Nuclear compensatory evolution driven by mito-nuclear incompatibilities
Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve m...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 121; no. 42; p. e2411672121 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process. |
---|---|
AbstractList | Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process. Understanding how nuclear and mitochondrial genomes coevolve is critical for elucidating organismal resilience and adaptation. This study explores how mismatches between these interacting genomes impact substitutions, shedding light on nuclear compensation—a process where deleterious mitochondrial mutations induce compensatory changes in corresponding nuclear genes. Using a speciation model with selection for mito-nuclear compatibility, we show that strong selection and increased mismatches facilitate nuclear compensation, as expected. Interestingly, high mitochondrial mutation rates can reduce the need for compensation, effect that may be overestimated by model backmutations, whereas substitutions in initially compatible nuclear genes increase. Furthermore, the presence of incompatibilities accelerates species radiation. These findings contribute to understanding population resilience despite genetic incompatibilities while linking mito-nuclear coevolution, substitution rates, and speciation. Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process. Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process.Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process. |
Author | de Aguiar, Marcus A. M. Princepe, Debora |
Author_xml | – sequence: 1 givenname: Debora orcidid: 0000-0002-1158-1993 surname: Princepe fullname: Princepe, Debora organization: Departamento de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Campinas 13083859, Brasil – sequence: 2 givenname: Marcus A. M. orcidid: 0000-0003-1379-7568 surname: de Aguiar fullname: de Aguiar, Marcus A. M. organization: Departamento de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Campinas 13083859, Brasil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39392668$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFr3DAQhUXZ0t2kPfdWDLn04mRGkm35VMKSJoUlvSRnIVtyo8WWtpK8sP8-NtmkaSCnGZjvPWbmnZCF884Q8hXhHKFiFzun4jnliGVFkeIHskKoMS95DQuyAqBVLjjlS3IS4xYA6kLAJ7JkNatpWYoVub4d296okLV-2BkXVfLhkJm978dkvct0sHvjsuaQDTb53B1p62ZeJdvY3iZr4mfysVN9NF-O9ZTc_7y6W9_km9_Xv9aXm7xlAlOuDWO6hsIIoYCC1rRBWk1Np6tGYFEpBkyLruCCCs01YtMZDi1WSHWDwE7Jjyff3dgMRrfGpaB6uQt2UOEgvbLy_4mzD_KP30tEXnNazw7fjw7B_x1NTHKwsTV9r5zxY5QMsSiACV5O6NkbdOvH4Kb7ZkpAiVDwifr2eqWXXZ6fPAEXT0AbfIzBdC8IgpxjlHOM8l-Mk6J4o2htUnMg0022f1f3CGMBonI |
CitedBy_id | crossref_primary_10_1093_molbev_msaf039 crossref_primary_10_1111_mec_17611 |
Cites_doi | 10.1146/annurev.ecolsys.32.081501.114109 10.1038/s41559-022-01901-0 10.1093/molbev/msac233 10.1186/1471-2148-8-62 10.1093/icb/icz019 10.1111/mec.15985 10.1093/molbev/msw185 10.1093/gbe/evt129 10.1093/oso/9780198818250.003.0003 10.1086/725805 10.1073/pnas.1910141117 10.1088/0305-4470/24/17/005 10.1016/j.tree.2008.05.011 10.1002/ece3.6640 10.1038/nature08168 10.1093/gbe/evx010 10.1038/s41559-018-0606-3 10.24272/j.issn.2095-8137.2021.299 10.1093/molbev/msr211 10.1038/nrg2396 10.1038/s41437-022-00580-8 10.1093/evlett/qrae043 10.1038/s41559-018-0588-1 10.1093/evolut/qpad200 10.1016/j.gde.2023.102050 10.1093/sysbio/syaa044 10.1111/brv.12493 10.1093/molbev/msab054 10.1093/gbe/evab084 10.1007/s00018-021-04059-3 10.1093/molbev/mss228 10.1111/mec.13475 10.1111/mec.13959 10.1111/evo.13962 10.1111/j.1365-294X.2012.05664.x 10.1016/j.tig.2020.03.002 10.1111/evo.12808 10.1038/hdy.2014.28 10.1371/journal.pone.0017828 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Oct 15, 2024 Copyright © 2024 the Author(s). Published by PNAS. 2024 |
Copyright_xml | – notice: Copyright National Academy of Sciences Oct 15, 2024 – notice: Copyright © 2024 the Author(s). Published by PNAS. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2411672121 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | PMC11494290 39392668 10_1073_pnas_2411672121 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grantid: 301082/2019-7 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grantid: 2018/11187-8 – fundername: ICTP South American Institute for Fundamental Research (ICTP-SAIFR) grantid: 2021/14335-0 – fundername: ; grantid: 2018/11187-8 – fundername: ; grantid: 2021/14335-0 – fundername: ; grantid: 301082/2019-7 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c381t-de33d905e88a020dd2b12720dfd7b8157a303d8f54828d4d11bfe40c1712db103 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:33:00 EDT 2025 Fri Jul 11 15:22:01 EDT 2025 Mon Jun 30 09:48:52 EDT 2025 Sun Apr 13 01:30:45 EDT 2025 Thu Apr 24 23:02:07 EDT 2025 Tue Jul 01 02:37:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Keywords | mitochondrial mutation rate mito-nuclear coevolution nuclear compensation mtDNA introgression |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-de33d905e88a020dd2b12720dfd7b8157a303d8f54828d4d11bfe40c1712db103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Marcus Feldman, Stanford University, Stanford, CA; received June 12, 2024; accepted September 12, 2024 1Present address: Quantitative Life Sciences Section, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste 34151, Italy. |
ORCID | 0000-0002-1158-1993 0000-0003-1379-7568 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11494290 |
PMID | 39392668 |
PQID | 3118061054 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11494290 proquest_miscellaneous_3115503846 proquest_journals_3118061054 pubmed_primary_39392668 crossref_primary_10_1073_pnas_2411672121 crossref_citationtrail_10_1073_pnas_2411672121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-15 |
PublicationDateYYYYMMDD | 2024-10-15 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2024 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 Nelson E. D. (e_1_3_4_41_2) 2024; 2024 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 Costa C. L. N. (e_1_3_4_39_2) 2018; 68 |
References_xml | – ident: e_1_3_4_2_2 doi: 10.1146/annurev.ecolsys.32.081501.114109 – ident: e_1_3_4_32_2 doi: 10.1038/s41559-022-01901-0 – volume: 2024 start-page: 1 year: 2024 ident: e_1_3_4_41_2 article-title: Neutral speciation in realistic populations publication-title: Theor. Ecol. – ident: e_1_3_4_17_2 doi: 10.1093/molbev/msac233 – ident: e_1_3_4_1_2 doi: 10.1186/1471-2148-8-62 – ident: e_1_3_4_28_2 doi: 10.1093/icb/icz019 – ident: e_1_3_4_42_2 – ident: e_1_3_4_34_2 doi: 10.1111/mec.15985 – ident: e_1_3_4_15_2 doi: 10.1093/molbev/msw185 – ident: e_1_3_4_22_2 doi: 10.1093/gbe/evt129 – ident: e_1_3_4_13_2 doi: 10.1093/oso/9780198818250.003.0003 – ident: e_1_3_4_14_2 doi: 10.1086/725805 – ident: e_1_3_4_10_2 doi: 10.1073/pnas.1910141117 – ident: e_1_3_4_40_2 doi: 10.1088/0305-4470/24/17/005 – ident: e_1_3_4_36_2 doi: 10.1016/j.tree.2008.05.011 – ident: e_1_3_4_6_2 doi: 10.1002/ece3.6640 – ident: e_1_3_4_33_2 doi: 10.1038/nature08168 – ident: e_1_3_4_18_2 doi: 10.1093/gbe/evx010 – ident: e_1_3_4_23_2 doi: 10.1038/s41559-018-0606-3 – ident: e_1_3_4_27_2 doi: 10.24272/j.issn.2095-8137.2021.299 – ident: e_1_3_4_21_2 doi: 10.1093/molbev/msr211 – ident: e_1_3_4_4_2 doi: 10.1038/nrg2396 – ident: e_1_3_4_29_2 doi: 10.1038/s41437-022-00580-8 – ident: e_1_3_4_7_2 doi: 10.1093/evlett/qrae043 – ident: e_1_3_4_20_2 doi: 10.1038/s41559-018-0588-1 – ident: e_1_3_4_38_2 doi: 10.1093/evolut/qpad200 – ident: e_1_3_4_5_2 doi: 10.1016/j.gde.2023.102050 – ident: e_1_3_4_31_2 doi: 10.1093/sysbio/syaa044 – volume: 68 start-page: 131 year: 2018 ident: e_1_3_4_39_2 article-title: Signatures of microevolutionary processes in phylogenetic patterns publication-title: Syst. Biol. – ident: e_1_3_4_8_2 doi: 10.1111/brv.12493 – ident: e_1_3_4_16_2 doi: 10.1093/molbev/msab054 – ident: e_1_3_4_37_2 doi: 10.1093/gbe/evab084 – ident: e_1_3_4_30_2 doi: 10.1007/s00018-021-04059-3 – ident: e_1_3_4_19_2 doi: 10.1093/molbev/mss228 – ident: e_1_3_4_35_2 doi: 10.1111/mec.13475 – ident: e_1_3_4_11_2 doi: 10.1111/mec.13959 – ident: e_1_3_4_9_2 doi: 10.1111/evo.13962 – ident: e_1_3_4_25_2 doi: 10.1111/j.1365-294X.2012.05664.x – ident: e_1_3_4_3_2 doi: 10.1016/j.tig.2020.03.002 – ident: e_1_3_4_12_2 doi: 10.1111/evo.12808 – ident: e_1_3_4_24_2 doi: 10.1038/hdy.2014.28 – ident: e_1_3_4_26_2 doi: 10.1371/journal.pone.0017828 |
SSID | ssj0009580 |
Score | 2.4781003 |
Snippet | Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial... Understanding how nuclear and mitochondrial genomes coevolve is critical for elucidating organismal resilience and adaptation. This study explores how... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2411672121 |
SubjectTerms | Animals Biological Evolution Biological Sciences Cell Nucleus - genetics Cell Nucleus - metabolism Coevolution Compatibility Compensation Deoxyribonucleic acid DNA DNA, Mitochondrial - genetics Evolution Evolution, Molecular Evolutionary genetics Fecundity Genes Genomes Interspecific hybridization Mitochondria - genetics Mitochondria - metabolism Mitochondrial DNA Models, Genetic Mutation Mutation Rate Mutation rates Population genetics Radiation Selection, Genetic Speciation |
Title | Nuclear compensatory evolution driven by mito-nuclear incompatibilities |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39392668 https://www.proquest.com/docview/3118061054 https://www.proquest.com/docview/3115503846 https://pubmed.ncbi.nlm.nih.gov/PMC11494290 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB6MvY92nt7Z4sIeOoMyy5I88htEuDBLy0ELfjGXJW6FxQ5wMtr9-d5ZkO0kL215MsCQLdKfL76S73xHyEUMt4ihPqChDcFAKLmmuE0ZDLlmipAIvA_Odp7N4ciW-XUfXXbmjJrtkLYfF73vzSv5HqvAO5IpZsv8g2faj8AJ-g3zhCRKG51_JeIZkxPmqiQsHd9RcmOufds6BWqEpQ4C5gH1LK9sb-RgWGEjdxMW6IEILUOftH1rtwgdm7rxw3GWfWJNQD-hgPutqGc_x6F4vdWfJXIvSg_H3zY0J557C7trUYJOm_UOHUKC1NmmXQ20MJeAMGgtT6rO1pCbZ2aqMYc2yhlEDUmAxuJumy57hBkuD1YarvB7e3xNWfrlo5MhHgOliU4xnhyvbNT0mT0JwG5pAz0mfhDkNHL1Twj_vzHZInrrx2yBlz_PYDaDtIZLL5-SZdSX8sdGLI_JIVy_IkZOMf2YZxT-9JF-tovh9RfFbRfGNovjyl99XFH9PUV6Rq4vzyy8Taito0AKQ2JoqzbkaBZFO0xz8AqVCyfDiXZUqkSmLkhwQjEpLcFvDVAnFmCy1CAqWsFBJFvDX5KC6q_Rb4uel5DrIeQFOu4hkJDVeWWsclso0SjwydEuWFZZeHquc3GZNmEPCM1zurFtuj5y1A5aGWeXhrsdOBpndfnXGkbwQwH8kPPKhbQbjiDdeeaXvNk2fCPmOROyRN0Zk7VxO1h5Jt4TZdkDi9e2W6uZHQ8DOmBgBjgvePfjR9-Sw2zbH5GC92ugTQK9redqo5B9J2Jr5 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+compensatory+evolution+driven+by+mito-nuclear+incompatibilities&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Princepe%2C+Debora&rft.au=de+Aguiar%2C+Marcus+A+M&rft.date=2024-10-15&rft.eissn=1091-6490&rft.volume=121&rft.issue=42&rft.spage=e2411672121&rft_id=info:doi/10.1073%2Fpnas.2411672121&rft_id=info%3Apmid%2F39392668&rft.externalDocID=39392668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |