High-pressure and high-temperature sintering of nanostructured bulk NiAl materials
Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanopart...
Saved in:
Published in | Journal of materials research Vol. 24; no. 6; pp. 2089 - 2096 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
01.06.2009
Springer International Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al0.9Ni4.22 below 1000 °C for the first time. It is interesting to note that Vickers hardness decreased as grain size decreased below ∼30 nm, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles. |
---|---|
AbstractList | Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0-5.0 GPa and 600-1500 deg C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al(0.9)Ni(4.22) below 1000 deg C for the first time. It was interesting to note that Vickers hardness decreased as grain size decreased below ~30 run, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles. Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al 0.9 Ni 4.22 below 1000 °C for the first time. It is interesting to note that Vickers hardness decreased as grain size decreased below ∼30 nm, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles. Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al0.9Ni4.22 below 1000 °C for the first time. It is interesting to note that Vickers hardness decreased as grain size decreased below ∼30 nm, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles. |
Author | Wang, Shanmin He, Duanwei Li, Yongjun Zou, Yongtao Wang, Jianghua Wang, Wendan Kou, Zili Wei, Jianjun Lei, Li |
Author_xml | – sequence: 1 givenname: Shanmin surname: Wang fullname: Wang, Shanmin – sequence: 2 givenname: Duanwei surname: He fullname: He, Duanwei email: duanweihe@yahoo.com organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People's Republic of China – sequence: 3 givenname: Yongtao surname: Zou fullname: Zou, Yongtao – sequence: 4 givenname: Jianjun surname: Wei fullname: Wei, Jianjun – sequence: 5 givenname: Li surname: Lei fullname: Lei, Li – sequence: 6 givenname: Yongjun surname: Li fullname: Li, Yongjun – sequence: 7 givenname: Jianghua surname: Wang fullname: Wang, Jianghua – sequence: 8 givenname: Wendan surname: Wang fullname: Wang, Wendan – sequence: 9 givenname: Zili surname: Kou fullname: Kou, Zili organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People's Republic of China |
BookMark | eNqFkEtr3DAURkVIIZO0y-696s4TPS15GUKbFNKU9LEWsnQ90cSWXUmG9N_XYoYuAiGrC1fnu_o45-g0TAEQ-kjwlgghL_dj3FKM2y2mVJ6gDcWc14LR5hRtsFK8pi3hZ-g8pT3GRGDJN-jHrd891nOElJYIlQmueiybDOMM0eSyTD5kiD7sqqmvgglTynGx5clV3TI8Vff-aqhGUyAzpPfoXb8O-HCcF-j3l8-_rm_ru-83X6-v7mrLFMm1c8CYFRhE03acUNfInndEsFYQRVRH1UooKyx2hvbSup6DIhI7xTshe8Yu0KfD3TlOfxZIWY8-WRgGE2BakmZc8raVBawPoI1TShF6PUc_mvhXE6yLOb2a08WcLuZWnr3grc8m-ynkaPzwamp7SKW5uIKo99MSw2rg1cCxlk8Znv93MvFJN5JJoZubB42_CfLz4R7rduUvj7XM2EXvdvDWD_8AdiKjOA |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2019_04_012 crossref_primary_10_1139_cjp_2014_0685 crossref_primary_10_1016_j_scriptamat_2016_05_017 crossref_primary_10_1103_PhysRevB_107_174112 crossref_primary_10_1103_PhysRevB_111_045143 crossref_primary_10_1016_j_heliyon_2023_e14070 crossref_primary_10_1016_j_jallcom_2020_154617 crossref_primary_10_1080_01411594_2011_573456 crossref_primary_10_1016_j_ijrmhm_2022_106015 crossref_primary_10_1063_1_4844495 crossref_primary_10_1039_D2NR00180B crossref_primary_10_1016_j_matpr_2018_05_103 crossref_primary_10_3390_ma16051907 crossref_primary_10_1016_j_ceramint_2019_01_099 crossref_primary_10_1016_j_jpowsour_2023_233632 crossref_primary_10_1016_j_scriptamat_2012_02_006 crossref_primary_10_1016_j_matchemphys_2011_06_024 crossref_primary_10_1080_23746149_2016_1142829 crossref_primary_10_1016_j_scriptamat_2011_11_012 crossref_primary_10_1557_JMR_2010_0082 crossref_primary_10_3390_cryst12081025 crossref_primary_10_1007_s11771_013_1556_1 crossref_primary_10_1016_j_ceramint_2019_09_257 crossref_primary_10_1016_j_ceramint_2015_12_062 |
Cites_doi | 10.1016/j.actamat.2007.02.021 10.1021/nl062685s 10.1016/j.jssc.2008.04.006 10.1016/S0925-9635(00)00581-1 10.1063/1.1658543 10.1016/0272-8842(90)90053-I 10.1103/PhysRevB.56.14322 10.1016/S0921-5093(98)00921-6 10.1038/nmat958 10.1016/0921-5093(95)09952-2 10.1080/0141159031000076129 10.1038/35254 10.1103/PhysRevB.73.134106 10.1111/j.1151-2916.1988.tb05787.x 10.1063/1.2785025 10.1016/j.pmatsci.2005.08.003 10.1016/S0022-3093(01)00906-1 10.1088/0370-1301/64/9/303 10.1088/0957-4484/15/12/031 10.1016/S0965-9773(98)00125-1 10.1038/35004548 10.1021/nl0718723 10.1063/1.1736107 10.1080/08957950701553796 10.1016/S1359-6454(03)00210-6 10.12693/APhysPolA.102.57 10.1002/1521-3951(200103)224:23.0.CO;2-U 10.1016/j.ceramint.2006.08.015 10.1016/0167-577X(94)90035-3 10.1063/1.103053 10.1016/j.msea.2006.10.084 10.1016/S0921-5093(00)01437-4 |
ContentType | Journal Article |
Copyright | Copyright © Materials Research Society 2009 The Materials Research Society 2009 |
Copyright_xml | – notice: Copyright © Materials Research Society 2009 – notice: The Materials Research Society 2009 |
DBID | BSCLL AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1557/jmr.2009.0227 |
DatabaseName | Istex CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2044-5326 |
EndPage | 2096 |
ExternalDocumentID | 10_1557_jmr_2009_0227 ark_67375_6GQ_0M51SQN0_9 |
GroupedDBID | -2P -2V -E. -~X .DC .FH 0E1 0R~ 2JN 3V. 4.4 406 5GY 5VS 74X 74Y 7WY 7~V 8FE 8FG 8FL 8UJ 8WZ A6W AAAZR AABES AABWE AACDK AACJH AAEWM AAGFV AAHNG AAIKC AAJBT AAKTX AAMNW AARAB AASML AASVR AATID AATMM AATNV AAUKB ABAKF ABBXD ABDPE ABECU ABEFU ABGDZ ABJCF ABJNI ABKKG ABMQK ABMWE ABQTM ABROB ABTEG ABTKH ABTMW ABUWG ABZCX ABZUI ACAOD ACBEA ACBEK ACBMC ACDTI ACETC ACGFO ACGFS ACHSB ACIHN ACIMK ACIWK ACPIV ACQPF ACRPL ACUIJ ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC ADNMO ADOVH ADOVT AEAQA AEBAK AEFQL AEHGV AEMFK AEMSY AEMTW AENEX AENGE AESKC AEYYC AFBBN AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AGLWM AGMZJ AGQEE AHQXX AI. AIGIU AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMTXH AMXSW AMYLF ARABE ARZZG ATUCA AUXHV AYIQA BBLKV BCGOX BENPR BESQT BEZIV BGHMG BGLVJ BJBOZ BMAJL BPHCQ BQFHP C0O CBIIA CCPQU CCUQV CFAFE CFBFF CGQII CS3 CZ9 D1I DC4 DOHLZ DPUIP DU5 DWQXO EBLON EBS EJD F5P FIGPU FRNLG GROUPED_ABI_INFORM_COMPLETE HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IKXTQ IOEEP IOO IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JQKCU JZLTJ K60 K6~ KAFGG KB. KC. KCGVB KFECR L98 LHUNA LLZTM M-V M0C M7~ M8. NIKVX NPVJJ NQJWS O9- P2P PDBOC PQBIZ PQBZA PQQKQ PROAC PYCCK RAMDC RCA RNS ROL RR0 RSV S0W S6- S6U SAAAG SCG SCLPG SJN SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TAE TN5 TWZ UPT UT1 VH1 VOH WH7 WQ3 WXU WXY YQT ZDLDU ZE2 ZJOSE ZMEZD ZYDXJ ~02 ~V1 ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BSCLL PHGZM PHGZT PQGLB PUEGO PKN AAYXX ACMFV CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c381t-dde33c50e569b412d67f4b153951818b28dde8c5c0da2f7cdf4e8170d84b57f33 |
ISSN | 0884-2914 |
IngestDate | Fri Jul 11 07:24:14 EDT 2025 Thu Apr 24 22:52:57 EDT 2025 Tue Jul 01 03:45:42 EDT 2025 Fri Feb 21 02:46:04 EST 2025 Sun Aug 31 06:49:17 EDT 2025 Tue Jan 21 06:23:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Grain size Sintering Nanostructure |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-dde33c50e569b412d67f4b153951818b28dde8c5c0da2f7cdf4e8170d84b57f33 |
Notes | ark:/67375/6GQ-0M51SQN0-9 istex:23D8C3D80516B13A31C2BFF97FA78498E6899338 PII:S0884291400033501 ArticleID:03350 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 34749973 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_34749973 crossref_primary_10_1557_jmr_2009_0227 crossref_citationtrail_10_1557_jmr_2009_0227 springer_journals_10_1557_jmr_2009_0227 istex_primary_ark_67375_6GQ_0M51SQN0_9 cambridge_journals_10_1557_jmr_2009_0227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090600 2009-06 2009-06-00 20090601 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 20090600 |
PublicationDecade | 2000 |
PublicationPlace | New York, USA |
PublicationPlace_xml | – name: New York, USA – name: Cham |
PublicationTitle | Journal of materials research |
PublicationTitleAbbrev | Journal of Materials Research |
PublicationTitleAlternate | J. Mater. Res |
PublicationYear | 2009 |
Publisher | Cambridge University Press Springer International Publishing |
Publisher_xml | – name: Cambridge University Press – name: Springer International Publishing |
References | Chen, Wang (CR6) 2000; 404 Palosz, Stelmakh, Grzanka, Gierlotka, Pielaszek, Bismayer, Werner, Palosz (CR9) 2004; 16 He, Duffy (CR22) 2006; 73 Hall (CR30) 1951; 64 Padmanabhan (CR11) 2001 Uhlmann, Hays, Turnbull (CR25) 1966; 7 Palosz, Grzanka, Gierlotka, Stelmakh, Pielaszek, Lojkowski, Bismayer, Neuefeind, Weber, Palosz (CR17) 2003; 76 Skandan, Hahn, Kear, Roddy, Cannon (CR23) 1994; 20 Fang, He, Chen, Ding, Luo (CR14) 2007; 27 Petch (CR31) 1953; 174 Roy, Bhowmick, Sanyal, Chakrabarti (CR21) 2008; 34 Zhao, Zhang, Lu (CR20) 1997; 56 Coble (CR24) 1970; 41 Lei, He, Zou, Zhang, Wang, Jiang, Du (CR15) 2008; 181 Varela, Whittemore, Longo (CR28) 1990; 16 Palosz, Stelmakh, Grzanka, Gierlotka, Nauyoks, Zerda, Palosz (CR10) 2007; 102 Lechermann, Fähnle (CR19) 2001; 224 Cameron, Raj (CR5) 1988; 71 Zhao, Zhang, Clausen, Shen, Gray, Wang (CR12) 2006; 7 Lu, Nygren, Aziz, Turnbull, White (CR26) 1990; 56 Palosz, Grzanka, Gierlotka, Stelmakh, Pielaszek, Bismayer, Neuefeind, Weber, Palosz (CR18) 2002; 102 Nakamura, Fujita, Iijima, Okada (CR2) 2003; 51 He, Akaishi, Tanaka (CR16) 2001; 10 He, Zhao, Wang, Che, Liu, Luo, Wang (CR27) 2002; 297 Coble (CR4) 1961; 32 Liao, Pae, Mayo (CR7) 1995; 204 Meyers, Mishra, Benson (CR32) 2006; 51 Yip (CR33) 1998; 391 Carlton, Ferreira (CR34) 2007; 55 Gschneidner, Russell, Pecharsky, Morris, Zhang, Lograsso, Hsu, Lo, Ye, Slager, Kesse (CR1) 2003; 2 Wang, Zhang, Zhao (CR13) 2007; 7 Padmanabhan, Dinda, Hahn, Gleiter (CR35) 2007 Li, Lei, Tang, Luo, Liu, Chen (CR3) 2004; 15 Liao, Chen, Kear, Mayo (CR8) 1998; 10 Liu, George, Maziasz, Schneibel (CR29) 1998; 258 Uhlmann (S0884291400033501_ref025) 1966; 7 Petch (S0884291400033501_ref031) 1953; 174 S0884291400033501_ref030 S0884291400033501_ref035 S0884291400033501_ref013 S0884291400033501_ref034 S0884291400033501_ref012 S0884291400033501_ref033 S0884291400033501_ref011 S0884291400033501_ref032 S0884291400033501_ref010 S0884291400033501_ref017 S0884291400033501_ref016 S0884291400033501_ref015 S0884291400033501_ref014 S0884291400033501_ref019 S0884291400033501_ref018 Palosz (S0884291400033501_ref009) 2004; 16 S0884291400033501_ref020 S0884291400033501_ref024 S0884291400033501_ref002 S0884291400033501_ref001 S0884291400033501_ref023 S0884291400033501_ref022 S0884291400033501_ref021 S0884291400033501_ref028 S0884291400033501_ref006 S0884291400033501_ref027 S0884291400033501_ref005 S0884291400033501_ref026 S0884291400033501_ref004 S0884291400033501_ref003 S0884291400033501_ref008 S0884291400033501_ref029 S0884291400033501_ref007 |
References_xml | – volume: 7 start-page: 159 year: 1966 ident: CR25 article-title: The effect of high pressure on crystallization kinetics with special reference to fused silica publication-title: Phys. Chem. Glasses – volume: 55 start-page: 3749 year: 2007 ident: CR34 article-title: What is behind the inverse Hall-Petch effect in nanocrystalline materials? publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.02.021 – volume: 174 start-page: 25 year: 1953 ident: CR31 article-title: The cleavage strength of polycrystals publication-title: J. Iron Steel Res. Inst. – volume: 7 start-page: 426 year: 2006 ident: CR12 article-title: Thermomechanics of nanocrystalline nickel under high pressure-temperature conditions publication-title: Nano Lett. doi: 10.1021/nl062685s – volume: 181 start-page: 1810 year: 2008 ident: CR15 article-title: Phase transitions of LiAlO at high pressure and high temperature publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2008.04.006 – volume: 10 start-page: 1465 year: 2001 ident: CR16 article-title: High pressure synthesis of cubic boron nitride from Si-hBN system publication-title: Diamond Relat. Mater. doi: 10.1016/S0925-9635(00)00581-1 – volume: 41 start-page: 4798 year: 1970 ident: CR24 article-title: Diffusion models for hot pressing with surface energy and pressure effects as driving forces publication-title: J. Appl. Phys. doi: 10.1063/1.1658543 – volume: 16 start-page: S353 year: 2004 ident: CR9 article-title: High pressure x-ray diffraction studies on nanocrystalline materials publication-title: J. Phys.: Condens. Matter – volume: 16 start-page: 177 year: 1990 ident: CR28 article-title: Pore size evolution during sintering of ceramic oxides publication-title: Ceram. Int. doi: 10.1016/0272-8842(90)90053-I – volume: 56 start-page: 14322 year: 1997 ident: CR20 article-title: Structure characteristics of nanocrystalline element selenium with different grain sizes publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.56.14322 – volume: 258 start-page: 84 year: 1998 ident: CR29 article-title: Recent advances in B2 iron aluminide alloys: Deformation, fracture and alloy design publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(98)00921-6 – volume: 2 start-page: 587 year: 2003 ident: CR1 article-title: A family of ductile intermetallic compounds publication-title: Nat. Mater. doi: 10.1038/nmat958 – volume: 204 start-page: 152 year: 1995 ident: CR7 article-title: High pressure and low temperature sintering of bulk nanocrystalline TiO publication-title: Mater. Sci. Eng., A doi: 10.1016/0921-5093(95)09952-2 – volume: 76 start-page: 171 year: 2003 ident: CR17 article-title: Application of x-ray powder diffraction to nano-materials: Determination of the atomic structure of nanocrystals with relaxed and strained surfaces publication-title: Phase Trans. doi: 10.1080/0141159031000076129 – start-page: 200 year: 2001 ident: CR11 article-title: Mechanical properties of nanostructured materials publication-title: Mater. Sci. Eng. – start-page: 462 year: 2007 ident: CR35 article-title: Inverse Hall-Petch effect and grain boundary sliding controlled flow in nanocrystalline materials publication-title: Mater. Sci. Eng. – volume: 391 start-page: 532 year: 1998 ident: CR33 article-title: The strongest size publication-title: Nature doi: 10.1038/35254 – volume: 73 start-page: 134106 year: 2006 ident: CR22 article-title: X-ray diffraction study of the static strength of tungsten to 69 GPa publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.73.134106 – volume: 71 start-page: 1031 year: 1988 ident: CR5 article-title: Grain-growth transition during sintering of colloidally prepared alumina powder compacts publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1988.tb05787.x – volume: 102 start-page: 074303 year: 2007 ident: CR10 article-title: Origin of macrostrains and micro-strains in diamond-SiC nanocomposites based on the core-shell model publication-title: J. Appl. Phys. doi: 10.1063/1.2785025 – volume: 51 start-page: 427 year: 2006 ident: CR32 article-title: Mechanical properties of nanocrystalline materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2005.08.003 – volume: 297 start-page: 84 year: 2002 ident: CR27 article-title: Pressure-induced crystallization in a bulk amorphous Zr-based alloy publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00906-1 – volume: 64 start-page: 747 year: 1951 ident: CR30 article-title: The deformation and ageing of mild steel: III. Discussion of results publication-title: Proc. Phys. Soc., Ser. B doi: 10.1088/0370-1301/64/9/303 – volume: 15 start-page: 1866 year: 2004 ident: CR3 article-title: Production of copper nanoparticles by the flow-levitation method publication-title: Nanotechnology doi: 10.1088/0957-4484/15/12/031 – volume: 10 start-page: 1063 year: 1998 ident: CR8 article-title: High pressure/ low temperature sintering of nanocrystalline alumina publication-title: Nanostruct. Mater. doi: 10.1016/S0965-9773(98)00125-1 – volume: 404 start-page: 168 year: 2000 ident: CR6 article-title: Sintering dense nanocrystalline ceramics without final-stage grain growth publication-title: Nature doi: 10.1038/35004548 – volume: 7 start-page: 3196 year: 2007 ident: CR13 article-title: Strength weakening by nanocrystals in ceramic materials publication-title: Nano Lett. doi: 10.1021/nl0718723 – volume: 32 start-page: 787 year: 1961 ident: CR4 article-title: Sintering crystalline solid publication-title: J. Appl. Phys. doi: 10.1063/1.1736107 – volume: 27 start-page: 367 year: 2007 ident: CR14 article-title: Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets publication-title: High Pressure Res. doi: 10.1080/08957950701553796 – volume: 51 start-page: 3861 year: 2003 ident: CR2 article-title: Diffusion mechanisms in B2 NiAl phase studied by experiments on Kirkendall effect and interdiffusion under high pressures publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00210-6 – volume: 102 start-page: 57 issue: 1 year: 2002 ident: CR18 article-title: Diffraction studies of nanocrystals: Theory and experiment publication-title: Acta Phys. Pol., A doi: 10.12693/APhysPolA.102.57 – volume: 224 start-page: R4 year: 2001 ident: CR19 article-title: Ab-initio statistical mechanics for the phase diagram of NiAl including the effect of vacancies publication-title: Phys. Status Solidi B doi: 10.1002/1521-3951(200103)224:23.0.CO;2-U – volume: 34 start-page: 81 year: 2008 ident: CR21 article-title: Sintering studies of nano-crystalline zinc oxide publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2006.08.015 – volume: 20 start-page: 305 year: 1994 ident: CR23 article-title: The effect of applied stress on densification of nanostructured zirconia during sinter-forging publication-title: Mater. Lett. doi: 10.1016/0167-577X(94)90035-3 – volume: 56 start-page: 137 year: 1990 ident: CR26 article-title: Pressure-enhanced solid phase epitaxy of germanium publication-title: Appl. Phys. Lett. doi: 10.1063/1.103053 – ident: S0884291400033501_ref030 doi: 10.1088/0370-1301/64/9/303 – ident: S0884291400033501_ref005 doi: 10.1111/j.1151-2916.1988.tb05787.x – ident: S0884291400033501_ref018 doi: 10.12693/APhysPolA.102.57 – ident: S0884291400033501_ref032 doi: 10.1016/j.pmatsci.2005.08.003 – ident: S0884291400033501_ref019 doi: 10.1002/1521-3951(200103)224:23.0.CO;2-U – volume: 16 start-page: S353 year: 2004 ident: S0884291400033501_ref009 article-title: High pressure x-ray diffraction studies on nanocrystalline materials publication-title: J. Phys.: Condens. Matter – ident: S0884291400033501_ref022 doi: 10.1103/PhysRevB.73.134106 – ident: S0884291400033501_ref024 doi: 10.1063/1.1658543 – ident: S0884291400033501_ref010 doi: 10.1063/1.2785025 – ident: S0884291400033501_ref016 doi: 10.1016/S0925-9635(00)00581-1 – ident: S0884291400033501_ref035 doi: 10.1016/j.msea.2006.10.084 – ident: S0884291400033501_ref020 doi: 10.1103/PhysRevB.56.14322 – ident: S0884291400033501_ref007 doi: 10.1016/0921-5093(95)09952-2 – ident: S0884291400033501_ref012 doi: 10.1021/nl062685s – ident: S0884291400033501_ref017 doi: 10.1080/0141159031000076129 – ident: S0884291400033501_ref006 doi: 10.1038/35004548 – ident: S0884291400033501_ref026 doi: 10.1063/1.103053 – ident: S0884291400033501_ref004 doi: 10.1063/1.1736107 – ident: S0884291400033501_ref021 doi: 10.1016/j.ceramint.2006.08.015 – ident: S0884291400033501_ref001 doi: 10.1038/nmat958 – ident: S0884291400033501_ref014 doi: 10.1080/08957950701553796 – volume: 7 start-page: 159 year: 1966 ident: S0884291400033501_ref025 article-title: The effect of high pressure on crystallization kinetics with special reference to fused silica publication-title: Phys. Chem. Glasses – ident: S0884291400033501_ref015 doi: 10.1016/j.jssc.2008.04.006 – ident: S0884291400033501_ref008 doi: 10.1016/S0965-9773(98)00125-1 – ident: S0884291400033501_ref033 doi: 10.1038/35254 – ident: S0884291400033501_ref028 doi: 10.1016/0272-8842(90)90053-I – volume: 174 start-page: 25 year: 1953 ident: S0884291400033501_ref031 article-title: The cleavage strength of polycrystals publication-title: J. Iron Steel Res. Inst. – ident: S0884291400033501_ref029 doi: 10.1016/S0921-5093(98)00921-6 – ident: S0884291400033501_ref002 doi: 10.1016/S1359-6454(03)00210-6 – ident: S0884291400033501_ref011 doi: 10.1016/S0921-5093(00)01437-4 – ident: S0884291400033501_ref034 doi: 10.1016/j.actamat.2007.02.021 – ident: S0884291400033501_ref027 doi: 10.1016/S0022-3093(01)00906-1 – ident: S0884291400033501_ref013 doi: 10.1021/nl0718723 – ident: S0884291400033501_ref003 doi: 10.1088/0957-4484/15/12/031 – ident: S0884291400033501_ref023 doi: 10.1016/0167-577X(94)90035-3 |
SSID | ssj0015074 |
Score | 2.0465906 |
Snippet | Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were... Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0-5.0 GPa and 600-1500 deg C, respectively). The sintered samples were... |
SourceID | proquest crossref springer istex cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2089 |
SubjectTerms | Applied and Technical Physics Biomaterials Grain size Inorganic Chemistry Materials Engineering Materials Science Nanostructure Nanotechnology Sintering |
Title | High-pressure and high-temperature sintering of nanostructured bulk NiAl materials |
URI | https://www.cambridge.org/core/product/identifier/S0884291400033501/type/journal_article https://api.istex.fr/ark:/67375/6GQ-0M51SQN0-9/fulltext.pdf https://link.springer.com/article/10.1557/jmr.2009.0227 https://www.proquest.com/docview/34749973 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgFRI8IBggCmzkAQFSyUht5-uxGytVtRZttKJvluMksK1LUNsItL-e80fcZVANeImq1HJT3y_nu_Pd7xB6BTZ86hGau4SLyKUC525EutSNOA0D8Fqwr4rERuNgMKXDmT9bN-NU1SWrZE9c_rGu5H-kCvdArrJK9h8kayeFG_AZ5AtXkDBc_0rGMknDVZms9TGAZB92Jd2U4UruLCUfxMKkNhe8KDVhbCXTzpNqfg5Q6M07YLbq591gq9rvO4YcyAaRv9Tx5m-8uDi1SBuoOOmHihc_slMbnC4rpfHL4uuKl-szIZVQMAScnlVFIwoRr7OlrLKiLo51QWitWXV1tEFQQ016um-Q2XKxp7va_qbOfdWDeDg6McSiWPMINGmzx59Yf3p0xCaHs8lt1MLgL4DCa_X6-_tje6AEZi_VDoV-TEO3Cj_wvjH9VYqNhqnSkm_dz4Yfcu3oXFkkkwfovhGP09O4eIhuZcU2uneFYHIb3VEJvmL5CJ00sOIAVpzrWHEsVpwyd5pYcSRWHIkVx2LhMZr2DycHA9f003AF2GUrF3YyQoTvZX4QJ7SL0yDMaQJbHljZYLclOIIRkfCFl3KchyLNaSb5G9OIJn6YE_IEbRVlkT1FTiDAracB8SRZUOSlCQc3mmQ4SKkABztvo7d2GZl5Y5ZMOpyw4uzsYiHbn8ZMrngbvatXmQnDSy_bo8w3DX9th3_XhCwbByqR2VF8cS6zGEOfBR-PmTfyu5-Pxx6L2-hlLVMGulUemPEiK6slIzSkcRySNnpTi_qGP_Psxrmeo7t1ymmXvkBbIMhsB-zaVbJrMPsLUjmjQA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-pressure+and+high-temperature+sintering+of+nanostructured+bulk+NiAl+materials&rft.jtitle=Journal+of+materials+research&rft.au=Wang%2C+Shanmin&rft.au=He%2C+Duanwei&rft.au=Zou%2C+Yongtao&rft.au=Wei%2C+Jianjun&rft.date=2009-06-01&rft.issn=0884-2914&rft.volume=24&rft.issue=6&rft.spage=2089&rft.epage=2096&rft_id=info:doi/10.1557%2FJMR.2009.0227&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon |