Time-lag Between Disk and Corona Radiation Leads to Hysteresis Effect Observed in Black hole X-Ray Binary MAXI J1348-630

Accretion is an essential physical process in black hole X-ray binaries (BHXRBs) and active galactic nuclei. The properties of accretion flows and their radiation were originally considered to be uniquely determined by the mass accretion rate of the disk; however, the “hysteresis effect” observed du...

Full description

Saved in:
Bibliographic Details
Published inAstrophysical journal. Letters Vol. 915; no. 1; p. L15
Main Authors Weng, Shan-Shan, Cai, Zhen-Yi, Zhang, Shuang-Nan, Zhang, Wei, Chen, Yu-Peng, Huang, Yue, Tao, Lian
Format Journal Article
LanguageEnglish
Published Austin The American Astronomical Society 01.07.2021
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accretion is an essential physical process in black hole X-ray binaries (BHXRBs) and active galactic nuclei. The properties of accretion flows and their radiation were originally considered to be uniquely determined by the mass accretion rate of the disk; however, the “hysteresis effect” observed during outbursts of nearly all BHXRBs seriously challenges this paradigm. The hysteresis effect referred to is that the hard-to-soft state transition in the fast-rise stage occurs at much higher luminosity than the soft-to-hard state transition in the slow-decay stage. That is, the same source can show different spectral/temporal properties at the same luminosity. Phenomenologically, this effect is also represented as the so-called “q”-shaped hardness-intensity diagram, which has been proposed as a unified scene for BHXRBs. However, there is still a lack of quantitative theoretical interpretation and observational understanding of the “q”-diagram. Here, we present a detailed time-lag analysis of a recently found BHXRB, MAXI J1348-630, intensively monitored by Insight -HXMT over a broad energy band (1–150 keV). We find the first observational evidence that the observed time-lag between radiations of the accretion disk and the corona leads naturally to the hysteresis effect and the “q”-diagram. Moreover, complemented by the quasi-simultaneous Swift data, we achieve a panorama of the accretion flow: the hard X-ray outburst from the corona heats and subsequently induces the optical brightening in the outer disk with nearly no lag; thereafter, the enhanced accretion in the outer disk propagates inward, generating the delayed soft X-ray outburst at the viscous timescale of ∼8–12 days.
AbstractList Accretion is an essential physical process in black hole X-ray binaries (BHXRBs) and active galactic nuclei. The properties of accretion flows and their radiation were originally considered to be uniquely determined by the mass accretion rate of the disk; however, the “hysteresis effect” observed during outbursts of nearly all BHXRBs seriously challenges this paradigm. The hysteresis effect referred to is that the hard-to-soft state transition in the fast-rise stage occurs at much higher luminosity than the soft-to-hard state transition in the slow-decay stage. That is, the same source can show different spectral/temporal properties at the same luminosity. Phenomenologically, this effect is also represented as the so-called “q”-shaped hardness-intensity diagram, which has been proposed as a unified scene for BHXRBs. However, there is still a lack of quantitative theoretical interpretation and observational understanding of the “q”-diagram. Here, we present a detailed time-lag analysis of a recently found BHXRB, MAXI J1348-630, intensively monitored by Insight -HXMT over a broad energy band (1–150 keV). We find the first observational evidence that the observed time-lag between radiations of the accretion disk and the corona leads naturally to the hysteresis effect and the “q”-diagram. Moreover, complemented by the quasi-simultaneous Swift data, we achieve a panorama of the accretion flow: the hard X-ray outburst from the corona heats and subsequently induces the optical brightening in the outer disk with nearly no lag; thereafter, the enhanced accretion in the outer disk propagates inward, generating the delayed soft X-ray outburst at the viscous timescale of ∼8–12 days.
Accretion is an essential physical process in black hole X-ray binaries (BHXRBs) and active galactic nuclei. The properties of accretion flows and their radiation were originally considered to be uniquely determined by the mass accretion rate of the disk; however, the “hysteresis effect” observed during outbursts of nearly all BHXRBs seriously challenges this paradigm. The hysteresis effect referred to is that the hard-to-soft state transition in the fast-rise stage occurs at much higher luminosity than the soft-to-hard state transition in the slow-decay stage. That is, the same source can show different spectral/temporal properties at the same luminosity. Phenomenologically, this effect is also represented as the so-called “q”-shaped hardness-intensity diagram, which has been proposed as a unified scene for BHXRBs. However, there is still a lack of quantitative theoretical interpretation and observational understanding of the “q”-diagram. Here, we present a detailed time-lag analysis of a recently found BHXRB, MAXI J1348-630, intensively monitored by Insight-HXMT over a broad energy band (1–150 keV). We find the first observational evidence that the observed time-lag between radiations of the accretion disk and the corona leads naturally to the hysteresis effect and the “q”-diagram. Moreover, complemented by the quasi-simultaneous Swift data, we achieve a panorama of the accretion flow: the hard X-ray outburst from the corona heats and subsequently induces the optical brightening in the outer disk with nearly no lag; thereafter, the enhanced accretion in the outer disk propagates inward, generating the delayed soft X-ray outburst at the viscous timescale of ∼8–12 days.
Author Weng, Shan-Shan
Zhang, Shuang-Nan
Chen, Yu-Peng
Huang, Yue
Zhang, Wei
Tao, Lian
Cai, Zhen-Yi
Author_xml – sequence: 1
  givenname: Shan-Shan
  orcidid: 0000-0001-7595-1458
  surname: Weng
  fullname: Weng, Shan-Shan
  organization: Nanjing Normal University Department of Physics and Institute of Theoretical Physics, Nanjing 210023, People’s Republic of China
– sequence: 2
  givenname: Zhen-Yi
  orcidid: 0000-0002-4223-2198
  surname: Cai
  fullname: Cai, Zhen-Yi
  organization: University of Science and Technology of China School of Astronomy and Space Science, Hefei 230026, People’s Republic of China
– sequence: 3
  givenname: Shuang-Nan
  orcidid: 0000-0001-5586-1017
  surname: Zhang
  fullname: Zhang, Shuang-Nan
  organization: Institute of High Energy Physics Key Laboratory of Particle Astrophysics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
– sequence: 4
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: Institute of High Energy Physics Key Laboratory of Particle Astrophysics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
– sequence: 5
  givenname: Yu-Peng
  surname: Chen
  fullname: Chen, Yu-Peng
  organization: Institute of High Energy Physics Key Laboratory of Particle Astrophysics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
– sequence: 6
  givenname: Yue
  surname: Huang
  fullname: Huang, Yue
  organization: Institute of High Energy Physics Key Laboratory of Particle Astrophysics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
– sequence: 7
  givenname: Lian
  orcidid: 0000-0002-2705-4338
  surname: Tao
  fullname: Tao, Lian
  organization: Institute of High Energy Physics Key Laboratory of Particle Astrophysics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
BookMark eNp9kM1P3DAQxa2KSoUtd46WKvVEwF47TnJkt5QPbYWEQOJmTewJ9RLsYJuW_e_JsohKqO1hPJb13hvPb4ds-eCRkD3ODkQtq8Mpk7yop1wcgmFQtR_I9tvT1tudlZ_ITkpLxqZM8XqbPF25eyx6uKUzzL8RPf3m0h0Fb-k8xOCBXoJ1kF3wdIFgE82Bnq5SxojJJXrcdWgyvWgTxl9oqfN01oO5oz9Dj_SmuIQVnTkPcUV_HN2c0XMuZF0owT6Tjx30CXdf-4Rcfz--mp8Wi4uTs_nRojCi5rmwFaqyFaITqIAzaCwTLRomJDPKdpVsKtHYpmqgbjolxzIlrxXKFiQIacSEfNnkDjE8PGLKehkeox9H6mkpa6VYORKaELVRmRhSithp4_LL1jmC6zVnek1ZrzHqNVK9oTwa2TvjEN39uO7_LF83FheGP5-BYdnrhpea68V4DrYbhft_Ef4z9xldupp1
CitedBy_id crossref_primary_10_3847_2041_8213_ad5b50
crossref_primary_10_3847_1538_4357_ac4fca
crossref_primary_10_1093_mnras_stac3238
crossref_primary_10_3847_1538_4357_ac88c6
crossref_primary_10_1051_0004_6361_202348352
crossref_primary_10_1016_j_jheap_2024_04_004
crossref_primary_10_3390_galaxies10050095
crossref_primary_10_1016_j_jheap_2022_12_001
crossref_primary_10_3847_1538_4357_aca7b8
crossref_primary_10_1051_0004_6361_202142716
crossref_primary_10_1093_mnras_stad1274
Cites_doi 10.1046/j.1365-8711.2003.06918.x
10.1093/mnras/stw1007
10.1086/304829
10.1086/520329
10.3847/1538-4357/aab091
10.1007/s00159-007-0006-1
10.1111/j.1365-2966.2012.21339.x
10.1007/s11433-019-1432-6
10.1088/2041-8205/737/1/L17
10.1086/304921
10.1046/j.1365-8711.2003.06040.x
10.1086/422091
10.1086/316177
10.3847/2041-8213/abaaaa
10.1038/s41586-018-0803-x
10.1111/j.1365-2966.2010.16114.x
10.1051/0004-6361/201527130
10.1086/521011
10.1086/169918
10.1111/j.1365-2966.2007.12098.x
10.1088/0004-637X/806/1/129
10.1088/0004-637X/737/2/103
10.1046/j.1365-8711.1998.01295.x
10.3847/1538-4357/aac2d7
10.1093/mnras/staa2842
10.1016/j.asr.2019.10.022
10.1111/j.1365-2966.2004.07830.x
10.1093/mnras/stu2610
10.1046/j.1365-8711.2003.06791.x
10.1086/318954
10.1146/annurev.astro.44.051905.092532
10.1093/mnras/staa275
10.1111/j.1365-2966.2006.10756.x
10.1146/annurev-astro-082812-141003
10.1051/0004-6361:20010632
10.3847/1538-4357/ab7991
10.1086/177901
10.1111/j.1365-2966.2004.08384.x
10.3847/1538-4357/ab9696
10.1016/S1387-6473(01)00112-9
10.1093/mnras/staa1843
ContentType Journal Article
Copyright 2021. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Jul 01, 2021
Copyright_xml – notice: 2021. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Jul 01, 2021
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/2041-8213/ac0a7b
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2041-8213
ExternalDocumentID 10_3847_2041_8213_ac0a7b
apjlac0a7b
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: U2038103; 11873045; 11733009; U1838202; U1938101; U1838201; U1838115; U1838108 and U1938107
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID 1JI
2FS
4.4
6J9
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ACGFS
ACHIP
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
EBS
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
PJBAE
RIN
ROL
SY9
T37
~02
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c381t-d7e65b33f3e6a10a9d03bec0340c6df749739d979a89f649f6c5186e4ba4a34c3
IEDL.DBID O3W
ISSN 2041-8205
IngestDate Wed Aug 13 06:09:41 EDT 2025
Tue Jul 01 04:11:58 EDT 2025
Thu Apr 24 23:08:12 EDT 2025
Tue Aug 20 22:16:48 EDT 2024
Wed Aug 21 03:33:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-d7e65b33f3e6a10a9d03bec0340c6df749739d979a89f649f6c5186e4ba4a34c3
Notes AAS30985
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7595-1458
0000-0002-2705-4338
0000-0001-5586-1017
0000-0002-4223-2198
OpenAccessLink https://iopscience.iop.org/article/10.3847/2041-8213/ac0a7b/pdf
PQID 2548660521
PQPubID 4562431
PageCount 7
ParticipantIDs crossref_primary_10_3847_2041_8213_ac0a7b
iop_journals_10_3847_2041_8213_ac0a7b
proquest_journals_2548660521
crossref_citationtrail_10_3847_2041_8213_ac0a7b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210701
2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 20210701
  day: 01
PublicationDecade 2020
PublicationPlace Austin
PublicationPlace_xml – name: Austin
PublicationTitle Astrophysical journal. Letters
PublicationTitleAbbrev APJL
PublicationTitleAlternate Astrophys. J. Lett
PublicationYear 2021
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Coriat (apjlac0a7bbib13) 2012; 424
Gallo (apjlac0a7bbib22) 2003; 344
Russell (apjlac0a7bbib40) 2019b; 12456
Zdziarski (apjlac0a7bbib51) 2004; 351
Yuan (apjlac0a7bbib50) 2014; 52
Chen (apjlac0a7bbib12) 2019; 12470
Russell (apjlac0a7bbib38) 2019a; 12439
Peterson (apjlac0a7bbib36) 1998; 110
Cai (apjlac0a7bbib8) 2018; 855
Hameury (apjlac0a7bbib24) 2020; 66
Belloni (apjlac0a7bbib5) 2010; 794
Heinz (apjlac0a7bbib25) 2003; 343
Arnaud (apjlac0a7bbib2) 1996
Kara (apjlac0a7bbib28) 2019; 565
King (apjlac0a7bbib29) 1998; 293
Carotenuto (apjlac0a7bbib9) 2019; 12497
Esin (apjlac0a7bbib19) 1997; 489
Cackett (apjlac0a7bbib6) 2007; 380
Sun (apjlac0a7bbib44) 2018
Maccarone (apjlac0a7bbib35) 2003; 338
Zhang (apjlac0a7bbib53) 2020b; 63
Cai (apjlac0a7bbib7) 2020; 892
Chen (apjlac0a7bbib11) 1997; 491
Krolik (apjlac0a7bbib31) 1991; 371
Corral-Santana (apjlac0a7bbib14) 2016; 587
López-Navas (apjlac0a7bbib34) 2020; 493
Koljonen (apjlac0a7bbib30) 2016; 460
Jana (apjlac0a7bbib27) 2020; 897
Russell (apjlac0a7bbib39) 2006; 371
Dubus (apjlac0a7bbib16) 2001; 373
Edelson (apjlac0a7bbib18) 2015; 806
Sanna (apjlac0a7bbib42) 2019; 12447
Zhu (apjlac0a7bbib54) 2018; 860
Akritas (apjlac0a7bbib1) 1996; 470
Lasota (apjlac0a7bbib32) 2001; 45
Homan (apjlac0a7bbib26) 2001; 132
Tominaga (apjlac0a7bbib45) 2020; 899
Done (apjlac0a7bbib15) 2007; 15
Bassi (apjlac0a7bbib3) 2019; 12477
Schlafly (apjlac0a7bbib43) 2011; 737
van Paradijs (apjlac0a7bbib46) 1994; 290
Yu (apjlac0a7bbib49) 2007; 667
Veledina (apjlac0a7bbib47) 2011; 737
Fender (apjlac0a7bbib20) 2004; 355
Frank (apjlac0a7bbib21) 2002
Lepingwell (apjlac0a7bbib33) 2019; 12441
Zhang (apjlac0a7bbib52) 2020a; 499
Gehrels (apjlac0a7bbib23) 2004; 611
Charles (apjlac0a7bbib10) 2019; 12480
Remillard (apjlac0a7bbib37) 2006; 44
Belloni (apjlac0a7bbib4) 2020; 496
Dunn (apjlac0a7bbib17) 2010; 403
Weng (apjlac0a7bbib48) 2015; 447
Rykoff (apjlac0a7bbib41) 2007; 666
References_xml – volume: 12447
  start-page: 1
  year: 2019
  ident: apjlac0a7bbib42
  publication-title: ATel
– volume: 343
  start-page: L59
  year: 2003
  ident: apjlac0a7bbib25
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06918.x
– volume: 460
  start-page: 942
  year: 2016
  ident: apjlac0a7bbib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1007
– volume: 12477
  start-page: 1
  year: 2019
  ident: apjlac0a7bbib3
  publication-title: ATel
– volume: 489
  start-page: 865
  year: 1997
  ident: apjlac0a7bbib19
  publication-title: ApJ
  doi: 10.1086/304829
– volume: 666
  start-page: 1129
  year: 2007
  ident: apjlac0a7bbib41
  publication-title: ApJ
  doi: 10.1086/520329
– volume: 855
  start-page: 117
  year: 2018
  ident: apjlac0a7bbib8
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab091
– volume: 12470
  start-page: 1
  year: 2019
  ident: apjlac0a7bbib12
  publication-title: ATel
– start-page: 17
  year: 1996
  ident: apjlac0a7bbib2
– volume: 15
  start-page: 1
  year: 2007
  ident: apjlac0a7bbib15
  publication-title: A&ARv
  doi: 10.1007/s00159-007-0006-1
– volume: 424
  start-page: 1991
  year: 2012
  ident: apjlac0a7bbib13
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21339.x
– volume: 63
  start-page: 249502
  year: 2020b
  ident: apjlac0a7bbib53
  publication-title: SCPMA
  doi: 10.1007/s11433-019-1432-6
– volume: 737
  start-page: L17
  year: 2011
  ident: apjlac0a7bbib47
  publication-title: ApJL
  doi: 10.1088/2041-8205/737/1/L17
– volume: 491
  start-page: 312
  year: 1997
  ident: apjlac0a7bbib11
  publication-title: ApJ
  doi: 10.1086/304921
– volume: 338
  start-page: 189
  year: 2003
  ident: apjlac0a7bbib35
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06040.x
– volume: 611
  start-page: 1005
  year: 2004
  ident: apjlac0a7bbib23
  publication-title: ApJ
  doi: 10.1086/422091
– volume: 110
  start-page: 660
  year: 1998
  ident: apjlac0a7bbib36
  publication-title: PASP
  doi: 10.1086/316177
– volume: 794
  start-page: 53
  year: 2010
  ident: apjlac0a7bbib5
  publication-title: LNP
– volume: 899
  start-page: L20
  year: 2020
  ident: apjlac0a7bbib45
  publication-title: ApJL
  doi: 10.3847/2041-8213/abaaaa
– volume: 12480
  start-page: 1
  year: 2019
  ident: apjlac0a7bbib10
  publication-title: ATel
– volume: 565
  start-page: 198
  year: 2019
  ident: apjlac0a7bbib28
  publication-title: Natur
  doi: 10.1038/s41586-018-0803-x
– volume: 403
  start-page: 61
  year: 2010
  ident: apjlac0a7bbib17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16114.x
– volume: 587
  start-page: A61
  year: 2016
  ident: apjlac0a7bbib14
  publication-title: A&A
  doi: 10.1051/0004-6361/201527130
– volume: 667
  start-page: 1043
  year: 2007
  ident: apjlac0a7bbib49
  publication-title: ApJ
  doi: 10.1086/521011
– volume: 371
  start-page: 541
  year: 1991
  ident: apjlac0a7bbib31
  publication-title: ApJ
  doi: 10.1086/169918
– volume: 380
  start-page: 669
  year: 2007
  ident: apjlac0a7bbib6
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12098.x
– volume: 806
  start-page: 129
  year: 2015
  ident: apjlac0a7bbib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/806/1/129
– volume: 737
  start-page: 103
  year: 2011
  ident: apjlac0a7bbib43
  publication-title: ApJ
  doi: 10.1088/0004-637X/737/2/103
– volume: 12456
  start-page: 1
  year: 2019b
  ident: apjlac0a7bbib40
  publication-title: ATel
– year: 2018
  ident: apjlac0a7bbib44
– volume: 12497
  start-page: 1
  year: 2019
  ident: apjlac0a7bbib9
  publication-title: ATel
– volume: 12439
  start-page: 1
  year: 2019a
  ident: apjlac0a7bbib38
  publication-title: ATel
– volume: 12441
  start-page: 1
  year: 2019
  ident: apjlac0a7bbib33
  publication-title: ATel
– volume: 293
  start-page: L42
  year: 1998
  ident: apjlac0a7bbib29
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01295.x
– volume: 860
  start-page: 29
  year: 2018
  ident: apjlac0a7bbib54
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac2d7
– volume: 499
  start-page: 851
  year: 2020a
  ident: apjlac0a7bbib52
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2842
– volume: 290
  start-page: 133
  year: 1994
  ident: apjlac0a7bbib46
  publication-title: A&A
– volume: 66
  start-page: 1004
  year: 2020
  ident: apjlac0a7bbib24
  publication-title: AdSpR
  doi: 10.1016/j.asr.2019.10.022
– volume: 351
  start-page: 791
  year: 2004
  ident: apjlac0a7bbib51
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07830.x
– volume: 447
  start-page: 486
  year: 2015
  ident: apjlac0a7bbib48
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2610
– volume: 344
  start-page: 60
  year: 2003
  ident: apjlac0a7bbib22
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06791.x
– volume: 132
  start-page: 377
  year: 2001
  ident: apjlac0a7bbib26
  publication-title: ApJS
  doi: 10.1086/318954
– volume: 44
  start-page: 49
  year: 2006
  ident: apjlac0a7bbib37
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.44.051905.092532
– volume: 493
  start-page: 940
  year: 2020
  ident: apjlac0a7bbib34
  publication-title: MNRAS
  doi: 10.1093/mnras/staa275
– year: 2002
  ident: apjlac0a7bbib21
– volume: 371
  start-page: 1334
  year: 2006
  ident: apjlac0a7bbib39
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10756.x
– volume: 52
  start-page: 529
  year: 2014
  ident: apjlac0a7bbib50
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082812-141003
– volume: 373
  start-page: 251
  year: 2001
  ident: apjlac0a7bbib16
  publication-title: A&A
  doi: 10.1051/0004-6361:20010632
– volume: 892
  start-page: 63
  year: 2020
  ident: apjlac0a7bbib7
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab7991
– volume: 470
  start-page: 706
  year: 1996
  ident: apjlac0a7bbib1
  publication-title: ApJ
  doi: 10.1086/177901
– volume: 355
  start-page: 1105
  year: 2004
  ident: apjlac0a7bbib20
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08384.x
– volume: 897
  start-page: 3
  year: 2020
  ident: apjlac0a7bbib27
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9696
– volume: 45
  start-page: 449
  year: 2001
  ident: apjlac0a7bbib32
  publication-title: NewAR
  doi: 10.1016/S1387-6473(01)00112-9
– volume: 496
  start-page: 4366
  year: 2020
  ident: apjlac0a7bbib4
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1843
SSID ssj0020618
Score 2.4450285
Snippet Accretion is an essential physical process in black hole X-ray binaries (BHXRBs) and active galactic nuclei. The properties of accretion flows and their...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage L15
SubjectTerms Accretion
Accretion disks
Active galactic nuclei
Black hole physics
Black holes
Brightening
Corona
Decay rate
Energy bands
Hysteresis
Low-mass x-ray binary stars
Luminosity
Outbursts
Radiation
Soft x rays
X ray binaries
X ray stars
X-ray astronomy
X-rays
Title Time-lag Between Disk and Corona Radiation Leads to Hysteresis Effect Observed in Black hole X-Ray Binary MAXI J1348-630
URI https://iopscience.iop.org/article/10.3847/2041-8213/ac0a7b
https://www.proquest.com/docview/2548660521
Volume 915
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELa65cIFUR5qoS1zACQOoc7acWz1tC1U2wpYVFGxN8uJ7Wphya7IIrX_npk4XVSBKg6JEmkSW_5ij7_JPBh7iQyjpjQy2dBUSFAMTkUd8VZTUVgpQ16GztvikxpfyLNpMd1gh-tYmMWyX_rf4mVKFJyGkOa3wLUU6brMMz3MxYGruSurAbsntNLEvCbi65ptoaLqytElaV6kf5T_fMMtnTTAdv9amDttc_KQPei3iTBKndpiG6F5xLZHLRmuFz-u4TV018ku0T5mVxTKkc3dJRwlxyt4N2u_g2s8HFOOAgfnlISAUACqqtnCagFjyuKMdHvWQkpiDJOKjLTBw6yBzrQHVD4Xptm5u4ajLnQXPo6mp3CWC6kzJfgTdnHy_svxOOuLKmQ1KudV5sugikqIKIJyOXfGc4E4ciF5rXwspSmF8aY0TpuoJB51kWsVZOWkE7IWT9lms2jCNgOhCym8CdzXQbooqxi9HkauYmlU4eIOO7gZVlv3Gcep8MXcIvMgICwBYQkIm4DYYW_WTyxTto07ZF8hUrafcu0dci9uybnlt7k1eWFz-wHPS4_93L1B-48YEmetFIU2P_vPhp6z-0NyeOl8eXfZ5urnr7CHO5ZVtc8Gp5PP-933-Ru1c-H9
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYkBAviJ9a2WD3AEg8hDq149iP3UbVjbGhiYm-WU5so0JJq6VI7L_nLs6GJtDEQyJHOseRP9vnu5y_Y-wVWhg10chkI1OhgWJwKuqIj5qSwkoZ8jJ00RYnanouj2bFrM9z2p2FWa76pf8dFhNRcOpCmt8C11I012We6VEuhq7mrqyGKx832N1CKEW5G07Fl2uLC5VVl5Iu1eBF-k_5z7fc0Esb2PZfi3OncSYP2YN-qwjj9GGP2J3QPGZb45ac18sfl_AGunLyTbRP2C86zpEt3FfYS8FXcDBvv4NrPOwTT4GDMyIiICSAMmu2sF7ClJic0eSet5CIjOG0Ikdt8DBvoHPvAaXQhVl25i5hrzu-Cx_Hs0M4yoXUmRL8KTufvP-8P836xApZjQp6nfkyqKISIoqgXM6d8VwgllxIXisfS2lKYbwpjdMmKolXXeRaBVk56YSsxTO22SybsMVA6EIKbwL3dZAuyipGr0eRq1gaVbg4YMOrbrV1zzpOyS8WFq0PAsISEJaAsAmIAXt7XWOVGDdukX2NSNl-2rW3yO3ekHOrbwtr8sLm9hjvOIAGbOcK7T9iaDxrHFS4w3n-nw3tsnufDib2-PDkwza7P6L4ly60d4dtri9-hhe4gVlXL7tB-htlvuTj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-lag+Between+Disk+and+Corona+Radiation+Leads+to+Hysteresis+Effect+Observed+in+Black+hole+X-Ray+Binary+MAXI+J1348-630&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Shan-Shan+Weng&rft.au=Zhen-Yi+Cai&rft.au=Zhang%2C+Shuang-Nan&rft.au=Zhang%2C+Wei&rft.date=2021-07-01&rft.pub=IOP+Publishing&rft.eissn=2041-8213&rft.volume=915&rft.issue=1&rft_id=info:doi/10.3847%2F2041-8213%2Fac0a7b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon