Predicted no-effect concentration for eight PAHs and their ecological risks in seven major river systems of China

The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MC...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 906; p. 167590
Main Authors Zheng, Zi-Yi, Ni, Hong-Gang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov–Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified. [Display omitted] •A QSAR-ICE-SSD model was applied to assess the ecological risk of eight PAHs.•The SSDs for both native Chinese species and all species are comparable.•The chronic PNECs based on SSDs ranged from 0.019 (BaA) to 0.114 μg/L (MCA).•The higher PNECs of the alkylated PAHs suggested their lower ecological risks.•Overall, the Songhua, Liao, and Huai Rivers are associated with high ecological risks.
AbstractList The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov–Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified.
The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov-Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified.The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov-Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified.
The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov–Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified. [Display omitted] •A QSAR-ICE-SSD model was applied to assess the ecological risk of eight PAHs.•The SSDs for both native Chinese species and all species are comparable.•The chronic PNECs based on SSDs ranged from 0.019 (BaA) to 0.114 μg/L (MCA).•The higher PNECs of the alkylated PAHs suggested their lower ecological risks.•Overall, the Songhua, Liao, and Huai Rivers are associated with high ecological risks.
ArticleNumber 167590
Author Ni, Hong-Gang
Zheng, Zi-Yi
Author_xml – sequence: 1
  givenname: Zi-Yi
  orcidid: 0009-0000-4253-4623
  surname: Zheng
  fullname: Zheng, Zi-Yi
– sequence: 2
  givenname: Hong-Gang
  orcidid: 0000-0003-2331-2667
  surname: Ni
  fullname: Ni, Hong-Gang
  email: nihg@pkusz.edu.cn
BookMark eNqNkc1uGyEURlGVSnXcPkNZZjMuPzMMLLKwrLapFClZtGvEwCXGHUMCxFLePriussgmYQNC37lX-s45OospAkJfKVlRQsW33arYUFOFeFgxwviKinFQ5ANaUDmqjhImztCCkF52SqjxEzovZUfaGSVdoIfbDC7YCg7H1IH3YCu2KVqINZsaUsQ-ZQzhblvx7fqqYBMdrlsI7dOmOd0Fa2acQ_lbcIi4wAEi3ptdg3I4QMblqVTYF5w83mxDNJ_RR2_mAl_-30v058f335ur7vrm56_N-rqzXNLa2VE4w4QSkxy8YFwoPlHiHXg5OeUnzntlHDdmmBgYYycDduiJku1NhpHzJbo4zb3P6eERStX7UCzMs4mQHovmdODDIChjb0aZHHvZ9vWkRcdT1OZUSgav73PYm_ykKdFHH3qnX3zoow998tHIy1dki_1ruBUd5nfw6xMPrbRDgHzMQRPlQm7StEvhzRnPPfGxJg
CitedBy_id crossref_primary_10_1007_s11356_025_36059_2
crossref_primary_10_1021_acsestwater_4c00169
crossref_primary_10_3390_atmos15020233
crossref_primary_10_1016_j_chemosphere_2024_143953
crossref_primary_10_1021_acs_est_4c04818
crossref_primary_10_1016_j_jhazmat_2024_134289
crossref_primary_10_1016_j_envpol_2024_124901
crossref_primary_10_1007_s10337_024_04311_5
crossref_primary_10_1016_j_jece_2024_112676
Cites_doi 10.1016/j.ecoleng.2017.02.007
10.1016/j.ecoenv.2021.112898
10.1007/s11356-014-3655-4
10.1016/j.yrtph.2009.05.013
10.1016/j.scitotenv.2017.06.247
10.1002/em.20095
10.1016/j.jhazmat.2009.03.137
10.1080/15275920590952739
10.1021/es00031a002
10.1016/j.chemosphere.2015.10.099
10.1016/j.ecoenv.2019.03.119
10.1016/j.chemosphere.2012.09.026
10.1016/j.scitotenv.2012.11.018
10.1080/15376510701857353
10.1016/j.chemosphere.2016.12.046
10.1007/s11356-021-14107-x
10.1002/etc.5620190321
10.1007/s00244-003-3212-5
10.1021/es702302e
10.1016/j.scitotenv.2014.11.079
10.1897/07-069R.1
10.1016/j.scitotenv.2022.153172
10.1016/j.toxicon.2022.02.020
10.1016/j.scitotenv.2020.141764
10.1016/j.aquatox.2012.02.006
10.1016/j.chemosphere.2020.126590
10.1016/j.chemosphere.2019.03.007
10.3390/toxics11050470
10.1016/j.jenvman.2017.09.078
10.1016/j.ecoenv.2004.08.002
10.1016/j.envint.2022.107367
10.1016/j.aquatox.2005.08.007
10.1016/j.ecolind.2015.02.001
10.1021/acs.est.6b03009
10.1016/j.jhazmat.2013.07.007
10.1007/s11356-013-1597-x
10.1007/s11430-012-4384-5
10.1016/j.aquatox.2018.12.003
10.1016/j.aquatox.2018.11.006
10.1021/acs.est.7b01493
10.1002/etc.4373
10.1016/j.aquatox.2005.10.018
10.1021/acs.est.7b02736
10.1021/es101630b
10.1016/j.envpol.2015.10.037
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2023.167590
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2023_167590
S0048969723062174
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SSH
WUQ
XPP
ZXP
ZY4
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c381t-c76da2696b85f623693b10fdef8bd9fb3349ad3aa5b2eaacbaec54098aac05733
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Aug 22 20:25:03 EDT 2025
Thu Jul 10 19:05:04 EDT 2025
Tue Jul 01 02:09:16 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
Sat Mar 30 16:18:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords PNEC
In silico method
PAH
Risk assessment
Surface water
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-c76da2696b85f623693b10fdef8bd9fb3349ad3aa5b2eaacbaec54098aac05733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0000-4253-4623
0000-0003-2331-2667
PQID 2874834940
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153556122
proquest_miscellaneous_2874834940
crossref_primary_10_1016_j_scitotenv_2023_167590
crossref_citationtrail_10_1016_j_scitotenv_2023_167590
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_167590
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Haritash, Kaushik (bb0085) 2009; 169
Bejarano, Raimondo, Barron (bb0015) 2017; 51
Wu, Yan, Yi, Lin, Ni, Gao (bb0240) 2016; 144
Rajasekhar, Nambi, Govindarajan (bb0165) 2018; 205
Roex, Van Gestel, Van Wezel, Van Straalen (bb0180) 2000; 19
Willming, Lilavois, Barron, Raimondo (bb0230) 2016; 50
Feng, Wu, Zhao, Li, Chang (bb0070) 2012; 55
Yu, Liu, Han, Fang, Weng, Shu (bb0255) 2021; 752
Zhang, Chen (bb0260) 2017; 605
Zhang, Wang, Wang, Fan, Shi, Liu (bb0265) 2017; 171
Stephan, Mount, Hansen, Gentile, Chapman, Brungs (bb0195) 1985
Rhodes, Farwell, Hewitt, MacKinnon, Dixon (bb0175) 2005; 60
Salmani, Garzegar, Ehrampoush, Askarishahi (bb0185) 2021; 28
Lima, Farrington, Reddy (bb0115) 2005; 6
Hong, Feng, Jin, Xie, Liu, Bai (bb0095) 2022; 167
Raimondo, Lavelle, Barron (bb0160) 2021
Olmstead, LeBlanc (bb0135) 2005; 75
Chen, Mu, Wu, Zhang, Su, Giesy (bb0035) 2015; 22
Xu, Li, Wang, He, Kong, Qin (bb0250) 2015; 54
Raimondo, Jackson, Barron (bb0155) 2010; 44
Zhang, Zhang, Huang, Li, Li, Wu (bb0270) 2019; 177
Kluver, Bittermann, Escher (bb0110) 2019; 207
Bilodeau, Villagomez, Kimpe, Thomas, Pauli, Trudeau (bb0020) 2019; 207
Hrovat, Segner, Jeram (bb0105) 2009; 54
Posthuma, van Gils, Zijp, van de Meent, de Zwart (bb0140) 2019; 38
Qi, Yao, Ma, Ding, Shangguan, Zhang (bb0145) 2022; 820
Witter, Nguyen (bb0235) 2016; 209
Hose, Van den Brink (bb0100) 2004; 47
EC (bb0055) 2008
Shen, Pan, Wu, Xu, Dong, Zheng (bb0190) 2022
Traas, van de Meent, Posthuma, Hamers, Kater, de Zwart (bb0200) 2001
Barron, Jackson, Awkerman (bb0010) 2012; 116
Wang, Liu, Yan, Zhang, Wang, Zhou (bb0210) 2013; 260
Martin, Harten, Venkatapathy, Das, Young (bb0120) 2008; 18
Raimondo, Montague, Barron (bb0150) 2007; 26
Baird, Hooven, Mahadevan (bb0005) 2005; 45
Castel, Tassistro, Claeys-Bruno, Malleret, Orsiere (bb0025) 2023; 11
Menzie, Potocki, Santodonato (bb0125) 1992; 26
Wang, Liu, Huang, Xu (bb0225) 2021; 227
Gu, Li, Lu (bb0080) 2017; 101
CCME (bb0030) 2007
ECB (bb0060) 2003
He, Tang, Zhao, Fan, Dyer, Belanger (bb0090) 2017; 51
Fan, Yan, Zheng, Wu, Wang, Wang (bb0065) 2019; 224
Feng, Wu, Dyer, Chang, Zhao (bb0075) 2013; 90
Dyer, Versteeg, Belanger, Chaney, Raimondo, Barron (bb0050) 2008; 42
Wu, Zhao, Gao, Li, Wang (bb0245) 2022; 19
Reynaud, Deschaux (bb0170) 2006; 77
Chen, Fan, Li, Wang, Li, Cui (bb0040) 2020; 252
Newman, Ownby, Mezin, Powell, Christensen, Lerberg (bb0130) 2000; 19
Ding, Ni, Zeng (bb0045) 2013; 443
Wan, Guo, Li, Wang, Zhao (bb0205) 2022; 210
Wang, Wang, Mu, Wang, Yao, Lin (bb0215) 2014; 21
Wang, Liu, Wang, Zhang, Chen (bb0220) 2015; 508
Olmstead (10.1016/j.scitotenv.2023.167590_bb0135) 2005; 75
Reynaud (10.1016/j.scitotenv.2023.167590_bb0170) 2006; 77
Haritash (10.1016/j.scitotenv.2023.167590_bb0085) 2009; 169
Menzie (10.1016/j.scitotenv.2023.167590_bb0125) 1992; 26
Wan (10.1016/j.scitotenv.2023.167590_bb0205) 2022; 210
Chen (10.1016/j.scitotenv.2023.167590_bb0040) 2020; 252
Martin (10.1016/j.scitotenv.2023.167590_bb0120) 2008; 18
Wu (10.1016/j.scitotenv.2023.167590_bb0245) 2022; 19
Fan (10.1016/j.scitotenv.2023.167590_bb0065) 2019; 224
Wang (10.1016/j.scitotenv.2023.167590_bb0215) 2014; 21
Baird (10.1016/j.scitotenv.2023.167590_bb0005) 2005; 45
Traas (10.1016/j.scitotenv.2023.167590_bb0200) 2001
Posthuma (10.1016/j.scitotenv.2023.167590_bb0140) 2019; 38
Hong (10.1016/j.scitotenv.2023.167590_bb0095) 2022; 167
Raimondo (10.1016/j.scitotenv.2023.167590_bb0150) 2007; 26
Zhang (10.1016/j.scitotenv.2023.167590_bb0270) 2019; 177
Bilodeau (10.1016/j.scitotenv.2023.167590_bb0020) 2019; 207
Zhang (10.1016/j.scitotenv.2023.167590_bb0265) 2017; 171
Dyer (10.1016/j.scitotenv.2023.167590_bb0050) 2008; 42
Hrovat (10.1016/j.scitotenv.2023.167590_bb0105) 2009; 54
Feng (10.1016/j.scitotenv.2023.167590_bb0075) 2013; 90
Salmani (10.1016/j.scitotenv.2023.167590_bb0185) 2021; 28
Ding (10.1016/j.scitotenv.2023.167590_bb0045) 2013; 443
Raimondo (10.1016/j.scitotenv.2023.167590_bb0155) 2010; 44
Castel (10.1016/j.scitotenv.2023.167590_bb0025) 2023; 11
Gu (10.1016/j.scitotenv.2023.167590_bb0080) 2017; 101
Wang (10.1016/j.scitotenv.2023.167590_bb0210) 2013; 260
Wang (10.1016/j.scitotenv.2023.167590_bb0225) 2021; 227
Witter (10.1016/j.scitotenv.2023.167590_bb0235) 2016; 209
Zhang (10.1016/j.scitotenv.2023.167590_bb0260) 2017; 605
Xu (10.1016/j.scitotenv.2023.167590_bb0250) 2015; 54
Qi (10.1016/j.scitotenv.2023.167590_bb0145) 2022; 820
Shen (10.1016/j.scitotenv.2023.167590_bb0190) 2022
Wu (10.1016/j.scitotenv.2023.167590_bb0240) 2016; 144
Kluver (10.1016/j.scitotenv.2023.167590_bb0110) 2019; 207
Roex (10.1016/j.scitotenv.2023.167590_bb0180) 2000; 19
Rajasekhar (10.1016/j.scitotenv.2023.167590_bb0165) 2018; 205
Yu (10.1016/j.scitotenv.2023.167590_bb0255) 2021; 752
Bejarano (10.1016/j.scitotenv.2023.167590_bb0015) 2017; 51
Newman (10.1016/j.scitotenv.2023.167590_bb0130) 2000; 19
ECB (10.1016/j.scitotenv.2023.167590_bb0060)
Barron (10.1016/j.scitotenv.2023.167590_bb0010) 2012; 116
CCME (10.1016/j.scitotenv.2023.167590_bb0030)
Wang (10.1016/j.scitotenv.2023.167590_bb0220) 2015; 508
Willming (10.1016/j.scitotenv.2023.167590_bb0230) 2016; 50
Raimondo (10.1016/j.scitotenv.2023.167590_bb0160) 2021
Chen (10.1016/j.scitotenv.2023.167590_bb0035) 2015; 22
Stephan (10.1016/j.scitotenv.2023.167590_bb0195) 1985
Feng (10.1016/j.scitotenv.2023.167590_bb0070) 2012; 55
Hose (10.1016/j.scitotenv.2023.167590_bb0100) 2004; 47
He (10.1016/j.scitotenv.2023.167590_bb0090) 2017; 51
Rhodes (10.1016/j.scitotenv.2023.167590_bb0175) 2005; 60
EC (10.1016/j.scitotenv.2023.167590_bb0055)
Lima (10.1016/j.scitotenv.2023.167590_bb0115) 2005; 6
References_xml – volume: 207
  start-page: 217
  year: 2019
  end-page: 225
  ident: bb0020
  article-title: Toxicokinetics and bioaccumulation of polycyclic aromatic compounds in wood frog tadpoles (Lithobates sylvaticus) exposed to Athabasca oil sands sediment
  publication-title: Aquat. Toxicol.
– volume: 443
  start-page: 857
  year: 2013
  end-page: 863
  ident: bb0045
  article-title: Human exposure to parent and halogenated polycyclic aromatic hydrocarbons via food consumption in Shenzhen, China
  publication-title: Sci. Total Environ.
– volume: 51
  start-page: 8877
  year: 2017
  end-page: 8878
  ident: bb0090
  article-title: The combined QSAR-ICE models: practical application in ecological risk assessment and water quality criteria
  publication-title: Environ. Sci. Technol.
– volume: 28
  start-page: 50731
  year: 2021
  end-page: 50746
  ident: bb0185
  article-title: Predicting anionic surfactant toxicity to Daphnia magna in aquatic environment: a green approach for evaluation of EC50 values
  publication-title: Environ. Sci. Pollut. Res.
– volume: 101
  start-page: 179
  year: 2017
  end-page: 184
  ident: bb0080
  article-title: Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the largest deep plateau lake in China: occurrence, sources and biological risk
  publication-title: Ecol. Eng.
– volume: 75
  start-page: 253
  year: 2005
  end-page: 262
  ident: bb0135
  article-title: Joint action of polycyclic aromatic hydrocarbons: predictive modeling of sublethal toxicity
  publication-title: Aquat. Toxicol.
– volume: 50
  start-page: 10700
  year: 2016
  end-page: 10707
  ident: bb0230
  article-title: Acute toxicity prediction to threatened and endangered species using interspecies correlation estimation (ICE) models
  publication-title: Environ. Sci. Technol.
– volume: 116
  start-page: 1
  year: 2012
  end-page: 7
  ident: bb0010
  article-title: Evaluation of in silico development of aquatic toxicity species sensitivity distributions
  publication-title: Aquat. Toxicol.
– volume: 55
  start-page: 882
  year: 2012
  end-page: 891
  ident: bb0070
  article-title: Water quality criteria research and progress
  publication-title: Sci. China Earth Sci.
– volume: 207
  start-page: 110
  year: 2019
  end-page: 119
  ident: bb0110
  article-title: QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test
  publication-title: Aquat. Toxicol.
– volume: 169
  start-page: 1
  year: 2009
  end-page: 15
  ident: bb0085
  article-title: Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review
  publication-title: J. Hazard. Mater.
– volume: 47
  start-page: 511
  year: 2004
  end-page: 520
  ident: bb0100
  article-title: Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data
  publication-title: Arch. Environ. Contam. Toxicol.
– volume: 209
  start-page: 186
  year: 2016
  end-page: 196
  ident: bb0235
  article-title: Determination of oxygen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments
  publication-title: Environ. Pollut.
– volume: 224
  start-page: 833
  year: 2019
  end-page: 839
  ident: bb0065
  article-title: Development of interspecies correlation estimation (ICE) models to predict the reproduction toxicity of EDCs to aquatic species
  publication-title: Chemosphere
– start-page: 289
  year: 2022
  ident: bb0190
  article-title: Ecological risk assessment for difenoconazole in aquatic ecosystems using a web-based interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) model
  publication-title: Chemosphere
– volume: 77
  start-page: 229
  year: 2006
  end-page: 238
  ident: bb0170
  article-title: The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review
  publication-title: Aquat. Toxicol.
– volume: 171
  start-page: 142
  year: 2017
  end-page: 148
  ident: bb0265
  article-title: Derivation of freshwater water quality criteria for dibutyltin dilaurate from measured data and data predicted using interspecies correlation estimate models
  publication-title: Chemosphere
– volume: 19
  start-page: 508
  year: 2000
  end-page: 515
  ident: bb0130
  article-title: Applying species-sensitivity distributions in ecological risk assessment: assumptions of distribution type and sufficient numbers of species
  publication-title: Environ. Toxicol. Chem.
– volume: 11
  year: 2023
  ident: bb0025
  article-title: In vitro genotoxicity evaluation of PAHs in mixtures using experimental design
  publication-title: Toxics
– volume: 252
  year: 2020
  ident: bb0040
  article-title: Development of human health ambient water quality criteria of 12 polycyclic aromatic hydrocarbons (PAH) and risk assessment in China
  publication-title: Chemosphere
– volume: 210
  start-page: 49
  year: 2022
  end-page: 57
  ident: bb0205
  article-title: Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures
  publication-title: Toxicon
– volume: 90
  start-page: 1177
  year: 2013
  end-page: 1183
  ident: bb0075
  article-title: Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China
  publication-title: Chemosphere
– volume: 177
  start-page: 108
  year: 2019
  end-page: 116
  ident: bb0270
  article-title: Pollution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of China: composition, distribution and influencing factors
  publication-title: Ecotoxicol. Environ. Saf.
– start-page: 339
  year: 2001
  end-page: 368
  ident: bb0200
  article-title: The Potentially Affected Fraction as a Measure of Ecological Risk. Species Sensitivity Distributions in Ecotoxicology
– volume: 18
  start-page: 251
  year: 2008
  end-page: 266
  ident: bb0120
  article-title: A hierarchical clustering methodology for the estimation of toxicity
  publication-title: Toxicol. Mech. Methods
– volume: 51
  start-page: 8158
  year: 2017
  end-page: 8165
  ident: bb0015
  article-title: Framework for optimizing selection of interspecies correlation estimation models to address species diversity and toxicity gaps in an aquatic database
  publication-title: Environ. Sci. Technol.
– year: 2007
  ident: bb0030
  article-title: Protocol for the derivation of water quality guidelines for the protection of aquatic life
– volume: 144
  start-page: 2183
  year: 2016
  end-page: 2188
  ident: bb0240
  article-title: Comparison of species sensitivity distributions constructed with predicted acute toxicity data from interspecies correlation estimation models and measured acute data for benzo a pyrene
  publication-title: Chemosphere
– volume: 26
  start-page: 1278
  year: 1992
  end-page: 1284
  ident: bb0125
  article-title: Exposure to carcinogenic PAHs in the environment
  publication-title: Environ. Sci. Technol.
– volume: 19
  start-page: 685
  year: 2000
  end-page: 693
  ident: bb0180
  article-title: Ratios between acute aquatic toxicity and effects on population growth rates in relation to toxicant mode of action
  publication-title: Environ. Toxicol. Chem.
– year: 1985
  ident: bb0195
  article-title: Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses
– volume: 205
  start-page: 183
  year: 2018
  end-page: 191
  ident: bb0165
  article-title: Human health risk assessment of ground water contaminated with petroleum PAHs using Monte Carlo simulations: a case study of an Indian metropolitan city
  publication-title: J. Environ. Manage.
– volume: 752
  year: 2021
  ident: bb0255
  article-title: Polycyclic aromatic hydrocarbons in surface waters from the seven main river basins of China: spatial distribution, source apportionment, and potential risk assessment
  publication-title: Sci. Total Environ.
– year: 2003
  ident: bb0060
  article-title: Technical guidance document on risk assessment
– volume: 54
  start-page: 227
  year: 2015
  end-page: 237
  ident: bb0250
  article-title: Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment
  publication-title: Ecol. Indic.
– volume: 54
  start-page: 294
  year: 2009
  end-page: 300
  ident: bb0105
  article-title: Variability of in vivo fish acute toxicity data
  publication-title: Regul. Toxicol. Pharmacol.
– volume: 605
  start-page: 1011
  year: 2017
  end-page: 1020
  ident: bb0260
  article-title: Polycyclic aromatic hydrocarbons contamination in surface soil of China: a review
  publication-title: Sci. Total Environ.
– volume: 26
  start-page: 2019
  year: 2007
  end-page: 2023
  ident: bb0150
  article-title: Determinants of variability in acute to chronic toxicity ratios for aquatic invertebrates and fish
  publication-title: Environ. Toxicol. Chem.
– volume: 44
  start-page: 7711
  year: 2010
  end-page: 7716
  ident: bb0155
  article-title: Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species
  publication-title: Environ. Sci. Technol.
– volume: 19
  year: 2022
  ident: bb0245
  article-title: Use of interspecies correlation estimation (ICE) models to derive water quality criteria of microplastics for protecting aquatic organisms
  publication-title: Int. J. Environ. Res. Public Health
– year: 2008
  ident: bb0055
  article-title: Environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives
– volume: 38
  start-page: 905
  year: 2019
  end-page: 917
  ident: bb0140
  article-title: Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals
  publication-title: Environ. Toxicol. Chem.
– volume: 60
  start-page: 247
  year: 2005
  end-page: 258
  ident: bb0175
  article-title: The effects of dimethylated and alkylated polycyclic aromatic hydrocarbons on the embryonic development of the Japanese medaka
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 45
  start-page: 106
  year: 2005
  end-page: 114
  ident: bb0005
  article-title: Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action
  publication-title: Environ. Mol. Mutagen.
– volume: 42
  start-page: 3076
  year: 2008
  end-page: 3083
  ident: bb0050
  article-title: Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 109
  year: 2005
  end-page: 131
  ident: bb0115
  article-title: Combustion-derived polycyclic aromatic hydrocarbons in the environment - a review
  publication-title: Environ. Forensic
– volume: 820
  year: 2022
  ident: bb0145
  article-title: Ecological risk assessment for organophosphate esters in the surface water from the Bohai Sea of China using multimodal species sensitivity distributions
  publication-title: Sci. Total Environ.
– start-page: 181
  year: 2021
  end-page: 199
  ident: bb0160
  article-title: Chemometric approaches to evaluate interspecies relationships and extrapolation in aquatic toxicity
  publication-title: Chem. Cheminf. Aquat. Toxicol.
– volume: 167
  year: 2022
  ident: bb0095
  article-title: A QSAR-ICE-SSD model prediction of the PNECs for alkylphenol substances and application in ecological risk assessment for rivers of a megacity
  publication-title: Environ. Int.
– volume: 508
  start-page: 122
  year: 2015
  end-page: 127
  ident: bb0220
  article-title: Derivation of predicted no effect concentration (PNEC) for HHCB to terrestrial species (plants and invertebrates)
  publication-title: Sci. Total Environ.
– volume: 260
  start-page: 1017
  year: 2013
  end-page: 1022
  ident: bb0210
  article-title: Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species
  publication-title: J. Hazard. Mater.
– volume: 227
  year: 2021
  ident: bb0225
  article-title: Mixture predicted no-effect concentrations derived by independent action model vs concentration addition model based on different species sensitivity distribution models
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 21
  start-page: 148
  year: 2014
  end-page: 158
  ident: bb0215
  article-title: Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 22
  start-page: 4297
  year: 2015
  end-page: 4304
  ident: bb0035
  article-title: Derivation of marine water quality criteria for metals based on a novel QICAR-SSD model
  publication-title: Environ. Sci. Pollut. Res.
– volume: 101
  start-page: 179
  year: 2017
  ident: 10.1016/j.scitotenv.2023.167590_bb0080
  article-title: Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the largest deep plateau lake in China: occurrence, sources and biological risk
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2017.02.007
– volume: 227
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167590_bb0225
  article-title: Mixture predicted no-effect concentrations derived by independent action model vs concentration addition model based on different species sensitivity distribution models
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.112898
– volume: 22
  start-page: 4297
  year: 2015
  ident: 10.1016/j.scitotenv.2023.167590_bb0035
  article-title: Derivation of marine water quality criteria for metals based on a novel QICAR-SSD model
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3655-4
– volume: 54
  start-page: 294
  year: 2009
  ident: 10.1016/j.scitotenv.2023.167590_bb0105
  article-title: Variability of in vivo fish acute toxicity data
  publication-title: Regul. Toxicol. Pharmacol.
  doi: 10.1016/j.yrtph.2009.05.013
– volume: 605
  start-page: 1011
  year: 2017
  ident: 10.1016/j.scitotenv.2023.167590_bb0260
  article-title: Polycyclic aromatic hydrocarbons contamination in surface soil of China: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.06.247
– volume: 45
  start-page: 106
  year: 2005
  ident: 10.1016/j.scitotenv.2023.167590_bb0005
  article-title: Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action
  publication-title: Environ. Mol. Mutagen.
  doi: 10.1002/em.20095
– volume: 169
  start-page: 1
  year: 2009
  ident: 10.1016/j.scitotenv.2023.167590_bb0085
  article-title: Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.03.137
– volume: 6
  start-page: 109
  year: 2005
  ident: 10.1016/j.scitotenv.2023.167590_bb0115
  article-title: Combustion-derived polycyclic aromatic hydrocarbons in the environment - a review
  publication-title: Environ. Forensic
  doi: 10.1080/15275920590952739
– volume: 26
  start-page: 1278
  year: 1992
  ident: 10.1016/j.scitotenv.2023.167590_bb0125
  article-title: Exposure to carcinogenic PAHs in the environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00031a002
– volume: 144
  start-page: 2183
  year: 2016
  ident: 10.1016/j.scitotenv.2023.167590_bb0240
  article-title: Comparison of species sensitivity distributions constructed with predicted acute toxicity data from interspecies correlation estimation models and measured acute data for benzo a pyrene
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.10.099
– volume: 177
  start-page: 108
  year: 2019
  ident: 10.1016/j.scitotenv.2023.167590_bb0270
  article-title: Pollution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of China: composition, distribution and influencing factors
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.03.119
– volume: 90
  start-page: 1177
  year: 2013
  ident: 10.1016/j.scitotenv.2023.167590_bb0075
  article-title: Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.09.026
– start-page: 181
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167590_bb0160
  article-title: Chemometric approaches to evaluate interspecies relationships and extrapolation in aquatic toxicity
  publication-title: Chem. Cheminf. Aquat. Toxicol.
– volume: 443
  start-page: 857
  year: 2013
  ident: 10.1016/j.scitotenv.2023.167590_bb0045
  article-title: Human exposure to parent and halogenated polycyclic aromatic hydrocarbons via food consumption in Shenzhen, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.11.018
– volume: 18
  start-page: 251
  year: 2008
  ident: 10.1016/j.scitotenv.2023.167590_bb0120
  article-title: A hierarchical clustering methodology for the estimation of toxicity
  publication-title: Toxicol. Mech. Methods
  doi: 10.1080/15376510701857353
– volume: 171
  start-page: 142
  year: 2017
  ident: 10.1016/j.scitotenv.2023.167590_bb0265
  article-title: Derivation of freshwater water quality criteria for dibutyltin dilaurate from measured data and data predicted using interspecies correlation estimate models
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.046
– volume: 28
  start-page: 50731
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167590_bb0185
  article-title: Predicting anionic surfactant toxicity to Daphnia magna in aquatic environment: a green approach for evaluation of EC50 values
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-14107-x
– volume: 19
  start-page: 685
  year: 2000
  ident: 10.1016/j.scitotenv.2023.167590_bb0180
  article-title: Ratios between acute aquatic toxicity and effects on population growth rates in relation to toxicant mode of action
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620190321
– volume: 47
  start-page: 511
  year: 2004
  ident: 10.1016/j.scitotenv.2023.167590_bb0100
  article-title: Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data
  publication-title: Arch. Environ. Contam. Toxicol.
  doi: 10.1007/s00244-003-3212-5
– volume: 42
  start-page: 3076
  year: 2008
  ident: 10.1016/j.scitotenv.2023.167590_bb0050
  article-title: Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702302e
– volume: 508
  start-page: 122
  year: 2015
  ident: 10.1016/j.scitotenv.2023.167590_bb0220
  article-title: Derivation of predicted no effect concentration (PNEC) for HHCB to terrestrial species (plants and invertebrates)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.11.079
– start-page: 339
  year: 2001
  ident: 10.1016/j.scitotenv.2023.167590_bb0200
– volume: 26
  start-page: 2019
  year: 2007
  ident: 10.1016/j.scitotenv.2023.167590_bb0150
  article-title: Determinants of variability in acute to chronic toxicity ratios for aquatic invertebrates and fish
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/07-069R.1
– ident: 10.1016/j.scitotenv.2023.167590_bb0030
– volume: 820
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167590_bb0145
  article-title: Ecological risk assessment for organophosphate esters in the surface water from the Bohai Sea of China using multimodal species sensitivity distributions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153172
– volume: 210
  start-page: 49
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167590_bb0205
  article-title: Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2022.02.020
– volume: 752
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167590_bb0255
  article-title: Polycyclic aromatic hydrocarbons in surface waters from the seven main river basins of China: spatial distribution, source apportionment, and potential risk assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141764
– volume: 116
  start-page: 1
  year: 2012
  ident: 10.1016/j.scitotenv.2023.167590_bb0010
  article-title: Evaluation of in silico development of aquatic toxicity species sensitivity distributions
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2012.02.006
– volume: 252
  year: 2020
  ident: 10.1016/j.scitotenv.2023.167590_bb0040
  article-title: Development of human health ambient water quality criteria of 12 polycyclic aromatic hydrocarbons (PAH) and risk assessment in China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126590
– volume: 224
  start-page: 833
  year: 2019
  ident: 10.1016/j.scitotenv.2023.167590_bb0065
  article-title: Development of interspecies correlation estimation (ICE) models to predict the reproduction toxicity of EDCs to aquatic species
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.03.007
– year: 1985
  ident: 10.1016/j.scitotenv.2023.167590_bb0195
– volume: 11
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167590_bb0025
  article-title: In vitro genotoxicity evaluation of PAHs in mixtures using experimental design
  publication-title: Toxics
  doi: 10.3390/toxics11050470
– volume: 205
  start-page: 183
  year: 2018
  ident: 10.1016/j.scitotenv.2023.167590_bb0165
  article-title: Human health risk assessment of ground water contaminated with petroleum PAHs using Monte Carlo simulations: a case study of an Indian metropolitan city
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2017.09.078
– volume: 60
  start-page: 247
  year: 2005
  ident: 10.1016/j.scitotenv.2023.167590_bb0175
  article-title: The effects of dimethylated and alkylated polycyclic aromatic hydrocarbons on the embryonic development of the Japanese medaka
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2004.08.002
– volume: 19
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167590_bb0245
  article-title: Use of interspecies correlation estimation (ICE) models to derive water quality criteria of microplastics for protecting aquatic organisms
  publication-title: Int. J. Environ. Res. Public Health
– volume: 167
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167590_bb0095
  article-title: A QSAR-ICE-SSD model prediction of the PNECs for alkylphenol substances and application in ecological risk assessment for rivers of a megacity
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2022.107367
– volume: 75
  start-page: 253
  year: 2005
  ident: 10.1016/j.scitotenv.2023.167590_bb0135
  article-title: Joint action of polycyclic aromatic hydrocarbons: predictive modeling of sublethal toxicity
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2005.08.007
– start-page: 289
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167590_bb0190
  article-title: Ecological risk assessment for difenoconazole in aquatic ecosystems using a web-based interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) model
  publication-title: Chemosphere
– volume: 54
  start-page: 227
  year: 2015
  ident: 10.1016/j.scitotenv.2023.167590_bb0250
  article-title: Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.02.001
– ident: 10.1016/j.scitotenv.2023.167590_bb0055
– volume: 50
  start-page: 10700
  year: 2016
  ident: 10.1016/j.scitotenv.2023.167590_bb0230
  article-title: Acute toxicity prediction to threatened and endangered species using interspecies correlation estimation (ICE) models
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03009
– volume: 260
  start-page: 1017
  year: 2013
  ident: 10.1016/j.scitotenv.2023.167590_bb0210
  article-title: Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.07.007
– volume: 21
  start-page: 148
  year: 2014
  ident: 10.1016/j.scitotenv.2023.167590_bb0215
  article-title: Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-013-1597-x
– volume: 55
  start-page: 882
  year: 2012
  ident: 10.1016/j.scitotenv.2023.167590_bb0070
  article-title: Water quality criteria research and progress
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-012-4384-5
– volume: 207
  start-page: 110
  year: 2019
  ident: 10.1016/j.scitotenv.2023.167590_bb0110
  article-title: QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2018.12.003
– volume: 19
  start-page: 508
  year: 2000
  ident: 10.1016/j.scitotenv.2023.167590_bb0130
  article-title: Applying species-sensitivity distributions in ecological risk assessment: assumptions of distribution type and sufficient numbers of species
  publication-title: Environ. Toxicol. Chem.
– volume: 207
  start-page: 217
  year: 2019
  ident: 10.1016/j.scitotenv.2023.167590_bb0020
  article-title: Toxicokinetics and bioaccumulation of polycyclic aromatic compounds in wood frog tadpoles (Lithobates sylvaticus) exposed to Athabasca oil sands sediment
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2018.11.006
– volume: 51
  start-page: 8158
  year: 2017
  ident: 10.1016/j.scitotenv.2023.167590_bb0015
  article-title: Framework for optimizing selection of interspecies correlation estimation models to address species diversity and toxicity gaps in an aquatic database
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01493
– volume: 38
  start-page: 905
  year: 2019
  ident: 10.1016/j.scitotenv.2023.167590_bb0140
  article-title: Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.4373
– volume: 77
  start-page: 229
  year: 2006
  ident: 10.1016/j.scitotenv.2023.167590_bb0170
  article-title: The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2005.10.018
– volume: 51
  start-page: 8877
  year: 2017
  ident: 10.1016/j.scitotenv.2023.167590_bb0090
  article-title: The combined QSAR-ICE models: practical application in ecological risk assessment and water quality criteria
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02736
– volume: 44
  start-page: 7711
  year: 2010
  ident: 10.1016/j.scitotenv.2023.167590_bb0155
  article-title: Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101630b
– volume: 209
  start-page: 186
  year: 2016
  ident: 10.1016/j.scitotenv.2023.167590_bb0235
  article-title: Determination of oxygen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.10.037
– ident: 10.1016/j.scitotenv.2023.167590_bb0060
SSID ssj0000781
Score 2.5235064
Snippet The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 167590
SubjectTerms acute toxicity
anthracenes
carcinogenicity
China
environment
In silico method
PAH
PNEC
quantitative structure-activity relationships
relative risk
Risk assessment
rivers
species
Surface water
Title Predicted no-effect concentration for eight PAHs and their ecological risks in seven major river systems of China
URI https://dx.doi.org/10.1016/j.scitotenv.2023.167590
https://www.proquest.com/docview/2874834940
https://www.proquest.com/docview/3153556122
Volume 906
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB5EEQoi9qyorTIFX3Pmks1e0rdD7rh6VKRU6tuyu9nASZvo5RT64t_uTDZRFKkPPuUHOyFkdme-7Mx8A3Akh4SJU0u_JVmSB7QSw4BghOFamVyILI3cgGuHf5zJ6YU4vUwuV-Ckq4XhtMrW9nub3ljr9s5x-zWPr-dzrvEVaSa5a1YoGVhzBbsY8izv3z-leTCZjY8y08Km0c9yvOi5y4qw6V2fu4j3B4Se2Ti_7qFe2OrGAU22YLNFjjjyL_cRVlzZg3XfS_JfD3bGTyVrNKxds3UPNvzOHPqCo224OV9wcIaQJpZV4PM50HL1YtlS6CIBWWy2TPF8NK1Rlzk2AQV0trOVyDnpNc5LrJkDCv_qKxJacJYHenboGqsCm_bcn-BiMv51Mg3axguBJQe-DOxQ5jqSmTRpUhA-kllsBmGRuyI1eVaYOBaZzmOtExM5ra3RzhLyy1I6bwgWd2C1rEq3Czi0HPkjwTgphCSZNIwKx6SCwpo8Mnsgu4-tbMtKzs0x_qgu_exKPWpJsZaU19IehI-C156Y422Rb5021bM5psh9vC38tdO_ohXIYRVduuq2VtwxIGWWn_-MicmxNI1Io_33vMRn-EBXwm8BfYHV5eLWHRAoWprDZtYfwtro-2x6xsfZz9-zByaOEFM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS9xAEB7sSWlBSnut1La2U-hrNJds9hLfDlFi1cMHBd-W3c0GTmxiL2eh_74z2Y1iKfrQt3DJhJC5mfmyO_N9AN_klDBxbumzpMiqiCIxjghGGJ6VqYQo8sRNeHb4dC7LC_H9Mrtcg_1hFobbKkPu9zm9z9bhl93wNndvFgue8RV5IVk1K5YMrJ_BOrNTZSNYnx0dl_P7hDzNvXCeoNgmgwdtXnTrVUvw9NcOC4nvTAhAc37-d5H6K133NejwNbwK4BFn_vnewJprxvDcy0n-HsPmwf3UGl0WwrYbw4ZfnEM_c_QWfp4teX-GwCY2beRbOtDyAGMTWHSRsCz2q6Z4Nis71E2F_Z4COjukS-S29A4XDXZMA4U_9BUZLbnRAz1BdIdtjb1C9zu4ODw43y-joL0QWarhq8hOZaUTWUiTZzVBJFmkZhLXlatzUxW1SVNR6CrVOjOJ09oa7SyBvyKn455jcRNGTdu494BTy5t_ZJhmtZBkk8dJ7ZhXUFhTJWYL5PCylQ3E5KyPca2GDrQrdeclxV5S3ktbEN8Z3nhujqdN9gZvqgd_M0UV5Gnjr4P_FQUh76zoxrW3nWLRgJyJfh65JqXa0muRJh_-5yG-wIvy_PREnRzNjz_CSzoj_IrQJxitlrdumzDSynwOMfAH3GYRYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicted+no-effect+concentration+for+eight+PAHs+and+their+ecological+risks+in+seven+major+river+systems+of+China&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zheng%2C+Zi-Yi&rft.au=Ni%2C+Hong-Gang&rft.date=2024-01-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=906&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.167590&rft.externalDocID=S0048969723062174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon