Predicted no-effect concentration for eight PAHs and their ecological risks in seven major river systems of China
The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MC...
Saved in:
Published in | The Science of the total environment Vol. 906; p. 167590 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov–Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified.
[Display omitted]
•A QSAR-ICE-SSD model was applied to assess the ecological risk of eight PAHs.•The SSDs for both native Chinese species and all species are comparable.•The chronic PNECs based on SSDs ranged from 0.019 (BaA) to 0.114 μg/L (MCA).•The higher PNECs of the alkylated PAHs suggested their lower ecological risks.•Overall, the Songhua, Liao, and Huai Rivers are associated with high ecological risks. |
---|---|
AbstractList | The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov–Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified. The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov-Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified.The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov-Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified. The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov–Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified. [Display omitted] •A QSAR-ICE-SSD model was applied to assess the ecological risk of eight PAHs.•The SSDs for both native Chinese species and all species are comparable.•The chronic PNECs based on SSDs ranged from 0.019 (BaA) to 0.114 μg/L (MCA).•The higher PNECs of the alkylated PAHs suggested their lower ecological risks.•Overall, the Songhua, Liao, and Huai Rivers are associated with high ecological risks. |
ArticleNumber | 167590 |
Author | Ni, Hong-Gang Zheng, Zi-Yi |
Author_xml | – sequence: 1 givenname: Zi-Yi orcidid: 0009-0000-4253-4623 surname: Zheng fullname: Zheng, Zi-Yi – sequence: 2 givenname: Hong-Gang orcidid: 0000-0003-2331-2667 surname: Ni fullname: Ni, Hong-Gang email: nihg@pkusz.edu.cn |
BookMark | eNqNkc1uGyEURlGVSnXcPkNZZjMuPzMMLLKwrLapFClZtGvEwCXGHUMCxFLePriussgmYQNC37lX-s45OospAkJfKVlRQsW33arYUFOFeFgxwviKinFQ5ANaUDmqjhImztCCkF52SqjxEzovZUfaGSVdoIfbDC7YCg7H1IH3YCu2KVqINZsaUsQ-ZQzhblvx7fqqYBMdrlsI7dOmOd0Fa2acQ_lbcIi4wAEi3ptdg3I4QMblqVTYF5w83mxDNJ_RR2_mAl_-30v058f335ur7vrm56_N-rqzXNLa2VE4w4QSkxy8YFwoPlHiHXg5OeUnzntlHDdmmBgYYycDduiJku1NhpHzJbo4zb3P6eERStX7UCzMs4mQHovmdODDIChjb0aZHHvZ9vWkRcdT1OZUSgav73PYm_ykKdFHH3qnX3zoow998tHIy1dki_1ruBUd5nfw6xMPrbRDgHzMQRPlQm7StEvhzRnPPfGxJg |
CitedBy_id | crossref_primary_10_1007_s11356_025_36059_2 crossref_primary_10_1021_acsestwater_4c00169 crossref_primary_10_3390_atmos15020233 crossref_primary_10_1016_j_chemosphere_2024_143953 crossref_primary_10_1021_acs_est_4c04818 crossref_primary_10_1016_j_jhazmat_2024_134289 crossref_primary_10_1016_j_envpol_2024_124901 crossref_primary_10_1007_s10337_024_04311_5 crossref_primary_10_1016_j_jece_2024_112676 |
Cites_doi | 10.1016/j.ecoleng.2017.02.007 10.1016/j.ecoenv.2021.112898 10.1007/s11356-014-3655-4 10.1016/j.yrtph.2009.05.013 10.1016/j.scitotenv.2017.06.247 10.1002/em.20095 10.1016/j.jhazmat.2009.03.137 10.1080/15275920590952739 10.1021/es00031a002 10.1016/j.chemosphere.2015.10.099 10.1016/j.ecoenv.2019.03.119 10.1016/j.chemosphere.2012.09.026 10.1016/j.scitotenv.2012.11.018 10.1080/15376510701857353 10.1016/j.chemosphere.2016.12.046 10.1007/s11356-021-14107-x 10.1002/etc.5620190321 10.1007/s00244-003-3212-5 10.1021/es702302e 10.1016/j.scitotenv.2014.11.079 10.1897/07-069R.1 10.1016/j.scitotenv.2022.153172 10.1016/j.toxicon.2022.02.020 10.1016/j.scitotenv.2020.141764 10.1016/j.aquatox.2012.02.006 10.1016/j.chemosphere.2020.126590 10.1016/j.chemosphere.2019.03.007 10.3390/toxics11050470 10.1016/j.jenvman.2017.09.078 10.1016/j.ecoenv.2004.08.002 10.1016/j.envint.2022.107367 10.1016/j.aquatox.2005.08.007 10.1016/j.ecolind.2015.02.001 10.1021/acs.est.6b03009 10.1016/j.jhazmat.2013.07.007 10.1007/s11356-013-1597-x 10.1007/s11430-012-4384-5 10.1016/j.aquatox.2018.12.003 10.1016/j.aquatox.2018.11.006 10.1021/acs.est.7b01493 10.1002/etc.4373 10.1016/j.aquatox.2005.10.018 10.1021/acs.est.7b02736 10.1021/es101630b 10.1016/j.envpol.2015.10.037 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2023.167590 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2023_167590 S0048969723062174 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SSH WUQ XPP ZXP ZY4 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c381t-c76da2696b85f623693b10fdef8bd9fb3349ad3aa5b2eaacbaec54098aac05733 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Aug 22 20:25:03 EDT 2025 Thu Jul 10 19:05:04 EDT 2025 Tue Jul 01 02:09:16 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Sat Mar 30 16:18:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PNEC In silico method PAH Risk assessment Surface water |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-c76da2696b85f623693b10fdef8bd9fb3349ad3aa5b2eaacbaec54098aac05733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0000-4253-4623 0000-0003-2331-2667 |
PQID | 2874834940 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153556122 proquest_miscellaneous_2874834940 crossref_primary_10_1016_j_scitotenv_2023_167590 crossref_citationtrail_10_1016_j_scitotenv_2023_167590 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_167590 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Haritash, Kaushik (bb0085) 2009; 169 Bejarano, Raimondo, Barron (bb0015) 2017; 51 Wu, Yan, Yi, Lin, Ni, Gao (bb0240) 2016; 144 Rajasekhar, Nambi, Govindarajan (bb0165) 2018; 205 Roex, Van Gestel, Van Wezel, Van Straalen (bb0180) 2000; 19 Willming, Lilavois, Barron, Raimondo (bb0230) 2016; 50 Feng, Wu, Zhao, Li, Chang (bb0070) 2012; 55 Yu, Liu, Han, Fang, Weng, Shu (bb0255) 2021; 752 Zhang, Chen (bb0260) 2017; 605 Zhang, Wang, Wang, Fan, Shi, Liu (bb0265) 2017; 171 Stephan, Mount, Hansen, Gentile, Chapman, Brungs (bb0195) 1985 Rhodes, Farwell, Hewitt, MacKinnon, Dixon (bb0175) 2005; 60 Salmani, Garzegar, Ehrampoush, Askarishahi (bb0185) 2021; 28 Lima, Farrington, Reddy (bb0115) 2005; 6 Hong, Feng, Jin, Xie, Liu, Bai (bb0095) 2022; 167 Raimondo, Lavelle, Barron (bb0160) 2021 Olmstead, LeBlanc (bb0135) 2005; 75 Chen, Mu, Wu, Zhang, Su, Giesy (bb0035) 2015; 22 Xu, Li, Wang, He, Kong, Qin (bb0250) 2015; 54 Raimondo, Jackson, Barron (bb0155) 2010; 44 Zhang, Zhang, Huang, Li, Li, Wu (bb0270) 2019; 177 Kluver, Bittermann, Escher (bb0110) 2019; 207 Bilodeau, Villagomez, Kimpe, Thomas, Pauli, Trudeau (bb0020) 2019; 207 Hrovat, Segner, Jeram (bb0105) 2009; 54 Posthuma, van Gils, Zijp, van de Meent, de Zwart (bb0140) 2019; 38 Qi, Yao, Ma, Ding, Shangguan, Zhang (bb0145) 2022; 820 Witter, Nguyen (bb0235) 2016; 209 Hose, Van den Brink (bb0100) 2004; 47 EC (bb0055) 2008 Shen, Pan, Wu, Xu, Dong, Zheng (bb0190) 2022 Traas, van de Meent, Posthuma, Hamers, Kater, de Zwart (bb0200) 2001 Barron, Jackson, Awkerman (bb0010) 2012; 116 Wang, Liu, Yan, Zhang, Wang, Zhou (bb0210) 2013; 260 Martin, Harten, Venkatapathy, Das, Young (bb0120) 2008; 18 Raimondo, Montague, Barron (bb0150) 2007; 26 Baird, Hooven, Mahadevan (bb0005) 2005; 45 Castel, Tassistro, Claeys-Bruno, Malleret, Orsiere (bb0025) 2023; 11 Menzie, Potocki, Santodonato (bb0125) 1992; 26 Wang, Liu, Huang, Xu (bb0225) 2021; 227 Gu, Li, Lu (bb0080) 2017; 101 CCME (bb0030) 2007 ECB (bb0060) 2003 He, Tang, Zhao, Fan, Dyer, Belanger (bb0090) 2017; 51 Fan, Yan, Zheng, Wu, Wang, Wang (bb0065) 2019; 224 Feng, Wu, Dyer, Chang, Zhao (bb0075) 2013; 90 Dyer, Versteeg, Belanger, Chaney, Raimondo, Barron (bb0050) 2008; 42 Wu, Zhao, Gao, Li, Wang (bb0245) 2022; 19 Reynaud, Deschaux (bb0170) 2006; 77 Chen, Fan, Li, Wang, Li, Cui (bb0040) 2020; 252 Newman, Ownby, Mezin, Powell, Christensen, Lerberg (bb0130) 2000; 19 Ding, Ni, Zeng (bb0045) 2013; 443 Wan, Guo, Li, Wang, Zhao (bb0205) 2022; 210 Wang, Wang, Mu, Wang, Yao, Lin (bb0215) 2014; 21 Wang, Liu, Wang, Zhang, Chen (bb0220) 2015; 508 Olmstead (10.1016/j.scitotenv.2023.167590_bb0135) 2005; 75 Reynaud (10.1016/j.scitotenv.2023.167590_bb0170) 2006; 77 Haritash (10.1016/j.scitotenv.2023.167590_bb0085) 2009; 169 Menzie (10.1016/j.scitotenv.2023.167590_bb0125) 1992; 26 Wan (10.1016/j.scitotenv.2023.167590_bb0205) 2022; 210 Chen (10.1016/j.scitotenv.2023.167590_bb0040) 2020; 252 Martin (10.1016/j.scitotenv.2023.167590_bb0120) 2008; 18 Wu (10.1016/j.scitotenv.2023.167590_bb0245) 2022; 19 Fan (10.1016/j.scitotenv.2023.167590_bb0065) 2019; 224 Wang (10.1016/j.scitotenv.2023.167590_bb0215) 2014; 21 Baird (10.1016/j.scitotenv.2023.167590_bb0005) 2005; 45 Traas (10.1016/j.scitotenv.2023.167590_bb0200) 2001 Posthuma (10.1016/j.scitotenv.2023.167590_bb0140) 2019; 38 Hong (10.1016/j.scitotenv.2023.167590_bb0095) 2022; 167 Raimondo (10.1016/j.scitotenv.2023.167590_bb0150) 2007; 26 Zhang (10.1016/j.scitotenv.2023.167590_bb0270) 2019; 177 Bilodeau (10.1016/j.scitotenv.2023.167590_bb0020) 2019; 207 Zhang (10.1016/j.scitotenv.2023.167590_bb0265) 2017; 171 Dyer (10.1016/j.scitotenv.2023.167590_bb0050) 2008; 42 Hrovat (10.1016/j.scitotenv.2023.167590_bb0105) 2009; 54 Feng (10.1016/j.scitotenv.2023.167590_bb0075) 2013; 90 Salmani (10.1016/j.scitotenv.2023.167590_bb0185) 2021; 28 Ding (10.1016/j.scitotenv.2023.167590_bb0045) 2013; 443 Raimondo (10.1016/j.scitotenv.2023.167590_bb0155) 2010; 44 Castel (10.1016/j.scitotenv.2023.167590_bb0025) 2023; 11 Gu (10.1016/j.scitotenv.2023.167590_bb0080) 2017; 101 Wang (10.1016/j.scitotenv.2023.167590_bb0210) 2013; 260 Wang (10.1016/j.scitotenv.2023.167590_bb0225) 2021; 227 Witter (10.1016/j.scitotenv.2023.167590_bb0235) 2016; 209 Zhang (10.1016/j.scitotenv.2023.167590_bb0260) 2017; 605 Xu (10.1016/j.scitotenv.2023.167590_bb0250) 2015; 54 Qi (10.1016/j.scitotenv.2023.167590_bb0145) 2022; 820 Shen (10.1016/j.scitotenv.2023.167590_bb0190) 2022 Wu (10.1016/j.scitotenv.2023.167590_bb0240) 2016; 144 Kluver (10.1016/j.scitotenv.2023.167590_bb0110) 2019; 207 Roex (10.1016/j.scitotenv.2023.167590_bb0180) 2000; 19 Rajasekhar (10.1016/j.scitotenv.2023.167590_bb0165) 2018; 205 Yu (10.1016/j.scitotenv.2023.167590_bb0255) 2021; 752 Bejarano (10.1016/j.scitotenv.2023.167590_bb0015) 2017; 51 Newman (10.1016/j.scitotenv.2023.167590_bb0130) 2000; 19 ECB (10.1016/j.scitotenv.2023.167590_bb0060) Barron (10.1016/j.scitotenv.2023.167590_bb0010) 2012; 116 CCME (10.1016/j.scitotenv.2023.167590_bb0030) Wang (10.1016/j.scitotenv.2023.167590_bb0220) 2015; 508 Willming (10.1016/j.scitotenv.2023.167590_bb0230) 2016; 50 Raimondo (10.1016/j.scitotenv.2023.167590_bb0160) 2021 Chen (10.1016/j.scitotenv.2023.167590_bb0035) 2015; 22 Stephan (10.1016/j.scitotenv.2023.167590_bb0195) 1985 Feng (10.1016/j.scitotenv.2023.167590_bb0070) 2012; 55 Hose (10.1016/j.scitotenv.2023.167590_bb0100) 2004; 47 He (10.1016/j.scitotenv.2023.167590_bb0090) 2017; 51 Rhodes (10.1016/j.scitotenv.2023.167590_bb0175) 2005; 60 EC (10.1016/j.scitotenv.2023.167590_bb0055) Lima (10.1016/j.scitotenv.2023.167590_bb0115) 2005; 6 |
References_xml | – volume: 207 start-page: 217 year: 2019 end-page: 225 ident: bb0020 article-title: Toxicokinetics and bioaccumulation of polycyclic aromatic compounds in wood frog tadpoles (Lithobates sylvaticus) exposed to Athabasca oil sands sediment publication-title: Aquat. Toxicol. – volume: 443 start-page: 857 year: 2013 end-page: 863 ident: bb0045 article-title: Human exposure to parent and halogenated polycyclic aromatic hydrocarbons via food consumption in Shenzhen, China publication-title: Sci. Total Environ. – volume: 51 start-page: 8877 year: 2017 end-page: 8878 ident: bb0090 article-title: The combined QSAR-ICE models: practical application in ecological risk assessment and water quality criteria publication-title: Environ. Sci. Technol. – volume: 28 start-page: 50731 year: 2021 end-page: 50746 ident: bb0185 article-title: Predicting anionic surfactant toxicity to Daphnia magna in aquatic environment: a green approach for evaluation of EC50 values publication-title: Environ. Sci. Pollut. Res. – volume: 101 start-page: 179 year: 2017 end-page: 184 ident: bb0080 article-title: Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the largest deep plateau lake in China: occurrence, sources and biological risk publication-title: Ecol. Eng. – volume: 75 start-page: 253 year: 2005 end-page: 262 ident: bb0135 article-title: Joint action of polycyclic aromatic hydrocarbons: predictive modeling of sublethal toxicity publication-title: Aquat. Toxicol. – volume: 50 start-page: 10700 year: 2016 end-page: 10707 ident: bb0230 article-title: Acute toxicity prediction to threatened and endangered species using interspecies correlation estimation (ICE) models publication-title: Environ. Sci. Technol. – volume: 116 start-page: 1 year: 2012 end-page: 7 ident: bb0010 article-title: Evaluation of in silico development of aquatic toxicity species sensitivity distributions publication-title: Aquat. Toxicol. – volume: 55 start-page: 882 year: 2012 end-page: 891 ident: bb0070 article-title: Water quality criteria research and progress publication-title: Sci. China Earth Sci. – volume: 207 start-page: 110 year: 2019 end-page: 119 ident: bb0110 article-title: QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test publication-title: Aquat. Toxicol. – volume: 169 start-page: 1 year: 2009 end-page: 15 ident: bb0085 article-title: Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review publication-title: J. Hazard. Mater. – volume: 47 start-page: 511 year: 2004 end-page: 520 ident: bb0100 article-title: Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data publication-title: Arch. Environ. Contam. Toxicol. – volume: 209 start-page: 186 year: 2016 end-page: 196 ident: bb0235 article-title: Determination of oxygen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments publication-title: Environ. Pollut. – volume: 224 start-page: 833 year: 2019 end-page: 839 ident: bb0065 article-title: Development of interspecies correlation estimation (ICE) models to predict the reproduction toxicity of EDCs to aquatic species publication-title: Chemosphere – start-page: 289 year: 2022 ident: bb0190 article-title: Ecological risk assessment for difenoconazole in aquatic ecosystems using a web-based interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) model publication-title: Chemosphere – volume: 77 start-page: 229 year: 2006 end-page: 238 ident: bb0170 article-title: The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review publication-title: Aquat. Toxicol. – volume: 171 start-page: 142 year: 2017 end-page: 148 ident: bb0265 article-title: Derivation of freshwater water quality criteria for dibutyltin dilaurate from measured data and data predicted using interspecies correlation estimate models publication-title: Chemosphere – volume: 19 start-page: 508 year: 2000 end-page: 515 ident: bb0130 article-title: Applying species-sensitivity distributions in ecological risk assessment: assumptions of distribution type and sufficient numbers of species publication-title: Environ. Toxicol. Chem. – volume: 11 year: 2023 ident: bb0025 article-title: In vitro genotoxicity evaluation of PAHs in mixtures using experimental design publication-title: Toxics – volume: 252 year: 2020 ident: bb0040 article-title: Development of human health ambient water quality criteria of 12 polycyclic aromatic hydrocarbons (PAH) and risk assessment in China publication-title: Chemosphere – volume: 210 start-page: 49 year: 2022 end-page: 57 ident: bb0205 article-title: Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures publication-title: Toxicon – volume: 90 start-page: 1177 year: 2013 end-page: 1183 ident: bb0075 article-title: Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China publication-title: Chemosphere – volume: 177 start-page: 108 year: 2019 end-page: 116 ident: bb0270 article-title: Pollution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of China: composition, distribution and influencing factors publication-title: Ecotoxicol. Environ. Saf. – start-page: 339 year: 2001 end-page: 368 ident: bb0200 article-title: The Potentially Affected Fraction as a Measure of Ecological Risk. Species Sensitivity Distributions in Ecotoxicology – volume: 18 start-page: 251 year: 2008 end-page: 266 ident: bb0120 article-title: A hierarchical clustering methodology for the estimation of toxicity publication-title: Toxicol. Mech. Methods – volume: 51 start-page: 8158 year: 2017 end-page: 8165 ident: bb0015 article-title: Framework for optimizing selection of interspecies correlation estimation models to address species diversity and toxicity gaps in an aquatic database publication-title: Environ. Sci. Technol. – year: 2007 ident: bb0030 article-title: Protocol for the derivation of water quality guidelines for the protection of aquatic life – volume: 144 start-page: 2183 year: 2016 end-page: 2188 ident: bb0240 article-title: Comparison of species sensitivity distributions constructed with predicted acute toxicity data from interspecies correlation estimation models and measured acute data for benzo a pyrene publication-title: Chemosphere – volume: 26 start-page: 1278 year: 1992 end-page: 1284 ident: bb0125 article-title: Exposure to carcinogenic PAHs in the environment publication-title: Environ. Sci. Technol. – volume: 19 start-page: 685 year: 2000 end-page: 693 ident: bb0180 article-title: Ratios between acute aquatic toxicity and effects on population growth rates in relation to toxicant mode of action publication-title: Environ. Toxicol. Chem. – year: 1985 ident: bb0195 article-title: Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses – volume: 205 start-page: 183 year: 2018 end-page: 191 ident: bb0165 article-title: Human health risk assessment of ground water contaminated with petroleum PAHs using Monte Carlo simulations: a case study of an Indian metropolitan city publication-title: J. Environ. Manage. – volume: 752 year: 2021 ident: bb0255 article-title: Polycyclic aromatic hydrocarbons in surface waters from the seven main river basins of China: spatial distribution, source apportionment, and potential risk assessment publication-title: Sci. Total Environ. – year: 2003 ident: bb0060 article-title: Technical guidance document on risk assessment – volume: 54 start-page: 227 year: 2015 end-page: 237 ident: bb0250 article-title: Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment publication-title: Ecol. Indic. – volume: 54 start-page: 294 year: 2009 end-page: 300 ident: bb0105 article-title: Variability of in vivo fish acute toxicity data publication-title: Regul. Toxicol. Pharmacol. – volume: 605 start-page: 1011 year: 2017 end-page: 1020 ident: bb0260 article-title: Polycyclic aromatic hydrocarbons contamination in surface soil of China: a review publication-title: Sci. Total Environ. – volume: 26 start-page: 2019 year: 2007 end-page: 2023 ident: bb0150 article-title: Determinants of variability in acute to chronic toxicity ratios for aquatic invertebrates and fish publication-title: Environ. Toxicol. Chem. – volume: 44 start-page: 7711 year: 2010 end-page: 7716 ident: bb0155 article-title: Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species publication-title: Environ. Sci. Technol. – volume: 19 year: 2022 ident: bb0245 article-title: Use of interspecies correlation estimation (ICE) models to derive water quality criteria of microplastics for protecting aquatic organisms publication-title: Int. J. Environ. Res. Public Health – year: 2008 ident: bb0055 article-title: Environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives – volume: 38 start-page: 905 year: 2019 end-page: 917 ident: bb0140 article-title: Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals publication-title: Environ. Toxicol. Chem. – volume: 60 start-page: 247 year: 2005 end-page: 258 ident: bb0175 article-title: The effects of dimethylated and alkylated polycyclic aromatic hydrocarbons on the embryonic development of the Japanese medaka publication-title: Ecotoxicol. Environ. Saf. – volume: 45 start-page: 106 year: 2005 end-page: 114 ident: bb0005 article-title: Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action publication-title: Environ. Mol. Mutagen. – volume: 42 start-page: 3076 year: 2008 end-page: 3083 ident: bb0050 article-title: Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria publication-title: Environ. Sci. Technol. – volume: 6 start-page: 109 year: 2005 end-page: 131 ident: bb0115 article-title: Combustion-derived polycyclic aromatic hydrocarbons in the environment - a review publication-title: Environ. Forensic – volume: 820 year: 2022 ident: bb0145 article-title: Ecological risk assessment for organophosphate esters in the surface water from the Bohai Sea of China using multimodal species sensitivity distributions publication-title: Sci. Total Environ. – start-page: 181 year: 2021 end-page: 199 ident: bb0160 article-title: Chemometric approaches to evaluate interspecies relationships and extrapolation in aquatic toxicity publication-title: Chem. Cheminf. Aquat. Toxicol. – volume: 167 year: 2022 ident: bb0095 article-title: A QSAR-ICE-SSD model prediction of the PNECs for alkylphenol substances and application in ecological risk assessment for rivers of a megacity publication-title: Environ. Int. – volume: 508 start-page: 122 year: 2015 end-page: 127 ident: bb0220 article-title: Derivation of predicted no effect concentration (PNEC) for HHCB to terrestrial species (plants and invertebrates) publication-title: Sci. Total Environ. – volume: 260 start-page: 1017 year: 2013 end-page: 1022 ident: bb0210 article-title: Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species publication-title: J. Hazard. Mater. – volume: 227 year: 2021 ident: bb0225 article-title: Mixture predicted no-effect concentrations derived by independent action model vs concentration addition model based on different species sensitivity distribution models publication-title: Ecotoxicol. Environ. Saf. – volume: 21 start-page: 148 year: 2014 end-page: 158 ident: bb0215 article-title: Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China publication-title: Environ. Sci. Pollut. Res. – volume: 22 start-page: 4297 year: 2015 end-page: 4304 ident: bb0035 article-title: Derivation of marine water quality criteria for metals based on a novel QICAR-SSD model publication-title: Environ. Sci. Pollut. Res. – volume: 101 start-page: 179 year: 2017 ident: 10.1016/j.scitotenv.2023.167590_bb0080 article-title: Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the largest deep plateau lake in China: occurrence, sources and biological risk publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2017.02.007 – volume: 227 year: 2021 ident: 10.1016/j.scitotenv.2023.167590_bb0225 article-title: Mixture predicted no-effect concentrations derived by independent action model vs concentration addition model based on different species sensitivity distribution models publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.112898 – volume: 22 start-page: 4297 year: 2015 ident: 10.1016/j.scitotenv.2023.167590_bb0035 article-title: Derivation of marine water quality criteria for metals based on a novel QICAR-SSD model publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3655-4 – volume: 54 start-page: 294 year: 2009 ident: 10.1016/j.scitotenv.2023.167590_bb0105 article-title: Variability of in vivo fish acute toxicity data publication-title: Regul. Toxicol. Pharmacol. doi: 10.1016/j.yrtph.2009.05.013 – volume: 605 start-page: 1011 year: 2017 ident: 10.1016/j.scitotenv.2023.167590_bb0260 article-title: Polycyclic aromatic hydrocarbons contamination in surface soil of China: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.06.247 – volume: 45 start-page: 106 year: 2005 ident: 10.1016/j.scitotenv.2023.167590_bb0005 article-title: Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action publication-title: Environ. Mol. Mutagen. doi: 10.1002/em.20095 – volume: 169 start-page: 1 year: 2009 ident: 10.1016/j.scitotenv.2023.167590_bb0085 article-title: Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.03.137 – volume: 6 start-page: 109 year: 2005 ident: 10.1016/j.scitotenv.2023.167590_bb0115 article-title: Combustion-derived polycyclic aromatic hydrocarbons in the environment - a review publication-title: Environ. Forensic doi: 10.1080/15275920590952739 – volume: 26 start-page: 1278 year: 1992 ident: 10.1016/j.scitotenv.2023.167590_bb0125 article-title: Exposure to carcinogenic PAHs in the environment publication-title: Environ. Sci. Technol. doi: 10.1021/es00031a002 – volume: 144 start-page: 2183 year: 2016 ident: 10.1016/j.scitotenv.2023.167590_bb0240 article-title: Comparison of species sensitivity distributions constructed with predicted acute toxicity data from interspecies correlation estimation models and measured acute data for benzo a pyrene publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.10.099 – volume: 177 start-page: 108 year: 2019 ident: 10.1016/j.scitotenv.2023.167590_bb0270 article-title: Pollution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of China: composition, distribution and influencing factors publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.03.119 – volume: 90 start-page: 1177 year: 2013 ident: 10.1016/j.scitotenv.2023.167590_bb0075 article-title: Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.09.026 – start-page: 181 year: 2021 ident: 10.1016/j.scitotenv.2023.167590_bb0160 article-title: Chemometric approaches to evaluate interspecies relationships and extrapolation in aquatic toxicity publication-title: Chem. Cheminf. Aquat. Toxicol. – volume: 443 start-page: 857 year: 2013 ident: 10.1016/j.scitotenv.2023.167590_bb0045 article-title: Human exposure to parent and halogenated polycyclic aromatic hydrocarbons via food consumption in Shenzhen, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.11.018 – volume: 18 start-page: 251 year: 2008 ident: 10.1016/j.scitotenv.2023.167590_bb0120 article-title: A hierarchical clustering methodology for the estimation of toxicity publication-title: Toxicol. Mech. Methods doi: 10.1080/15376510701857353 – volume: 171 start-page: 142 year: 2017 ident: 10.1016/j.scitotenv.2023.167590_bb0265 article-title: Derivation of freshwater water quality criteria for dibutyltin dilaurate from measured data and data predicted using interspecies correlation estimate models publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.046 – volume: 28 start-page: 50731 year: 2021 ident: 10.1016/j.scitotenv.2023.167590_bb0185 article-title: Predicting anionic surfactant toxicity to Daphnia magna in aquatic environment: a green approach for evaluation of EC50 values publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-14107-x – volume: 19 start-page: 685 year: 2000 ident: 10.1016/j.scitotenv.2023.167590_bb0180 article-title: Ratios between acute aquatic toxicity and effects on population growth rates in relation to toxicant mode of action publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620190321 – volume: 47 start-page: 511 year: 2004 ident: 10.1016/j.scitotenv.2023.167590_bb0100 article-title: Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data publication-title: Arch. Environ. Contam. Toxicol. doi: 10.1007/s00244-003-3212-5 – volume: 42 start-page: 3076 year: 2008 ident: 10.1016/j.scitotenv.2023.167590_bb0050 article-title: Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria publication-title: Environ. Sci. Technol. doi: 10.1021/es702302e – volume: 508 start-page: 122 year: 2015 ident: 10.1016/j.scitotenv.2023.167590_bb0220 article-title: Derivation of predicted no effect concentration (PNEC) for HHCB to terrestrial species (plants and invertebrates) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.11.079 – start-page: 339 year: 2001 ident: 10.1016/j.scitotenv.2023.167590_bb0200 – volume: 26 start-page: 2019 year: 2007 ident: 10.1016/j.scitotenv.2023.167590_bb0150 article-title: Determinants of variability in acute to chronic toxicity ratios for aquatic invertebrates and fish publication-title: Environ. Toxicol. Chem. doi: 10.1897/07-069R.1 – ident: 10.1016/j.scitotenv.2023.167590_bb0030 – volume: 820 year: 2022 ident: 10.1016/j.scitotenv.2023.167590_bb0145 article-title: Ecological risk assessment for organophosphate esters in the surface water from the Bohai Sea of China using multimodal species sensitivity distributions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153172 – volume: 210 start-page: 49 year: 2022 ident: 10.1016/j.scitotenv.2023.167590_bb0205 article-title: Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures publication-title: Toxicon doi: 10.1016/j.toxicon.2022.02.020 – volume: 752 year: 2021 ident: 10.1016/j.scitotenv.2023.167590_bb0255 article-title: Polycyclic aromatic hydrocarbons in surface waters from the seven main river basins of China: spatial distribution, source apportionment, and potential risk assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141764 – volume: 116 start-page: 1 year: 2012 ident: 10.1016/j.scitotenv.2023.167590_bb0010 article-title: Evaluation of in silico development of aquatic toxicity species sensitivity distributions publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2012.02.006 – volume: 252 year: 2020 ident: 10.1016/j.scitotenv.2023.167590_bb0040 article-title: Development of human health ambient water quality criteria of 12 polycyclic aromatic hydrocarbons (PAH) and risk assessment in China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126590 – volume: 224 start-page: 833 year: 2019 ident: 10.1016/j.scitotenv.2023.167590_bb0065 article-title: Development of interspecies correlation estimation (ICE) models to predict the reproduction toxicity of EDCs to aquatic species publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.007 – year: 1985 ident: 10.1016/j.scitotenv.2023.167590_bb0195 – volume: 11 year: 2023 ident: 10.1016/j.scitotenv.2023.167590_bb0025 article-title: In vitro genotoxicity evaluation of PAHs in mixtures using experimental design publication-title: Toxics doi: 10.3390/toxics11050470 – volume: 205 start-page: 183 year: 2018 ident: 10.1016/j.scitotenv.2023.167590_bb0165 article-title: Human health risk assessment of ground water contaminated with petroleum PAHs using Monte Carlo simulations: a case study of an Indian metropolitan city publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.09.078 – volume: 60 start-page: 247 year: 2005 ident: 10.1016/j.scitotenv.2023.167590_bb0175 article-title: The effects of dimethylated and alkylated polycyclic aromatic hydrocarbons on the embryonic development of the Japanese medaka publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2004.08.002 – volume: 19 year: 2022 ident: 10.1016/j.scitotenv.2023.167590_bb0245 article-title: Use of interspecies correlation estimation (ICE) models to derive water quality criteria of microplastics for protecting aquatic organisms publication-title: Int. J. Environ. Res. Public Health – volume: 167 year: 2022 ident: 10.1016/j.scitotenv.2023.167590_bb0095 article-title: A QSAR-ICE-SSD model prediction of the PNECs for alkylphenol substances and application in ecological risk assessment for rivers of a megacity publication-title: Environ. Int. doi: 10.1016/j.envint.2022.107367 – volume: 75 start-page: 253 year: 2005 ident: 10.1016/j.scitotenv.2023.167590_bb0135 article-title: Joint action of polycyclic aromatic hydrocarbons: predictive modeling of sublethal toxicity publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2005.08.007 – start-page: 289 year: 2022 ident: 10.1016/j.scitotenv.2023.167590_bb0190 article-title: Ecological risk assessment for difenoconazole in aquatic ecosystems using a web-based interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) model publication-title: Chemosphere – volume: 54 start-page: 227 year: 2015 ident: 10.1016/j.scitotenv.2023.167590_bb0250 article-title: Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.02.001 – ident: 10.1016/j.scitotenv.2023.167590_bb0055 – volume: 50 start-page: 10700 year: 2016 ident: 10.1016/j.scitotenv.2023.167590_bb0230 article-title: Acute toxicity prediction to threatened and endangered species using interspecies correlation estimation (ICE) models publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03009 – volume: 260 start-page: 1017 year: 2013 ident: 10.1016/j.scitotenv.2023.167590_bb0210 article-title: Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.07.007 – volume: 21 start-page: 148 year: 2014 ident: 10.1016/j.scitotenv.2023.167590_bb0215 article-title: Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-1597-x – volume: 55 start-page: 882 year: 2012 ident: 10.1016/j.scitotenv.2023.167590_bb0070 article-title: Water quality criteria research and progress publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-012-4384-5 – volume: 207 start-page: 110 year: 2019 ident: 10.1016/j.scitotenv.2023.167590_bb0110 article-title: QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2018.12.003 – volume: 19 start-page: 508 year: 2000 ident: 10.1016/j.scitotenv.2023.167590_bb0130 article-title: Applying species-sensitivity distributions in ecological risk assessment: assumptions of distribution type and sufficient numbers of species publication-title: Environ. Toxicol. Chem. – volume: 207 start-page: 217 year: 2019 ident: 10.1016/j.scitotenv.2023.167590_bb0020 article-title: Toxicokinetics and bioaccumulation of polycyclic aromatic compounds in wood frog tadpoles (Lithobates sylvaticus) exposed to Athabasca oil sands sediment publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2018.11.006 – volume: 51 start-page: 8158 year: 2017 ident: 10.1016/j.scitotenv.2023.167590_bb0015 article-title: Framework for optimizing selection of interspecies correlation estimation models to address species diversity and toxicity gaps in an aquatic database publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01493 – volume: 38 start-page: 905 year: 2019 ident: 10.1016/j.scitotenv.2023.167590_bb0140 article-title: Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.4373 – volume: 77 start-page: 229 year: 2006 ident: 10.1016/j.scitotenv.2023.167590_bb0170 article-title: The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2005.10.018 – volume: 51 start-page: 8877 year: 2017 ident: 10.1016/j.scitotenv.2023.167590_bb0090 article-title: The combined QSAR-ICE models: practical application in ecological risk assessment and water quality criteria publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02736 – volume: 44 start-page: 7711 year: 2010 ident: 10.1016/j.scitotenv.2023.167590_bb0155 article-title: Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species publication-title: Environ. Sci. Technol. doi: 10.1021/es101630b – volume: 209 start-page: 186 year: 2016 ident: 10.1016/j.scitotenv.2023.167590_bb0235 article-title: Determination of oxygen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.10.037 – ident: 10.1016/j.scitotenv.2023.167590_bb0060 |
SSID | ssj0000781 |
Score | 2.5235064 |
Snippet | The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 167590 |
SubjectTerms | acute toxicity anthracenes carcinogenicity China environment In silico method PAH PNEC quantitative structure-activity relationships relative risk Risk assessment rivers species Surface water |
Title | Predicted no-effect concentration for eight PAHs and their ecological risks in seven major river systems of China |
URI | https://dx.doi.org/10.1016/j.scitotenv.2023.167590 https://www.proquest.com/docview/2874834940 https://www.proquest.com/docview/3153556122 |
Volume | 906 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB5EEQoi9qyorTIFX3Pmks1e0rdD7rh6VKRU6tuyu9nASZvo5RT64t_uTDZRFKkPPuUHOyFkdme-7Mx8A3Akh4SJU0u_JVmSB7QSw4BghOFamVyILI3cgGuHf5zJ6YU4vUwuV-Ckq4XhtMrW9nub3ljr9s5x-zWPr-dzrvEVaSa5a1YoGVhzBbsY8izv3z-leTCZjY8y08Km0c9yvOi5y4qw6V2fu4j3B4Se2Ti_7qFe2OrGAU22YLNFjjjyL_cRVlzZg3XfS_JfD3bGTyVrNKxds3UPNvzOHPqCo224OV9wcIaQJpZV4PM50HL1YtlS6CIBWWy2TPF8NK1Rlzk2AQV0trOVyDnpNc5LrJkDCv_qKxJacJYHenboGqsCm_bcn-BiMv51Mg3axguBJQe-DOxQ5jqSmTRpUhA-kllsBmGRuyI1eVaYOBaZzmOtExM5ra3RzhLyy1I6bwgWd2C1rEq3Czi0HPkjwTgphCSZNIwKx6SCwpo8Mnsgu4-tbMtKzs0x_qgu_exKPWpJsZaU19IehI-C156Y422Rb5021bM5psh9vC38tdO_ohXIYRVduuq2VtwxIGWWn_-MicmxNI1Io_33vMRn-EBXwm8BfYHV5eLWHRAoWprDZtYfwtro-2x6xsfZz9-zByaOEFM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS9xAEB7sSWlBSnut1La2U-hrNJds9hLfDlFi1cMHBd-W3c0GTmxiL2eh_74z2Y1iKfrQt3DJhJC5mfmyO_N9AN_klDBxbumzpMiqiCIxjghGGJ6VqYQo8sRNeHb4dC7LC_H9Mrtcg_1hFobbKkPu9zm9z9bhl93wNndvFgue8RV5IVk1K5YMrJ_BOrNTZSNYnx0dl_P7hDzNvXCeoNgmgwdtXnTrVUvw9NcOC4nvTAhAc37-d5H6K133NejwNbwK4BFn_vnewJprxvDcy0n-HsPmwf3UGl0WwrYbw4ZfnEM_c_QWfp4teX-GwCY2beRbOtDyAGMTWHSRsCz2q6Z4Nis71E2F_Z4COjukS-S29A4XDXZMA4U_9BUZLbnRAz1BdIdtjb1C9zu4ODw43y-joL0QWarhq8hOZaUTWUiTZzVBJFmkZhLXlatzUxW1SVNR6CrVOjOJ09oa7SyBvyKn455jcRNGTdu494BTy5t_ZJhmtZBkk8dJ7ZhXUFhTJWYL5PCylQ3E5KyPca2GDrQrdeclxV5S3ktbEN8Z3nhujqdN9gZvqgd_M0UV5Gnjr4P_FQUh76zoxrW3nWLRgJyJfh65JqXa0muRJh_-5yG-wIvy_PREnRzNjz_CSzoj_IrQJxitlrdumzDSynwOMfAH3GYRYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicted+no-effect+concentration+for+eight+PAHs+and+their+ecological+risks+in+seven+major+river+systems+of+China&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zheng%2C+Zi-Yi&rft.au=Ni%2C+Hong-Gang&rft.date=2024-01-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=906&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.167590&rft.externalDocID=S0048969723062174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |