Improved fretting fatigue mechanism of surface-strengthened Ti-6Al-4V alloy induced by ultrasonic surface rolling process
•Surface rolling deformed severity-dependent FF mechanism of titanium alloy is revealed.•The microstructural evolution of the samples with different surface rolling deformed severity before and after FF is revealed.•The difference between plain fatigue and FF of surface-strengthened Ti-6Al-4 V alloy...
Saved in:
Published in | International journal of fatigue Vol. 170; p. 107567 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Surface rolling deformed severity-dependent FF mechanism of titanium alloy is revealed.•The microstructural evolution of the samples with different surface rolling deformed severity before and after FF is revealed.•The difference between plain fatigue and FF of surface-strengthened Ti-6Al-4 V alloy was discussed.
Surface plastic deformation methods are prevalently applied to improve the fretting fatigue (FF) property of titanium alloys. Understanding the intrinsic relation between surface plastic deformation severity and the FF property is of great significance to the application of these methods. Here, the influence of surface plastic deformation severity on the FF behavior of Ti-6Al-4V alloy is investigated. Two different levels of surface plastic deformation severity are prepared at the surface of Ti-6Al-4V alloy by employing ultrasonic surface rolling process. Uniaxial FF tests illustrate that both of the deformed samples have improved FF properties and although their fatigue life is comparable, the influences of their refined microstructures and compressive residual stresses are different. Pre- and post-mortem microstructural analyses reveals that the grains are coarsened or crystallized from amorphous material at the topmost surface under the multiaxial stresses to accommodate the plastic strain for the high surface deformation severity, while the grains are refined at the subsurface for the low surface deformation during FF loading. |
---|---|
AbstractList | •Surface rolling deformed severity-dependent FF mechanism of titanium alloy is revealed.•The microstructural evolution of the samples with different surface rolling deformed severity before and after FF is revealed.•The difference between plain fatigue and FF of surface-strengthened Ti-6Al-4 V alloy was discussed.
Surface plastic deformation methods are prevalently applied to improve the fretting fatigue (FF) property of titanium alloys. Understanding the intrinsic relation between surface plastic deformation severity and the FF property is of great significance to the application of these methods. Here, the influence of surface plastic deformation severity on the FF behavior of Ti-6Al-4V alloy is investigated. Two different levels of surface plastic deformation severity are prepared at the surface of Ti-6Al-4V alloy by employing ultrasonic surface rolling process. Uniaxial FF tests illustrate that both of the deformed samples have improved FF properties and although their fatigue life is comparable, the influences of their refined microstructures and compressive residual stresses are different. Pre- and post-mortem microstructural analyses reveals that the grains are coarsened or crystallized from amorphous material at the topmost surface under the multiaxial stresses to accommodate the plastic strain for the high surface deformation severity, while the grains are refined at the subsurface for the low surface deformation during FF loading. |
ArticleNumber | 107567 |
Author | Liu, Daoxin Zhang, Xiaohua Ao, Ni Wu, Shengchuan |
Author_xml | – sequence: 1 givenname: Ni surname: Ao fullname: Ao, Ni email: aoni@swjtu.edu.cn organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China – sequence: 2 givenname: Daoxin surname: Liu fullname: Liu, Daoxin email: liudx@nwpu.edu.cn organization: College of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, PR China – sequence: 3 givenname: Xiaohua surname: Zhang fullname: Zhang, Xiaohua organization: College of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, PR China – sequence: 4 givenname: Shengchuan orcidid: 0000-0002-7437-2021 surname: Wu fullname: Wu, Shengchuan organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China |
BookMark | eNqNkMtqAjEUhkOxULV9huYFxuYyk8wsuhDpRSh0Y7sNY-ZEI2MiSRR8-0a0XXTTrg78nO8_nG-EBs47QOiekgklVDxsJnZj2mRXe5gwwnhOZSXkFRrSWjYFLys2QENCS1ZQyvgNGsW4IYQ0eW2IjvPtLvgDdNgESMm6Fb6U4S3odets3GJvcNwH02ooYgrgVmkNLiMLW4hpX5SfuO17f8TWdXud8-UR7_sU2uid1d8oDr7vT_35noYYb9G1afsId5c5Rh_PT4vZa_H2_jKfTd8KzWuais7wujayZBoEE7JjzRJMBWAaWdeypG2pmyWhQJfS6FoI4BWwjhFRC17xivAxkudeHXyMAYzaBbttw1FRok4G1Ub9GFQng-psMJOPv0htU97zLv9m-3_w0zMP-b2DhaCituCyIRtAJ9V5-2fHF0okl0c |
CitedBy_id | crossref_primary_10_1007_s43452_024_01058_6 crossref_primary_10_1016_j_jmatprotec_2025_118792 crossref_primary_10_1016_j_measurement_2024_115732 crossref_primary_10_1016_j_triboint_2024_109415 crossref_primary_10_1016_j_jmrt_2025_01_009 crossref_primary_10_3390_ma17061382 crossref_primary_10_1016_j_triboint_2024_109890 crossref_primary_10_1016_j_cja_2024_11_007 crossref_primary_10_1016_j_jmrt_2024_06_091 crossref_primary_10_1016_j_wear_2024_205507 crossref_primary_10_1002_adem_202401100 crossref_primary_10_1016_j_compositesb_2023_111160 crossref_primary_10_1016_j_ijfatigue_2023_107832 crossref_primary_10_1016_j_jmst_2024_01_060 crossref_primary_10_1016_j_surfcoat_2024_130997 crossref_primary_10_1007_s11665_024_09332_7 crossref_primary_10_1016_j_vacuum_2024_113863 crossref_primary_10_1111_ffe_14527 crossref_primary_10_1016_j_msea_2024_147027 crossref_primary_10_1016_j_jallcom_2025_178898 crossref_primary_10_1016_j_jmatprotec_2025_118775 crossref_primary_10_3390_met13101719 crossref_primary_10_1016_j_tafmec_2025_104910 crossref_primary_10_1038_s41598_024_73884_w crossref_primary_10_1016_j_matdes_2023_112419 crossref_primary_10_3390_coatings14060719 crossref_primary_10_1371_journal_pone_0296919 crossref_primary_10_1016_j_engfracmech_2023_109660 crossref_primary_10_1134_S0031918X23601816 crossref_primary_10_1016_j_jmst_2024_04_075 crossref_primary_10_1007_s10704_024_00783_6 crossref_primary_10_1016_j_jallcom_2024_174347 crossref_primary_10_31857_S0015323023601034 crossref_primary_10_1016_j_jmrt_2025_02_189 crossref_primary_10_1007_s10853_023_09305_6 crossref_primary_10_1016_j_ijfatigue_2024_108157 crossref_primary_10_1016_j_msea_2023_145693 crossref_primary_10_1016_j_wear_2023_205156 crossref_primary_10_1007_s00170_024_14365_2 crossref_primary_10_1016_j_ijplas_2024_104205 |
Cites_doi | 10.1016/j.ijfatigue.2018.11.017 10.1016/j.ijfatigue.2021.106142 10.1016/j.msea.2014.06.114 10.1016/j.actamat.2021.116787 10.3390/lubricants10040053 10.1016/j.jallcom.2019.152017 10.1017/S1431927611000055 10.1016/j.msea.2009.03.020 10.1016/j.ijfatigue.2021.106204 10.1016/j.jnucmat.2019.01.034 10.1016/j.actamat.2020.06.047 10.1016/j.surfcoat.2005.03.036 10.1016/j.ijfatigue.2020.106081 10.1016/j.apsusc.2019.01.295 10.1016/j.ijfatigue.2018.04.016 10.1016/j.apsadv.2021.100071 10.1016/j.triboint.2020.106537 10.1016/j.surfcoat.2017.08.067 10.1016/j.matchar.2019.109952 10.1016/j.actamat.2019.02.008 10.1016/j.triboint.2019.106004 10.1016/j.ijfatigue.2019.105340 10.1016/j.ijfatigue.2011.12.014 10.1016/j.msea.2018.10.098 10.1016/j.ijfatigue.2020.105868 10.1080/02670836.2019.1650445 10.1016/j.apsusc.2019.05.269 10.3390/ma13214711 10.1016/j.surfcoat.2018.06.092 10.1016/j.ijfatigue.2022.106732 10.1016/j.triboint.2019.106095 10.1016/j.corsci.2020.109027 10.1016/S1003-6326(08)60312-X 10.1016/j.ijfatigue.2017.06.013 10.1016/j.ijfatigue.2015.12.013 10.1016/j.triboint.2019.106156 10.1177/1687814020957175 10.1073/pnas.1518200112 10.1016/j.matdes.2017.01.006 10.1016/j.jallcom.2018.09.343 10.1177/1056789517693412 10.1016/j.surfcoat.2019.04.080 10.1016/j.apsusc.2014.06.006 10.1016/j.ijfatigue.2019.105371 10.1179/143307511X12858956848038 10.1021/nl201083t 10.1016/j.ijfatigue.2019.03.042 10.1016/j.ijhydene.2014.12.129 10.1016/j.actamat.2018.12.018 10.1016/j.wear.2016.12.004 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijfatigue.2023.107567 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
ExternalDocumentID | 10_1016_j_ijfatigue_2023_107567 S0142112323000683 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c381t-df388f742ce6267d29bef5eef9788741a4c9b01e1b7fc866e35e2d20686353503 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Tue Jul 01 01:54:45 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Fri Feb 23 02:38:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ultrasonic surface rolling process Fretting fatigue Compressive residual stress Surface deformation severity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-df388f742ce6267d29bef5eef9788741a4c9b01e1b7fc866e35e2d20686353503 |
ORCID | 0000-0002-7437-2021 |
ParticipantIDs | crossref_primary_10_1016_j_ijfatigue_2023_107567 crossref_citationtrail_10_1016_j_ijfatigue_2023_107567 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2023_107567 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | International journal of fatigue |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gussev, Leonard (b0175) 2019; 517 Wright, Nowell, Field (b0190) 2011; 17 Zhang, Liu (b0070) 2009; 19 Du, Liu, Ye, Zhang, Li, Zhou (b0050) 2014; 313 Li, Sun, Guan, Jia, Gong, Zhang (b0250) 2021; 146 Liu, Liu, Zhang, He, Xu, Ao (b0160) 2019; 370 Ye, Telang, Gill, Suslov, Idell, Zweiacker (b0230) 2014; 613 Yuan, Li (b0125) 2017; 103 Wang, Li, Cui, Liu, Ma, Li (b0185) 2015; 112 Li, Fu, Li, Gai, Li, Zhou (b0100) 2016; 85 Abbasi, Majzoobi, Mendiguren (b0005) 2020; 12 Vantadori, Valeo, Zanichelli (b0015) 2020; 151 Yang, Zhou, Gai, Zhang, Fu, Chen (b0020) 2017; 372–373 Croccolo, De Agostinis, Fini, Olmi, Robusto, Scapecchi (b0040) 2022; 10 Ma, Liu, Zhang, He, Liu, Liu (b0045) 2020; 145 Cai, Li, Yin, Zhu, Zhou (b0010) 2020; 144 Majzoobi, Abbasi (b0215) 2017; 328 Yang, Zhou, Niu, Zheng, Wang, Fu (b0180) 2018; 349 Liu, Liu, Zhang, Ao, Xu, Liu (b0095) 2019; 125 Lei, Wang, Xu, Lu (b0145) 2019; 168 Vadiraj, Kamaraj (b0060) 2006; 200 Zou, Zeng, Wang, Lu, Li, Zhang (b0025) 2020; 132 Maleki, Unal, Reza Kashyzadeh, Bagherifard, Guagliano (b0150) 2021; 4 Ao, Liu, Xu, Zhang, Liu (b0135) 2019; 742 Liu, Li (b0140) 2019; 773 Panin, Kazachenok, Kozelskaya, Balokhonov, Romanova, Perevalova (b0130) 2017; 117 Komoda, Kubota, Furtado (b0165) 2015; 40 Vázquez, Navarro, Domínguez (b0210) 2012; 40 Ao, Liu, Zhang, Zhang, Wu (b0170) 2022; 158 Zhao, Liu, Yang, Zhang, Ma, Zhang (b0115) 2021; 148 Long, Pan, Tao, Dao, Suresh, Lu (b0235) 2019; 166 Tang, Liu, Zhang, Zhang (b0255) 2011; 15 Yang, Zhang, Cui, Wen (b0080) 2020; 13 Ao, Liu, Zhang, Fan, Shi, Liu (b0065) 2019; 811 Chowdhury, Kowser, Zobaer Shah, Das (b0030) 2018; 27 Wang, Luo, Bu, Su, Cai, Zhang (b0225) 2020; 177 Du, Liu, Zhang, Tang (b0075) 2019; 488 Zhao, Liu, Zhang, Zhou, Zhang, Zhang (b0110) 2019; 121 Yang, Huang, Zhong, Wang, Chen, Chen (b0220) 2020; 141 Lu, Liu, Lin, Zhang, Shukla, Zhang (b0035) 2019; 35 Zhuang, Li, Li, Fan, He, Cai (b0055) 2019; 478 Martín, Vázquez, Navarro, Domínguez (b0085) 2020; 142 Rui, Shang, Su, Qiu, Niu, Shi (b0200) 2018; 113 Sun, Keller, Zhu, Guo, Kashaev, Klusemann (b0195) 2021; 145 Liu, Jiang, Chen, Wang, Ji (b0155) 2019; 158 Wei, Zhang, Tangpatjaroen, Tarnsangpradit, Usta, Eriten (b0205) 2021; 209 Liu, Liu, Zhang, Liu, Ma, Xu (b0105) 2020; 131 Peters, Kumpfert, Ward, Leyens (b0120) 2003 Kumar, Li, Haque, Gao (b0240) 2011; 11 Majzoobi, Azadikhah, Nemati (b0090) 2009; 516 Pan, Long, Jing, Tao, Lu (b0245) 2020; 196 Gussev (10.1016/j.ijfatigue.2023.107567_b0175) 2019; 517 Ao (10.1016/j.ijfatigue.2023.107567_b0065) 2019; 811 Liu (10.1016/j.ijfatigue.2023.107567_b0140) 2019; 773 Majzoobi (10.1016/j.ijfatigue.2023.107567_b0090) 2009; 516 Wei (10.1016/j.ijfatigue.2023.107567_b0205) 2021; 209 Tang (10.1016/j.ijfatigue.2023.107567_b0255) 2011; 15 Liu (10.1016/j.ijfatigue.2023.107567_b0105) 2020; 131 Zhang (10.1016/j.ijfatigue.2023.107567_b0070) 2009; 19 Yuan (10.1016/j.ijfatigue.2023.107567_b0125) 2017; 103 Ao (10.1016/j.ijfatigue.2023.107567_b0170) 2022; 158 Komoda (10.1016/j.ijfatigue.2023.107567_b0165) 2015; 40 Zhao (10.1016/j.ijfatigue.2023.107567_b0115) 2021; 148 Liu (10.1016/j.ijfatigue.2023.107567_b0160) 2019; 370 Wright (10.1016/j.ijfatigue.2023.107567_b0190) 2011; 17 Wang (10.1016/j.ijfatigue.2023.107567_b0185) 2015; 112 Majzoobi (10.1016/j.ijfatigue.2023.107567_b0215) 2017; 328 Panin (10.1016/j.ijfatigue.2023.107567_b0130) 2017; 117 Liu (10.1016/j.ijfatigue.2023.107567_b0095) 2019; 125 Rui (10.1016/j.ijfatigue.2023.107567_b0200) 2018; 113 Abbasi (10.1016/j.ijfatigue.2023.107567_b0005) 2020; 12 Martín (10.1016/j.ijfatigue.2023.107567_b0085) 2020; 142 Lei (10.1016/j.ijfatigue.2023.107567_b0145) 2019; 168 Chowdhury (10.1016/j.ijfatigue.2023.107567_b0030) 2018; 27 Ao (10.1016/j.ijfatigue.2023.107567_b0135) 2019; 742 Long (10.1016/j.ijfatigue.2023.107567_b0235) 2019; 166 Liu (10.1016/j.ijfatigue.2023.107567_b0155) 2019; 158 Vadiraj (10.1016/j.ijfatigue.2023.107567_b0060) 2006; 200 Vázquez (10.1016/j.ijfatigue.2023.107567_b0210) 2012; 40 Wang (10.1016/j.ijfatigue.2023.107567_b0225) 2020; 177 Croccolo (10.1016/j.ijfatigue.2023.107567_b0040) 2022; 10 Zou (10.1016/j.ijfatigue.2023.107567_b0025) 2020; 132 Li (10.1016/j.ijfatigue.2023.107567_b0100) 2016; 85 Lu (10.1016/j.ijfatigue.2023.107567_b0035) 2019; 35 Kumar (10.1016/j.ijfatigue.2023.107567_b0240) 2011; 11 Sun (10.1016/j.ijfatigue.2023.107567_b0195) 2021; 145 Li (10.1016/j.ijfatigue.2023.107567_b0250) 2021; 146 Du (10.1016/j.ijfatigue.2023.107567_b0075) 2019; 488 Yang (10.1016/j.ijfatigue.2023.107567_b0020) 2017; 372–373 Yang (10.1016/j.ijfatigue.2023.107567_b0180) 2018; 349 Du (10.1016/j.ijfatigue.2023.107567_b0050) 2014; 313 Zhuang (10.1016/j.ijfatigue.2023.107567_b0055) 2019; 478 Yang (10.1016/j.ijfatigue.2023.107567_b0080) 2020; 13 Zhao (10.1016/j.ijfatigue.2023.107567_b0110) 2019; 121 Maleki (10.1016/j.ijfatigue.2023.107567_b0150) 2021; 4 Pan (10.1016/j.ijfatigue.2023.107567_b0245) 2020; 196 Cai (10.1016/j.ijfatigue.2023.107567_b0010) 2020; 144 Vantadori (10.1016/j.ijfatigue.2023.107567_b0015) 2020; 151 Peters (10.1016/j.ijfatigue.2023.107567_b0120) 2003 Yang (10.1016/j.ijfatigue.2023.107567_b0220) 2020; 141 Ye (10.1016/j.ijfatigue.2023.107567_b0230) 2014; 613 Ma (10.1016/j.ijfatigue.2023.107567_b0045) 2020; 145 |
References_xml | – volume: 40 start-page: 143 year: 2012 end-page: 153 ident: b0210 article-title: Experimental results in fretting fatigue with shot and laser peened Al 7075–T651 specimens publication-title: Int J Fatigue – volume: 158 year: 2022 ident: b0170 article-title: Surface rolling deformed severity-dependent fatigue mechanism of Ti-6Al-4V alloy publication-title: Int J Fatigue – volume: 4 year: 2021 ident: b0150 article-title: A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens publication-title: Appl Surf Sci Adv – volume: 17 start-page: 316 year: 2011 end-page: 329 ident: b0190 article-title: A review of strain analysis using electron backscatter diffraction publication-title: Microsc Microanal – volume: 35 start-page: 1781 year: 2019 end-page: 1788 ident: b0035 article-title: Improving the fretting performance of aero-engine tenon joint materials using surface strengthening publication-title: Mater Sci Technol – volume: 313 start-page: 462 year: 2014 end-page: 469 ident: b0050 article-title: Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy publication-title: Appl Surf Sci – volume: 488 start-page: 269 year: 2019 end-page: 276 ident: b0075 article-title: Fretting fatigue behaviors and surface integrity of Ag-TiN soft solid lubricating films on titanium alloy publication-title: Appl Surf Sci – volume: 113 start-page: 264 year: 2018 end-page: 276 ident: b0200 article-title: EBSD analysis of cyclic load effect on final misorientation distribution of post-mortem low alloy steel: A new method for fatigue crack tip driving force prediction publication-title: Int J Fatigue – volume: 27 start-page: 453 year: 2018 end-page: 487 ident: b0030 article-title: Characteristics and damage mechanisms of bending fretting fatigue of materials publication-title: Int J Damage Mech – volume: 773 start-page: 860 year: 2019 end-page: 871 ident: b0140 article-title: Structure response characteristics and surface nanocrystallization mechanism of alpha phase in Ti-6Al-4V subjected to high energy shot peening publication-title: J Alloy Compd – volume: 372–373 start-page: 81 year: 2017 end-page: 90 ident: b0020 article-title: Investigation on the fretting fatigue behaviors of Ti-6Al-4V dovetail joint specimens treated with shot-peening publication-title: Wear – volume: 85 start-page: 65 year: 2016 end-page: 69 ident: b0100 article-title: Fretting fatigue characteristic of Ti–6Al–4V strengthened by wet peening publication-title: Int J Fatigue – volume: 166 start-page: 56 year: 2019 end-page: 66 ident: b0235 article-title: Improved fatigue resistance of gradient nanograined Cu publication-title: Acta Mater – start-page: 333 year: 2003 end-page: 350 ident: b0120 article-title: Titanium alloys for aerospace applications. Titanium and titanium Alloys – volume: 144 year: 2020 ident: b0010 article-title: A review of fretting study on nuclear power equipment publication-title: Tribol Int – volume: 177 year: 2020 ident: b0225 article-title: Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel publication-title: Corros Sci – volume: 196 start-page: 252 year: 2020 end-page: 260 ident: b0245 article-title: Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu publication-title: Acta Mater – volume: 349 start-page: 1098 year: 2018 end-page: 1106 ident: b0180 article-title: Effect of different surface asperities and surface hardness induced by shot-peening on the fretting wear behavior of Ti-6Al-4V publication-title: Surf Coat Technol – volume: 151 year: 2020 ident: b0015 article-title: Fretting fatigue and shot peening: a multiaxial fatigue criterion including residual stress relaxation publication-title: Tribol Int – volume: 142 year: 2020 ident: b0085 article-title: Effect of shot peening residual stresses and surface roughness on fretting fatigue strength of Al 7075–T651 publication-title: Tribol Int – volume: 125 start-page: 249 year: 2019 end-page: 260 ident: b0095 article-title: Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process publication-title: Int J Fatigue – volume: 40 start-page: 16868 year: 2015 end-page: 16877 ident: b0165 article-title: Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen publication-title: Int J Hydrogen Energy – volume: 11 start-page: 2510 year: 2011 end-page: 2516 ident: b0240 article-title: Is stress concentration relevant for nanocrystalline metals? publication-title: Nano Lett – volume: 811 year: 2019 ident: b0065 article-title: The effect of residual stress and gradient nanostructure on the fretting fatigue behavior of plasma electrolytic oxidation coated Ti–6Al–4V alloy publication-title: J Alloy Compd – volume: 117 start-page: 371 year: 2017 end-page: 381 ident: b0130 article-title: The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension publication-title: Mater Des – volume: 112 start-page: 13502 year: 2015 end-page: 13507 ident: b0185 article-title: Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals publication-title: Proc Natl Acad Sci USA – volume: 19 start-page: 557 year: 2009 end-page: 562 ident: b0070 article-title: Effect of TiN/Ti multilayer on fretting fatigue resistance of Ti-811 alloy at elevated temperature publication-title: Trans Nonferrous Met Soc Chin – volume: 742 start-page: 820 year: 2019 end-page: 834 ident: b0135 article-title: Gradient nanostructure evolution and phase transformation of α phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process publication-title: Mater Sci Eng A – volume: 168 start-page: 133 year: 2019 end-page: 142 ident: b0145 article-title: Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure publication-title: Acta Mater – volume: 103 start-page: 318 year: 2017 end-page: 326 ident: b0125 article-title: An engineering high cycle fatigue strength prediction model for low plasticity burnished samples publication-title: Int J Fatigue – volume: 158 year: 2019 ident: b0155 article-title: Surface layer microstructures and wear properties modifications of Mg-8Gd-3Y alloy treated by shot peening publication-title: Mater Charact – volume: 370 start-page: 24 year: 2019 end-page: 34 ident: b0160 article-title: On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy publication-title: Surf Coat Technol – volume: 12 year: 2020 ident: b0005 article-title: A review of the effects of cyclic contact loading on fretting fatigue behavior publication-title: Adv Mech Eng – volume: 517 start-page: 45 year: 2019 end-page: 56 ident: b0175 article-title: In situ SEM-EBSD analysis of plastic deformation mechanisms in neutron-irradiated austenitic steel publication-title: J Nucl Mater – volume: 148 year: 2021 ident: b0115 article-title: Improving plain and fretting fatigue resistance of A100 steel using ultrasonic nanocrystal surface modification publication-title: Int J Fatigue – volume: 145 year: 2021 ident: b0195 article-title: Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy publication-title: Int J Fatigue – volume: 200 start-page: 4538 year: 2006 end-page: 4542 ident: b0060 article-title: Characterization of fretting fatigue damage of PVD TiN coated biomedical titanium alloys publication-title: Surf Coat Technol – volume: 613 start-page: 274 year: 2014 end-page: 288 ident: b0230 article-title: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility publication-title: Mater Sci Eng A – volume: 121 start-page: 30 year: 2019 end-page: 38 ident: b0110 article-title: Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process publication-title: Int J Fatigue – volume: 209 year: 2021 ident: b0205 article-title: Wear-induced microstructural evolution of ultra-fine grained (UFGs) aluminum publication-title: Acta Mater – volume: 13 start-page: 4711 year: 2020 ident: b0080 article-title: Effect of laser shock peening on fretting fatigue life of TC11 titanium alloy publication-title: Materials – volume: 131 year: 2020 ident: b0105 article-title: An investigation of fretting fatigue behavior and mechanism in 17–4PH stainless steel with gradient structure produced by an ultrasonic surface rolling process publication-title: Int J Fatigue – volume: 15 year: 2011 ident: b0255 article-title: Effect of Ti/Mo and Cr/Mo metallic multilayer films on fretting fatigue resistance of Ti–6Al–4V alloy publication-title: Mater Res Innov – volume: 516 start-page: 235 year: 2009 end-page: 247 ident: b0090 article-title: The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6 publication-title: Mater Sci Eng A – volume: 146 year: 2021 ident: b0250 article-title: Elucidating the effect of gradient structure on strengthening mechanisms and fatigue behavior of pure titanium publication-title: Int J Fatigue – volume: 478 start-page: 661 year: 2019 end-page: 679 ident: b0055 article-title: Probing fretting performance of DLC and MoS publication-title: Appl Surf Sci – volume: 145 year: 2020 ident: b0045 article-title: The fretting fatigue performance of Ti–6Al–4V alloy influenced by microstructure of CuNiIn coating prepared via thermal spraying publication-title: Tribol Int – volume: 10 start-page: 53 year: 2022 ident: b0040 article-title: Fretting fatigue in mechanical joints: a literature review publication-title: Lubricants – volume: 328 start-page: 292 year: 2017 end-page: 303 ident: b0215 article-title: On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading publication-title: Surf Coat Technol – volume: 132 year: 2020 ident: b0025 article-title: Effect of plastic deformation and fretting wear on the fretting fatigue of scaled railway axles publication-title: Int J Fatigue – volume: 141 year: 2020 ident: b0220 article-title: Enhanced extra-long life fatigue resistance of a bimodal titanium alloy by laser shock peening publication-title: Int J Fatigue – volume: 121 start-page: 30 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0110 article-title: Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.11.017 – volume: 146 year: 2021 ident: 10.1016/j.ijfatigue.2023.107567_b0250 article-title: Elucidating the effect of gradient structure on strengthening mechanisms and fatigue behavior of pure titanium publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2021.106142 – volume: 613 start-page: 274 year: 2014 ident: 10.1016/j.ijfatigue.2023.107567_b0230 article-title: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2014.06.114 – volume: 209 year: 2021 ident: 10.1016/j.ijfatigue.2023.107567_b0205 article-title: Wear-induced microstructural evolution of ultra-fine grained (UFGs) aluminum publication-title: Acta Mater doi: 10.1016/j.actamat.2021.116787 – volume: 10 start-page: 53 year: 2022 ident: 10.1016/j.ijfatigue.2023.107567_b0040 article-title: Fretting fatigue in mechanical joints: a literature review publication-title: Lubricants doi: 10.3390/lubricants10040053 – volume: 811 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0065 article-title: The effect of residual stress and gradient nanostructure on the fretting fatigue behavior of plasma electrolytic oxidation coated Ti–6Al–4V alloy publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2019.152017 – volume: 17 start-page: 316 year: 2011 ident: 10.1016/j.ijfatigue.2023.107567_b0190 article-title: A review of strain analysis using electron backscatter diffraction publication-title: Microsc Microanal doi: 10.1017/S1431927611000055 – volume: 516 start-page: 235 year: 2009 ident: 10.1016/j.ijfatigue.2023.107567_b0090 article-title: The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2009.03.020 – volume: 148 year: 2021 ident: 10.1016/j.ijfatigue.2023.107567_b0115 article-title: Improving plain and fretting fatigue resistance of A100 steel using ultrasonic nanocrystal surface modification publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2021.106204 – volume: 517 start-page: 45 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0175 article-title: In situ SEM-EBSD analysis of plastic deformation mechanisms in neutron-irradiated austenitic steel publication-title: J Nucl Mater doi: 10.1016/j.jnucmat.2019.01.034 – volume: 196 start-page: 252 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0245 article-title: Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu publication-title: Acta Mater doi: 10.1016/j.actamat.2020.06.047 – volume: 200 start-page: 4538 year: 2006 ident: 10.1016/j.ijfatigue.2023.107567_b0060 article-title: Characterization of fretting fatigue damage of PVD TiN coated biomedical titanium alloys publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2005.03.036 – volume: 145 year: 2021 ident: 10.1016/j.ijfatigue.2023.107567_b0195 article-title: Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.106081 – volume: 478 start-page: 661 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0055 article-title: Probing fretting performance of DLC and MoS2 films under fluid lubrication publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.01.295 – volume: 113 start-page: 264 year: 2018 ident: 10.1016/j.ijfatigue.2023.107567_b0200 article-title: EBSD analysis of cyclic load effect on final misorientation distribution of post-mortem low alloy steel: A new method for fatigue crack tip driving force prediction publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.04.016 – volume: 4 year: 2021 ident: 10.1016/j.ijfatigue.2023.107567_b0150 article-title: A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens publication-title: Appl Surf Sci Adv doi: 10.1016/j.apsadv.2021.100071 – volume: 151 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0015 article-title: Fretting fatigue and shot peening: a multiaxial fatigue criterion including residual stress relaxation publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106537 – volume: 328 start-page: 292 year: 2017 ident: 10.1016/j.ijfatigue.2023.107567_b0215 article-title: On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2017.08.067 – volume: 158 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0155 article-title: Surface layer microstructures and wear properties modifications of Mg-8Gd-3Y alloy treated by shot peening publication-title: Mater Charact doi: 10.1016/j.matchar.2019.109952 – volume: 168 start-page: 133 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0145 article-title: Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure publication-title: Acta Mater doi: 10.1016/j.actamat.2019.02.008 – volume: 142 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0085 article-title: Effect of shot peening residual stresses and surface roughness on fretting fatigue strength of Al 7075–T651 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.106004 – volume: 131 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0105 article-title: An investigation of fretting fatigue behavior and mechanism in 17–4PH stainless steel with gradient structure produced by an ultrasonic surface rolling process publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.105340 – volume: 40 start-page: 143 year: 2012 ident: 10.1016/j.ijfatigue.2023.107567_b0210 article-title: Experimental results in fretting fatigue with shot and laser peened Al 7075–T651 specimens publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2011.12.014 – volume: 742 start-page: 820 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0135 article-title: Gradient nanostructure evolution and phase transformation of α phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.10.098 – volume: 141 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0220 article-title: Enhanced extra-long life fatigue resistance of a bimodal titanium alloy by laser shock peening publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105868 – volume: 35 start-page: 1781 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0035 article-title: Improving the fretting performance of aero-engine tenon joint materials using surface strengthening publication-title: Mater Sci Technol doi: 10.1080/02670836.2019.1650445 – volume: 488 start-page: 269 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0075 article-title: Fretting fatigue behaviors and surface integrity of Ag-TiN soft solid lubricating films on titanium alloy publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.05.269 – volume: 13 start-page: 4711 issue: 21 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0080 article-title: Effect of laser shock peening on fretting fatigue life of TC11 titanium alloy publication-title: Materials doi: 10.3390/ma13214711 – volume: 349 start-page: 1098 year: 2018 ident: 10.1016/j.ijfatigue.2023.107567_b0180 article-title: Effect of different surface asperities and surface hardness induced by shot-peening on the fretting wear behavior of Ti-6Al-4V publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2018.06.092 – volume: 158 year: 2022 ident: 10.1016/j.ijfatigue.2023.107567_b0170 article-title: Surface rolling deformed severity-dependent fatigue mechanism of Ti-6Al-4V alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2022.106732 – volume: 144 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0010 article-title: A review of fretting study on nuclear power equipment publication-title: Tribol Int doi: 10.1016/j.triboint.2019.106095 – volume: 177 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0225 article-title: Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel publication-title: Corros Sci doi: 10.1016/j.corsci.2020.109027 – volume: 19 start-page: 557 year: 2009 ident: 10.1016/j.ijfatigue.2023.107567_b0070 article-title: Effect of TiN/Ti multilayer on fretting fatigue resistance of Ti-811 alloy at elevated temperature publication-title: Trans Nonferrous Met Soc Chin doi: 10.1016/S1003-6326(08)60312-X – volume: 103 start-page: 318 year: 2017 ident: 10.1016/j.ijfatigue.2023.107567_b0125 article-title: An engineering high cycle fatigue strength prediction model for low plasticity burnished samples publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.06.013 – volume: 85 start-page: 65 year: 2016 ident: 10.1016/j.ijfatigue.2023.107567_b0100 article-title: Fretting fatigue characteristic of Ti–6Al–4V strengthened by wet peening publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2015.12.013 – start-page: 333 year: 2003 ident: 10.1016/j.ijfatigue.2023.107567_b0120 – volume: 145 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0045 article-title: The fretting fatigue performance of Ti–6Al–4V alloy influenced by microstructure of CuNiIn coating prepared via thermal spraying publication-title: Tribol Int doi: 10.1016/j.triboint.2019.106156 – volume: 12 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0005 article-title: A review of the effects of cyclic contact loading on fretting fatigue behavior publication-title: Adv Mech Eng doi: 10.1177/1687814020957175 – volume: 112 start-page: 13502 year: 2015 ident: 10.1016/j.ijfatigue.2023.107567_b0185 article-title: Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1518200112 – volume: 117 start-page: 371 year: 2017 ident: 10.1016/j.ijfatigue.2023.107567_b0130 article-title: The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension publication-title: Mater Des doi: 10.1016/j.matdes.2017.01.006 – volume: 773 start-page: 860 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0140 article-title: Structure response characteristics and surface nanocrystallization mechanism of alpha phase in Ti-6Al-4V subjected to high energy shot peening publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2018.09.343 – volume: 27 start-page: 453 year: 2018 ident: 10.1016/j.ijfatigue.2023.107567_b0030 article-title: Characteristics and damage mechanisms of bending fretting fatigue of materials publication-title: Int J Damage Mech doi: 10.1177/1056789517693412 – volume: 370 start-page: 24 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0160 article-title: On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.04.080 – volume: 313 start-page: 462 year: 2014 ident: 10.1016/j.ijfatigue.2023.107567_b0050 article-title: Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2014.06.006 – volume: 132 year: 2020 ident: 10.1016/j.ijfatigue.2023.107567_b0025 article-title: Effect of plastic deformation and fretting wear on the fretting fatigue of scaled railway axles publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.105371 – volume: 15 year: 2011 ident: 10.1016/j.ijfatigue.2023.107567_b0255 article-title: Effect of Ti/Mo and Cr/Mo metallic multilayer films on fretting fatigue resistance of Ti–6Al–4V alloy publication-title: Mater Res Innov doi: 10.1179/143307511X12858956848038 – volume: 11 start-page: 2510 year: 2011 ident: 10.1016/j.ijfatigue.2023.107567_b0240 article-title: Is stress concentration relevant for nanocrystalline metals? publication-title: Nano Lett doi: 10.1021/nl201083t – volume: 125 start-page: 249 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0095 article-title: Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.03.042 – volume: 40 start-page: 16868 year: 2015 ident: 10.1016/j.ijfatigue.2023.107567_b0165 article-title: Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.12.129 – volume: 166 start-page: 56 year: 2019 ident: 10.1016/j.ijfatigue.2023.107567_b0235 article-title: Improved fatigue resistance of gradient nanograined Cu publication-title: Acta Mater doi: 10.1016/j.actamat.2018.12.018 – volume: 372–373 start-page: 81 year: 2017 ident: 10.1016/j.ijfatigue.2023.107567_b0020 article-title: Investigation on the fretting fatigue behaviors of Ti-6Al-4V dovetail joint specimens treated with shot-peening publication-title: Wear doi: 10.1016/j.wear.2016.12.004 |
SSID | ssj0009075 |
Score | 2.5587835 |
Snippet | •Surface rolling deformed severity-dependent FF mechanism of titanium alloy is revealed.•The microstructural evolution of the samples with different surface... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107567 |
SubjectTerms | Compressive residual stress Fretting fatigue Surface deformation severity Ultrasonic surface rolling process |
Title | Improved fretting fatigue mechanism of surface-strengthened Ti-6Al-4V alloy induced by ultrasonic surface rolling process |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2023.107567 |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEV5VB5YTZM4j4atqqgKiE4t6hY58RkF9aU-hi78du7qpLQSUgfGWD4lOTv3cL77jrEHrePMOK7BFTCYoESRFkpLJTyAUGMEG8YR1Q6_d8NO338dBIMKa5W1MASrLGy_telra12M1Att1qd5XidYEmYvGBFIsrkNYvz0_Yh2-eP3L8wjtmS7NFnQ7B2MV_5l8P3piIS6iONoFKwbzv_hoba8TvuUnRThIm_aJzpjFRifs-MtEsELtrLnAqC5IdAtjvHidnwEVNebz0d8Yvh8OTMqA0HVIeNPIj1AkV4uwuZQ-B-cfsCvOGbouNaapyu-HC5mak7MuaUon1kGbz611QWXrN9-7rU6omioIDJ0zAuhjWw0DCbDGWAeE2kvTsEEACYmTKHvKj-LU8cFN41M1ghDkAF42qMqEhnIwJFX7GA8GcM148qTBiTmWvj9-xIllBNCYJSvXCqdDaosLJWYZAXbODW9GCYlrOwr2Wg_Ie0nVvtV5mwEp5ZwY7_IU7lKyc7eSdAt7BO--Y_wLTuiKwuAvGMHi9kS7jFIWaS19S6sscPmy1un-wODNelC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BOQAHtLwEC7vrA1erSRwnDbeqApUFeiqIW-TEYxTUlqqPQ__9ztQJDwmJw16dfEo0tuaRfPMNwIW1WemC0NEOOCpQ0tRKY5WREWJiKYNNspR7h-8HSf8h_vuknzag1_TCMK2y9v3ep6-9db3Srq3ZnlZVm2lJVL1QRqDY53bUJmyxOpVuwVb35rY_eNfe9Xq7fL9kwCeaV_XiyAT8lYQHidNqqtcz578IUh8Cz_UP2KszRtH1L7UPGzg5gN0POoKHsPKfBtAKx7xbWhP148QYubW3mo_FqxPz5cyZEiU3iEyeWfeAIMNKJt2RjB8F_4NfCSrSabutKFZiOVrMzJzFcxuomHkRbzH1DQZH8HB9Nez1ZT1TQZYUmxfSOtXpOKqHS6RSJrVRVqDTiC5jWmEcmrjMiiDEsEhd2UkSVBojG3EjidJKB-oYWpPXCZ6AMJFyqKjcIhcQK0KYIEHtTGxC7p7Vp5A0RszLWnCc516M8oZZ9pK_WT9n6-fe-qcQvAGnXnPje8hls0v5p-OTU2T4Dvzzf8B_YLs_vL_L724Gt2eww1c8H_IcWovZEn9RzrIoftdn8h-Bdevz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+fretting+fatigue+mechanism+of+surface-strengthened+Ti-6Al-4V+alloy+induced+by+ultrasonic+surface+rolling+process&rft.jtitle=International+journal+of+fatigue&rft.au=Ao%2C+Ni&rft.au=Liu%2C+Daoxin&rft.au=Zhang%2C+Xiaohua&rft.au=Wu%2C+Shengchuan&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=170&rft_id=info:doi/10.1016%2Fj.ijfatigue.2023.107567&rft.externalDocID=S0142112323000683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |