Privacy-preserving Naive Bayes classification based on secure two-party computation
With the proliferation of data and machine learning techniques, there is a growing need to develop methods that enable collaborative training and prediction of sensitive data while preserving privacy. This paper proposes a new protocol for privacy-preserving Naive Bayes classification using secure t...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 12; pp. 28517 - 28539 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.20231459 |
Cover
Loading…
Abstract | With the proliferation of data and machine learning techniques, there is a growing need to develop methods that enable collaborative training and prediction of sensitive data while preserving privacy. This paper proposes a new protocol for privacy-preserving Naive Bayes classification using secure two-party computation (STPC). The key idea is to split the training data between two non-colluding servers using STPC to train the model without leaking information. The servers secretly share their data and the intermediate computations using cryptographic techniques like Beaver's multiplication triples and Yao's garbled circuits. We implement and evaluate our protocols on the MNIST dataset, demonstrating that they achieve the same accuracy as plaintext computation with reasonable overhead. A formal security analysis in the semi-honest model shows that the scheme protects the privacy of the training data. Our work advances privacy-preserving machine learning by enabling secure outsourced Naive Bayes classification with applications such as fraud detection, medical diagnosis, and predictive analytics on confidential data from multiple entities. The modular design allows embedding different secure matrix multiplication techniques, making the framework adaptable. This line of research paves the way for practical and secure data mining in a distributed manner, upholding stringent privacy regulations. |
---|---|
AbstractList | With the proliferation of data and machine learning techniques, there is a growing need to develop methods that enable collaborative training and prediction of sensitive data while preserving privacy. This paper proposes a new protocol for privacy-preserving Naive Bayes classification using secure two-party computation (STPC). The key idea is to split the training data between two non-colluding servers using STPC to train the model without leaking information. The servers secretly share their data and the intermediate computations using cryptographic techniques like Beaver's multiplication triples and Yao's garbled circuits. We implement and evaluate our protocols on the MNIST dataset, demonstrating that they achieve the same accuracy as plaintext computation with reasonable overhead. A formal security analysis in the semi-honest model shows that the scheme protects the privacy of the training data. Our work advances privacy-preserving machine learning by enabling secure outsourced Naive Bayes classification with applications such as fraud detection, medical diagnosis, and predictive analytics on confidential data from multiple entities. The modular design allows embedding different secure matrix multiplication techniques, making the framework adaptable. This line of research paves the way for practical and secure data mining in a distributed manner, upholding stringent privacy regulations. |
Author | Tang, Chunming Liu, Kun |
Author_xml | – sequence: 1 givenname: Kun surname: Liu fullname: Liu, Kun – sequence: 2 givenname: Chunming surname: Tang fullname: Tang, Chunming |
BookMark | eNp1kE1PwzAMhiM0JMbYkXv_QEc-mjY5wsTHpAmQgHPkpsnI1DVV0g3139NtgBASJ1v268f2e45GjW8MQpcEz5hk2dUGuvcZxZSRjMsTNKZZwdJcCjH6lZ-haYxrjDElNKNFNkYvz8HtQPdpG0w0YeeaVfIIbmeSG-hNTHQNMTrrNHTON0kJ0VTJkESjt8Ek3YdPWwhdn2i_abfdQXWBTi3U0Uy_4gS93d2-zh_S5dP9Yn69TDUTpEuNsCI3FucGc8LKvMhLWlWUMawrKqUeulZwAkxYLrmsSiOKkhVEWsM1gYJN0OLIrTysVRvcBkKvPDh1KPiwUsNpTtdGcSsFBcCAS5lxUpRYS14NO7XNCp7jgZUeWTr4GIOxPzyC1d5gtTdYfRs86NkfvXbH77sArv5n6hPt8YKK |
CitedBy_id | crossref_primary_10_1007_s00521_024_10869_w crossref_primary_10_4018_IJCINI_335078 |
Cites_doi | 10.1007/s10586-017-0849-9 10.3390/computation9010006 10.1016/0022-0000(84)90070-9 10.1016/j.jpdc.2021.03.009 10.1109/TNSRE.2019.2926965 10.1109/SP.2017.12 10.3934/QFE.2023023 10.2478/popets-2019-0035 10.1109/TCC.2018.2799219 10.1109/DSAA49011.2020.00081 10.1109/TC.2015.2500576 10.1109/TIFS.2022.3144007 10.1016/j.is.2008.11.001 10.2478/popets-2021-0010 10.14722/ndss.2015.23241 10.1109/ACCESS.2021.3049216 10.1016/j.eneco.2023.106545 10.1109/ACCESS.2022.3219049 10.1016/j.cose.2022.102630 10.1109/TIT.1985.1057074 10.1109/TSC.2017.2773604 10.1109/BigDataCongress.2017.17 10.1109/TETC.2018.2794611 10.1145/335191.335438 10.1186/s12920-020-00869-9 10.1007/3-540-48910-X_16 10.1186/s12920-018-0397-z 10.1109/SFCS.1982.38 10.1145/3366030.3366056 10.3934/DSFE.2023018 10.1016/j.csi.2017.12.004 10.1109/TDSC.2017.2679189 10.1109/SP.2013.30 10.1016/j.jisa.2022.103215 10.1109/5.726791 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.20231459 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 28539 |
ExternalDocumentID | oai_doaj_org_article_5f982aa0a0b94517b0c95db67cf47560 10_3934_math_20231459 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c381t-e8f86ef06e0513b676b2dd2330cd299cf86f851a38f5959dbe87b3719fe5c1a73 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:10:22 EDT 2025 Tue Jul 01 03:57:07 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-e8f86ef06e0513b676b2dd2330cd299cf86f851a38f5959dbe87b3719fe5c1a73 |
OpenAccessLink | https://doaj.org/article/5f982aa0a0b94517b0c95db67cf47560 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5f982aa0a0b94517b0c95db67cf47560 crossref_primary_10_3934_math_20231459 crossref_citationtrail_10_3934_math_20231459 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.20231459-19 key-10.3934/math.20231459-52 key-10.3934/math.20231459-51 key-10.3934/math.20231459-10 key-10.3934/math.20231459-54 key-10.3934/math.20231459-53 key-10.3934/math.20231459-50 key-10.3934/math.20231459-16 key-10.3934/math.20231459-15 key-10.3934/math.20231459-18 key-10.3934/math.20231459-17 key-10.3934/math.20231459-12 key-10.3934/math.20231459-56 key-10.3934/math.20231459-11 key-10.3934/math.20231459-55 key-10.3934/math.20231459-14 key-10.3934/math.20231459-13 key-10.3934/math.20231459-57 key-10.3934/math.20231459-21 key-10.3934/math.20231459-20 key-10.3934/math.20231459-27 key-10.3934/math.20231459-26 key-10.3934/math.20231459-29 key-10.3934/math.20231459-28 key-10.3934/math.20231459-23 key-10.3934/math.20231459-22 key-10.3934/math.20231459-25 key-10.3934/math.20231459-24 key-10.3934/math.20231459-30 key-10.3934/math.20231459-32 key-10.3934/math.20231459-31 key-10.3934/math.20231459-38 key-10.3934/math.20231459-37 key-10.3934/math.20231459-39 key-10.3934/math.20231459-34 key-10.3934/math.20231459-33 key-10.3934/math.20231459-36 key-10.3934/math.20231459-35 key-10.3934/math.20231459-8 key-10.3934/math.20231459-9 key-10.3934/math.20231459-6 key-10.3934/math.20231459-41 key-10.3934/math.20231459-7 key-10.3934/math.20231459-40 key-10.3934/math.20231459-4 key-10.3934/math.20231459-43 key-10.3934/math.20231459-5 key-10.3934/math.20231459-42 key-10.3934/math.20231459-2 key-10.3934/math.20231459-3 key-10.3934/math.20231459-1 key-10.3934/math.20231459-49 key-10.3934/math.20231459-48 key-10.3934/math.20231459-45 key-10.3934/math.20231459-44 key-10.3934/math.20231459-47 key-10.3934/math.20231459-46 |
References_xml | – ident: key-10.3934/math.20231459-37 doi: 10.1007/s10586-017-0849-9 – ident: key-10.3934/math.20231459-16 doi: 10.3390/computation9010006 – ident: key-10.3934/math.20231459-17 – ident: key-10.3934/math.20231459-43 doi: 10.1016/0022-0000(84)90070-9 – ident: key-10.3934/math.20231459-4 – ident: key-10.3934/math.20231459-33 – ident: key-10.3934/math.20231459-21 doi: 10.1016/j.jpdc.2021.03.009 – ident: key-10.3934/math.20231459-13 doi: 10.1109/TNSRE.2019.2926965 – ident: key-10.3934/math.20231459-56 – ident: key-10.3934/math.20231459-8 – ident: key-10.3934/math.20231459-45 – ident: key-10.3934/math.20231459-3 doi: 10.1109/SP.2017.12 – ident: key-10.3934/math.20231459-24 – ident: key-10.3934/math.20231459-27 doi: 10.3934/QFE.2023023 – ident: key-10.3934/math.20231459-18 doi: 10.2478/popets-2019-0035 – ident: key-10.3934/math.20231459-46 doi: 10.1109/TCC.2018.2799219 – ident: key-10.3934/math.20231459-23 doi: 10.1109/DSAA49011.2020.00081 – ident: key-10.3934/math.20231459-32 doi: 10.1109/TC.2015.2500576 – ident: key-10.3934/math.20231459-54 doi: 10.1109/TIFS.2022.3144007 – ident: key-10.3934/math.20231459-34 – ident: key-10.3934/math.20231459-39 doi: 10.1016/j.is.2008.11.001 – ident: key-10.3934/math.20231459-5 – ident: key-10.3934/math.20231459-10 doi: 10.2478/popets-2021-0010 – ident: key-10.3934/math.20231459-25 doi: 10.14722/ndss.2015.23241 – ident: key-10.3934/math.20231459-1 – ident: key-10.3934/math.20231459-31 doi: 10.1109/ACCESS.2021.3049216 – ident: key-10.3934/math.20231459-29 doi: 10.1016/j.eneco.2023.106545 – ident: key-10.3934/math.20231459-50 doi: 10.1109/ACCESS.2022.3219049 – ident: key-10.3934/math.20231459-38 – ident: key-10.3934/math.20231459-51 – ident: key-10.3934/math.20231459-35 doi: 10.1016/j.cose.2022.102630 – ident: key-10.3934/math.20231459-41 doi: 10.1109/TIT.1985.1057074 – ident: key-10.3934/math.20231459-9 – ident: key-10.3934/math.20231459-49 doi: 10.1109/TSC.2017.2773604 – ident: key-10.3934/math.20231459-15 doi: 10.1109/BigDataCongress.2017.17 – ident: key-10.3934/math.20231459-19 – ident: key-10.3934/math.20231459-30 doi: 10.1109/TETC.2018.2794611 – ident: key-10.3934/math.20231459-44 – ident: key-10.3934/math.20231459-47 doi: 10.1016/j.is.2008.11.001 – ident: key-10.3934/math.20231459-7 doi: 10.1145/335191.335438 – ident: key-10.3934/math.20231459-2 – ident: key-10.3934/math.20231459-20 doi: 10.1186/s12920-020-00869-9 – ident: key-10.3934/math.20231459-42 doi: 10.1007/3-540-48910-X_16 – ident: key-10.3934/math.20231459-14 doi: 10.1186/s12920-018-0397-z – ident: key-10.3934/math.20231459-12 – ident: key-10.3934/math.20231459-6 – ident: key-10.3934/math.20231459-40 doi: 10.1109/SFCS.1982.38 – ident: key-10.3934/math.20231459-55 doi: 10.1145/3366030.3366056 – ident: key-10.3934/math.20231459-28 doi: 10.3934/DSFE.2023018 – ident: key-10.3934/math.20231459-22 – ident: key-10.3934/math.20231459-48 doi: 10.1016/j.csi.2017.12.004 – ident: key-10.3934/math.20231459-26 – ident: key-10.3934/math.20231459-52 doi: 10.1109/TDSC.2017.2679189 – ident: key-10.3934/math.20231459-53 – ident: key-10.3934/math.20231459-11 doi: 10.1109/SP.2013.30 – ident: key-10.3934/math.20231459-36 doi: 10.1016/j.jisa.2022.103215 – ident: key-10.3934/math.20231459-57 doi: 10.1109/5.726791 |
SSID | ssj0002124274 |
Score | 2.2140675 |
Snippet | With the proliferation of data and machine learning techniques, there is a growing need to develop methods that enable collaborative training and prediction of... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 28517 |
SubjectTerms | multiplication triple naive bayes classification secure two-party computation |
Title | Privacy-preserving Naive Bayes classification based on secure two-party computation |
URI | https://doaj.org/article/5f982aa0a0b94517b0c95db67cf47560 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7Enzh_kYN4MqxtkjY5OnEMYUPQwW4lSRMRZBtbVfbf-17bjV7Ei7fSPkryvea976Xhe4TcgCdtZpRh3CaOCSM100YVLOE2AB3RULjgPuRonA4n4mkqp61WX3gmrJYHroHryaBVYkxkIquFjDMbOS0Lm2YuiAzSNUbfSEetYgpjMARkAfVWLarJNRc94H_47wHojEBd0lYSamn1V0llcED2GzZI7-tRHJIdPzsie6OtlOrqmLw8L9-_jFszPLGKC3v2RscGYhTtm7VfUYf0F8_7VBBTzEoFhYsVbqR7Wn7P2QJmuaau6t9QWZ2QyeDx9WHImk4IzEFGLZlXQaU-RKmHNcRh8qlNiiLhPHIF5BMHTwNQJ8NVkFrqwnqVWZ7FOnjpYpPxU9KZzWf-jFDI_8qjqry1KC3PjZQhDsEmUGkZK2yX3G2gyV0jE47dKj5yKBcQyRyRzDdIdsnt1nxR62P8ZthHnLdGKGtd3QBn542z87-cff4fL7kguzioeh_lknTK5ae_AmZR2uvqI_oBZxzMdg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-preserving+Naive+Bayes+classification+based+on+secure+two-party+computation&rft.jtitle=AIMS+mathematics&rft.au=Kun+Liu&rft.au=Chunming+Tang&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=12&rft.spage=28517&rft.epage=28539&rft_id=info:doi/10.3934%2Fmath.20231459&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5f982aa0a0b94517b0c95db67cf47560 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |