Improved fretting fatigue mechanism of surface-strengthened Ti-6Al-4V alloy induced by ultrasonic surface rolling process

•Surface rolling deformed severity-dependent FF mechanism of titanium alloy is revealed.•The microstructural evolution of the samples with different surface rolling deformed severity before and after FF is revealed.•The difference between plain fatigue and FF of surface-strengthened Ti-6Al-4 V alloy...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 170; p. 107567
Main Authors Ao, Ni, Liu, Daoxin, Zhang, Xiaohua, Wu, Shengchuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Surface rolling deformed severity-dependent FF mechanism of titanium alloy is revealed.•The microstructural evolution of the samples with different surface rolling deformed severity before and after FF is revealed.•The difference between plain fatigue and FF of surface-strengthened Ti-6Al-4 V alloy was discussed. Surface plastic deformation methods are prevalently applied to improve the fretting fatigue (FF) property of titanium alloys. Understanding the intrinsic relation between surface plastic deformation severity and the FF property is of great significance to the application of these methods. Here, the influence of surface plastic deformation severity on the FF behavior of Ti-6Al-4V alloy is investigated. Two different levels of surface plastic deformation severity are prepared at the surface of Ti-6Al-4V alloy by employing ultrasonic surface rolling process. Uniaxial FF tests illustrate that both of the deformed samples have improved FF properties and although their fatigue life is comparable, the influences of their refined microstructures and compressive residual stresses are different. Pre- and post-mortem microstructural analyses reveals that the grains are coarsened or crystallized from amorphous material at the topmost surface under the multiaxial stresses to accommodate the plastic strain for the high surface deformation severity, while the grains are refined at the subsurface for the low surface deformation during FF loading.
AbstractList •Surface rolling deformed severity-dependent FF mechanism of titanium alloy is revealed.•The microstructural evolution of the samples with different surface rolling deformed severity before and after FF is revealed.•The difference between plain fatigue and FF of surface-strengthened Ti-6Al-4 V alloy was discussed. Surface plastic deformation methods are prevalently applied to improve the fretting fatigue (FF) property of titanium alloys. Understanding the intrinsic relation between surface plastic deformation severity and the FF property is of great significance to the application of these methods. Here, the influence of surface plastic deformation severity on the FF behavior of Ti-6Al-4V alloy is investigated. Two different levels of surface plastic deformation severity are prepared at the surface of Ti-6Al-4V alloy by employing ultrasonic surface rolling process. Uniaxial FF tests illustrate that both of the deformed samples have improved FF properties and although their fatigue life is comparable, the influences of their refined microstructures and compressive residual stresses are different. Pre- and post-mortem microstructural analyses reveals that the grains are coarsened or crystallized from amorphous material at the topmost surface under the multiaxial stresses to accommodate the plastic strain for the high surface deformation severity, while the grains are refined at the subsurface for the low surface deformation during FF loading.
ArticleNumber 107567
Author Liu, Daoxin
Zhang, Xiaohua
Ao, Ni
Wu, Shengchuan
Author_xml – sequence: 1
  givenname: Ni
  surname: Ao
  fullname: Ao, Ni
  email: aoni@swjtu.edu.cn
  organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China
– sequence: 2
  givenname: Daoxin
  surname: Liu
  fullname: Liu, Daoxin
  email: liudx@nwpu.edu.cn
  organization: College of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, PR China
– sequence: 3
  givenname: Xiaohua
  surname: Zhang
  fullname: Zhang, Xiaohua
  organization: College of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, PR China
– sequence: 4
  givenname: Shengchuan
  orcidid: 0000-0002-7437-2021
  surname: Wu
  fullname: Wu, Shengchuan
  organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China
BookMark eNqNkMtqAjEUhkOxULV9huYFxuYyk8wsuhDpRSh0Y7sNY-ZEI2MiSRR8-0a0XXTTrg78nO8_nG-EBs47QOiekgklVDxsJnZj2mRXe5gwwnhOZSXkFRrSWjYFLys2QENCS1ZQyvgNGsW4IYQ0eW2IjvPtLvgDdNgESMm6Fb6U4S3odets3GJvcNwH02ooYgrgVmkNLiMLW4hpX5SfuO17f8TWdXud8-UR7_sU2uid1d8oDr7vT_35noYYb9G1afsId5c5Rh_PT4vZa_H2_jKfTd8KzWuais7wujayZBoEE7JjzRJMBWAaWdeypG2pmyWhQJfS6FoI4BWwjhFRC17xivAxkudeHXyMAYzaBbttw1FRok4G1Ub9GFQng-psMJOPv0htU97zLv9m-3_w0zMP-b2DhaCituCyIRtAJ9V5-2fHF0okl0c
CitedBy_id crossref_primary_10_1007_s43452_024_01058_6
crossref_primary_10_1016_j_jmatprotec_2025_118792
crossref_primary_10_1016_j_measurement_2024_115732
crossref_primary_10_1016_j_triboint_2024_109415
crossref_primary_10_1016_j_jmrt_2025_01_009
crossref_primary_10_3390_ma17061382
crossref_primary_10_1016_j_triboint_2024_109890
crossref_primary_10_1016_j_cja_2024_11_007
crossref_primary_10_1016_j_jmrt_2024_06_091
crossref_primary_10_1016_j_wear_2024_205507
crossref_primary_10_1002_adem_202401100
crossref_primary_10_1016_j_compositesb_2023_111160
crossref_primary_10_1016_j_ijfatigue_2023_107832
crossref_primary_10_1016_j_jmst_2024_01_060
crossref_primary_10_1016_j_surfcoat_2024_130997
crossref_primary_10_1007_s11665_024_09332_7
crossref_primary_10_1016_j_vacuum_2024_113863
crossref_primary_10_1111_ffe_14527
crossref_primary_10_1016_j_msea_2024_147027
crossref_primary_10_1016_j_jallcom_2025_178898
crossref_primary_10_1016_j_jmatprotec_2025_118775
crossref_primary_10_3390_met13101719
crossref_primary_10_1016_j_tafmec_2025_104910
crossref_primary_10_1038_s41598_024_73884_w
crossref_primary_10_1016_j_matdes_2023_112419
crossref_primary_10_3390_coatings14060719
crossref_primary_10_1371_journal_pone_0296919
crossref_primary_10_1016_j_engfracmech_2023_109660
crossref_primary_10_1134_S0031918X23601816
crossref_primary_10_1016_j_jmst_2024_04_075
crossref_primary_10_1007_s10704_024_00783_6
crossref_primary_10_1016_j_jallcom_2024_174347
crossref_primary_10_31857_S0015323023601034
crossref_primary_10_1016_j_jmrt_2025_02_189
crossref_primary_10_1007_s10853_023_09305_6
crossref_primary_10_1016_j_ijfatigue_2024_108157
crossref_primary_10_1016_j_msea_2023_145693
crossref_primary_10_1016_j_wear_2023_205156
crossref_primary_10_1007_s00170_024_14365_2
crossref_primary_10_1016_j_ijplas_2024_104205
Cites_doi 10.1016/j.ijfatigue.2018.11.017
10.1016/j.ijfatigue.2021.106142
10.1016/j.msea.2014.06.114
10.1016/j.actamat.2021.116787
10.3390/lubricants10040053
10.1016/j.jallcom.2019.152017
10.1017/S1431927611000055
10.1016/j.msea.2009.03.020
10.1016/j.ijfatigue.2021.106204
10.1016/j.jnucmat.2019.01.034
10.1016/j.actamat.2020.06.047
10.1016/j.surfcoat.2005.03.036
10.1016/j.ijfatigue.2020.106081
10.1016/j.apsusc.2019.01.295
10.1016/j.ijfatigue.2018.04.016
10.1016/j.apsadv.2021.100071
10.1016/j.triboint.2020.106537
10.1016/j.surfcoat.2017.08.067
10.1016/j.matchar.2019.109952
10.1016/j.actamat.2019.02.008
10.1016/j.triboint.2019.106004
10.1016/j.ijfatigue.2019.105340
10.1016/j.ijfatigue.2011.12.014
10.1016/j.msea.2018.10.098
10.1016/j.ijfatigue.2020.105868
10.1080/02670836.2019.1650445
10.1016/j.apsusc.2019.05.269
10.3390/ma13214711
10.1016/j.surfcoat.2018.06.092
10.1016/j.ijfatigue.2022.106732
10.1016/j.triboint.2019.106095
10.1016/j.corsci.2020.109027
10.1016/S1003-6326(08)60312-X
10.1016/j.ijfatigue.2017.06.013
10.1016/j.ijfatigue.2015.12.013
10.1016/j.triboint.2019.106156
10.1177/1687814020957175
10.1073/pnas.1518200112
10.1016/j.matdes.2017.01.006
10.1016/j.jallcom.2018.09.343
10.1177/1056789517693412
10.1016/j.surfcoat.2019.04.080
10.1016/j.apsusc.2014.06.006
10.1016/j.ijfatigue.2019.105371
10.1179/143307511X12858956848038
10.1021/nl201083t
10.1016/j.ijfatigue.2019.03.042
10.1016/j.ijhydene.2014.12.129
10.1016/j.actamat.2018.12.018
10.1016/j.wear.2016.12.004
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijfatigue.2023.107567
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
ExternalDocumentID 10_1016_j_ijfatigue_2023_107567
S0142112323000683
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c381t-df388f742ce6267d29bef5eef9788741a4c9b01e1b7fc866e35e2d20686353503
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Tue Jul 01 01:54:45 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Fri Feb 23 02:38:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ultrasonic surface rolling process
Fretting fatigue
Compressive residual stress
Surface deformation severity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-df388f742ce6267d29bef5eef9788741a4c9b01e1b7fc866e35e2d20686353503
ORCID 0000-0002-7437-2021
ParticipantIDs crossref_primary_10_1016_j_ijfatigue_2023_107567
crossref_citationtrail_10_1016_j_ijfatigue_2023_107567
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2023_107567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle International journal of fatigue
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gussev, Leonard (b0175) 2019; 517
Wright, Nowell, Field (b0190) 2011; 17
Zhang, Liu (b0070) 2009; 19
Du, Liu, Ye, Zhang, Li, Zhou (b0050) 2014; 313
Li, Sun, Guan, Jia, Gong, Zhang (b0250) 2021; 146
Liu, Liu, Zhang, He, Xu, Ao (b0160) 2019; 370
Ye, Telang, Gill, Suslov, Idell, Zweiacker (b0230) 2014; 613
Yuan, Li (b0125) 2017; 103
Wang, Li, Cui, Liu, Ma, Li (b0185) 2015; 112
Li, Fu, Li, Gai, Li, Zhou (b0100) 2016; 85
Abbasi, Majzoobi, Mendiguren (b0005) 2020; 12
Vantadori, Valeo, Zanichelli (b0015) 2020; 151
Yang, Zhou, Gai, Zhang, Fu, Chen (b0020) 2017; 372–373
Croccolo, De Agostinis, Fini, Olmi, Robusto, Scapecchi (b0040) 2022; 10
Ma, Liu, Zhang, He, Liu, Liu (b0045) 2020; 145
Cai, Li, Yin, Zhu, Zhou (b0010) 2020; 144
Majzoobi, Abbasi (b0215) 2017; 328
Yang, Zhou, Niu, Zheng, Wang, Fu (b0180) 2018; 349
Liu, Liu, Zhang, Ao, Xu, Liu (b0095) 2019; 125
Lei, Wang, Xu, Lu (b0145) 2019; 168
Vadiraj, Kamaraj (b0060) 2006; 200
Zou, Zeng, Wang, Lu, Li, Zhang (b0025) 2020; 132
Maleki, Unal, Reza Kashyzadeh, Bagherifard, Guagliano (b0150) 2021; 4
Ao, Liu, Xu, Zhang, Liu (b0135) 2019; 742
Liu, Li (b0140) 2019; 773
Panin, Kazachenok, Kozelskaya, Balokhonov, Romanova, Perevalova (b0130) 2017; 117
Komoda, Kubota, Furtado (b0165) 2015; 40
Vázquez, Navarro, Domínguez (b0210) 2012; 40
Ao, Liu, Zhang, Zhang, Wu (b0170) 2022; 158
Zhao, Liu, Yang, Zhang, Ma, Zhang (b0115) 2021; 148
Long, Pan, Tao, Dao, Suresh, Lu (b0235) 2019; 166
Tang, Liu, Zhang, Zhang (b0255) 2011; 15
Yang, Zhang, Cui, Wen (b0080) 2020; 13
Ao, Liu, Zhang, Fan, Shi, Liu (b0065) 2019; 811
Chowdhury, Kowser, Zobaer Shah, Das (b0030) 2018; 27
Wang, Luo, Bu, Su, Cai, Zhang (b0225) 2020; 177
Du, Liu, Zhang, Tang (b0075) 2019; 488
Zhao, Liu, Zhang, Zhou, Zhang, Zhang (b0110) 2019; 121
Yang, Huang, Zhong, Wang, Chen, Chen (b0220) 2020; 141
Lu, Liu, Lin, Zhang, Shukla, Zhang (b0035) 2019; 35
Zhuang, Li, Li, Fan, He, Cai (b0055) 2019; 478
Martín, Vázquez, Navarro, Domínguez (b0085) 2020; 142
Rui, Shang, Su, Qiu, Niu, Shi (b0200) 2018; 113
Sun, Keller, Zhu, Guo, Kashaev, Klusemann (b0195) 2021; 145
Liu, Jiang, Chen, Wang, Ji (b0155) 2019; 158
Wei, Zhang, Tangpatjaroen, Tarnsangpradit, Usta, Eriten (b0205) 2021; 209
Liu, Liu, Zhang, Liu, Ma, Xu (b0105) 2020; 131
Peters, Kumpfert, Ward, Leyens (b0120) 2003
Kumar, Li, Haque, Gao (b0240) 2011; 11
Majzoobi, Azadikhah, Nemati (b0090) 2009; 516
Pan, Long, Jing, Tao, Lu (b0245) 2020; 196
Gussev (10.1016/j.ijfatigue.2023.107567_b0175) 2019; 517
Ao (10.1016/j.ijfatigue.2023.107567_b0065) 2019; 811
Liu (10.1016/j.ijfatigue.2023.107567_b0140) 2019; 773
Majzoobi (10.1016/j.ijfatigue.2023.107567_b0090) 2009; 516
Wei (10.1016/j.ijfatigue.2023.107567_b0205) 2021; 209
Tang (10.1016/j.ijfatigue.2023.107567_b0255) 2011; 15
Liu (10.1016/j.ijfatigue.2023.107567_b0105) 2020; 131
Zhang (10.1016/j.ijfatigue.2023.107567_b0070) 2009; 19
Yuan (10.1016/j.ijfatigue.2023.107567_b0125) 2017; 103
Ao (10.1016/j.ijfatigue.2023.107567_b0170) 2022; 158
Komoda (10.1016/j.ijfatigue.2023.107567_b0165) 2015; 40
Zhao (10.1016/j.ijfatigue.2023.107567_b0115) 2021; 148
Liu (10.1016/j.ijfatigue.2023.107567_b0160) 2019; 370
Wright (10.1016/j.ijfatigue.2023.107567_b0190) 2011; 17
Wang (10.1016/j.ijfatigue.2023.107567_b0185) 2015; 112
Majzoobi (10.1016/j.ijfatigue.2023.107567_b0215) 2017; 328
Panin (10.1016/j.ijfatigue.2023.107567_b0130) 2017; 117
Liu (10.1016/j.ijfatigue.2023.107567_b0095) 2019; 125
Rui (10.1016/j.ijfatigue.2023.107567_b0200) 2018; 113
Abbasi (10.1016/j.ijfatigue.2023.107567_b0005) 2020; 12
Martín (10.1016/j.ijfatigue.2023.107567_b0085) 2020; 142
Lei (10.1016/j.ijfatigue.2023.107567_b0145) 2019; 168
Chowdhury (10.1016/j.ijfatigue.2023.107567_b0030) 2018; 27
Ao (10.1016/j.ijfatigue.2023.107567_b0135) 2019; 742
Long (10.1016/j.ijfatigue.2023.107567_b0235) 2019; 166
Liu (10.1016/j.ijfatigue.2023.107567_b0155) 2019; 158
Vadiraj (10.1016/j.ijfatigue.2023.107567_b0060) 2006; 200
Vázquez (10.1016/j.ijfatigue.2023.107567_b0210) 2012; 40
Wang (10.1016/j.ijfatigue.2023.107567_b0225) 2020; 177
Croccolo (10.1016/j.ijfatigue.2023.107567_b0040) 2022; 10
Zou (10.1016/j.ijfatigue.2023.107567_b0025) 2020; 132
Li (10.1016/j.ijfatigue.2023.107567_b0100) 2016; 85
Lu (10.1016/j.ijfatigue.2023.107567_b0035) 2019; 35
Kumar (10.1016/j.ijfatigue.2023.107567_b0240) 2011; 11
Sun (10.1016/j.ijfatigue.2023.107567_b0195) 2021; 145
Li (10.1016/j.ijfatigue.2023.107567_b0250) 2021; 146
Du (10.1016/j.ijfatigue.2023.107567_b0075) 2019; 488
Yang (10.1016/j.ijfatigue.2023.107567_b0020) 2017; 372–373
Yang (10.1016/j.ijfatigue.2023.107567_b0180) 2018; 349
Du (10.1016/j.ijfatigue.2023.107567_b0050) 2014; 313
Zhuang (10.1016/j.ijfatigue.2023.107567_b0055) 2019; 478
Yang (10.1016/j.ijfatigue.2023.107567_b0080) 2020; 13
Zhao (10.1016/j.ijfatigue.2023.107567_b0110) 2019; 121
Maleki (10.1016/j.ijfatigue.2023.107567_b0150) 2021; 4
Pan (10.1016/j.ijfatigue.2023.107567_b0245) 2020; 196
Cai (10.1016/j.ijfatigue.2023.107567_b0010) 2020; 144
Vantadori (10.1016/j.ijfatigue.2023.107567_b0015) 2020; 151
Peters (10.1016/j.ijfatigue.2023.107567_b0120) 2003
Yang (10.1016/j.ijfatigue.2023.107567_b0220) 2020; 141
Ye (10.1016/j.ijfatigue.2023.107567_b0230) 2014; 613
Ma (10.1016/j.ijfatigue.2023.107567_b0045) 2020; 145
References_xml – volume: 40
  start-page: 143
  year: 2012
  end-page: 153
  ident: b0210
  article-title: Experimental results in fretting fatigue with shot and laser peened Al 7075–T651 specimens
  publication-title: Int J Fatigue
– volume: 158
  year: 2022
  ident: b0170
  article-title: Surface rolling deformed severity-dependent fatigue mechanism of Ti-6Al-4V alloy
  publication-title: Int J Fatigue
– volume: 4
  year: 2021
  ident: b0150
  article-title: A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens
  publication-title: Appl Surf Sci Adv
– volume: 17
  start-page: 316
  year: 2011
  end-page: 329
  ident: b0190
  article-title: A review of strain analysis using electron backscatter diffraction
  publication-title: Microsc Microanal
– volume: 35
  start-page: 1781
  year: 2019
  end-page: 1788
  ident: b0035
  article-title: Improving the fretting performance of aero-engine tenon joint materials using surface strengthening
  publication-title: Mater Sci Technol
– volume: 313
  start-page: 462
  year: 2014
  end-page: 469
  ident: b0050
  article-title: Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy
  publication-title: Appl Surf Sci
– volume: 488
  start-page: 269
  year: 2019
  end-page: 276
  ident: b0075
  article-title: Fretting fatigue behaviors and surface integrity of Ag-TiN soft solid lubricating films on titanium alloy
  publication-title: Appl Surf Sci
– volume: 113
  start-page: 264
  year: 2018
  end-page: 276
  ident: b0200
  article-title: EBSD analysis of cyclic load effect on final misorientation distribution of post-mortem low alloy steel: A new method for fatigue crack tip driving force prediction
  publication-title: Int J Fatigue
– volume: 27
  start-page: 453
  year: 2018
  end-page: 487
  ident: b0030
  article-title: Characteristics and damage mechanisms of bending fretting fatigue of materials
  publication-title: Int J Damage Mech
– volume: 773
  start-page: 860
  year: 2019
  end-page: 871
  ident: b0140
  article-title: Structure response characteristics and surface nanocrystallization mechanism of alpha phase in Ti-6Al-4V subjected to high energy shot peening
  publication-title: J Alloy Compd
– volume: 372–373
  start-page: 81
  year: 2017
  end-page: 90
  ident: b0020
  article-title: Investigation on the fretting fatigue behaviors of Ti-6Al-4V dovetail joint specimens treated with shot-peening
  publication-title: Wear
– volume: 85
  start-page: 65
  year: 2016
  end-page: 69
  ident: b0100
  article-title: Fretting fatigue characteristic of Ti–6Al–4V strengthened by wet peening
  publication-title: Int J Fatigue
– volume: 166
  start-page: 56
  year: 2019
  end-page: 66
  ident: b0235
  article-title: Improved fatigue resistance of gradient nanograined Cu
  publication-title: Acta Mater
– start-page: 333
  year: 2003
  end-page: 350
  ident: b0120
  article-title: Titanium alloys for aerospace applications. Titanium and titanium Alloys
– volume: 144
  year: 2020
  ident: b0010
  article-title: A review of fretting study on nuclear power equipment
  publication-title: Tribol Int
– volume: 177
  year: 2020
  ident: b0225
  article-title: Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel
  publication-title: Corros Sci
– volume: 196
  start-page: 252
  year: 2020
  end-page: 260
  ident: b0245
  article-title: Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu
  publication-title: Acta Mater
– volume: 349
  start-page: 1098
  year: 2018
  end-page: 1106
  ident: b0180
  article-title: Effect of different surface asperities and surface hardness induced by shot-peening on the fretting wear behavior of Ti-6Al-4V
  publication-title: Surf Coat Technol
– volume: 151
  year: 2020
  ident: b0015
  article-title: Fretting fatigue and shot peening: a multiaxial fatigue criterion including residual stress relaxation
  publication-title: Tribol Int
– volume: 142
  year: 2020
  ident: b0085
  article-title: Effect of shot peening residual stresses and surface roughness on fretting fatigue strength of Al 7075–T651
  publication-title: Tribol Int
– volume: 125
  start-page: 249
  year: 2019
  end-page: 260
  ident: b0095
  article-title: Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process
  publication-title: Int J Fatigue
– volume: 40
  start-page: 16868
  year: 2015
  end-page: 16877
  ident: b0165
  article-title: Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen
  publication-title: Int J Hydrogen Energy
– volume: 11
  start-page: 2510
  year: 2011
  end-page: 2516
  ident: b0240
  article-title: Is stress concentration relevant for nanocrystalline metals?
  publication-title: Nano Lett
– volume: 811
  year: 2019
  ident: b0065
  article-title: The effect of residual stress and gradient nanostructure on the fretting fatigue behavior of plasma electrolytic oxidation coated Ti–6Al–4V alloy
  publication-title: J Alloy Compd
– volume: 117
  start-page: 371
  year: 2017
  end-page: 381
  ident: b0130
  article-title: The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension
  publication-title: Mater Des
– volume: 112
  start-page: 13502
  year: 2015
  end-page: 13507
  ident: b0185
  article-title: Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals
  publication-title: Proc Natl Acad Sci USA
– volume: 19
  start-page: 557
  year: 2009
  end-page: 562
  ident: b0070
  article-title: Effect of TiN/Ti multilayer on fretting fatigue resistance of Ti-811 alloy at elevated temperature
  publication-title: Trans Nonferrous Met Soc Chin
– volume: 742
  start-page: 820
  year: 2019
  end-page: 834
  ident: b0135
  article-title: Gradient nanostructure evolution and phase transformation of α phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process
  publication-title: Mater Sci Eng A
– volume: 168
  start-page: 133
  year: 2019
  end-page: 142
  ident: b0145
  article-title: Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure
  publication-title: Acta Mater
– volume: 103
  start-page: 318
  year: 2017
  end-page: 326
  ident: b0125
  article-title: An engineering high cycle fatigue strength prediction model for low plasticity burnished samples
  publication-title: Int J Fatigue
– volume: 158
  year: 2019
  ident: b0155
  article-title: Surface layer microstructures and wear properties modifications of Mg-8Gd-3Y alloy treated by shot peening
  publication-title: Mater Charact
– volume: 370
  start-page: 24
  year: 2019
  end-page: 34
  ident: b0160
  article-title: On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy
  publication-title: Surf Coat Technol
– volume: 12
  year: 2020
  ident: b0005
  article-title: A review of the effects of cyclic contact loading on fretting fatigue behavior
  publication-title: Adv Mech Eng
– volume: 517
  start-page: 45
  year: 2019
  end-page: 56
  ident: b0175
  article-title: In situ SEM-EBSD analysis of plastic deformation mechanisms in neutron-irradiated austenitic steel
  publication-title: J Nucl Mater
– volume: 148
  year: 2021
  ident: b0115
  article-title: Improving plain and fretting fatigue resistance of A100 steel using ultrasonic nanocrystal surface modification
  publication-title: Int J Fatigue
– volume: 145
  year: 2021
  ident: b0195
  article-title: Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy
  publication-title: Int J Fatigue
– volume: 200
  start-page: 4538
  year: 2006
  end-page: 4542
  ident: b0060
  article-title: Characterization of fretting fatigue damage of PVD TiN coated biomedical titanium alloys
  publication-title: Surf Coat Technol
– volume: 613
  start-page: 274
  year: 2014
  end-page: 288
  ident: b0230
  article-title: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility
  publication-title: Mater Sci Eng A
– volume: 121
  start-page: 30
  year: 2019
  end-page: 38
  ident: b0110
  article-title: Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process
  publication-title: Int J Fatigue
– volume: 209
  year: 2021
  ident: b0205
  article-title: Wear-induced microstructural evolution of ultra-fine grained (UFGs) aluminum
  publication-title: Acta Mater
– volume: 13
  start-page: 4711
  year: 2020
  ident: b0080
  article-title: Effect of laser shock peening on fretting fatigue life of TC11 titanium alloy
  publication-title: Materials
– volume: 131
  year: 2020
  ident: b0105
  article-title: An investigation of fretting fatigue behavior and mechanism in 17–4PH stainless steel with gradient structure produced by an ultrasonic surface rolling process
  publication-title: Int J Fatigue
– volume: 15
  year: 2011
  ident: b0255
  article-title: Effect of Ti/Mo and Cr/Mo metallic multilayer films on fretting fatigue resistance of Ti–6Al–4V alloy
  publication-title: Mater Res Innov
– volume: 516
  start-page: 235
  year: 2009
  end-page: 247
  ident: b0090
  article-title: The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6
  publication-title: Mater Sci Eng A
– volume: 146
  year: 2021
  ident: b0250
  article-title: Elucidating the effect of gradient structure on strengthening mechanisms and fatigue behavior of pure titanium
  publication-title: Int J Fatigue
– volume: 478
  start-page: 661
  year: 2019
  end-page: 679
  ident: b0055
  article-title: Probing fretting performance of DLC and MoS
  publication-title: Appl Surf Sci
– volume: 145
  year: 2020
  ident: b0045
  article-title: The fretting fatigue performance of Ti–6Al–4V alloy influenced by microstructure of CuNiIn coating prepared via thermal spraying
  publication-title: Tribol Int
– volume: 10
  start-page: 53
  year: 2022
  ident: b0040
  article-title: Fretting fatigue in mechanical joints: a literature review
  publication-title: Lubricants
– volume: 328
  start-page: 292
  year: 2017
  end-page: 303
  ident: b0215
  article-title: On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading
  publication-title: Surf Coat Technol
– volume: 132
  year: 2020
  ident: b0025
  article-title: Effect of plastic deformation and fretting wear on the fretting fatigue of scaled railway axles
  publication-title: Int J Fatigue
– volume: 141
  year: 2020
  ident: b0220
  article-title: Enhanced extra-long life fatigue resistance of a bimodal titanium alloy by laser shock peening
  publication-title: Int J Fatigue
– volume: 121
  start-page: 30
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0110
  article-title: Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.11.017
– volume: 146
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107567_b0250
  article-title: Elucidating the effect of gradient structure on strengthening mechanisms and fatigue behavior of pure titanium
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2021.106142
– volume: 613
  start-page: 274
  year: 2014
  ident: 10.1016/j.ijfatigue.2023.107567_b0230
  article-title: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2014.06.114
– volume: 209
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107567_b0205
  article-title: Wear-induced microstructural evolution of ultra-fine grained (UFGs) aluminum
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2021.116787
– volume: 10
  start-page: 53
  year: 2022
  ident: 10.1016/j.ijfatigue.2023.107567_b0040
  article-title: Fretting fatigue in mechanical joints: a literature review
  publication-title: Lubricants
  doi: 10.3390/lubricants10040053
– volume: 811
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0065
  article-title: The effect of residual stress and gradient nanostructure on the fretting fatigue behavior of plasma electrolytic oxidation coated Ti–6Al–4V alloy
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2019.152017
– volume: 17
  start-page: 316
  year: 2011
  ident: 10.1016/j.ijfatigue.2023.107567_b0190
  article-title: A review of strain analysis using electron backscatter diffraction
  publication-title: Microsc Microanal
  doi: 10.1017/S1431927611000055
– volume: 516
  start-page: 235
  year: 2009
  ident: 10.1016/j.ijfatigue.2023.107567_b0090
  article-title: The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2009.03.020
– volume: 148
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107567_b0115
  article-title: Improving plain and fretting fatigue resistance of A100 steel using ultrasonic nanocrystal surface modification
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2021.106204
– volume: 517
  start-page: 45
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0175
  article-title: In situ SEM-EBSD analysis of plastic deformation mechanisms in neutron-irradiated austenitic steel
  publication-title: J Nucl Mater
  doi: 10.1016/j.jnucmat.2019.01.034
– volume: 196
  start-page: 252
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0245
  article-title: Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.06.047
– volume: 200
  start-page: 4538
  year: 2006
  ident: 10.1016/j.ijfatigue.2023.107567_b0060
  article-title: Characterization of fretting fatigue damage of PVD TiN coated biomedical titanium alloys
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2005.03.036
– volume: 145
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107567_b0195
  article-title: Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2020.106081
– volume: 478
  start-page: 661
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0055
  article-title: Probing fretting performance of DLC and MoS2 films under fluid lubrication
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.01.295
– volume: 113
  start-page: 264
  year: 2018
  ident: 10.1016/j.ijfatigue.2023.107567_b0200
  article-title: EBSD analysis of cyclic load effect on final misorientation distribution of post-mortem low alloy steel: A new method for fatigue crack tip driving force prediction
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.04.016
– volume: 4
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107567_b0150
  article-title: A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens
  publication-title: Appl Surf Sci Adv
  doi: 10.1016/j.apsadv.2021.100071
– volume: 151
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0015
  article-title: Fretting fatigue and shot peening: a multiaxial fatigue criterion including residual stress relaxation
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106537
– volume: 328
  start-page: 292
  year: 2017
  ident: 10.1016/j.ijfatigue.2023.107567_b0215
  article-title: On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2017.08.067
– volume: 158
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0155
  article-title: Surface layer microstructures and wear properties modifications of Mg-8Gd-3Y alloy treated by shot peening
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2019.109952
– volume: 168
  start-page: 133
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0145
  article-title: Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.02.008
– volume: 142
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0085
  article-title: Effect of shot peening residual stresses and surface roughness on fretting fatigue strength of Al 7075–T651
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.106004
– volume: 131
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0105
  article-title: An investigation of fretting fatigue behavior and mechanism in 17–4PH stainless steel with gradient structure produced by an ultrasonic surface rolling process
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2019.105340
– volume: 40
  start-page: 143
  year: 2012
  ident: 10.1016/j.ijfatigue.2023.107567_b0210
  article-title: Experimental results in fretting fatigue with shot and laser peened Al 7075–T651 specimens
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2011.12.014
– volume: 742
  start-page: 820
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0135
  article-title: Gradient nanostructure evolution and phase transformation of α phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2018.10.098
– volume: 141
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0220
  article-title: Enhanced extra-long life fatigue resistance of a bimodal titanium alloy by laser shock peening
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2020.105868
– volume: 35
  start-page: 1781
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0035
  article-title: Improving the fretting performance of aero-engine tenon joint materials using surface strengthening
  publication-title: Mater Sci Technol
  doi: 10.1080/02670836.2019.1650445
– volume: 488
  start-page: 269
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0075
  article-title: Fretting fatigue behaviors and surface integrity of Ag-TiN soft solid lubricating films on titanium alloy
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.05.269
– volume: 13
  start-page: 4711
  issue: 21
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0080
  article-title: Effect of laser shock peening on fretting fatigue life of TC11 titanium alloy
  publication-title: Materials
  doi: 10.3390/ma13214711
– volume: 349
  start-page: 1098
  year: 2018
  ident: 10.1016/j.ijfatigue.2023.107567_b0180
  article-title: Effect of different surface asperities and surface hardness induced by shot-peening on the fretting wear behavior of Ti-6Al-4V
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2018.06.092
– volume: 158
  year: 2022
  ident: 10.1016/j.ijfatigue.2023.107567_b0170
  article-title: Surface rolling deformed severity-dependent fatigue mechanism of Ti-6Al-4V alloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2022.106732
– volume: 144
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0010
  article-title: A review of fretting study on nuclear power equipment
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.106095
– volume: 177
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0225
  article-title: Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2020.109027
– volume: 19
  start-page: 557
  year: 2009
  ident: 10.1016/j.ijfatigue.2023.107567_b0070
  article-title: Effect of TiN/Ti multilayer on fretting fatigue resistance of Ti-811 alloy at elevated temperature
  publication-title: Trans Nonferrous Met Soc Chin
  doi: 10.1016/S1003-6326(08)60312-X
– volume: 103
  start-page: 318
  year: 2017
  ident: 10.1016/j.ijfatigue.2023.107567_b0125
  article-title: An engineering high cycle fatigue strength prediction model for low plasticity burnished samples
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2017.06.013
– volume: 85
  start-page: 65
  year: 2016
  ident: 10.1016/j.ijfatigue.2023.107567_b0100
  article-title: Fretting fatigue characteristic of Ti–6Al–4V strengthened by wet peening
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2015.12.013
– start-page: 333
  year: 2003
  ident: 10.1016/j.ijfatigue.2023.107567_b0120
– volume: 145
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0045
  article-title: The fretting fatigue performance of Ti–6Al–4V alloy influenced by microstructure of CuNiIn coating prepared via thermal spraying
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.106156
– volume: 12
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0005
  article-title: A review of the effects of cyclic contact loading on fretting fatigue behavior
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814020957175
– volume: 112
  start-page: 13502
  year: 2015
  ident: 10.1016/j.ijfatigue.2023.107567_b0185
  article-title: Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1518200112
– volume: 117
  start-page: 371
  year: 2017
  ident: 10.1016/j.ijfatigue.2023.107567_b0130
  article-title: The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.01.006
– volume: 773
  start-page: 860
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0140
  article-title: Structure response characteristics and surface nanocrystallization mechanism of alpha phase in Ti-6Al-4V subjected to high energy shot peening
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2018.09.343
– volume: 27
  start-page: 453
  year: 2018
  ident: 10.1016/j.ijfatigue.2023.107567_b0030
  article-title: Characteristics and damage mechanisms of bending fretting fatigue of materials
  publication-title: Int J Damage Mech
  doi: 10.1177/1056789517693412
– volume: 370
  start-page: 24
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0160
  article-title: On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.04.080
– volume: 313
  start-page: 462
  year: 2014
  ident: 10.1016/j.ijfatigue.2023.107567_b0050
  article-title: Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2014.06.006
– volume: 132
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107567_b0025
  article-title: Effect of plastic deformation and fretting wear on the fretting fatigue of scaled railway axles
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2019.105371
– volume: 15
  year: 2011
  ident: 10.1016/j.ijfatigue.2023.107567_b0255
  article-title: Effect of Ti/Mo and Cr/Mo metallic multilayer films on fretting fatigue resistance of Ti–6Al–4V alloy
  publication-title: Mater Res Innov
  doi: 10.1179/143307511X12858956848038
– volume: 11
  start-page: 2510
  year: 2011
  ident: 10.1016/j.ijfatigue.2023.107567_b0240
  article-title: Is stress concentration relevant for nanocrystalline metals?
  publication-title: Nano Lett
  doi: 10.1021/nl201083t
– volume: 125
  start-page: 249
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0095
  article-title: Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2019.03.042
– volume: 40
  start-page: 16868
  year: 2015
  ident: 10.1016/j.ijfatigue.2023.107567_b0165
  article-title: Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.12.129
– volume: 166
  start-page: 56
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107567_b0235
  article-title: Improved fatigue resistance of gradient nanograined Cu
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2018.12.018
– volume: 372–373
  start-page: 81
  year: 2017
  ident: 10.1016/j.ijfatigue.2023.107567_b0020
  article-title: Investigation on the fretting fatigue behaviors of Ti-6Al-4V dovetail joint specimens treated with shot-peening
  publication-title: Wear
  doi: 10.1016/j.wear.2016.12.004
SSID ssj0009075
Score 2.5587835
Snippet •Surface rolling deformed severity-dependent FF mechanism of titanium alloy is revealed.•The microstructural evolution of the samples with different surface...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107567
SubjectTerms Compressive residual stress
Fretting fatigue
Surface deformation severity
Ultrasonic surface rolling process
Title Improved fretting fatigue mechanism of surface-strengthened Ti-6Al-4V alloy induced by ultrasonic surface rolling process
URI https://dx.doi.org/10.1016/j.ijfatigue.2023.107567
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEV5VB5YTZM4j4atqqgKiE4t6hY58RkF9aU-hi78du7qpLQSUgfGWD4lOTv3cL77jrEHrePMOK7BFTCYoESRFkpLJTyAUGMEG8YR1Q6_d8NO338dBIMKa5W1MASrLGy_telra12M1Att1qd5XidYEmYvGBFIsrkNYvz0_Yh2-eP3L8wjtmS7NFnQ7B2MV_5l8P3piIS6iONoFKwbzv_hoba8TvuUnRThIm_aJzpjFRifs-MtEsELtrLnAqC5IdAtjvHidnwEVNebz0d8Yvh8OTMqA0HVIeNPIj1AkV4uwuZQ-B-cfsCvOGbouNaapyu-HC5mak7MuaUon1kGbz611QWXrN9-7rU6omioIDJ0zAuhjWw0DCbDGWAeE2kvTsEEACYmTKHvKj-LU8cFN41M1ghDkAF42qMqEhnIwJFX7GA8GcM148qTBiTmWvj9-xIllBNCYJSvXCqdDaosLJWYZAXbODW9GCYlrOwr2Wg_Ie0nVvtV5mwEp5ZwY7_IU7lKyc7eSdAt7BO--Y_wLTuiKwuAvGMHi9kS7jFIWaS19S6sscPmy1un-wODNelC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BOQAHtLwEC7vrA1erSRwnDbeqApUFeiqIW-TEYxTUlqqPQ__9ztQJDwmJw16dfEo0tuaRfPMNwIW1WemC0NEOOCpQ0tRKY5WREWJiKYNNspR7h-8HSf8h_vuknzag1_TCMK2y9v3ep6-9db3Srq3ZnlZVm2lJVL1QRqDY53bUJmyxOpVuwVb35rY_eNfe9Xq7fL9kwCeaV_XiyAT8lYQHidNqqtcz578IUh8Cz_UP2KszRtH1L7UPGzg5gN0POoKHsPKfBtAKx7xbWhP148QYubW3mo_FqxPz5cyZEiU3iEyeWfeAIMNKJt2RjB8F_4NfCSrSabutKFZiOVrMzJzFcxuomHkRbzH1DQZH8HB9Nez1ZT1TQZYUmxfSOtXpOKqHS6RSJrVRVqDTiC5jWmEcmrjMiiDEsEhd2UkSVBojG3EjidJKB-oYWpPXCZ6AMJFyqKjcIhcQK0KYIEHtTGxC7p7Vp5A0RszLWnCc516M8oZZ9pK_WT9n6-fe-qcQvAGnXnPje8hls0v5p-OTU2T4Dvzzf8B_YLs_vL_L724Gt2eww1c8H_IcWovZEn9RzrIoftdn8h-Bdevz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+fretting+fatigue+mechanism+of+surface-strengthened+Ti-6Al-4V+alloy+induced+by+ultrasonic+surface+rolling+process&rft.jtitle=International+journal+of+fatigue&rft.au=Ao%2C+Ni&rft.au=Liu%2C+Daoxin&rft.au=Zhang%2C+Xiaohua&rft.au=Wu%2C+Shengchuan&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=170&rft_id=info:doi/10.1016%2Fj.ijfatigue.2023.107567&rft.externalDocID=S0142112323000683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon