RCP8.5–SSP3, with 1.45 × 109 persons affected.•The highest GDP risk is likely in RCP2.6–SSP1 with 5.64 times higher than base period.•Socioeconomic risk distributes unequally and highest in the east and south of Asia. |
---|---|
AbstractList | A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause consequential damages to socioeconomic systems. The risk assessment of drought caused by climate change can be a bridge between impacts and adaptation. To assess the socioeconomic risk to droughts in a base period and two future periods (2016 to 2035 and 2046 to 2065), the projections of five general circulation models and population and gross domestic product (GDP), land cover, and water resources data were used to analyze the socioeconomic risk under three scenarios combining representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). The socioeconomic risk was calculated as the product of three determinants: hazard, exposure, and vulnerability. The risk of the global population to drought was projected to be highest in 2046 to 2065 under scenario RCP8.5-SSP3, with up to 1.45 × 109 persons affected, a 63% increase compared with the base period. The highest risk to GDP (4.29 × 1013 purchasing power parity $) was possibly in 2046 to 2065 under scenario RCP2.6-SSP1, with the risk increasing 5.64 times compared to the base period. Regions with high socioeconomic risk were primarily concentrated in the East and South Asia, Midwestern Europe, eastern US, and the coastal areas of South America. With climate change, the inequality in future socioeconomic risk to drought among countries is predicted to increase. The ten countries with the highest risks to population and GDP accounted for nearly 70% of the global risk.A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause consequential damages to socioeconomic systems. The risk assessment of drought caused by climate change can be a bridge between impacts and adaptation. To assess the socioeconomic risk to droughts in a base period and two future periods (2016 to 2035 and 2046 to 2065), the projections of five general circulation models and population and gross domestic product (GDP), land cover, and water resources data were used to analyze the socioeconomic risk under three scenarios combining representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). The socioeconomic risk was calculated as the product of three determinants: hazard, exposure, and vulnerability. The risk of the global population to drought was projected to be highest in 2046 to 2065 under scenario RCP8.5-SSP3, with up to 1.45 × 109 persons affected, a 63% increase compared with the base period. The highest risk to GDP (4.29 × 1013 purchasing power parity $) was possibly in 2046 to 2065 under scenario RCP2.6-SSP1, with the risk increasing 5.64 times compared to the base period. Regions with high socioeconomic risk were primarily concentrated in the East and South Asia, Midwestern Europe, eastern US, and the coastal areas of South America. With climate change, the inequality in future socioeconomic risk to drought among countries is predicted to increase. The ten countries with the highest risks to population and GDP accounted for nearly 70% of the global risk. A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause consequential damages to socioeconomic systems. The risk assessment of drought caused by climate change can be a bridge between impacts and adaptation. To assess the socioeconomic risk to droughts in a base period and two future periods (2016 to 2035 and 2046 to 2065), the projections of five general circulation models and population and gross domestic product (GDP), land cover, and water resources data were used to analyze the socioeconomic risk under three scenarios combining representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). The socioeconomic risk was calculated as the product of three determinants: hazard, exposure, and vulnerability. The risk of the global population to drought was projected to be highest in 2046 to 2065 under scenario RCP8.5–SSP3, with up to 1.45 × 109 persons affected, a 63% increase compared with the base period. The highest risk to GDP (4.29 × 1013 purchasing power parity $) was possibly in 2046 to 2065 under scenario RCP2.6–SSP1, with the risk increasing 5.64 times compared to the base period. Regions with high socioeconomic risk were primarily concentrated in the East and South Asia, Midwestern Europe, eastern US, and the coastal areas of South America. With climate change, the inequality in future socioeconomic risk to drought among countries is predicted to increase. The ten countries with the highest risks to population and GDP accounted for nearly 70% of the global risk. [Display omitted] •Population risk potentially be highest in RCP8.5–SSP3, with 1.45 × 109 persons affected.•The highest GDP risk is likely in RCP2.6–SSP1 with 5.64 times higher than base period.•Socioeconomic risk distributes unequally and highest in the east and south of Asia. A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse climate change scenarios has been the subject of scarce research. Climate change is projected to increase the future hazard of drought and cause consequential damages to socioeconomic systems. The risk assessment of drought caused by climate change can be a bridge between impacts and adaptation. To assess the socioeconomic risk to droughts in a base period and two future periods (2016 to 2035 and 2046 to 2065), the projections of five general circulation models and population and gross domestic product (GDP), land cover, and water resources data were used to analyze the socioeconomic risk under three scenarios combining representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). The socioeconomic risk was calculated as the product of three determinants: hazard, exposure, and vulnerability. The risk of the global population to drought was projected to be highest in 2046 to 2065 under scenario RCP8.5–SSP3, with up to 1.45 × 10⁹ persons affected, a 63% increase compared with the base period. The highest risk to GDP (4.29 × 10¹³ purchasing power parity $) was possibly in 2046 to 2065 under scenario RCP2.6–SSP1, with the risk increasing 5.64 times compared to the base period. Regions with high socioeconomic risk were primarily concentrated in the East and South Asia, Midwestern Europe, eastern US, and the coastal areas of South America. With climate change, the inequality in future socioeconomic risk to drought among countries is predicted to increase. The ten countries with the highest risks to population and GDP accounted for nearly 70% of the global risk. |
ArticleNumber | 142159 |
Author | Liu, Yujie Chen, Jie |
Author_xml | – sequence: 1 givenname: Yujie orcidid: 0000-0002-0751-6857 surname: Liu fullname: Liu, Yujie email: liuyujie@igsnrr.ac.cn organization: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China – sequence: 2 givenname: Jie surname: Chen fullname: Chen, Jie organization: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China |
BookMark | eNqNkUGPFCEQhYlZE2dXf4N19LA9At0NzcHDZuOqySZe9ExounqGkYER6Im78cfLOMaDl5VLEfK-V1S9S3IRYkBCXjO6ZpSJt7t1tq7EguG45pTX146zXj0jKzZI1TDKxQVZUdoNjRJKviCXOe9oPXJgK_LzbilLQtj4OBoPOVoX0cYQ985CcvkblAhTistmWzKMJuMEMQDm4vamYIY4w9Y8mjRdA_44xFzNrsGECY6LD5jM6LwrD-ACGLBbEzYubMD63_RL8nw2PuOrP_WKfL17_-X2Y3P_-cOn25v7xrYDKw3aeVKj7QeGVGAn6nzdqMQkpZCStb2YWVtvfBYU-15Z2o1cjBKV4kwJju0VeXP2PaT4fal_13uXLXpvAsYla64GwbmszZ6WdoJK0TLOq_TdWWpTzDnhrGsOprgYSjLOa0b1KSC9038D0qeA9Dmgyst_-EOqa0kP_0HenEmsSzs6TCcdBouTS2iLnqJ70uMXqF6zmw |
CitedBy_id | crossref_primary_10_1007_s11625_023_01298_0 crossref_primary_10_3389_fmars_2022_945901 crossref_primary_10_1002_wat2_1586 crossref_primary_10_1016_j_ijdrr_2023_103764 crossref_primary_10_1088_1748_9326_ad4402 crossref_primary_10_3390_agriculture12070980 crossref_primary_10_1007_s10113_022_01982_4 crossref_primary_10_1016_j_ijdrr_2023_103800 crossref_primary_10_1088_1748_9326_ac58ac crossref_primary_10_1016_j_jclepro_2023_135929 crossref_primary_10_1016_j_jenvman_2022_115494 crossref_primary_10_1007_s10750_023_05165_y crossref_primary_10_3389_feart_2024_1369523 crossref_primary_10_1007_s00704_024_05048_9 crossref_primary_10_1016_j_earscirev_2020_103501 crossref_primary_10_1038_s41612_024_00579_4 crossref_primary_10_1016_j_landurbplan_2023_104888 crossref_primary_10_3390_agronomy12092071 crossref_primary_10_1016_j_agwat_2022_107956 crossref_primary_10_1016_j_ecolind_2023_110712 crossref_primary_10_1007_s00477_022_02197_z crossref_primary_10_1029_2022EF003469 crossref_primary_10_1016_j_heliyon_2024_e35134 crossref_primary_10_3390_cli12090131 crossref_primary_10_1038_s43247_023_00840_3 crossref_primary_10_1007_s11069_022_05429_1 crossref_primary_10_1029_2022EF003420 crossref_primary_10_1177_00307270221103289 crossref_primary_10_1007_s00704_024_05085_4 crossref_primary_10_1016_j_scitotenv_2024_176867 crossref_primary_10_1016_j_jhydrol_2023_129321 crossref_primary_10_1007_s11356_021_14100_4 crossref_primary_10_1016_j_catena_2022_106904 crossref_primary_10_3390_jrfm16030151 crossref_primary_10_1142_S1464333223500084 crossref_primary_10_1016_j_jclepro_2025_144694 crossref_primary_10_1002_joc_8229 crossref_primary_10_1016_j_jhydrol_2024_132315 crossref_primary_10_1002_joc_7933 crossref_primary_10_1016_j_jhydrol_2024_131669 crossref_primary_10_1016_j_ejrh_2025_102296 crossref_primary_10_1016_j_jhydrol_2025_132971 crossref_primary_10_1002_ecy_3850 crossref_primary_10_3390_ijerph181910437 crossref_primary_10_1016_j_scitotenv_2023_165591 crossref_primary_10_1061_NHREFO_NHENG_2102 crossref_primary_10_3390_land11112029 crossref_primary_10_1016_j_envexpbot_2024_105859 crossref_primary_10_1002_joc_7386 crossref_primary_10_1016_j_gloenvcha_2021_102393 crossref_primary_10_1007_s41101_024_00281_9 crossref_primary_10_1029_2023EF003872 crossref_primary_10_3390_jmse9040386 crossref_primary_10_3390_su13031042 crossref_primary_10_1088_1748_9326_ad0a1c crossref_primary_10_1016_j_jenvman_2022_115751 crossref_primary_10_1016_j_lana_2023_100580 crossref_primary_10_1016_j_ijdrr_2023_104152 crossref_primary_10_3390_data8020036 crossref_primary_10_3390_su17072912 crossref_primary_10_3390_atmos13091423 crossref_primary_10_1016_j_ecolind_2025_113160 crossref_primary_10_1016_j_jclepro_2023_136719 crossref_primary_10_1016_j_scitotenv_2022_160371 crossref_primary_10_3389_fcosc_2022_946669 crossref_primary_10_1016_j_aej_2024_01_008 crossref_primary_10_1016_j_gfs_2022_100625 crossref_primary_10_1016_j_ecolind_2023_110654 crossref_primary_10_1038_s41467_021_27490_3 crossref_primary_10_1007_s41660_021_00188_1 crossref_primary_10_1016_j_scitotenv_2024_170187 crossref_primary_10_5861_ijrse_2023_49 crossref_primary_10_3390_ijerph192013411 crossref_primary_10_1007_s11069_021_04854_y crossref_primary_10_1016_j_ijdrr_2024_104789 crossref_primary_10_1007_s11356_022_20028_0 crossref_primary_10_1038_s41612_024_00820_0 crossref_primary_10_1088_1748_9326_ac8755 crossref_primary_10_3390_su131810102 crossref_primary_10_1038_s41612_023_00401_7 crossref_primary_10_1016_j_apsoil_2022_104588 crossref_primary_10_1016_j_ijdrr_2022_102961 crossref_primary_10_1080_19475705_2025_2481996 crossref_primary_10_1007_s10661_022_10547_1 crossref_primary_10_3390_su13052651 crossref_primary_10_1007_s00477_024_02675_6 crossref_primary_10_1016_j_nhres_2025_02_006 crossref_primary_10_1088_2515_7620_ad0210 crossref_primary_10_1002_wcc_761 crossref_primary_10_1016_j_jhydrol_2023_130093 crossref_primary_10_3390_su14042442 |
Cites_doi | 10.1038/s41467-019-12663-y 10.1007/s10584-006-9180-9 10.1002/2014GL061055 10.1016/j.jhydrol.2014.12.011 10.1016/j.wace.2014.01.002 10.1016/j.jhydrol.2017.05.004 10.1088/1748-9326/aaaa99 10.1002/2017GL074117 10.5194/esd-4-219-2013 10.1175/JCLI3952.1 10.1029/2020GL087809 10.1016/j.scitotenv.2018.02.200 10.1007/s10584-016-1716-z 10.1016/j.jhydrol.2015.01.006 10.1007/s10584-013-0905-2 10.1016/j.gloenvcha.2016.04.012 10.1007/s10584-013-0974-2 10.1016/j.gloenvcha.2015.01.004 10.1007/s00704-015-1503-1 10.5194/esd-9-1097-2018 10.1073/pnas.1312330110 10.1038/nclimate2631 10.1002/2016RG000549 10.1002/2016WR019638 10.5194/esd-9-267-2018 10.1038/465142a 10.1038/nclimate1633 10.1007/s00382-014-2075-y 10.1038/srep43909 10.3390/atmos9070239 10.1016/j.jhydrol.2017.05.019 10.1073/pnas.1421533112 10.1126/science.aau1864 10.1016/j.atmosres.2018.07.002 10.1002/2014GL062308 10.1038/s41598-020-67146-8 10.5194/nhess-20-695-2020 10.1175/2009JCLI2909.1 10.1007/s11111-014-0205-4 10.5194/nhess-9-1149-2009 10.1007/s11434-016-1148-1 10.1126/science.aal4369 10.1016/j.jag.2012.11.003 10.1038/nature11575 10.3390/su11072106 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2020.142159 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2020_142159 S0048969720356886 |
GeographicLocations | South America Eastern United States Europe South Asia |
GeographicLocations_xml | – name: South Asia – name: Eastern United States – name: South America – name: Europe |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSH SSJ SSZ T5K ~02 ~G- ~KM 53G AAQXK AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW WUQ XPP ZXP ZY4 7X8 EFKBS EFLBG 7S9 L.6 |
ID | FETCH-LOGICAL-c381t-ecfd9bc581e06e464214b96d776771356f136772f60e559c04b26b7e9921962e3 |
IEDL.DBID | AIKHN |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Sep 05 10:55:16 EDT 2025 Thu Sep 04 16:45:27 EDT 2025 Tue Jul 01 04:24:33 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Sun Apr 06 06:53:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Climate change Drought risk assessment Exposure Vulnerability RCP–SSP Hazard |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-ecfd9bc581e06e464214b96d776771356f136772f60e559c04b26b7e9921962e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0751-6857 |
PQID | 2460763122 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2986227381 proquest_miscellaneous_2460763122 crossref_citationtrail_10_1016_j_scitotenv_2020_142159 crossref_primary_10_1016_j_scitotenv_2020_142159 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_142159 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-10 |
PublicationDateYYYYMMDD | 2021-01-10 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hao, Singh, Xia (bb0080) 2018; 56 Castle, Thomas, Reager, Rodell, Swenson, Famiglietti (bb0045) 2014; 41 Sheffield, Wood, Roderick (bb0235) 2012; 491 Diermanse, Mens, Macian-Sorribes, Schasfoort (bb0070) 2018 Palmer (bb0205) 1965 IPCC (bb0105) 2014 WMO (bb0310) 2013 Howitt, MacEwan, Medellín-Azuara, Lund, Sumner (bb2020) 2015 O’Neill (bb0195) 2014; 122 Meza, Siebert, Döll, Kusche, Herbert, Eyshi Rezaei, Hagenlocher (bb0180) 2020; 20 Peduzzi, Dao, Herold, Mouton (bb0210) 2009; 9 Bouwer (bb0030) 2013; vol. 33 Ma, Yuan, Jiao, Ji (bb0165) 2020; 47 Allen, Pereira, Raes, Smith (bb0015) 1998; vol. 300 Wu, Zhou, Liu, Zhang, Leng, Diao (bb0320) 2013; 23 Liu, Sun, Lim, Jie, Zhang (bb0155) 2018; 9 Svoboda, Fuchs, Poulsen, Nothwehr (bb0255) 2015; 526 UNISDR (bb0275) 2004; vol. Volume 1 Harrington, Otto (bb0085) 2018; 13 Kelley, Shahrzad, Cane, Richard, Yochanan (bb0120) 2015; 112 Union E, Commission JRC-E (bb0270) 2008 Liu, Anderson, Yan, Dong, Liao, Shi (bb0150) 2017; 7 Samir, Lutz (bb0225) 2014; 35 Aghakouchak, Cheng, Mazdiyasni, Farahmand (bb0005) 2014; 41 Gollier (bb0075) 2012; 1 Murakami, Yamagata (bb0185) 2019; 11 Van Dijk (bb0285) 2013 Jones, O’Neill, Mcdaniel, Mcginnis, Mearns, Tebaldi (bb0115) 2015; 5 Dai (bb0065) 2013; 3 Shiru, Shahid, Dewan, Chung, Hassan (bb0240) 2020; 10 Cardona, van Aalst, Birkmann, Fordham, McGregor, Perez, Pulwarty, Schipper, Sinh (bb2000) 2012 Smirnov, Zhang, Xiao, Orbell, Lobben, Gordon (bb0245) 2016; 138 Soden, Collins, Feldman (bb0250) 2018; 361 Carrao, Naumann, Barbosa (bb0040) 2016; 39 Jiang, Yang, ID, Zhao (bb0110) 2018; 9 Mckee, Doesken, Kleist (bb0175) 1993; vol. 17 UNISDR (bb0280) 2009 Yin, Wang, Ren, Li, Guo (bb0330) 2019; 2019 Vicenteserrano, Beguería, Lópezmoreno (bb0290) 2010; 23 Alamgir, Khan, Shahid, Yaseen, Rasheed (bb0010) 2020; 1 Hsiang (bb0095) 2017; 356 Knorr, Scholze (bb0125) 2008 Lopez-Nicolas, Pulido-Velazquez, Macian-Sorribes (bb0160) 2017; 550 Li, Yu, Sohl, Clinton, Li, Zhu, Liu, Gong (bb0140) 2016; 61 Warszawski, Frieler, Huber, Piontek, Serdeczny, Schewe (bb0300) 2014; 111 Li, Pan (bb0135) 2016 Hempel, Frieler, Warszawski, Schewe, Piontek (bb0090) 2013; 4 Vuuren, Carter (bb0295) 2014; 122 Ayantobo (bb0025) 2017; 550 IPCC (bb0100) 2013 Lehner, Coats, Stocker, Pendergrass, Sanderson, Raible, Smerdon (bb0130) 2017; 44 Zhou, Yu (bb0340) 2006; 19 Byakatonda, Parida, Moalafhi, Kenabatho (bb0035) 2018; 213 Naumann, Barbosa, Garrote, Iglesias, Vogt (bb0190) 2014 Touma, Ashfaq, Nayak, Kao, Diffenbaugh (bb0260) 2015; 526 Samir, Lutz (bb0230) 2017 Checchi (bb0050) 2013 O’Neill, Kriegler, Ebi, Kemp-Benedict, Riahi, Rothman, Solecki (bb0200) 2017; 42 Cook, Smerdon, Seager, Coats (bb0060) 2014; 43 Liu, Jiang (bb0145) 2015; 39 Chen, Liu, Pan, Liu, Sun, Ge (bb0055) 2018; 9 Udall, Overpeck (bb0265) 2017; 53 Maurer (bb0170) 2007; 82 WMO (bb0315) 2020 Qiu (bb0215) 2010; 465 Zhang, Han, Jia, Song, Wang (bb0335) 2016; 125 Yao, Zhao, Chen, Yu, Zhang (bb0325) 2018; 630 Wilhite, Sivakumar, Pulwarty (bb0305) 2014; 3 Aghakouchak (10.1016/j.scitotenv.2020.142159_bb0005) 2014; 41 Yao (10.1016/j.scitotenv.2020.142159_bb0325) 2018; 630 Checchi (10.1016/j.scitotenv.2020.142159_bb0050) 2013 Palmer (10.1016/j.scitotenv.2020.142159_bb0205) 1965 Li (10.1016/j.scitotenv.2020.142159_bb0135) 2016 Peduzzi (10.1016/j.scitotenv.2020.142159_bb0210) 2009; 9 UNISDR (10.1016/j.scitotenv.2020.142159_bb0280) 2009 Diermanse (10.1016/j.scitotenv.2020.142159_bb0070) 2018 Union E, Commission JRC-E (10.1016/j.scitotenv.2020.142159_bb0270) 2008 Gollier (10.1016/j.scitotenv.2020.142159_bb0075) 2012; 1 Howitt (10.1016/j.scitotenv.2020.142159_bb2020) 2015 Murakami (10.1016/j.scitotenv.2020.142159_bb0185) 2019; 11 Cardona (10.1016/j.scitotenv.2020.142159_bb2000) 2012 Svoboda (10.1016/j.scitotenv.2020.142159_bb0255) 2015; 526 Vuuren (10.1016/j.scitotenv.2020.142159_bb0295) 2014; 122 Chen (10.1016/j.scitotenv.2020.142159_bb0055) 2018; 9 Maurer (10.1016/j.scitotenv.2020.142159_bb0170) 2007; 82 Samir (10.1016/j.scitotenv.2020.142159_bb0225) 2014; 35 Samir (10.1016/j.scitotenv.2020.142159_bb0230) 2017 Soden (10.1016/j.scitotenv.2020.142159_bb0250) 2018; 361 Zhou (10.1016/j.scitotenv.2020.142159_bb0340) 2006; 19 IPCC (10.1016/j.scitotenv.2020.142159_bb0105) 2014 Dai (10.1016/j.scitotenv.2020.142159_bb0065) 2013; 3 Smirnov (10.1016/j.scitotenv.2020.142159_bb0245) 2016; 138 Wilhite (10.1016/j.scitotenv.2020.142159_bb0305) 2014; 3 Wu (10.1016/j.scitotenv.2020.142159_bb0320) 2013; 23 Alamgir (10.1016/j.scitotenv.2020.142159_bb0010) 2020; 1 Sheffield (10.1016/j.scitotenv.2020.142159_bb0235) 2012; 491 Warszawski (10.1016/j.scitotenv.2020.142159_bb0300) 2014; 111 Carrao (10.1016/j.scitotenv.2020.142159_bb0040) 2016; 39 Van Dijk (10.1016/j.scitotenv.2020.142159_bb0285) 2013 Udall (10.1016/j.scitotenv.2020.142159_bb0265) 2017; 53 Jiang (10.1016/j.scitotenv.2020.142159_bb0110) 2018; 9 Vicenteserrano (10.1016/j.scitotenv.2020.142159_bb0290) 2010; 23 Touma (10.1016/j.scitotenv.2020.142159_bb0260) 2015; 526 O’Neill (10.1016/j.scitotenv.2020.142159_bb0195) 2014; 122 Hsiang (10.1016/j.scitotenv.2020.142159_bb0095) 2017; 356 IPCC (10.1016/j.scitotenv.2020.142159_bb0100) 2013 Byakatonda (10.1016/j.scitotenv.2020.142159_bb0035) 2018; 213 Lopez-Nicolas (10.1016/j.scitotenv.2020.142159_bb0160) 2017; 550 Ma (10.1016/j.scitotenv.2020.142159_bb0165) 2020; 47 O’Neill (10.1016/j.scitotenv.2020.142159_bb0200) 2017; 42 Zhang (10.1016/j.scitotenv.2020.142159_bb0335) 2016; 125 Bouwer (10.1016/j.scitotenv.2020.142159_bb0030) 2013; vol. 33 Harrington (10.1016/j.scitotenv.2020.142159_bb0085) 2018; 13 Jones (10.1016/j.scitotenv.2020.142159_bb0115) 2015; 5 Cook (10.1016/j.scitotenv.2020.142159_bb0060) 2014; 43 Hempel (10.1016/j.scitotenv.2020.142159_bb0090) 2013; 4 Kelley (10.1016/j.scitotenv.2020.142159_bb0120) 2015; 112 WMO (10.1016/j.scitotenv.2020.142159_bb0310) 2013 Castle (10.1016/j.scitotenv.2020.142159_bb0045) 2014; 41 Shiru (10.1016/j.scitotenv.2020.142159_bb0240) 2020; 10 Mckee (10.1016/j.scitotenv.2020.142159_bb0175) 1993; vol. 17 Knorr (10.1016/j.scitotenv.2020.142159_bb0125) 2008 Liu (10.1016/j.scitotenv.2020.142159_bb0150) 2017; 7 Hao (10.1016/j.scitotenv.2020.142159_bb0080) 2018; 56 Allen (10.1016/j.scitotenv.2020.142159_bb0015) 1998; vol. 300 WMO (10.1016/j.scitotenv.2020.142159_bb0315) Ayantobo (10.1016/j.scitotenv.2020.142159_bb0025) 2017; 550 Liu (10.1016/j.scitotenv.2020.142159_bb0155) 2018; 9 Liu (10.1016/j.scitotenv.2020.142159_bb0145) 2015; 39 Yin (10.1016/j.scitotenv.2020.142159_bb0330) 2019; 2019 UNISDR (10.1016/j.scitotenv.2020.142159_bb0275) 2004; vol. Volume 1 Lehner (10.1016/j.scitotenv.2020.142159_bb0130) 2017; 44 Li (10.1016/j.scitotenv.2020.142159_bb0140) 2016; 61 Meza (10.1016/j.scitotenv.2020.142159_bb0180) 2020; 20 Qiu (10.1016/j.scitotenv.2020.142159_bb0215) 2010; 465 Naumann (10.1016/j.scitotenv.2020.142159_bb0190) 2014 |
References_xml | – volume: 526 start-page: 196 year: 2015 end-page: 207 ident: bb0260 article-title: A multi-model and multi-index evaluation of drought characteristics in the 21st century publication-title: J. Hydrol. – year: 2013 ident: bb0285 article-title: The Millennium Drought in Southeast Australia (2001–2009): Natural and Human Causes and Implications for Water Resources, Ecosystems, Economy, and Society – volume: 9 start-page: 1097 year: 2018 end-page: 1106 ident: bb0055 article-title: Population exposure to droughts in China under the 1.5° C global warming target publication-title: Earth System Dynamics – volume: 5 start-page: 592 year: 2015 end-page: 597 ident: bb0115 article-title: Future population exposure to US heat extremes publication-title: Nat. Clim. Chang. – start-page: 181 year: 2017 end-page: 192 ident: bb0230 article-title: The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100 publication-title: Global Environmental Change-human and Policy Dimensions – volume: 61 start-page: 1651 year: 2016 end-page: 1661 ident: bb0140 article-title: A cellular automata downscaling based 1 km global land use datasets (2010−2100) publication-title: Science Bulletin – volume: 3 start-page: 52 year: 2013 end-page: 58 ident: bb0065 article-title: Increasing drought under global warming in observations and models publication-title: Nat. Clim. Chang. – volume: 125 start-page: 187 year: 2016 end-page: 196 ident: bb0335 article-title: Management of drought risk under global warming publication-title: Theoretical & Applied Climatology – volume: 19 start-page: 5843 year: 2006 end-page: 5858 ident: bb0340 article-title: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models publication-title: J. Clim. – volume: 112 start-page: 3241 year: 2015 end-page: 3246 ident: bb0120 article-title: Climate change in the Fertile Crescent and implications of the recent Syrian drought publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 465 start-page: 142 year: 2010 end-page: 143 ident: bb0215 article-title: China drought highlights future climate threats publication-title: Nature – volume: 630 start-page: 444 year: 2018 end-page: 452 ident: bb0325 article-title: Multi-scale assessments of droughts: a case study in Xinjiang, China publication-title: Sci. Total Environ. – year: 2020 ident: bb0315 article-title: WMO statement on the state of the global climate in 2019 – volume: 4 start-page: 219 year: 2013 end-page: 236 ident: bb0090 article-title: A trend-preserving bias correction - the ISI-MIP approach publication-title: Earth System Dynamics – year: 2015 ident: bb2020 article-title: Economic Analysis of the 2015 Drought for California Agriculture – volume: 361 year: 2018 ident: bb0250 article-title: Reducing uncertainties in climate models publication-title: Science – volume: 20 start-page: 695 year: 2020 end-page: 712 ident: bb0180 article-title: Global-scale drought risk assessment for agricultural systems publication-title: Nat. Hazards Earth Syst. Sci. – volume: 56 start-page: 108 year: 2018 end-page: 141 ident: bb0080 article-title: Seasonal drought prediction: advances, challenges, and future prospects publication-title: Rev. Geophys. – volume: 9 start-page: 239 year: 2018 ident: bb0110 article-title: Analysis of drought vulnerability characteristics and risk assessment based on information distribution and diffusion in Southwest China publication-title: Atmosphere – volume: 11 start-page: 2106 year: 2019 ident: bb0185 article-title: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling publication-title: Sustainability – volume: vol. Volume 1 year: 2004 ident: bb0275 article-title: Living with Risk: A Global Review of Disaster Reduction Initiatives. Review – volume: 23 start-page: 397 year: 2013 end-page: 410 ident: bb0320 article-title: Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China publication-title: International Journal of Applied Earth Observation & Geoinformation – year: 2008 ident: bb0125 article-title: A Global Climate Change Risk Assessment of Droughts and Floods. Economics and Management of Climate Change – volume: 23 start-page: 1696 year: 2010 end-page: 1718 ident: bb0290 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: J. Clim. – volume: 39 start-page: 23 year: 2015 end-page: 26 ident: bb0145 article-title: Analysis of dryness/wetness over China using standardized precipitation evapotranspiration index based on two evapotranspiration algorithms publication-title: Chin. J. Atmos. Sci. – volume: 9 year: 2018 ident: bb0155 article-title: Global drought and severe drought affected population in 1.5 °C and 2 °C warmer worlds publication-title: Earth System Dynamics – volume: 526 start-page: 274 year: 2015 end-page: 286 ident: bb0255 article-title: The drought risk atlas: enhancing decision support for drought risk management in the United States publication-title: J. Hydrol. – year: 2008 ident: bb0270 article-title: Handbook on Constructing Composite Indicators: Methodology and User Guide – volume: 41 start-page: 5904 year: 2014 end-page: 5911 ident: bb0045 article-title: Groundwater depletion during drought threatens future water security of the Colorado River Basin publication-title: Geophys. Res. Lett. – volume: 3 start-page: 4 year: 2014 end-page: 13 ident: bb0305 article-title: Managing drought risk in a changing climate: the role of national drought policy publication-title: Weather & Climate Extremes – start-page: 1 year: 2016 end-page: 19 ident: bb0135 article-title: Risk Assessment of Meteorological Drought in China under RCP Scenarios from 2016 to 2050 – volume: 82 start-page: 309 year: 2007 end-page: 325 ident: bb0170 article-title: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios publication-title: Clim. Chang. – volume: 550 start-page: 580 year: 2017 end-page: 589 ident: bb0160 article-title: Economic risk assessment of drought impacts on irrigated agriculture publication-title: J. Hydrol. – volume: vol. 17 start-page: 179 year: 1993 end-page: 183 ident: bb0175 article-title: The relationship of drought frequency and duration to time scales publication-title: Proceedings of the 8th Conference on Applied Climatology – volume: 122 start-page: 415 year: 2014 end-page: 429 ident: bb0295 article-title: Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old publication-title: Clim. Chang. – volume: 213 start-page: 492 year: 2018 end-page: 508 ident: bb0035 article-title: Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices publication-title: Atmos. Res. – volume: 491 start-page: 435 year: 2012 end-page: 438 ident: bb0235 article-title: Little change in global drought over the past 60 years publication-title: Nature – volume: 1 year: 2020 ident: bb0010 article-title: Evaluating severity–area–frequency (saf) of seasonal droughts in Bangladesh under climate change scenarios publication-title: Stoch. Env. Res. Risk A. – volume: 356 start-page: 1362 year: 2017 ident: bb0095 article-title: Estimating economic damage from climate change in the United States publication-title: Science – volume: 35 start-page: 243 year: 2014 end-page: 260 ident: bb0225 article-title: Demographic scenarios by age, sex and education corresponding to the SSP narratives publication-title: Popul. Environ. – volume: 42 start-page: 169 year: 2017 end-page: 180 ident: bb0200 article-title: The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century publication-title: Glob. Environ. Chang. – volume: 1 start-page: 185 year: 2012 ident: bb0075 article-title: Pricing the planet’s future: the economics of discounting in an uncertain world publication-title: J. Econ. Lit. – volume: 44 start-page: 7419 year: 2017 end-page: 7428 ident: bb0130 article-title: Projected drought risk in 1.5°C and 2°C warmer climates publication-title: Geophys. Res. Lett. – year: 1965 ident: bb0205 article-title: Meteorological Drought Usdepartment of Commerce Weather Bureau Research Paper – volume: 2019 start-page: 4640 year: 2019 ident: bb0330 article-title: Mapping the increased minimum mortality temperatures in the context of global climate change publication-title: Nat. Commun. – year: 2013 ident: bb0050 article-title: Mortality among Populations of Southern and Central Somalia Affected by Severe Food Insecurity and Famine during 2010–2012 – volume: 138 start-page: 1 year: 2016 end-page: 13 ident: bb0245 article-title: The relative importance of climate change and population growth for exposure to future extreme droughts publication-title: Clim. Chang. – volume: 41 start-page: 8847 year: 2014 end-page: 8852 ident: bb0005 article-title: Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought publication-title: Geophys. Res. Lett. – start-page: 1 year: 2018 end-page: 20 ident: bb0070 article-title: A stochastic model for drought risk analysis in the Netherlands publication-title: Hydrology & Earth System Sciences Discussions – year: 2013 ident: bb0310 article-title: The Global Climate 2001–2010: A Decade of Climate Extremes – volume: 122 start-page: 401 year: 2014 end-page: 414 ident: bb0195 article-title: A new scenario framework for climate change research: the concept of shared socioeconomic pathways publication-title: Clim. Chang. – volume: 43 start-page: 2607 year: 2014 end-page: 2627 ident: bb0060 article-title: Global warming and 21 st century drying publication-title: Clim. Dyn. – volume: 53 start-page: 2404 year: 2017 end-page: 2418 ident: bb0265 article-title: The 21st century Colorado River hot drought and implications for the future publication-title: Water Resour. Res. – year: 2014 ident: bb0190 article-title: Exploring Drought Vulnerability in Africa: An Indicator Based Analysis to Be Used in Early Warning Systems – volume: 111 start-page: 3228 year: 2014 end-page: 3232 ident: bb0300 article-title: The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 10107 year: 2020 ident: bb0240 article-title: Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios publication-title: Sci. Rep. – start-page: 65 year: 2012 end-page: 108 ident: bb2000 article-title: Determinants of risk: exposure and vulnerability publication-title: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation – volume: 13 year: 2018 ident: bb0085 article-title: Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 publication-title: Environ. Res. Lett. – volume: vol. 300 start-page: D05109 year: 1998 ident: bb0015 article-title: Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56 Fao, Rome – year: 2009 ident: bb0280 article-title: Drought Risk Reduction Framework and Practices: Contributing to the Implementation of the Hyogo Framework for Action. United Nations Secretariat of the International Strategy for Disaster 5 Reduction (UNISDR), Geneva, Switzerland – volume: vol. 33 start-page: 915 year: 2013 end-page: 930 ident: bb0030 article-title: Projections of Future Extreme Weather Losses Under Changes in Climate and Exposure Risk Analysis an Official Publication of the Society for Risk Analysis – volume: 7 start-page: 43909 year: 2017 ident: bb0150 article-title: Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change publication-title: Sci. Rep. – year: 2014 ident: bb0105 article-title: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and 248 Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 249 Intergovernmental Panel on Climate Change – year: 2013 ident: bb0100 article-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 550 start-page: 549 year: 2017 end-page: 567 ident: bb0025 article-title: Spatial comparability of drought characteristics and related return periods in mainland China over 1961-2013 publication-title: J. Hydrol. – volume: 47 year: 2020 ident: bb0165 article-title: Unprecedented Europe heat in June–July 2019: risk in the historical and future context publication-title: Geophys. Res. Lett. – volume: 39 start-page: 108 year: 2016 end-page: 124 ident: bb0040 article-title: Mapping global patterns of drought risk: an empirical framework based on sub-national estimates of hazard, exposure and vulnerability publication-title: Glob. Environ. Chang. – volume: 9 year: 2009 ident: bb0210 article-title: Assessing global exposure and vulnerability towards natural hazards: the disaster risk index publication-title: Natural Hazards & Earth System Sciences – volume: vol. Volume 1 year: 2004 ident: 10.1016/j.scitotenv.2020.142159_bb0275 – volume: 2019 start-page: 4640 year: 2019 ident: 10.1016/j.scitotenv.2020.142159_bb0330 article-title: Mapping the increased minimum mortality temperatures in the context of global climate change publication-title: Nat. Commun. doi: 10.1038/s41467-019-12663-y – volume: 82 start-page: 309 year: 2007 ident: 10.1016/j.scitotenv.2020.142159_bb0170 article-title: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios publication-title: Clim. Chang. doi: 10.1007/s10584-006-9180-9 – volume: 41 start-page: 5904 year: 2014 ident: 10.1016/j.scitotenv.2020.142159_bb0045 article-title: Groundwater depletion during drought threatens future water security of the Colorado River Basin publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL061055 – volume: 526 start-page: 196 year: 2015 ident: 10.1016/j.scitotenv.2020.142159_bb0260 article-title: A multi-model and multi-index evaluation of drought characteristics in the 21st century publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.12.011 – volume: 3 start-page: 4 year: 2014 ident: 10.1016/j.scitotenv.2020.142159_bb0305 article-title: Managing drought risk in a changing climate: the role of national drought policy publication-title: Weather & Climate Extremes doi: 10.1016/j.wace.2014.01.002 – volume: 550 start-page: 580 year: 2017 ident: 10.1016/j.scitotenv.2020.142159_bb0160 article-title: Economic risk assessment of drought impacts on irrigated agriculture publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.05.004 – volume: 13 year: 2018 ident: 10.1016/j.scitotenv.2020.142159_bb0085 article-title: Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5°C and 2°C of warming publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aaaa99 – year: 2013 ident: 10.1016/j.scitotenv.2020.142159_bb0100 – volume: 44 start-page: 7419 year: 2017 ident: 10.1016/j.scitotenv.2020.142159_bb0130 article-title: Projected drought risk in 1.5°C and 2°C warmer climates publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074117 – volume: 4 start-page: 219 issue: 2 year: 2013 ident: 10.1016/j.scitotenv.2020.142159_bb0090 article-title: A trend-preserving bias correction - the ISI-MIP approach publication-title: Earth System Dynamics doi: 10.5194/esd-4-219-2013 – volume: 19 start-page: 5843 year: 2006 ident: 10.1016/j.scitotenv.2020.142159_bb0340 article-title: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models publication-title: J. Clim. doi: 10.1175/JCLI3952.1 – volume: 47 issue: 11 year: 2020 ident: 10.1016/j.scitotenv.2020.142159_bb0165 article-title: Unprecedented Europe heat in June–July 2019: risk in the historical and future context publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL087809 – year: 2009 ident: 10.1016/j.scitotenv.2020.142159_bb0280 – volume: 630 start-page: 444 year: 2018 ident: 10.1016/j.scitotenv.2020.142159_bb0325 article-title: Multi-scale assessments of droughts: a case study in Xinjiang, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.200 – volume: vol. 17 start-page: 179 year: 1993 ident: 10.1016/j.scitotenv.2020.142159_bb0175 article-title: The relationship of drought frequency and duration to time scales – volume: 1 year: 2020 ident: 10.1016/j.scitotenv.2020.142159_bb0010 article-title: Evaluating severity–area–frequency (saf) of seasonal droughts in Bangladesh under climate change scenarios publication-title: Stoch. Env. Res. Risk A. – volume: 138 start-page: 1 year: 2016 ident: 10.1016/j.scitotenv.2020.142159_bb0245 article-title: The relative importance of climate change and population growth for exposure to future extreme droughts publication-title: Clim. Chang. doi: 10.1007/s10584-016-1716-z – volume: 526 start-page: 274 year: 2015 ident: 10.1016/j.scitotenv.2020.142159_bb0255 article-title: The drought risk atlas: enhancing decision support for drought risk management in the United States publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.01.006 – volume: 122 start-page: 401 year: 2014 ident: 10.1016/j.scitotenv.2020.142159_bb0195 article-title: A new scenario framework for climate change research: the concept of shared socioeconomic pathways publication-title: Clim. Chang. doi: 10.1007/s10584-013-0905-2 – volume: 39 start-page: 108 year: 2016 ident: 10.1016/j.scitotenv.2020.142159_bb0040 article-title: Mapping global patterns of drought risk: an empirical framework based on sub-national estimates of hazard, exposure and vulnerability publication-title: Glob. Environ. Chang. doi: 10.1016/j.gloenvcha.2016.04.012 – start-page: 181 year: 2017 ident: 10.1016/j.scitotenv.2020.142159_bb0230 article-title: The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100 publication-title: Global Environmental Change-human and Policy Dimensions – volume: 122 start-page: 415 year: 2014 ident: 10.1016/j.scitotenv.2020.142159_bb0295 article-title: Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old publication-title: Clim. Chang. doi: 10.1007/s10584-013-0974-2 – volume: 42 start-page: 169 year: 2017 ident: 10.1016/j.scitotenv.2020.142159_bb0200 article-title: The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century publication-title: Glob. Environ. Chang. doi: 10.1016/j.gloenvcha.2015.01.004 – year: 2008 ident: 10.1016/j.scitotenv.2020.142159_bb0125 – volume: 125 start-page: 187 issue: 1–2 year: 2016 ident: 10.1016/j.scitotenv.2020.142159_bb0335 article-title: Management of drought risk under global warming publication-title: Theoretical & Applied Climatology doi: 10.1007/s00704-015-1503-1 – volume: 9 start-page: 1097 year: 2018 ident: 10.1016/j.scitotenv.2020.142159_bb0055 article-title: Population exposure to droughts in China under the 1.5° C global warming target publication-title: Earth System Dynamics doi: 10.5194/esd-9-1097-2018 – year: 2015 ident: 10.1016/j.scitotenv.2020.142159_bb2020 – volume: 111 start-page: 3228 year: 2014 ident: 10.1016/j.scitotenv.2020.142159_bb0300 article-title: The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1312330110 – year: 2014 ident: 10.1016/j.scitotenv.2020.142159_bb0105 – year: 2008 ident: 10.1016/j.scitotenv.2020.142159_bb0270 – year: 1965 ident: 10.1016/j.scitotenv.2020.142159_bb0205 – volume: 5 start-page: 592 issue: 7 year: 2015 ident: 10.1016/j.scitotenv.2020.142159_bb0115 article-title: Future population exposure to US heat extremes publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2631 – volume: 56 start-page: 108 year: 2018 ident: 10.1016/j.scitotenv.2020.142159_bb0080 article-title: Seasonal drought prediction: advances, challenges, and future prospects publication-title: Rev. Geophys. doi: 10.1002/2016RG000549 – volume: 53 start-page: 2404 year: 2017 ident: 10.1016/j.scitotenv.2020.142159_bb0265 article-title: The 21st century Colorado River hot drought and implications for the future publication-title: Water Resour. Res. doi: 10.1002/2016WR019638 – start-page: 1 year: 2016 ident: 10.1016/j.scitotenv.2020.142159_bb0135 – volume: 9 year: 2018 ident: 10.1016/j.scitotenv.2020.142159_bb0155 article-title: Global drought and severe drought affected population in 1.5 °C and 2 °C warmer worlds publication-title: Earth System Dynamics doi: 10.5194/esd-9-267-2018 – volume: 465 start-page: 142 year: 2010 ident: 10.1016/j.scitotenv.2020.142159_bb0215 article-title: China drought highlights future climate threats publication-title: Nature doi: 10.1038/465142a – year: 2013 ident: 10.1016/j.scitotenv.2020.142159_bb0310 – volume: 3 start-page: 52 year: 2013 ident: 10.1016/j.scitotenv.2020.142159_bb0065 article-title: Increasing drought under global warming in observations and models publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1633 – volume: vol. 33 start-page: 915 year: 2013 ident: 10.1016/j.scitotenv.2020.142159_bb0030 – volume: 43 start-page: 2607 year: 2014 ident: 10.1016/j.scitotenv.2020.142159_bb0060 article-title: Global warming and 21 st century drying publication-title: Clim. Dyn. doi: 10.1007/s00382-014-2075-y – year: 2013 ident: 10.1016/j.scitotenv.2020.142159_bb0050 – volume: 1 start-page: 185 year: 2012 ident: 10.1016/j.scitotenv.2020.142159_bb0075 article-title: Pricing the planet’s future: the economics of discounting in an uncertain world publication-title: J. Econ. Lit. – volume: 7 start-page: 43909 year: 2017 ident: 10.1016/j.scitotenv.2020.142159_bb0150 article-title: Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change publication-title: Sci. Rep. doi: 10.1038/srep43909 – volume: 9 start-page: 239 year: 2018 ident: 10.1016/j.scitotenv.2020.142159_bb0110 article-title: Analysis of drought vulnerability characteristics and risk assessment based on information distribution and diffusion in Southwest China publication-title: Atmosphere doi: 10.3390/atmos9070239 – start-page: 65 year: 2012 ident: 10.1016/j.scitotenv.2020.142159_bb2000 article-title: Determinants of risk: exposure and vulnerability – volume: 550 start-page: 549 year: 2017 ident: 10.1016/j.scitotenv.2020.142159_bb0025 article-title: Spatial comparability of drought characteristics and related return periods in mainland China over 1961-2013 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.05.019 – volume: 112 start-page: 3241 year: 2015 ident: 10.1016/j.scitotenv.2020.142159_bb0120 article-title: Climate change in the Fertile Crescent and implications of the recent Syrian drought publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1421533112 – volume: 361 year: 2018 ident: 10.1016/j.scitotenv.2020.142159_bb0250 article-title: Reducing uncertainties in climate models publication-title: Science doi: 10.1126/science.aau1864 – volume: 213 start-page: 492 year: 2018 ident: 10.1016/j.scitotenv.2020.142159_bb0035 article-title: Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.07.002 – volume: 41 start-page: 8847 year: 2014 ident: 10.1016/j.scitotenv.2020.142159_bb0005 article-title: Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL062308 – start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2020.142159_bb0070 article-title: A stochastic model for drought risk analysis in the Netherlands publication-title: Hydrology & Earth System Sciences Discussions – volume: 10 start-page: 10107 issue: 2020 year: 2020 ident: 10.1016/j.scitotenv.2020.142159_bb0240 article-title: Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios publication-title: Sci. Rep. doi: 10.1038/s41598-020-67146-8 – volume: 39 start-page: 23 year: 2015 ident: 10.1016/j.scitotenv.2020.142159_bb0145 article-title: Analysis of dryness/wetness over China using standardized precipitation evapotranspiration index based on two evapotranspiration algorithms publication-title: Chin. J. Atmos. Sci. – volume: 20 start-page: 695 issue: 2 year: 2020 ident: 10.1016/j.scitotenv.2020.142159_bb0180 article-title: Global-scale drought risk assessment for agricultural systems publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-20-695-2020 – volume: 23 start-page: 1696 year: 2010 ident: 10.1016/j.scitotenv.2020.142159_bb0290 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: J. Clim. doi: 10.1175/2009JCLI2909.1 – volume: 35 start-page: 243 issue: 3 year: 2014 ident: 10.1016/j.scitotenv.2020.142159_bb0225 article-title: Demographic scenarios by age, sex and education corresponding to the SSP narratives publication-title: Popul. Environ. doi: 10.1007/s11111-014-0205-4 – year: 2014 ident: 10.1016/j.scitotenv.2020.142159_bb0190 – volume: 9 issue: 4 year: 2009 ident: 10.1016/j.scitotenv.2020.142159_bb0210 article-title: Assessing global exposure and vulnerability towards natural hazards: the disaster risk index publication-title: Natural Hazards & Earth System Sciences doi: 10.5194/nhess-9-1149-2009 – volume: 61 start-page: 1651 year: 2016 ident: 10.1016/j.scitotenv.2020.142159_bb0140 article-title: A cellular automata downscaling based 1 km global land use datasets (2010−2100) publication-title: Science Bulletin doi: 10.1007/s11434-016-1148-1 – year: 2013 ident: 10.1016/j.scitotenv.2020.142159_bb0285 – volume: vol. 300 start-page: D05109 year: 1998 ident: 10.1016/j.scitotenv.2020.142159_bb0015 – volume: 356 start-page: 1362 year: 2017 ident: 10.1016/j.scitotenv.2020.142159_bb0095 article-title: Estimating economic damage from climate change in the United States publication-title: Science doi: 10.1126/science.aal4369 – volume: 23 start-page: 397 year: 2013 ident: 10.1016/j.scitotenv.2020.142159_bb0320 article-title: Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China publication-title: International Journal of Applied Earth Observation & Geoinformation doi: 10.1016/j.jag.2012.11.003 – ident: 10.1016/j.scitotenv.2020.142159_bb0315 – volume: 491 start-page: 435 year: 2012 ident: 10.1016/j.scitotenv.2020.142159_bb0235 article-title: Little change in global drought over the past 60 years publication-title: Nature doi: 10.1038/nature11575 – volume: 11 start-page: 2106 year: 2019 ident: 10.1016/j.scitotenv.2020.142159_bb0185 article-title: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling publication-title: Sustainability doi: 10.3390/su11072106 |
SSID | ssj0000781 |
Score | 2.6050856 |
Snippet | A consistent and equitable global drought risk assessment for multiple regions, populations, and economic sectors at the gridded scale under future diverse... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 142159 |
SubjectTerms | climate Climate change drought Drought risk assessment Eastern United States environment Europe Exposure gross domestic product Hazard land cover RCP–SSP risk risk assessment South America South Asia Vulnerability |
Title | Future global socioeconomic risk to droughts based on estimates of hazard, exposure, and vulnerability in a changing climate |
URI | https://dx.doi.org/10.1016/j.scitotenv.2020.142159 https://www.proquest.com/docview/2460763122 https://www.proquest.com/docview/2986227381 |
Volume | 751 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RSxwxEB70pFAopb1WqrUyhT66dTdmcxvfRDyuPfChVOrbks1m6cl19-jtiZbS396ZZFdRsD70aSFklpBJ5pskM98AfKDzGXn2VkaEH1UkhdORIaCPmFfGcMXCxPpoi1M1OZOfz9PzNTjuc2E4rLKz_cGme2vdtex3s7m_mM04x1dmWml-R0xVlql12BAHWqUD2Dj6NJ2c3hrkURYK50na2yRwJ8yLft025J5e0llRUKskDNQPgdQ9c-0xaPwCnnfOIx6F8b2ENVcP4UkoJ3k9hM2T26w16tZt2-UQnoXLOQw5R6_g99gziWBgA0FWUOO6DGXkYHNsGyx9AZ92iQx0JTY1MiHHD_ZNsanwu_lFi2sP3dWi4VvGPTR1iZerOdNY-4jba5zVaNCnFhNAop176ddwNj75ejyJujIMkSU4byNnq1IXNs0SFysnOTNWFlqVzAPEBf5UxbRvI1Gp2NH5xMayEKoYOa3JGirhDjZhUDe1ewNYxVWSGut5v2SaOqNVZakhtVaS6TBboPp5z23HUc6lMuZ5H4x2kd8oLGeF5UFhWxDfCC4CTcfjIoe9YvM7Ky4nMHlc-H2_FHLaj_zIYmrXrJa5kComm50I8Y8-ms6RnBOVbP_PIN7CU8ERNjEHJe7AoP25cu_IRWqLXVj_-CfZ7TYCf6dfvk3_AlqfFAw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RSxwxEB7sSalQpL1WalvbKfTRxd00m9v0TcTjrPaeFHwLu9ksPbnuHr090dIf35lsVrGgPvQ1ZELIJPNNkplvAD7T_Yw8eysjwo8qksLpKCegj5hXJueKhYn10RZTNTmT387T8zU46HNhOKwy2P7OpntrHVr2wmruLWYzzvGVmVaa_xFTlWXqCazLlIYfwPr-0fFkemuQR1lXOE_S2SaBO2FeNHTbkHt6SXdFQa2SMFDfB1L_mGuPQeMXsBmcR9zv5vcS1lw9hKddOcnrIWwd3matUbdwbJdDeN49zmGXc_QK_ow9kwh2bCDICmpcyFBGDjbHtsHSF_Bpl8hAV2JTIxNy_GTfFJsKf-S_aXPtortaNPzKuIt5XeLlas401j7i9hpnNeboU4sJINHOvfRrOBsfnh5MolCGIbIE523kbFXqwqZZ4mLlJGfGykKrknmAuMCfqpj2bSQqFTu6n9hYFkIVI6c1WUMl3JctGNRN7d4AVnGVpLn1vF8yTV2uVWWpIbVWkunIt0H1625s4CjnUhlz0wejXZgbhRlWmOkUtg3xjeCio-l4XORrr1hzZ8cZApPHhT_1W8HQeeRPlrx2zWpphFQx2exEiAf6aLpHck5U8vZ_JvERnk1Ov5-Yk6Pp8TvYEBxtE3OA4nsYtL9Wbofcpbb4EI7DX1LqFFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+global+socioeconomic+risk+to+droughts+based+on+estimates+of+hazard%2C+exposure%2C+and+vulnerability+in+a+changing+climate&rft.jtitle=The+Science+of+the+total+environment&rft.au=Liu%2C+Yujie&rft.au=Chen%2C+Jie&rft.date=2021-01-10&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.volume=751&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.142159&rft.externalDocID=S0048969720356886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |