Privacy-preserving Naive Bayes classification based on secure two-party computation

With the proliferation of data and machine learning techniques, there is a growing need to develop methods that enable collaborative training and prediction of sensitive data while preserving privacy. This paper proposes a new protocol for privacy-preserving Naive Bayes classification using secure t...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 12; pp. 28517 - 28539
Main Authors Liu, Kun, Tang, Chunming
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.20231459

Cover

Loading…
Abstract With the proliferation of data and machine learning techniques, there is a growing need to develop methods that enable collaborative training and prediction of sensitive data while preserving privacy. This paper proposes a new protocol for privacy-preserving Naive Bayes classification using secure two-party computation (STPC). The key idea is to split the training data between two non-colluding servers using STPC to train the model without leaking information. The servers secretly share their data and the intermediate computations using cryptographic techniques like Beaver's multiplication triples and Yao's garbled circuits. We implement and evaluate our protocols on the MNIST dataset, demonstrating that they achieve the same accuracy as plaintext computation with reasonable overhead. A formal security analysis in the semi-honest model shows that the scheme protects the privacy of the training data. Our work advances privacy-preserving machine learning by enabling secure outsourced Naive Bayes classification with applications such as fraud detection, medical diagnosis, and predictive analytics on confidential data from multiple entities. The modular design allows embedding different secure matrix multiplication techniques, making the framework adaptable. This line of research paves the way for practical and secure data mining in a distributed manner, upholding stringent privacy regulations.
AbstractList With the proliferation of data and machine learning techniques, there is a growing need to develop methods that enable collaborative training and prediction of sensitive data while preserving privacy. This paper proposes a new protocol for privacy-preserving Naive Bayes classification using secure two-party computation (STPC). The key idea is to split the training data between two non-colluding servers using STPC to train the model without leaking information. The servers secretly share their data and the intermediate computations using cryptographic techniques like Beaver's multiplication triples and Yao's garbled circuits. We implement and evaluate our protocols on the MNIST dataset, demonstrating that they achieve the same accuracy as plaintext computation with reasonable overhead. A formal security analysis in the semi-honest model shows that the scheme protects the privacy of the training data. Our work advances privacy-preserving machine learning by enabling secure outsourced Naive Bayes classification with applications such as fraud detection, medical diagnosis, and predictive analytics on confidential data from multiple entities. The modular design allows embedding different secure matrix multiplication techniques, making the framework adaptable. This line of research paves the way for practical and secure data mining in a distributed manner, upholding stringent privacy regulations.
Author Tang, Chunming
Liu, Kun
Author_xml – sequence: 1
  givenname: Kun
  surname: Liu
  fullname: Liu, Kun
– sequence: 2
  givenname: Chunming
  surname: Tang
  fullname: Tang, Chunming
BookMark eNp1kE1PwzAMhiM0JMbYkXv_QEc-mjY5wsTHpAmQgHPkpsnI1DVV0g3139NtgBASJ1v268f2e45GjW8MQpcEz5hk2dUGuvcZxZSRjMsTNKZZwdJcCjH6lZ-haYxrjDElNKNFNkYvz8HtQPdpG0w0YeeaVfIIbmeSG-hNTHQNMTrrNHTON0kJ0VTJkESjt8Ek3YdPWwhdn2i_abfdQXWBTi3U0Uy_4gS93d2-zh_S5dP9Yn69TDUTpEuNsCI3FucGc8LKvMhLWlWUMawrKqUeulZwAkxYLrmsSiOKkhVEWsM1gYJN0OLIrTysVRvcBkKvPDh1KPiwUsNpTtdGcSsFBcCAS5lxUpRYS14NO7XNCp7jgZUeWTr4GIOxPzyC1d5gtTdYfRs86NkfvXbH77sArv5n6hPt8YKK
CitedBy_id crossref_primary_10_1007_s00521_024_10869_w
crossref_primary_10_4018_IJCINI_335078
Cites_doi 10.1007/s10586-017-0849-9
10.3390/computation9010006
10.1016/0022-0000(84)90070-9
10.1016/j.jpdc.2021.03.009
10.1109/TNSRE.2019.2926965
10.1109/SP.2017.12
10.3934/QFE.2023023
10.2478/popets-2019-0035
10.1109/TCC.2018.2799219
10.1109/DSAA49011.2020.00081
10.1109/TC.2015.2500576
10.1109/TIFS.2022.3144007
10.1016/j.is.2008.11.001
10.2478/popets-2021-0010
10.14722/ndss.2015.23241
10.1109/ACCESS.2021.3049216
10.1016/j.eneco.2023.106545
10.1109/ACCESS.2022.3219049
10.1016/j.cose.2022.102630
10.1109/TIT.1985.1057074
10.1109/TSC.2017.2773604
10.1109/BigDataCongress.2017.17
10.1109/TETC.2018.2794611
10.1145/335191.335438
10.1186/s12920-020-00869-9
10.1007/3-540-48910-X_16
10.1186/s12920-018-0397-z
10.1109/SFCS.1982.38
10.1145/3366030.3366056
10.3934/DSFE.2023018
10.1016/j.csi.2017.12.004
10.1109/TDSC.2017.2679189
10.1109/SP.2013.30
10.1016/j.jisa.2022.103215
10.1109/5.726791
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20231459
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 28539
ExternalDocumentID oai_doaj_org_article_5f982aa0a0b94517b0c95db67cf47560
10_3934_math_20231459
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c381t-e8f86ef06e0513b676b2dd2330cd299cf86f851a38f5959dbe87b3719fe5c1a73
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:10:22 EDT 2025
Tue Jul 01 03:57:07 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-e8f86ef06e0513b676b2dd2330cd299cf86f851a38f5959dbe87b3719fe5c1a73
OpenAccessLink https://doaj.org/article/5f982aa0a0b94517b0c95db67cf47560
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_5f982aa0a0b94517b0c95db67cf47560
crossref_primary_10_3934_math_20231459
crossref_citationtrail_10_3934_math_20231459
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20231459-19
key-10.3934/math.20231459-52
key-10.3934/math.20231459-51
key-10.3934/math.20231459-10
key-10.3934/math.20231459-54
key-10.3934/math.20231459-53
key-10.3934/math.20231459-50
key-10.3934/math.20231459-16
key-10.3934/math.20231459-15
key-10.3934/math.20231459-18
key-10.3934/math.20231459-17
key-10.3934/math.20231459-12
key-10.3934/math.20231459-56
key-10.3934/math.20231459-11
key-10.3934/math.20231459-55
key-10.3934/math.20231459-14
key-10.3934/math.20231459-13
key-10.3934/math.20231459-57
key-10.3934/math.20231459-21
key-10.3934/math.20231459-20
key-10.3934/math.20231459-27
key-10.3934/math.20231459-26
key-10.3934/math.20231459-29
key-10.3934/math.20231459-28
key-10.3934/math.20231459-23
key-10.3934/math.20231459-22
key-10.3934/math.20231459-25
key-10.3934/math.20231459-24
key-10.3934/math.20231459-30
key-10.3934/math.20231459-32
key-10.3934/math.20231459-31
key-10.3934/math.20231459-38
key-10.3934/math.20231459-37
key-10.3934/math.20231459-39
key-10.3934/math.20231459-34
key-10.3934/math.20231459-33
key-10.3934/math.20231459-36
key-10.3934/math.20231459-35
key-10.3934/math.20231459-8
key-10.3934/math.20231459-9
key-10.3934/math.20231459-6
key-10.3934/math.20231459-41
key-10.3934/math.20231459-7
key-10.3934/math.20231459-40
key-10.3934/math.20231459-4
key-10.3934/math.20231459-43
key-10.3934/math.20231459-5
key-10.3934/math.20231459-42
key-10.3934/math.20231459-2
key-10.3934/math.20231459-3
key-10.3934/math.20231459-1
key-10.3934/math.20231459-49
key-10.3934/math.20231459-48
key-10.3934/math.20231459-45
key-10.3934/math.20231459-44
key-10.3934/math.20231459-47
key-10.3934/math.20231459-46
References_xml – ident: key-10.3934/math.20231459-37
  doi: 10.1007/s10586-017-0849-9
– ident: key-10.3934/math.20231459-16
  doi: 10.3390/computation9010006
– ident: key-10.3934/math.20231459-17
– ident: key-10.3934/math.20231459-43
  doi: 10.1016/0022-0000(84)90070-9
– ident: key-10.3934/math.20231459-4
– ident: key-10.3934/math.20231459-33
– ident: key-10.3934/math.20231459-21
  doi: 10.1016/j.jpdc.2021.03.009
– ident: key-10.3934/math.20231459-13
  doi: 10.1109/TNSRE.2019.2926965
– ident: key-10.3934/math.20231459-56
– ident: key-10.3934/math.20231459-8
– ident: key-10.3934/math.20231459-45
– ident: key-10.3934/math.20231459-3
  doi: 10.1109/SP.2017.12
– ident: key-10.3934/math.20231459-24
– ident: key-10.3934/math.20231459-27
  doi: 10.3934/QFE.2023023
– ident: key-10.3934/math.20231459-18
  doi: 10.2478/popets-2019-0035
– ident: key-10.3934/math.20231459-46
  doi: 10.1109/TCC.2018.2799219
– ident: key-10.3934/math.20231459-23
  doi: 10.1109/DSAA49011.2020.00081
– ident: key-10.3934/math.20231459-32
  doi: 10.1109/TC.2015.2500576
– ident: key-10.3934/math.20231459-54
  doi: 10.1109/TIFS.2022.3144007
– ident: key-10.3934/math.20231459-34
– ident: key-10.3934/math.20231459-39
  doi: 10.1016/j.is.2008.11.001
– ident: key-10.3934/math.20231459-5
– ident: key-10.3934/math.20231459-10
  doi: 10.2478/popets-2021-0010
– ident: key-10.3934/math.20231459-25
  doi: 10.14722/ndss.2015.23241
– ident: key-10.3934/math.20231459-1
– ident: key-10.3934/math.20231459-31
  doi: 10.1109/ACCESS.2021.3049216
– ident: key-10.3934/math.20231459-29
  doi: 10.1016/j.eneco.2023.106545
– ident: key-10.3934/math.20231459-50
  doi: 10.1109/ACCESS.2022.3219049
– ident: key-10.3934/math.20231459-38
– ident: key-10.3934/math.20231459-51
– ident: key-10.3934/math.20231459-35
  doi: 10.1016/j.cose.2022.102630
– ident: key-10.3934/math.20231459-41
  doi: 10.1109/TIT.1985.1057074
– ident: key-10.3934/math.20231459-9
– ident: key-10.3934/math.20231459-49
  doi: 10.1109/TSC.2017.2773604
– ident: key-10.3934/math.20231459-15
  doi: 10.1109/BigDataCongress.2017.17
– ident: key-10.3934/math.20231459-19
– ident: key-10.3934/math.20231459-30
  doi: 10.1109/TETC.2018.2794611
– ident: key-10.3934/math.20231459-44
– ident: key-10.3934/math.20231459-47
  doi: 10.1016/j.is.2008.11.001
– ident: key-10.3934/math.20231459-7
  doi: 10.1145/335191.335438
– ident: key-10.3934/math.20231459-2
– ident: key-10.3934/math.20231459-20
  doi: 10.1186/s12920-020-00869-9
– ident: key-10.3934/math.20231459-42
  doi: 10.1007/3-540-48910-X_16
– ident: key-10.3934/math.20231459-14
  doi: 10.1186/s12920-018-0397-z
– ident: key-10.3934/math.20231459-12
– ident: key-10.3934/math.20231459-6
– ident: key-10.3934/math.20231459-40
  doi: 10.1109/SFCS.1982.38
– ident: key-10.3934/math.20231459-55
  doi: 10.1145/3366030.3366056
– ident: key-10.3934/math.20231459-28
  doi: 10.3934/DSFE.2023018
– ident: key-10.3934/math.20231459-22
– ident: key-10.3934/math.20231459-48
  doi: 10.1016/j.csi.2017.12.004
– ident: key-10.3934/math.20231459-26
– ident: key-10.3934/math.20231459-52
  doi: 10.1109/TDSC.2017.2679189
– ident: key-10.3934/math.20231459-53
– ident: key-10.3934/math.20231459-11
  doi: 10.1109/SP.2013.30
– ident: key-10.3934/math.20231459-36
  doi: 10.1016/j.jisa.2022.103215
– ident: key-10.3934/math.20231459-57
  doi: 10.1109/5.726791
SSID ssj0002124274
Score 2.2140675
Snippet With the proliferation of data and machine learning techniques, there is a growing need to develop methods that enable collaborative training and prediction of...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 28517
SubjectTerms multiplication triple
naive bayes classification
secure two-party computation
Title Privacy-preserving Naive Bayes classification based on secure two-party computation
URI https://doaj.org/article/5f982aa0a0b94517b0c95db67cf47560
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7Enzh_kYN4MqxtkjY5OnEMYUPQwW4lSRMRZBtbVfbf-17bjV7Ei7fSPkryvea976Xhe4TcgCdtZpRh3CaOCSM100YVLOE2AB3RULjgPuRonA4n4mkqp61WX3gmrJYHroHryaBVYkxkIquFjDMbOS0Lm2YuiAzSNUbfSEetYgpjMARkAfVWLarJNRc94H_47wHojEBd0lYSamn1V0llcED2GzZI7-tRHJIdPzsie6OtlOrqmLw8L9-_jFszPLGKC3v2RscGYhTtm7VfUYf0F8_7VBBTzEoFhYsVbqR7Wn7P2QJmuaau6t9QWZ2QyeDx9WHImk4IzEFGLZlXQaU-RKmHNcRh8qlNiiLhPHIF5BMHTwNQJ8NVkFrqwnqVWZ7FOnjpYpPxU9KZzWf-jFDI_8qjqry1KC3PjZQhDsEmUGkZK2yX3G2gyV0jE47dKj5yKBcQyRyRzDdIdsnt1nxR62P8ZthHnLdGKGtd3QBn542z87-cff4fL7kguzioeh_lknTK5ae_AmZR2uvqI_oBZxzMdg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-preserving+Naive+Bayes+classification+based+on+secure+two-party+computation&rft.jtitle=AIMS+mathematics&rft.au=Kun+Liu&rft.au=Chunming+Tang&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=12&rft.spage=28517&rft.epage=28539&rft_id=info:doi/10.3934%2Fmath.20231459&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5f982aa0a0b94517b0c95db67cf47560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon