High-pressure and high-temperature sintering of nanostructured bulk NiAl materials

Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanopart...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research Vol. 24; no. 6; pp. 2089 - 2096
Main Authors Wang, Shanmin, He, Duanwei, Zou, Yongtao, Wei, Jianjun, Lei, Li, Li, Yongjun, Wang, Jianghua, Wang, Wendan, Kou, Zili
Format Journal Article
LanguageEnglish
Published New York, USA Cambridge University Press 01.06.2009
Springer International Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al0.9Ni4.22 below 1000 °C for the first time. It is interesting to note that Vickers hardness decreased as grain size decreased below ∼30 nm, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles.
AbstractList Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0-5.0 GPa and 600-1500 deg C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al(0.9)Ni(4.22) below 1000 deg C for the first time. It was interesting to note that Vickers hardness decreased as grain size decreased below ~30 run, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles.
Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al 0.9 Ni 4.22 below 1000 °C for the first time. It is interesting to note that Vickers hardness decreased as grain size decreased below ∼30 nm, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles.
Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al0.9Ni4.22 below 1000 °C for the first time. It is interesting to note that Vickers hardness decreased as grain size decreased below ∼30 nm, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles.
Author Wang, Shanmin
He, Duanwei
Li, Yongjun
Zou, Yongtao
Wang, Jianghua
Wang, Wendan
Kou, Zili
Wei, Jianjun
Lei, Li
Author_xml – sequence: 1
  givenname: Shanmin
  surname: Wang
  fullname: Wang, Shanmin
– sequence: 2
  givenname: Duanwei
  surname: He
  fullname: He, Duanwei
  email: duanweihe@yahoo.com
  organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People's Republic of China
– sequence: 3
  givenname: Yongtao
  surname: Zou
  fullname: Zou, Yongtao
– sequence: 4
  givenname: Jianjun
  surname: Wei
  fullname: Wei, Jianjun
– sequence: 5
  givenname: Li
  surname: Lei
  fullname: Lei, Li
– sequence: 6
  givenname: Yongjun
  surname: Li
  fullname: Li, Yongjun
– sequence: 7
  givenname: Jianghua
  surname: Wang
  fullname: Wang, Jianghua
– sequence: 8
  givenname: Wendan
  surname: Wang
  fullname: Wang, Wendan
– sequence: 9
  givenname: Zili
  surname: Kou
  fullname: Kou, Zili
  organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People's Republic of China
BookMark eNqFkEtr3DAURkVIIZO0y-696s4TPS15GUKbFNKU9LEWsnQ90cSWXUmG9N_XYoYuAiGrC1fnu_o45-g0TAEQ-kjwlgghL_dj3FKM2y2mVJ6gDcWc14LR5hRtsFK8pi3hZ-g8pT3GRGDJN-jHrd891nOElJYIlQmueiybDOMM0eSyTD5kiD7sqqmvgglTynGx5clV3TI8Vff-aqhGUyAzpPfoXb8O-HCcF-j3l8-_rm_ru-83X6-v7mrLFMm1c8CYFRhE03acUNfInndEsFYQRVRH1UooKyx2hvbSup6DIhI7xTshe8Yu0KfD3TlOfxZIWY8-WRgGE2BakmZc8raVBawPoI1TShF6PUc_mvhXE6yLOb2a08WcLuZWnr3grc8m-ynkaPzwamp7SKW5uIKo99MSw2rg1cCxlk8Znv93MvFJN5JJoZubB42_CfLz4R7rduUvj7XM2EXvdvDWD_8AdiKjOA
CitedBy_id crossref_primary_10_1016_j_jallcom_2019_04_012
crossref_primary_10_1139_cjp_2014_0685
crossref_primary_10_1016_j_scriptamat_2016_05_017
crossref_primary_10_1103_PhysRevB_107_174112
crossref_primary_10_1103_PhysRevB_111_045143
crossref_primary_10_1016_j_heliyon_2023_e14070
crossref_primary_10_1016_j_jallcom_2020_154617
crossref_primary_10_1080_01411594_2011_573456
crossref_primary_10_1016_j_ijrmhm_2022_106015
crossref_primary_10_1063_1_4844495
crossref_primary_10_1039_D2NR00180B
crossref_primary_10_1016_j_matpr_2018_05_103
crossref_primary_10_3390_ma16051907
crossref_primary_10_1016_j_ceramint_2019_01_099
crossref_primary_10_1016_j_jpowsour_2023_233632
crossref_primary_10_1016_j_scriptamat_2012_02_006
crossref_primary_10_1016_j_matchemphys_2011_06_024
crossref_primary_10_1080_23746149_2016_1142829
crossref_primary_10_1016_j_scriptamat_2011_11_012
crossref_primary_10_1557_JMR_2010_0082
crossref_primary_10_3390_cryst12081025
crossref_primary_10_1007_s11771_013_1556_1
crossref_primary_10_1016_j_ceramint_2019_09_257
crossref_primary_10_1016_j_ceramint_2015_12_062
Cites_doi 10.1016/j.actamat.2007.02.021
10.1021/nl062685s
10.1016/j.jssc.2008.04.006
10.1016/S0925-9635(00)00581-1
10.1063/1.1658543
10.1016/0272-8842(90)90053-I
10.1103/PhysRevB.56.14322
10.1016/S0921-5093(98)00921-6
10.1038/nmat958
10.1016/0921-5093(95)09952-2
10.1080/0141159031000076129
10.1038/35254
10.1103/PhysRevB.73.134106
10.1111/j.1151-2916.1988.tb05787.x
10.1063/1.2785025
10.1016/j.pmatsci.2005.08.003
10.1016/S0022-3093(01)00906-1
10.1088/0370-1301/64/9/303
10.1088/0957-4484/15/12/031
10.1016/S0965-9773(98)00125-1
10.1038/35004548
10.1021/nl0718723
10.1063/1.1736107
10.1080/08957950701553796
10.1016/S1359-6454(03)00210-6
10.12693/APhysPolA.102.57
10.1002/1521-3951(200103)224:23.0.CO;2-U
10.1016/j.ceramint.2006.08.015
10.1016/0167-577X(94)90035-3
10.1063/1.103053
10.1016/j.msea.2006.10.084
10.1016/S0921-5093(00)01437-4
ContentType Journal Article
Copyright Copyright © Materials Research Society 2009
The Materials Research Society 2009
Copyright_xml – notice: Copyright © Materials Research Society 2009
– notice: The Materials Research Society 2009
DBID BSCLL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1557/jmr.2009.0227
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2044-5326
EndPage 2096
ExternalDocumentID 10_1557_jmr_2009_0227
ark_67375_6GQ_0M51SQN0_9
GroupedDBID -2P
-2V
-E.
-~X
.DC
.FH
0E1
0R~
2JN
3V.
4.4
406
5GY
5VS
74X
74Y
7WY
7~V
8FE
8FG
8FL
8UJ
8WZ
A6W
AAAZR
AABES
AABWE
AACDK
AACJH
AAEWM
AAGFV
AAHNG
AAIKC
AAJBT
AAKTX
AAMNW
AARAB
AASML
AASVR
AATID
AATMM
AATNV
AAUKB
ABAKF
ABBXD
ABDPE
ABECU
ABEFU
ABGDZ
ABJCF
ABJNI
ABKKG
ABMQK
ABMWE
ABQTM
ABROB
ABTEG
ABTKH
ABTMW
ABUWG
ABZCX
ABZUI
ACAOD
ACBEA
ACBEK
ACBMC
ACDTI
ACETC
ACGFO
ACGFS
ACHSB
ACIHN
ACIMK
ACIWK
ACPIV
ACQPF
ACRPL
ACUIJ
ACXSD
ACZBM
ACZOJ
ACZUX
ADCGK
ADFEC
ADNMO
ADOVH
ADOVT
AEAQA
AEBAK
AEFQL
AEHGV
AEMFK
AEMSY
AEMTW
AENEX
AENGE
AESKC
AEYYC
AFBBN
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGLWM
AGMZJ
AGQEE
AHQXX
AI.
AIGIU
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AMTXH
AMXSW
AMYLF
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BEZIV
BGHMG
BGLVJ
BJBOZ
BMAJL
BPHCQ
BQFHP
C0O
CBIIA
CCPQU
CCUQV
CFAFE
CFBFF
CGQII
CS3
CZ9
D1I
DC4
DOHLZ
DPUIP
DU5
DWQXO
EBLON
EBS
EJD
F5P
FIGPU
FRNLG
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IKXTQ
IOEEP
IOO
IS6
IWAJR
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JZLTJ
K60
K6~
KAFGG
KB.
KC.
KCGVB
KFECR
L98
LHUNA
LLZTM
M-V
M0C
M7~
M8.
NIKVX
NPVJJ
NQJWS
O9-
P2P
PDBOC
PQBIZ
PQBZA
PQQKQ
PROAC
PYCCK
RAMDC
RCA
RNS
ROL
RR0
RSV
S0W
S6-
S6U
SAAAG
SCG
SCLPG
SJN
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
T9M
TAE
TN5
TWZ
UPT
UT1
VH1
VOH
WH7
WQ3
WXU
WXY
YQT
ZDLDU
ZE2
ZJOSE
ZMEZD
ZYDXJ
~02
~V1
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BSCLL
PHGZM
PHGZT
PQGLB
PUEGO
PKN
AAYXX
ACMFV
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c381t-dde33c50e569b412d67f4b153951818b28dde8c5c0da2f7cdf4e8170d84b57f33
ISSN 0884-2914
IngestDate Fri Jul 11 07:24:14 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Tue Jul 01 03:45:42 EDT 2025
Fri Feb 21 02:46:04 EST 2025
Sun Aug 31 06:49:17 EDT 2025
Tue Jan 21 06:23:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Grain size
Sintering
Nanostructure
Language English
License https://www.cambridge.org/core/terms
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-dde33c50e569b412d67f4b153951818b28dde8c5c0da2f7cdf4e8170d84b57f33
Notes ark:/67375/6GQ-0M51SQN0-9
istex:23D8C3D80516B13A31C2BFF97FA78498E6899338
PII:S0884291400033501
ArticleID:03350
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34749973
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_34749973
crossref_primary_10_1557_jmr_2009_0227
crossref_citationtrail_10_1557_jmr_2009_0227
springer_journals_10_1557_jmr_2009_0227
istex_primary_ark_67375_6GQ_0M51SQN0_9
cambridge_journals_10_1557_jmr_2009_0227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090600
2009-06
2009-06-00
20090601
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 20090600
PublicationDecade 2000
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Cham
PublicationTitle Journal of materials research
PublicationTitleAbbrev Journal of Materials Research
PublicationTitleAlternate J. Mater. Res
PublicationYear 2009
Publisher Cambridge University Press
Springer International Publishing
Publisher_xml – name: Cambridge University Press
– name: Springer International Publishing
References Chen, Wang (CR6) 2000; 404
Palosz, Stelmakh, Grzanka, Gierlotka, Pielaszek, Bismayer, Werner, Palosz (CR9) 2004; 16
He, Duffy (CR22) 2006; 73
Hall (CR30) 1951; 64
Padmanabhan (CR11) 2001
Uhlmann, Hays, Turnbull (CR25) 1966; 7
Palosz, Grzanka, Gierlotka, Stelmakh, Pielaszek, Lojkowski, Bismayer, Neuefeind, Weber, Palosz (CR17) 2003; 76
Skandan, Hahn, Kear, Roddy, Cannon (CR23) 1994; 20
Fang, He, Chen, Ding, Luo (CR14) 2007; 27
Petch (CR31) 1953; 174
Roy, Bhowmick, Sanyal, Chakrabarti (CR21) 2008; 34
Zhao, Zhang, Lu (CR20) 1997; 56
Coble (CR24) 1970; 41
Lei, He, Zou, Zhang, Wang, Jiang, Du (CR15) 2008; 181
Varela, Whittemore, Longo (CR28) 1990; 16
Palosz, Stelmakh, Grzanka, Gierlotka, Nauyoks, Zerda, Palosz (CR10) 2007; 102
Lechermann, Fähnle (CR19) 2001; 224
Cameron, Raj (CR5) 1988; 71
Zhao, Zhang, Clausen, Shen, Gray, Wang (CR12) 2006; 7
Lu, Nygren, Aziz, Turnbull, White (CR26) 1990; 56
Palosz, Grzanka, Gierlotka, Stelmakh, Pielaszek, Bismayer, Neuefeind, Weber, Palosz (CR18) 2002; 102
Nakamura, Fujita, Iijima, Okada (CR2) 2003; 51
He, Akaishi, Tanaka (CR16) 2001; 10
He, Zhao, Wang, Che, Liu, Luo, Wang (CR27) 2002; 297
Coble (CR4) 1961; 32
Liao, Pae, Mayo (CR7) 1995; 204
Meyers, Mishra, Benson (CR32) 2006; 51
Yip (CR33) 1998; 391
Carlton, Ferreira (CR34) 2007; 55
Gschneidner, Russell, Pecharsky, Morris, Zhang, Lograsso, Hsu, Lo, Ye, Slager, Kesse (CR1) 2003; 2
Wang, Zhang, Zhao (CR13) 2007; 7
Padmanabhan, Dinda, Hahn, Gleiter (CR35) 2007
Li, Lei, Tang, Luo, Liu, Chen (CR3) 2004; 15
Liao, Chen, Kear, Mayo (CR8) 1998; 10
Liu, George, Maziasz, Schneibel (CR29) 1998; 258
Uhlmann (S0884291400033501_ref025) 1966; 7
Petch (S0884291400033501_ref031) 1953; 174
S0884291400033501_ref030
S0884291400033501_ref035
S0884291400033501_ref013
S0884291400033501_ref034
S0884291400033501_ref012
S0884291400033501_ref033
S0884291400033501_ref011
S0884291400033501_ref032
S0884291400033501_ref010
S0884291400033501_ref017
S0884291400033501_ref016
S0884291400033501_ref015
S0884291400033501_ref014
S0884291400033501_ref019
S0884291400033501_ref018
Palosz (S0884291400033501_ref009) 2004; 16
S0884291400033501_ref020
S0884291400033501_ref024
S0884291400033501_ref002
S0884291400033501_ref001
S0884291400033501_ref023
S0884291400033501_ref022
S0884291400033501_ref021
S0884291400033501_ref028
S0884291400033501_ref006
S0884291400033501_ref027
S0884291400033501_ref005
S0884291400033501_ref026
S0884291400033501_ref004
S0884291400033501_ref003
S0884291400033501_ref008
S0884291400033501_ref029
S0884291400033501_ref007
References_xml – volume: 7
  start-page: 159
  year: 1966
  ident: CR25
  article-title: The effect of high pressure on crystallization kinetics with special reference to fused silica
  publication-title: Phys. Chem. Glasses
– volume: 55
  start-page: 3749
  year: 2007
  ident: CR34
  article-title: What is behind the inverse Hall-Petch effect in nanocrystalline materials?
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.02.021
– volume: 174
  start-page: 25
  year: 1953
  ident: CR31
  article-title: The cleavage strength of polycrystals
  publication-title: J. Iron Steel Res. Inst.
– volume: 7
  start-page: 426
  year: 2006
  ident: CR12
  article-title: Thermomechanics of nanocrystalline nickel under high pressure-temperature conditions
  publication-title: Nano Lett.
  doi: 10.1021/nl062685s
– volume: 181
  start-page: 1810
  year: 2008
  ident: CR15
  article-title: Phase transitions of LiAlO at high pressure and high temperature
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2008.04.006
– volume: 10
  start-page: 1465
  year: 2001
  ident: CR16
  article-title: High pressure synthesis of cubic boron nitride from Si-hBN system
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/S0925-9635(00)00581-1
– volume: 41
  start-page: 4798
  year: 1970
  ident: CR24
  article-title: Diffusion models for hot pressing with surface energy and pressure effects as driving forces
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1658543
– volume: 16
  start-page: S353
  year: 2004
  ident: CR9
  article-title: High pressure x-ray diffraction studies on nanocrystalline materials
  publication-title: J. Phys.: Condens. Matter
– volume: 16
  start-page: 177
  year: 1990
  ident: CR28
  article-title: Pore size evolution during sintering of ceramic oxides
  publication-title: Ceram. Int.
  doi: 10.1016/0272-8842(90)90053-I
– volume: 56
  start-page: 14322
  year: 1997
  ident: CR20
  article-title: Structure characteristics of nanocrystalline element selenium with different grain sizes
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.56.14322
– volume: 258
  start-page: 84
  year: 1998
  ident: CR29
  article-title: Recent advances in B2 iron aluminide alloys: Deformation, fracture and alloy design
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(98)00921-6
– volume: 2
  start-page: 587
  year: 2003
  ident: CR1
  article-title: A family of ductile intermetallic compounds
  publication-title: Nat. Mater.
  doi: 10.1038/nmat958
– volume: 204
  start-page: 152
  year: 1995
  ident: CR7
  article-title: High pressure and low temperature sintering of bulk nanocrystalline TiO
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/0921-5093(95)09952-2
– volume: 76
  start-page: 171
  year: 2003
  ident: CR17
  article-title: Application of x-ray powder diffraction to nano-materials: Determination of the atomic structure of nanocrystals with relaxed and strained surfaces
  publication-title: Phase Trans.
  doi: 10.1080/0141159031000076129
– start-page: 200
  year: 2001
  ident: CR11
  article-title: Mechanical properties of nanostructured materials
  publication-title: Mater. Sci. Eng.
– start-page: 462
  year: 2007
  ident: CR35
  article-title: Inverse Hall-Petch effect and grain boundary sliding controlled flow in nanocrystalline materials
  publication-title: Mater. Sci. Eng.
– volume: 391
  start-page: 532
  year: 1998
  ident: CR33
  article-title: The strongest size
  publication-title: Nature
  doi: 10.1038/35254
– volume: 73
  start-page: 134106
  year: 2006
  ident: CR22
  article-title: X-ray diffraction study of the static strength of tungsten to 69 GPa
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.73.134106
– volume: 71
  start-page: 1031
  year: 1988
  ident: CR5
  article-title: Grain-growth transition during sintering of colloidally prepared alumina powder compacts
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1988.tb05787.x
– volume: 102
  start-page: 074303
  year: 2007
  ident: CR10
  article-title: Origin of macrostrains and micro-strains in diamond-SiC nanocomposites based on the core-shell model
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2785025
– volume: 51
  start-page: 427
  year: 2006
  ident: CR32
  article-title: Mechanical properties of nanocrystalline materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2005.08.003
– volume: 297
  start-page: 84
  year: 2002
  ident: CR27
  article-title: Pressure-induced crystallization in a bulk amorphous Zr-based alloy
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00906-1
– volume: 64
  start-page: 747
  year: 1951
  ident: CR30
  article-title: The deformation and ageing of mild steel: III. Discussion of results
  publication-title: Proc. Phys. Soc., Ser. B
  doi: 10.1088/0370-1301/64/9/303
– volume: 15
  start-page: 1866
  year: 2004
  ident: CR3
  article-title: Production of copper nanoparticles by the flow-levitation method
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/15/12/031
– volume: 10
  start-page: 1063
  year: 1998
  ident: CR8
  article-title: High pressure/ low temperature sintering of nanocrystalline alumina
  publication-title: Nanostruct. Mater.
  doi: 10.1016/S0965-9773(98)00125-1
– volume: 404
  start-page: 168
  year: 2000
  ident: CR6
  article-title: Sintering dense nanocrystalline ceramics without final-stage grain growth
  publication-title: Nature
  doi: 10.1038/35004548
– volume: 7
  start-page: 3196
  year: 2007
  ident: CR13
  article-title: Strength weakening by nanocrystals in ceramic materials
  publication-title: Nano Lett.
  doi: 10.1021/nl0718723
– volume: 32
  start-page: 787
  year: 1961
  ident: CR4
  article-title: Sintering crystalline solid
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736107
– volume: 27
  start-page: 367
  year: 2007
  ident: CR14
  article-title: Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets
  publication-title: High Pressure Res.
  doi: 10.1080/08957950701553796
– volume: 51
  start-page: 3861
  year: 2003
  ident: CR2
  article-title: Diffusion mechanisms in B2 NiAl phase studied by experiments on Kirkendall effect and interdiffusion under high pressures
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(03)00210-6
– volume: 102
  start-page: 57
  issue: 1
  year: 2002
  ident: CR18
  article-title: Diffraction studies of nanocrystals: Theory and experiment
  publication-title: Acta Phys. Pol., A
  doi: 10.12693/APhysPolA.102.57
– volume: 224
  start-page: R4
  year: 2001
  ident: CR19
  article-title: Ab-initio statistical mechanics for the phase diagram of NiAl including the effect of vacancies
  publication-title: Phys. Status Solidi B
  doi: 10.1002/1521-3951(200103)224:23.0.CO;2-U
– volume: 34
  start-page: 81
  year: 2008
  ident: CR21
  article-title: Sintering studies of nano-crystalline zinc oxide
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2006.08.015
– volume: 20
  start-page: 305
  year: 1994
  ident: CR23
  article-title: The effect of applied stress on densification of nanostructured zirconia during sinter-forging
  publication-title: Mater. Lett.
  doi: 10.1016/0167-577X(94)90035-3
– volume: 56
  start-page: 137
  year: 1990
  ident: CR26
  article-title: Pressure-enhanced solid phase epitaxy of germanium
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.103053
– ident: S0884291400033501_ref030
  doi: 10.1088/0370-1301/64/9/303
– ident: S0884291400033501_ref005
  doi: 10.1111/j.1151-2916.1988.tb05787.x
– ident: S0884291400033501_ref018
  doi: 10.12693/APhysPolA.102.57
– ident: S0884291400033501_ref032
  doi: 10.1016/j.pmatsci.2005.08.003
– ident: S0884291400033501_ref019
  doi: 10.1002/1521-3951(200103)224:23.0.CO;2-U
– volume: 16
  start-page: S353
  year: 2004
  ident: S0884291400033501_ref009
  article-title: High pressure x-ray diffraction studies on nanocrystalline materials
  publication-title: J. Phys.: Condens. Matter
– ident: S0884291400033501_ref022
  doi: 10.1103/PhysRevB.73.134106
– ident: S0884291400033501_ref024
  doi: 10.1063/1.1658543
– ident: S0884291400033501_ref010
  doi: 10.1063/1.2785025
– ident: S0884291400033501_ref016
  doi: 10.1016/S0925-9635(00)00581-1
– ident: S0884291400033501_ref035
  doi: 10.1016/j.msea.2006.10.084
– ident: S0884291400033501_ref020
  doi: 10.1103/PhysRevB.56.14322
– ident: S0884291400033501_ref007
  doi: 10.1016/0921-5093(95)09952-2
– ident: S0884291400033501_ref012
  doi: 10.1021/nl062685s
– ident: S0884291400033501_ref017
  doi: 10.1080/0141159031000076129
– ident: S0884291400033501_ref006
  doi: 10.1038/35004548
– ident: S0884291400033501_ref026
  doi: 10.1063/1.103053
– ident: S0884291400033501_ref004
  doi: 10.1063/1.1736107
– ident: S0884291400033501_ref021
  doi: 10.1016/j.ceramint.2006.08.015
– ident: S0884291400033501_ref001
  doi: 10.1038/nmat958
– ident: S0884291400033501_ref014
  doi: 10.1080/08957950701553796
– volume: 7
  start-page: 159
  year: 1966
  ident: S0884291400033501_ref025
  article-title: The effect of high pressure on crystallization kinetics with special reference to fused silica
  publication-title: Phys. Chem. Glasses
– ident: S0884291400033501_ref015
  doi: 10.1016/j.jssc.2008.04.006
– ident: S0884291400033501_ref008
  doi: 10.1016/S0965-9773(98)00125-1
– ident: S0884291400033501_ref033
  doi: 10.1038/35254
– ident: S0884291400033501_ref028
  doi: 10.1016/0272-8842(90)90053-I
– volume: 174
  start-page: 25
  year: 1953
  ident: S0884291400033501_ref031
  article-title: The cleavage strength of polycrystals
  publication-title: J. Iron Steel Res. Inst.
– ident: S0884291400033501_ref029
  doi: 10.1016/S0921-5093(98)00921-6
– ident: S0884291400033501_ref002
  doi: 10.1016/S1359-6454(03)00210-6
– ident: S0884291400033501_ref011
  doi: 10.1016/S0921-5093(00)01437-4
– ident: S0884291400033501_ref034
  doi: 10.1016/j.actamat.2007.02.021
– ident: S0884291400033501_ref027
  doi: 10.1016/S0022-3093(01)00906-1
– ident: S0884291400033501_ref013
  doi: 10.1021/nl0718723
– ident: S0884291400033501_ref003
  doi: 10.1088/0957-4484/15/12/031
– ident: S0884291400033501_ref023
  doi: 10.1016/0167-577X(94)90035-3
SSID ssj0015074
Score 2.0465906
Snippet Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were...
Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0-5.0 GPa and 600-1500 deg C, respectively). The sintered samples were...
SourceID proquest
crossref
springer
istex
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2089
SubjectTerms Applied and Technical Physics
Biomaterials
Grain size
Inorganic Chemistry
Materials Engineering
Materials Science
Nanostructure
Nanotechnology
Sintering
Title High-pressure and high-temperature sintering of nanostructured bulk NiAl materials
URI https://www.cambridge.org/core/product/identifier/S0884291400033501/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-0M51SQN0-9/fulltext.pdf
https://link.springer.com/article/10.1557/jmr.2009.0227
https://www.proquest.com/docview/34749973
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgFRI8IBggCmzkAQFSyUht5-uxGytVtRZttKJvluMksK1LUNsItL-e80fcZVANeImq1HJT3y_nu_Pd7xB6BTZ86hGau4SLyKUC525EutSNOA0D8Fqwr4rERuNgMKXDmT9bN-NU1SWrZE9c_rGu5H-kCvdArrJK9h8kayeFG_AZ5AtXkDBc_0rGMknDVZms9TGAZB92Jd2U4UruLCUfxMKkNhe8KDVhbCXTzpNqfg5Q6M07YLbq591gq9rvO4YcyAaRv9Tx5m-8uDi1SBuoOOmHihc_slMbnC4rpfHL4uuKl-szIZVQMAScnlVFIwoRr7OlrLKiLo51QWitWXV1tEFQQ016um-Q2XKxp7va_qbOfdWDeDg6McSiWPMINGmzx59Yf3p0xCaHs8lt1MLgL4DCa_X6-_tje6AEZi_VDoV-TEO3Cj_wvjH9VYqNhqnSkm_dz4Yfcu3oXFkkkwfovhGP09O4eIhuZcU2uneFYHIb3VEJvmL5CJ00sOIAVpzrWHEsVpwyd5pYcSRWHIkVx2LhMZr2DycHA9f003AF2GUrF3YyQoTvZX4QJ7SL0yDMaQJbHljZYLclOIIRkfCFl3KchyLNaSb5G9OIJn6YE_IEbRVlkT1FTiDAracB8SRZUOSlCQc3mmQ4SKkABztvo7d2GZl5Y5ZMOpyw4uzsYiHbn8ZMrngbvatXmQnDSy_bo8w3DX9th3_XhCwbByqR2VF8cS6zGEOfBR-PmTfyu5-Pxx6L2-hlLVMGulUemPEiK6slIzSkcRySNnpTi_qGP_Psxrmeo7t1ymmXvkBbIMhsB-zaVbJrMPsLUjmjQA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-pressure+and+high-temperature+sintering+of+nanostructured+bulk+NiAl+materials&rft.jtitle=Journal+of+materials+research&rft.au=Wang%2C+Shanmin&rft.au=He%2C+Duanwei&rft.au=Zou%2C+Yongtao&rft.au=Wei%2C+Jianjun&rft.date=2009-06-01&rft.issn=0884-2914&rft.volume=24&rft.issue=6&rft.spage=2089&rft.epage=2096&rft_id=info:doi/10.1557%2FJMR.2009.0227&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon