Robust mean-squared error estimation in the presence of model uncertainties
We consider the problem of estimating an unknown parameter vector x in a linear model that may be subject to uncertainties, where the vector x is known to satisfy a weighted norm constraint. We first assume that the model is known exactly and seek the linear estimator that minimizes the worst-case m...
Saved in:
Published in | IEEE transactions on signal processing Vol. 53; no. 1; pp. 168 - 181 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.01.2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the problem of estimating an unknown parameter vector x in a linear model that may be subject to uncertainties, where the vector x is known to satisfy a weighted norm constraint. We first assume that the model is known exactly and seek the linear estimator that minimizes the worst-case mean-squared error (MSE) across all possible values of x. We show that for an arbitrary choice of weighting, the optimal minimax MSE estimator can be formulated as a solution to a semidefinite programming problem (SDP), which can be solved very efficiently. We then develop a closed form expression for the minimax MSE estimator for a broad class of weighting matrices and show that it coincides with the shrunken estimator of Mayer and Willke, with a specific choice of shrinkage factor that explicitly takes the prior information into account. Next, we consider the case in which the model matrix is subject to uncertainties and seek the robust linear estimator that minimizes the worst-case MSE across all possible values of x and all possible values of the model matrix. As we show, the robust minimax MSE estimator can also be formulated as a solution to an SDP. Finally, we demonstrate through several examples that the minimax MSE estimator can significantly increase the performance over the conventional least-squares estimator, and when the model matrix is subject to uncertainties, the robust minimax MSE estimator can lead to a considerable improvement in performance over the minimax MSE estimator. |
---|---|
AbstractList | We consider the problem of estimating an unknown parameter vector x in a linear model that may be subject to uncertainties, where the vector x is known to satisfy a weighted norm constraint. We first assume that the model is known exactly and seek the linear estimator that minimizes the worst-case mean-squared error (MSE) across all possible values of x. We show that for an arbitrary choice of weighting, the optimal minimax MSE estimator can be formulated as a solution to a semidefinite programming problem (SDP), which can be solved very efficiently. We then develop a closed form expression for the minimax MSE estimator for a broad class of weighting matrices and show that it coincides with the shrunken estimator of Mayer and Willke, with a specific choice of shrinkage factor that explicitly takes the prior information into account. Next, we consider the case in which the model matrix is subject to uncertainties and seek the robust linear estimator that minimizes the worst-case MSE across all possible values of x and all possible values of the model matrix. As we show, the robust minimax MSE estimator can also be formulated as a solution to an SDP. Finally, we demonstrate through several examples that the minimax MSE estimator can significantly increase the performance over the conventional least-squares estimator, and when the model matrix is subject to uncertainties, the robust minimax MSE estimator can lead to a considerable improvement in performance over the minimax MSE estimator. [...] we demonstrate through several examples that the minimax MSE estimator can significantly increase the performance over the conventional least-squares estimator, and when the model matrix is subject to uncertainties, the robust minimax MSE estimator can lead to a considerable improvement in performance over the minimax MSE estimator. |
Author | Nemirovski, A. Eldar, Y.C. Ben-Tal, A. |
Author_xml | – sequence: 1 givenname: Y.C. surname: Eldar fullname: Eldar, Y.C. organization: Dept. of Electr. Eng., Technion Israel Inst. of Technol., Haifa, Israel – sequence: 2 givenname: A. surname: Ben-Tal fullname: Ben-Tal, A. – sequence: 3 givenname: A. surname: Nemirovski fullname: Nemirovski, A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16437714$$DView record in Pascal Francis |
BookMark | eNp9kU1rVTEQhoNUsL26duEmCNrVuc2c5ORjKUWrWFC0gruQ5kww5dzkNslZ-O9NvYVCF13NDDzvfL0n5CjlhIS8BrYFYObs6uf37ciY2GquDefPyDEYAQMTSh71nE18mLT6_YKc1HrDGAhh5DH5-iNfr7XRHbo01NvVFZwplpILxdrizrWYE42Jtj9I9wUrJo80B7rLMy507VVpLqYWsb4kz4NbKr66jxvy69PHq_PPw-W3iy_nHy4HzzW0wc9GafDgpJh5AK34yLgDo51jBhxM87UCycYgVAjTDGo0yAwT0zShQh_4hpwe-u5Lvl37mnYXq8dlcQnzWq02chyl4bqT758kR82k0H2DDXn7CLzJa0n9CqulAaG4Hjv07h5y1bslFJd8rHZf-pvKXwtScKVAdO7swPmSay0YHhBm77yy3St755U9eNUV0yOFj-3_61txcXlC9-agi4j4MIVLIyXj_wCbRaFw |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1109_TUFFC_2022_3221682 crossref_primary_10_1109_JSAC_2008_080817 crossref_primary_10_1109_TIT_2007_903118 crossref_primary_10_1109_TSP_2006_881266 crossref_primary_10_1137_060656784 crossref_primary_10_1016_j_applthermaleng_2024_123784 crossref_primary_10_1016_j_dsp_2013_05_012 crossref_primary_10_1016_j_automatica_2023_111384 crossref_primary_10_3758_s13428_013_0342_1 crossref_primary_10_1109_TSP_2006_873365 crossref_primary_10_1109_LSP_2008_2010807 crossref_primary_10_1109_TSP_2008_925584 crossref_primary_10_1109_TCOMM_2015_2452254 crossref_primary_10_1109_TMC_2023_3285239 crossref_primary_10_1109_TWC_2017_2689769 crossref_primary_10_1016_j_sigpro_2021_108112 crossref_primary_10_1109_JSYST_2018_2819993 crossref_primary_10_1109_TSP_2012_2222379 crossref_primary_10_1109_TSP_2007_914323 crossref_primary_10_1109_TIFS_2016_2611478 crossref_primary_10_3390_s21144634 crossref_primary_10_1002_mmce_23039 crossref_primary_10_1109_TWC_2011_030911_100337 crossref_primary_10_1109_LSP_2006_870377 crossref_primary_10_1109_TVT_2015_2499439 crossref_primary_10_1109_TWC_2015_2472405 crossref_primary_10_1109_ACCESS_2018_2796075 crossref_primary_10_1109_TSIPN_2020_2995964 crossref_primary_10_1109_TSP_2005_861086 crossref_primary_10_1016_j_sigpro_2020_107953 crossref_primary_10_1109_LWC_2016_2536607 crossref_primary_10_1587_transcom_E93_B_2223 crossref_primary_10_1049_iet_rsn_2015_0497 crossref_primary_10_1016_j_sigpro_2018_05_005 crossref_primary_10_1109_JSAC_2007_070911 crossref_primary_10_1109_JSTSP_2007_897056 crossref_primary_10_1016_j_dsp_2014_02_009 crossref_primary_10_1016_j_ifacol_2015_09_288 crossref_primary_10_1109_TIT_2015_2485986 crossref_primary_10_1109_TNET_2012_2185508 crossref_primary_10_1109_TSP_2008_2008212 crossref_primary_10_1016_j_dsp_2014_10_004 crossref_primary_10_1109_TIT_2006_881749 crossref_primary_10_1109_TVT_2017_2755665 crossref_primary_10_1016_j_automatica_2010_01_023 crossref_primary_10_1109_LCOMM_2019_2926034 crossref_primary_10_1109_TVT_2013_2259603 crossref_primary_10_1109_TVT_2015_2410759 crossref_primary_10_1137_080734510 crossref_primary_10_1364_AO_48_001389 crossref_primary_10_1007_s11336_011_9229_1 crossref_primary_10_1109_TSP_2005_843701 crossref_primary_10_1007_s11336_010_9162_8 crossref_primary_10_1109_TSP_2011_2162505 crossref_primary_10_1007_s11277_011_0224_8 crossref_primary_10_1109_LWC_2024_3395831 crossref_primary_10_1109_TSP_2006_877648 crossref_primary_10_1109_TIFS_2023_3266928 crossref_primary_10_1007_s10107_005_0683_3 crossref_primary_10_1049_iet_rsn_2018_5113 crossref_primary_10_1287_moor_2021_1176 crossref_primary_10_1155_2010_640186 crossref_primary_10_1109_MSP_2008_918027 crossref_primary_10_1109_TVT_2019_2892104 crossref_primary_10_1186_1687_6180_2011_15 crossref_primary_10_1016_j_cogsys_2024_101304 crossref_primary_10_1109_TSP_2009_2021451 crossref_primary_10_1109_TVT_2013_2280591 crossref_primary_10_1109_LCOMM_2016_2572684 crossref_primary_10_1109_TSP_2006_888094 crossref_primary_10_1016_j_sigpro_2007_01_005 crossref_primary_10_1049_iet_spr_20070175 crossref_primary_10_1007_s10107_006_0092_2 crossref_primary_10_1109_TCOMM_2018_2817222 crossref_primary_10_1109_TIT_2005_851730 crossref_primary_10_1109_LPT_2018_2809486 crossref_primary_10_1109_TSP_2018_2883915 crossref_primary_10_1109_TSP_2023_3322806 crossref_primary_10_1109_TSP_2011_2161471 crossref_primary_10_1155_2009_473930 crossref_primary_10_1155_2008_816507 crossref_primary_10_1109_TSP_2018_2824279 crossref_primary_10_1109_TSP_2007_913158 crossref_primary_10_1109_TSP_2005_861734 crossref_primary_10_1007_s00034_015_0116_3 crossref_primary_10_1587_transcom_2017EBP3092 crossref_primary_10_1109_TCYB_2016_2613129 crossref_primary_10_1109_LSP_2010_2051052 crossref_primary_10_1109_LWC_2020_3000490 crossref_primary_10_1137_050643696 crossref_primary_10_1109_TSP_2006_870559 crossref_primary_10_1109_TCCN_2023_3235788 crossref_primary_10_1134_S0005117916020028 crossref_primary_10_1016_j_jspi_2007_12_002 crossref_primary_10_1109_TVT_2015_2442996 crossref_primary_10_1117_1_JRS_10_035005 crossref_primary_10_1109_TSP_2009_2037066 crossref_primary_10_1137_090756338 crossref_primary_10_1109_JSAC_2006_879379 crossref_primary_10_1109_TCOMM_2019_2912603 crossref_primary_10_1109_ACCESS_2019_2933247 crossref_primary_10_1007_s12667_019_00351_1 crossref_primary_10_3182_20090706_3_FR_2004_00155 crossref_primary_10_1186_1687_6180_2013_52 crossref_primary_10_1109_TSP_2005_851113 crossref_primary_10_1109_LWC_2018_2882208 crossref_primary_10_1109_TCOMM_2018_2866849 crossref_primary_10_1109_ACCESS_2020_2991428 crossref_primary_10_1007_s43938_024_00047_8 crossref_primary_10_1016_j_dsp_2018_03_014 crossref_primary_10_1109_TCOMM_2016_2606411 crossref_primary_10_1109_TSP_2007_908945 crossref_primary_10_1109_TSP_2010_2041279 crossref_primary_10_1109_TVT_2016_2601344 crossref_primary_10_1007_s00034_018_0916_3 crossref_primary_10_1109_TSP_2007_897883 crossref_primary_10_1109_TSP_2010_2065228 crossref_primary_10_1016_j_dsp_2012_04_009 |
Cites_doi | 10.1137/0717073 10.1137/S0895479896301674 10.1137/1038003 10.1016/S0024-3795(98)10129-5 10.1137/1.9781611971002 10.1109/TSP.2005.851113 10.1137/S0895479896298130 10.1137/S0895479800380799 10.1137/1.9780898718829 10.1137/1.9781611970777 10.1017/CBO9780511810817 10.1137/1.9781611970791 10.2307/1267351 10.1109/TSP.2004.831144 10.1109/TSP.2002.808125 10.1080/00401706.1973.10489076 10.1137/S0895479800357766 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
Copyright_xml | – notice: 2005 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TSP.2004.838933 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Libary (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1941-0476 |
EndPage | 181 |
ExternalDocumentID | 2361963841 16437714 10_1109_TSP_2004_838933 1369660 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c381t-cd9781c1a64d3f1873203a198aa091a15db71602f47ff5d1729e0904555e7ecf3 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Fri Jul 11 00:52:44 EDT 2025 Fri Jul 11 10:23:48 EDT 2025 Mon Jun 30 10:19:51 EDT 2025 Mon Jul 21 09:14:11 EDT 2025 Tue Jul 01 01:15:13 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Tue Aug 26 16:40:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Performance evaluation Parameter estimation Uncertainty Data uncertainty robust estimation Minimax method mean squared error estimation Robustness Linear estimation Mean square error minimax estimation |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-cd9781c1a64d3f1873203a198aa091a15db71602f47ff5d1729e0904555e7ecf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 869147382 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_896226938 crossref_primary_10_1109_TSP_2004_838933 crossref_citationtrail_10_1109_TSP_2004_838933 proquest_journals_869147382 ieee_primary_1369660 proquest_miscellaneous_28064887 pascalfrancis_primary_16437714 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-Jan. 2005-01-00 2005 20050101 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – month: 01 year: 2005 text: 2005-Jan. |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2005 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 eldar (ref8) 2001 ref15 ref14 pinsker (ref16) 1980; 16 ref11 ref10 ref17 ref19 ref18 kay (ref2) 1993 gauss (ref4) 1963 luenberger (ref23) 1968 gray (ref25) 1977 tikhonov (ref5) 1977 ref26 ref22 ref21 bertsekas (ref24) 1999 therrien (ref3) 1992 alizadeh (ref20) 1991 ref28 ref27 kailath (ref1) 1976 ref7 ref9 ref6 |
References_xml | – year: 1963 ident: ref4 publication-title: Theory of Motion of Heavenly Bodies – ident: ref10 doi: 10.1137/0717073 – ident: ref13 doi: 10.1137/S0895479896301674 – year: 2001 ident: ref8 publication-title: Quantum signal processing – ident: ref18 doi: 10.1137/1038003 – ident: ref14 doi: 10.1016/S0024-3795(98)10129-5 – ident: ref11 doi: 10.1137/1.9781611971002 – year: 1977 ident: ref25 publication-title: Toeplitz and circulant matrices A review – ident: ref28 doi: 10.1109/TSP.2005.851113 – year: 1991 ident: ref20 publication-title: Combinatorial optimization with interior point methods and semi-definite matrices – ident: ref12 doi: 10.1137/S0895479896298130 – ident: ref21 doi: 10.1137/S0895479800380799 – volume: 16 start-page: 120 year: 1980 ident: ref16 article-title: optimal filtering of square-integrable signals in gaussian noise publication-title: Problems Inform Trans – ident: ref17 doi: 10.1137/1.9780898718829 – ident: ref26 doi: 10.1137/1.9781611970777 – year: 1977 ident: ref5 publication-title: Solution of Ill-Posed Problems – ident: ref22 doi: 10.1017/CBO9780511810817 – year: 1992 ident: ref3 publication-title: Discrete random signals and statistical signal processing – ident: ref19 doi: 10.1137/1.9781611970791 – ident: ref6 doi: 10.2307/1267351 – year: 1999 ident: ref24 publication-title: Nonlinear Programming – ident: ref27 doi: 10.1109/TSP.2004.831144 – year: 1993 ident: ref2 publication-title: Fundamentals of Statistical Signal Processing Estimation Theory – ident: ref9 doi: 10.1109/TSP.2002.808125 – year: 1968 ident: ref23 publication-title: Optimization by vector space methods – ident: ref7 doi: 10.1080/00401706.1973.10489076 – ident: ref15 doi: 10.1137/S0895479800357766 – year: 1976 ident: ref1 publication-title: Lectures on Linear Least-Squares Estimation |
SSID | ssj0014496 |
Score | 2.1828148 |
Snippet | We consider the problem of estimating an unknown parameter vector x in a linear model that may be subject to uncertainties, where the vector x is known to... [...] we demonstrate through several examples that the minimax MSE estimator can significantly increase the performance over the conventional least-squares... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 168 |
SubjectTerms | Additive noise Applied sciences Data uncertainty Detection, estimation, filtering, equalization, prediction Economic forecasting Error analysis Errors Estimation error Estimators Exact sciences and technology Information, signal and communications theory linear estimation Mathematical analysis Mathematical models mean squared error estimation minimax estimation Minimax technique Minimax techniques Noise robustness Parameter estimation robust estimation Signal and communications theory Signal, noise Studies Telecommunications and information theory Uncertainty Vectors Vectors (mathematics) Weighting |
Title | Robust mean-squared error estimation in the presence of model uncertainties |
URI | https://ieeexplore.ieee.org/document/1369660 https://www.proquest.com/docview/869147382 https://www.proquest.com/docview/28064887 https://www.proquest.com/docview/896226938 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuDAqyBCofjAgQNJ7TiJ7SNCVBWoCEEr7S1y_JAQJSmb5NJf37Gd3VKgErdIdiJn_JgZz8z3AbwOB7-lRufUe3RQvGN5J5TLBes8F7QxNtK9nXxujs-qj6t6tQNvt7UwzrmYfOaK8Bhj-XYwc7gqO2SBfK5BB_0OOm6pVmsbMaiqyMWF5gLPaylWC4wPo-rw9NuX6AgWMmhnfkMDRUqVkBCpR5SJT2QWf53LUdkcPYCTzTBTjsmPYp66wlz-geD4v__xEO4vVid5l5bJI9hx_WO49xsW4R58-jp08ziRn073-fhrDonpxK3Xw5oEII5U4Ui-9wQtRnIRi5aMI4MnkUuHoHpMyQUBoPUJnB19OH1_nC9MC7lBjT3lxgboK8N0U1numRS8pFwzJbVGe0Kz2nboV9HSV8L72qLRoxxVaA3WtRPOeP4Udvuhd8-AKPxCKIpCvW9jElWppfLWlFRWvOy6DIqN9FuzwJAHNozzNrojVLU4XYEcs2rTdGXwZvvCRULguL3rXhD2dbck5wwObkzvdXuIWuJYM9jfzHe7bOGxlY1ileCyzODVthX3Xgio6N4N89iGqDQegCIDcksPqRq0bxWXz_89tH24G7Fg453OC9id1rN7iVbO1B3E5X0FOr748A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcoFBQ09LWBw4cSGrHedhHhKgW2q0QbKW9RY5jS4iStJvkwq9nbGe3FKjELZKdyBk_ZsYz830Ar93B31CtYmotOijWsLgupYlLVlte0kI3nu5tflHMLrNPy3y5BW83tTDGGJ98ZhL36GP5TadHd1V2whz5XIEO-gPU-zkL1VqbmEGWeTYuNBh4nItyOQH5MCpPFl8_e1cwEU4_8zs6yJOquJRI1aNUbKCz-Otk9urm9CnM1wMNWSbfk3GoE_3zDwzH__2THXgy2Z3kXVgoz2DLtM_h8W9ohLtw9qWrx34gP4xq4_5mdKnpxKxW3Yo4KI5Q40i-tQRtRnLty5a0IZ0lnk2HoIIM6QUOovUFXJ5-WLyfxRPXQqxRZw-xbhz4lWaqyBpumSh5SrliUiiFFoVieVOjZ0VTm5XW5g2aPdJQifZgnpvSaMtfwnbbtWYPiMQvuLIo1PyNT6NKlZC20SkVGU_rOoJkLf1KT0Dkjg_jqvIOCZUVTpejx8yqMF0RvNm8cB0wOO7vuuuEfdstyDmCozvTe9vu4pY41ggO1vNdTZu4r0QhWVZykUZwvGnF3edCKqo13dhXLi6NR2AZAbmnh5AFWriSi_1_D-0YHs4W8_Pq_OPF2QE88siw_obnFWwPq9Ecos0z1Ed-qf8CWaz8OQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+mean-squared+error+estimation+in+the+presence+of+model+uncertainties&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=ELDAR%2C+Yonina+C&rft.au=BEN-TAL%2C+Aharon&rft.au=NEMIROVSKI%2C+Arkadi&rft.date=2005&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1053-587X&rft.volume=53&rft.issue=1&rft.spage=168&rft.epage=181&rft_id=info:doi/10.1109%2FTSP.2004.838933&rft.externalDBID=n%2Fa&rft.externalDocID=16437714 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |