Nuclear compensatory evolution driven by mito-nuclear incompatibilities

Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve m...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 121; no. 42; p. e2411672121
Main Authors Princepe, Debora, de Aguiar, Marcus A. M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process.
AbstractList Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process.
Understanding how nuclear and mitochondrial genomes coevolve is critical for elucidating organismal resilience and adaptation. This study explores how mismatches between these interacting genomes impact substitutions, shedding light on nuclear compensation—a process where deleterious mitochondrial mutations induce compensatory changes in corresponding nuclear genes. Using a speciation model with selection for mito-nuclear compatibility, we show that strong selection and increased mismatches facilitate nuclear compensation, as expected. Interestingly, high mitochondrial mutation rates can reduce the need for compensation, effect that may be overestimated by model backmutations, whereas substitutions in initially compatible nuclear genes increase. Furthermore, the presence of incompatibilities accelerates species radiation. These findings contribute to understanding population resilience despite genetic incompatibilities while linking mito-nuclear coevolution, substitution rates, and speciation. Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process.
Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process.Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process.
Author de Aguiar, Marcus A. M.
Princepe, Debora
Author_xml – sequence: 1
  givenname: Debora
  orcidid: 0000-0002-1158-1993
  surname: Princepe
  fullname: Princepe, Debora
  organization: Departamento de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Campinas 13083859, Brasil
– sequence: 2
  givenname: Marcus A. M.
  orcidid: 0000-0003-1379-7568
  surname: de Aguiar
  fullname: de Aguiar, Marcus A. M.
  organization: Departamento de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Campinas 13083859, Brasil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39392668$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFr3DAQhUXZ0t2kPfdWDLn04mRGkm35VMKSJoUlvSRnIVtyo8WWtpK8sP8-NtmkaSCnGZjvPWbmnZCF884Q8hXhHKFiFzun4jnliGVFkeIHskKoMS95DQuyAqBVLjjlS3IS4xYA6kLAJ7JkNatpWYoVub4d296okLV-2BkXVfLhkJm978dkvct0sHvjsuaQDTb53B1p62ZeJdvY3iZr4mfysVN9NF-O9ZTc_7y6W9_km9_Xv9aXm7xlAlOuDWO6hsIIoYCC1rRBWk1Np6tGYFEpBkyLruCCCs01YtMZDi1WSHWDwE7Jjyff3dgMRrfGpaB6uQt2UOEgvbLy_4mzD_KP30tEXnNazw7fjw7B_x1NTHKwsTV9r5zxY5QMsSiACV5O6NkbdOvH4Kb7ZkpAiVDwifr2eqWXXZ6fPAEXT0AbfIzBdC8IgpxjlHOM8l-Mk6J4o2htUnMg0022f1f3CGMBonI
CitedBy_id crossref_primary_10_1093_molbev_msaf039
crossref_primary_10_1111_mec_17611
Cites_doi 10.1146/annurev.ecolsys.32.081501.114109
10.1038/s41559-022-01901-0
10.1093/molbev/msac233
10.1186/1471-2148-8-62
10.1093/icb/icz019
10.1111/mec.15985
10.1093/molbev/msw185
10.1093/gbe/evt129
10.1093/oso/9780198818250.003.0003
10.1086/725805
10.1073/pnas.1910141117
10.1088/0305-4470/24/17/005
10.1016/j.tree.2008.05.011
10.1002/ece3.6640
10.1038/nature08168
10.1093/gbe/evx010
10.1038/s41559-018-0606-3
10.24272/j.issn.2095-8137.2021.299
10.1093/molbev/msr211
10.1038/nrg2396
10.1038/s41437-022-00580-8
10.1093/evlett/qrae043
10.1038/s41559-018-0588-1
10.1093/evolut/qpad200
10.1016/j.gde.2023.102050
10.1093/sysbio/syaa044
10.1111/brv.12493
10.1093/molbev/msab054
10.1093/gbe/evab084
10.1007/s00018-021-04059-3
10.1093/molbev/mss228
10.1111/mec.13475
10.1111/mec.13959
10.1111/evo.13962
10.1111/j.1365-294X.2012.05664.x
10.1016/j.tig.2020.03.002
10.1111/evo.12808
10.1038/hdy.2014.28
10.1371/journal.pone.0017828
ContentType Journal Article
Copyright Copyright National Academy of Sciences Oct 15, 2024
Copyright © 2024 the Author(s). Published by PNAS. 2024
Copyright_xml – notice: Copyright National Academy of Sciences Oct 15, 2024
– notice: Copyright © 2024 the Author(s). Published by PNAS. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2411672121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID PMC11494290
39392668
10_1073_pnas_2411672121
Genre Journal Article
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  grantid: 301082/2019-7
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  grantid: 2018/11187-8
– fundername: ICTP South American Institute for Fundamental Research (ICTP-SAIFR)
  grantid: 2021/14335-0
– fundername: ;
  grantid: 2018/11187-8
– fundername: ;
  grantid: 2021/14335-0
– fundername: ;
  grantid: 301082/2019-7
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c381t-de33d905e88a020dd2b12720dfd7b8157a303d8f54828d4d11bfe40c1712db103
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:33:00 EDT 2025
Fri Jul 11 15:22:01 EDT 2025
Mon Jun 30 09:48:52 EDT 2025
Sun Apr 13 01:30:45 EDT 2025
Thu Apr 24 23:02:07 EDT 2025
Tue Jul 01 02:37:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords mitochondrial mutation rate
mito-nuclear coevolution
nuclear compensation
mtDNA introgression
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-de33d905e88a020dd2b12720dfd7b8157a303d8f54828d4d11bfe40c1712db103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Marcus Feldman, Stanford University, Stanford, CA; received June 12, 2024; accepted September 12, 2024
1Present address: Quantitative Life Sciences Section, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste 34151, Italy.
ORCID 0000-0002-1158-1993
0000-0003-1379-7568
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11494290
PMID 39392668
PQID 3118061054
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11494290
proquest_miscellaneous_3115503846
proquest_journals_3118061054
pubmed_primary_39392668
crossref_primary_10_1073_pnas_2411672121
crossref_citationtrail_10_1073_pnas_2411672121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2024
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
Nelson E. D. (e_1_3_4_41_2) 2024; 2024
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
Costa C. L. N. (e_1_3_4_39_2) 2018; 68
References_xml – ident: e_1_3_4_2_2
  doi: 10.1146/annurev.ecolsys.32.081501.114109
– ident: e_1_3_4_32_2
  doi: 10.1038/s41559-022-01901-0
– volume: 2024
  start-page: 1
  year: 2024
  ident: e_1_3_4_41_2
  article-title: Neutral speciation in realistic populations
  publication-title: Theor. Ecol.
– ident: e_1_3_4_17_2
  doi: 10.1093/molbev/msac233
– ident: e_1_3_4_1_2
  doi: 10.1186/1471-2148-8-62
– ident: e_1_3_4_28_2
  doi: 10.1093/icb/icz019
– ident: e_1_3_4_42_2
– ident: e_1_3_4_34_2
  doi: 10.1111/mec.15985
– ident: e_1_3_4_15_2
  doi: 10.1093/molbev/msw185
– ident: e_1_3_4_22_2
  doi: 10.1093/gbe/evt129
– ident: e_1_3_4_13_2
  doi: 10.1093/oso/9780198818250.003.0003
– ident: e_1_3_4_14_2
  doi: 10.1086/725805
– ident: e_1_3_4_10_2
  doi: 10.1073/pnas.1910141117
– ident: e_1_3_4_40_2
  doi: 10.1088/0305-4470/24/17/005
– ident: e_1_3_4_36_2
  doi: 10.1016/j.tree.2008.05.011
– ident: e_1_3_4_6_2
  doi: 10.1002/ece3.6640
– ident: e_1_3_4_33_2
  doi: 10.1038/nature08168
– ident: e_1_3_4_18_2
  doi: 10.1093/gbe/evx010
– ident: e_1_3_4_23_2
  doi: 10.1038/s41559-018-0606-3
– ident: e_1_3_4_27_2
  doi: 10.24272/j.issn.2095-8137.2021.299
– ident: e_1_3_4_21_2
  doi: 10.1093/molbev/msr211
– ident: e_1_3_4_4_2
  doi: 10.1038/nrg2396
– ident: e_1_3_4_29_2
  doi: 10.1038/s41437-022-00580-8
– ident: e_1_3_4_7_2
  doi: 10.1093/evlett/qrae043
– ident: e_1_3_4_20_2
  doi: 10.1038/s41559-018-0588-1
– ident: e_1_3_4_38_2
  doi: 10.1093/evolut/qpad200
– ident: e_1_3_4_5_2
  doi: 10.1016/j.gde.2023.102050
– ident: e_1_3_4_31_2
  doi: 10.1093/sysbio/syaa044
– volume: 68
  start-page: 131
  year: 2018
  ident: e_1_3_4_39_2
  article-title: Signatures of microevolutionary processes in phylogenetic patterns
  publication-title: Syst. Biol.
– ident: e_1_3_4_8_2
  doi: 10.1111/brv.12493
– ident: e_1_3_4_16_2
  doi: 10.1093/molbev/msab054
– ident: e_1_3_4_37_2
  doi: 10.1093/gbe/evab084
– ident: e_1_3_4_30_2
  doi: 10.1007/s00018-021-04059-3
– ident: e_1_3_4_19_2
  doi: 10.1093/molbev/mss228
– ident: e_1_3_4_35_2
  doi: 10.1111/mec.13475
– ident: e_1_3_4_11_2
  doi: 10.1111/mec.13959
– ident: e_1_3_4_9_2
  doi: 10.1111/evo.13962
– ident: e_1_3_4_25_2
  doi: 10.1111/j.1365-294X.2012.05664.x
– ident: e_1_3_4_3_2
  doi: 10.1016/j.tig.2020.03.002
– ident: e_1_3_4_12_2
  doi: 10.1111/evo.12808
– ident: e_1_3_4_24_2
  doi: 10.1038/hdy.2014.28
– ident: e_1_3_4_26_2
  doi: 10.1371/journal.pone.0017828
SSID ssj0009580
Score 2.4781003
Snippet Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial...
Understanding how nuclear and mitochondrial genomes coevolve is critical for elucidating organismal resilience and adaptation. This study explores how...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2411672121
SubjectTerms Animals
Biological Evolution
Biological Sciences
Cell Nucleus - genetics
Cell Nucleus - metabolism
Coevolution
Compatibility
Compensation
Deoxyribonucleic acid
DNA
DNA, Mitochondrial - genetics
Evolution
Evolution, Molecular
Evolutionary genetics
Fecundity
Genes
Genomes
Interspecific hybridization
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial DNA
Models, Genetic
Mutation
Mutation Rate
Mutation rates
Population genetics
Radiation
Selection, Genetic
Speciation
Title Nuclear compensatory evolution driven by mito-nuclear incompatibilities
URI https://www.ncbi.nlm.nih.gov/pubmed/39392668
https://www.proquest.com/docview/3118061054
https://www.proquest.com/docview/3115503846
https://pubmed.ncbi.nlm.nih.gov/PMC11494290
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB6MvY92nt7Z4sIeOoMyy5I88htEuDBLy0ELfjGXJW6FxQ5wMtr9-d5ZkO0kL215MsCQLdKfL76S73xHyEUMt4ihPqChDcFAKLmmuE0ZDLlmipAIvA_Odp7N4ciW-XUfXXbmjJrtkLYfF73vzSv5HqvAO5IpZsv8g2faj8AJ-g3zhCRKG51_JeIZkxPmqiQsHd9RcmOufds6BWqEpQ4C5gH1LK9sb-RgWGEjdxMW6IEILUOftH1rtwgdm7rxw3GWfWJNQD-hgPutqGc_x6F4vdWfJXIvSg_H3zY0J557C7trUYJOm_UOHUKC1NmmXQ20MJeAMGgtT6rO1pCbZ2aqMYc2yhlEDUmAxuJumy57hBkuD1YarvB7e3xNWfrlo5MhHgOliU4xnhyvbNT0mT0JwG5pAz0mfhDkNHL1Twj_vzHZInrrx2yBlz_PYDaDtIZLL5-SZdSX8sdGLI_JIVy_IkZOMf2YZxT-9JF-tovh9RfFbRfGNovjyl99XFH9PUV6Rq4vzyy8Taito0AKQ2JoqzbkaBZFO0xz8AqVCyfDiXZUqkSmLkhwQjEpLcFvDVAnFmCy1CAqWsFBJFvDX5KC6q_Rb4uel5DrIeQFOu4hkJDVeWWsclso0SjwydEuWFZZeHquc3GZNmEPCM1zurFtuj5y1A5aGWeXhrsdOBpndfnXGkbwQwH8kPPKhbQbjiDdeeaXvNk2fCPmOROyRN0Zk7VxO1h5Jt4TZdkDi9e2W6uZHQ8DOmBgBjgvePfjR9-Sw2zbH5GC92ugTQK9redqo5B9J2Jr5
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+compensatory+evolution+driven+by+mito-nuclear+incompatibilities&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Princepe%2C+Debora&rft.au=de+Aguiar%2C+Marcus+A+M&rft.date=2024-10-15&rft.eissn=1091-6490&rft.volume=121&rft.issue=42&rft.spage=e2411672121&rft_id=info:doi/10.1073%2Fpnas.2411672121&rft_id=info%3Apmid%2F39392668&rft.externalDocID=39392668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon