Non-existence of finite-time stable equilibria in fractional-order nonlinear systems
We note that in the literature it is often taken for granted that for fractional-order system without delays, whenever the system trajectory reaches the equilibrium, it will stay there. In fact, this is the well-known phenomenon of finite-time stability. However, in this paper, we will prove that fo...
Saved in:
Published in | Automatica (Oxford) Vol. 50; no. 2; pp. 547 - 551 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.02.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We note that in the literature it is often taken for granted that for fractional-order system without delays, whenever the system trajectory reaches the equilibrium, it will stay there. In fact, this is the well-known phenomenon of finite-time stability. However, in this paper, we will prove that for fractional-order nonlinear system described by Caputo’s or Riemann–Liouville’s definition, any equilibrium cannot be finite-time stable as long as the continuous solution corresponding to the initial value problem globally exists. In addition, some examples of stability analysis are revisited and linear Lyapunov function is used to prove the asymptotic stability of positive fractional-order nonlinear systems. |
---|---|
AbstractList | We note that in the literature it is often taken for granted that for fractional-order system without delays, whenever the system trajectory reaches the equilibrium, it will stay there. In fact, this is the well-known phenomenon of finite-time stability. However, in this paper, we will prove that for fractional-order nonlinear system described by Caputo's or Riemann-Liouville's definition, any equilibrium cannot be finite-time stable as long as the continuous solution corresponding to the initial value problem globally exists. In addition, some examples of stability analysis are revisited and linear Lyapunov function is used to prove the asymptotic stability of positive fractional-order nonlinear systems. |
Author | Shen, Jun Lam, James |
Author_xml | – sequence: 1 givenname: Jun surname: Shen fullname: Shen, Jun email: junshen2009@gmail.com – sequence: 2 givenname: James surname: Lam fullname: Lam, James email: james.lam@hku.hk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28216827$$DView record in Pascal Francis |
BookMark | eNqNkU1rHDEMhk1JIJs0_8GXQi8z9Ud2xnMptKFpA6G9JGej8cigxWMntrc0_75eNqXQS3oyglePrEfn7CSmiIxxKXop5PBh18O-phUqOeiVkLqXshfSvGEbaUbdKaOHE7YRQmw7KSZzxs5L2bXyShq1YfffU-zwF5WK0SFPnnuKVLGrtCIvFeaAHJ_2FGjOBJwi9xlcpRQhdCkvmHn7UaCIkHl5bpy1vGWnHkLBy5f3gj3cfLm__tbd_fh6e_3prnPayNq5YREjzrhoMBMs29krp8QMBoWSXhu4UgvgKNRk_CIGhAnEuPVqGkHhqAd9wd4fuY85Pe2xVLtScRgCREz7YuVWS6H0MIkWffcSheIgtB2io2IfM62Qn60ySg5GjS338ZhzOZWS0VtHFQ7r1gwUrBT2oN3u7F_t9qDdSmmb9gYw_wD-zPiP1s_HVmzOfhJmWxwdzrJQRlftkuh1yG_KhadN |
CODEN | ATCAA9 |
CitedBy_id | crossref_primary_10_1007_s11071_017_4029_5 crossref_primary_10_1016_j_isatra_2021_05_025 crossref_primary_10_3390_e17085580 crossref_primary_10_1016_j_jfranklin_2015_10_009 crossref_primary_10_1016_j_jmaa_2019_123759 crossref_primary_10_1016_j_nahs_2024_101497 crossref_primary_10_1016_j_neucom_2019_12_056 crossref_primary_10_1109_TSMC_2018_2790975 crossref_primary_10_7498_aps_64_070503 crossref_primary_10_1109_ACCESS_2020_2988520 crossref_primary_10_1016_j_jfranklin_2018_05_058 crossref_primary_10_3390_e17107185 crossref_primary_10_1007_s00521_020_05135_8 crossref_primary_10_1016_j_sysconle_2018_04_006 crossref_primary_10_1109_TSMC_2024_3518513 crossref_primary_10_1007_s12555_020_0685_1 crossref_primary_10_1155_2020_3814902 crossref_primary_10_1016_j_jfranklin_2020_09_019 crossref_primary_10_1049_iet_cta_2014_0375 crossref_primary_10_1063_5_0170419 crossref_primary_10_1016_j_chaos_2020_110571 crossref_primary_10_1155_2020_4308589 crossref_primary_10_1016_j_chaos_2023_114036 crossref_primary_10_1142_S1793962319410095 crossref_primary_10_1016_j_neucom_2020_06_082 crossref_primary_10_1155_2016_2090583 crossref_primary_10_1007_s11063_017_9634_2 crossref_primary_10_1049_iet_cta_2018_5325 crossref_primary_10_1109_ACCESS_2019_2948657 crossref_primary_10_1177_0142331218785694 crossref_primary_10_1002_asjc_1370 crossref_primary_10_1016_j_matcom_2023_03_020 crossref_primary_10_1109_TNNLS_2021_3082984 crossref_primary_10_1002_cplx_21696 crossref_primary_10_3934_dcdsb_2017164 crossref_primary_10_3390_fractalfract9020084 crossref_primary_10_1109_TAC_2016_2560145 crossref_primary_10_3390_fractalfract7010012 crossref_primary_10_1063_1_5085276 crossref_primary_10_1142_S0218127417501619 crossref_primary_10_1016_j_neunet_2021_08_004 crossref_primary_10_1007_s40815_021_01189_5 crossref_primary_10_1016_j_ifacol_2017_08_681 crossref_primary_10_1016_j_cnsns_2019_104886 crossref_primary_10_1007_s11071_019_05267_0 crossref_primary_10_1155_2014_392598 crossref_primary_10_3390_math9182204 crossref_primary_10_1007_s13042_017_0646_z crossref_primary_10_1155_2019_1410278 crossref_primary_10_1371_journal_pone_0164791 crossref_primary_10_1016_j_automatica_2016_09_023 crossref_primary_10_1109_TSMC_2016_2640950 crossref_primary_10_1007_s13538_022_01201_9 crossref_primary_10_1049_iet_cta_2018_5233 crossref_primary_10_1155_2021_8962251 crossref_primary_10_1049_iet_cta_2019_0027 crossref_primary_10_1186_s13662_018_1470_9 crossref_primary_10_1142_S0218127418501213 crossref_primary_10_1049_iet_cta_2016_1076 crossref_primary_10_1080_00207721_2017_1412535 crossref_primary_10_1080_00207721_2017_1348564 crossref_primary_10_1016_j_jfranklin_2019_02_042 crossref_primary_10_1007_s11071_016_3086_5 crossref_primary_10_2139_ssrn_5053244 crossref_primary_10_1049_cth2_12189 crossref_primary_10_3390_fractalfract6110622 crossref_primary_10_1016_j_jfranklin_2019_12_014 crossref_primary_10_1109_TCYB_2021_3123377 crossref_primary_10_1142_S021812742150187X crossref_primary_10_1109_TSMC_2023_3253191 crossref_primary_10_1007_s13042_017_0644_1 crossref_primary_10_12677_PM_2017_73022 crossref_primary_10_1002_mma_10634 crossref_primary_10_1007_s11071_022_07554_9 crossref_primary_10_1007_s11071_016_2943_6 crossref_primary_10_1016_j_aml_2022_107961 crossref_primary_10_1177_01423312211005619 crossref_primary_10_1016_j_cnsns_2022_107072 crossref_primary_10_1016_j_ins_2018_04_069 crossref_primary_10_1007_s11071_017_3559_1 crossref_primary_10_1002_asjc_2447 crossref_primary_10_1002_rnc_7642 crossref_primary_10_1002_mma_5628 crossref_primary_10_1016_j_jfranklin_2024_106753 crossref_primary_10_1007_s11071_024_09409_x crossref_primary_10_1109_ACCESS_2019_2920399 crossref_primary_10_3390_fractalfract4040050 crossref_primary_10_1016_j_matcom_2022_10_029 crossref_primary_10_1155_2019_5643298 crossref_primary_10_1186_s13662_020_03003_2 crossref_primary_10_1016_j_ifacol_2020_12_595 crossref_primary_10_3390_fractalfract7010068 crossref_primary_10_1016_j_apm_2019_01_002 crossref_primary_10_3390_fractalfract7040320 crossref_primary_10_1016_j_ejcon_2020_02_005 crossref_primary_10_3233_IFS_151758 crossref_primary_10_1587_transfun_E98_A_2109 crossref_primary_10_1002_asjc_1589 crossref_primary_10_3233_JIFS_182623 crossref_primary_10_1016_j_chaos_2022_112714 crossref_primary_10_1049_iet_cta_2015_1048 crossref_primary_10_1007_s11071_017_3520_3 crossref_primary_10_1109_TNNLS_2021_3103809 crossref_primary_10_1007_s11071_018_04754_0 crossref_primary_10_1016_j_chaos_2016_05_007 crossref_primary_10_1016_j_neucom_2016_09_050 crossref_primary_10_1109_TFUZZ_2022_3214070 crossref_primary_10_3934_dcdss_2021144 crossref_primary_10_1007_s11071_016_2907_x crossref_primary_10_1016_j_jfranklin_2021_06_022 crossref_primary_10_1007_s40815_017_0371_5 crossref_primary_10_1088_1674_1056_24_9_090505 crossref_primary_10_1109_ACCESS_2018_2878772 crossref_primary_10_1016_j_cnsns_2020_105313 crossref_primary_10_1007_s11071_021_06264_y crossref_primary_10_1155_2018_3545083 crossref_primary_10_1109_ACCESS_2018_2878018 crossref_primary_10_1080_21642583_2023_2207602 crossref_primary_10_1109_TCYB_2019_2938754 crossref_primary_10_1063_1_5142989 crossref_primary_10_1016_j_isatra_2016_01_011 crossref_primary_10_1109_ACCESS_2019_2943657 crossref_primary_10_1016_j_automatica_2024_111680 crossref_primary_10_3390_fractalfract6110652 crossref_primary_10_1109_TCYB_2023_3289946 crossref_primary_10_1007_s40435_023_01373_5 crossref_primary_10_1007_s11071_015_2292_x crossref_primary_10_1016_j_ijleo_2015_11_197 crossref_primary_10_1016_j_neucom_2018_03_060 crossref_primary_10_1109_TAES_2021_3061815 crossref_primary_10_1137_19M1282970 crossref_primary_10_1007_s11071_015_2337_1 crossref_primary_10_1016_j_chaos_2024_114718 crossref_primary_10_1080_09720529_2017_1339435 crossref_primary_10_1109_ACCESS_2019_2927518 crossref_primary_10_1109_LCSYS_2019_2946620 crossref_primary_10_1016_j_physa_2018_06_014 crossref_primary_10_3390_aerospace9100616 crossref_primary_10_1049_iet_cta_2017_0315 crossref_primary_10_1016_j_jfranklin_2018_11_001 crossref_primary_10_1016_j_cnsns_2025_108600 crossref_primary_10_1063_1_4978393 crossref_primary_10_1186_s13662_017_1106_5 crossref_primary_10_3390_e18020055 crossref_primary_10_3390_math10020213 crossref_primary_10_1080_18824889_2022_2090801 crossref_primary_10_1007_s11071_023_08846_4 crossref_primary_10_1088_1674_1056_26_3_030504 crossref_primary_10_1109_TSMC_2018_2877042 crossref_primary_10_1063_1_4960110 crossref_primary_10_1049_iet_cta_2015_0130 crossref_primary_10_3390_e20010054 crossref_primary_10_1007_s40435_023_01361_9 |
Cites_doi | 10.1016/j.sigpro.2010.04.024 10.1016/j.camwa.2009.08.019 10.1016/S0947-3580(95)70014-0 10.1002/rnc.1565 10.1016/j.automatica.2010.02.023 10.1016/j.camwa.2009.08.003 10.1109/9.739144 10.1016/j.automatica.2009.04.003 10.1006/jmaa.2000.7194 10.1122/1.549887 10.1016/j.automatica.2009.04.001 10.1016/j.automatica.2010.06.038 10.1016/j.na.2011.06.037 10.1109/TAC.2012.2228051 10.1016/j.jmaa.2006.06.007 10.1007/s11071-011-0261-6 10.1109/9.811208 10.1006/jmaa.1996.0456 10.1016/j.chaos.2005.04.037 10.1109/VSS.2012.6163471 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.automatica.2013.11.018 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-2836 |
EndPage | 551 |
ExternalDocumentID | 28216827 10_1016_j_automatica_2013_11_018 S0005109813005359 |
GrantInformation_xml | – fundername: GRF HKU grantid: 7138/10E |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c381t-c6d07ebed3a89ad5bf2c20ba8e021f38a42dae70298fd06ea9a075f297a2e7363 |
IEDL.DBID | .~1 |
ISSN | 0005-1098 |
IngestDate | Mon Jul 21 09:43:04 EDT 2025 Wed Apr 02 07:25:26 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Tue Jul 01 00:43:24 EDT 2025 Fri Feb 23 02:23:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Finite-time stability Fractional-order nonlinear system Equilibria Linear Lyapunov function Initial value problem Non linear control Delay system Non linear system Positive system Modeling Fractional derivative Asymptotic stability Time interval Lyapunov function Non existence |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-c6d07ebed3a89ad5bf2c20ba8e021f38a42dae70298fd06ea9a075f297a2e7363 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1531023690 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1531023690 pascalfrancis_primary_28216827 crossref_citationtrail_10_1016_j_automatica_2013_11_018 crossref_primary_10_1016_j_automatica_2013_11_018 elsevier_sciencedirect_doi_10_1016_j_automatica_2013_11_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Automatica (Oxford) |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Chilali, Gahinet, Apkarian (br000015) 1999; 44 Choi, Koo (br000020) 2011; 74 Nakagawa, Sorimachi (br000060) 1992; 75 Podlubny (br000100) 1999 Pisano, Rapaić, Jeličić, Usai (br000090) 2010; 20 Bagley, Torvik (br000010) 1986; 30 Podlubny (br000105) 1999; 44 (pp. 963–968). Lille, France. Tavazoei, M., & Haeri, M. (2012). A simplification in the proof presented for non existence of periodic solutions in time invariant fractional order systems. February Li, Chen, Podlubny (br000075) 2009; 45 Li, Chen, Podlubny (br000080) 2010; 59 Trigeassou, Maamri, Sabatier, Oustaloup (br000130) 2011; 91 Delbosco, Rodino (br000030) 1996; 204 Kamal, Raman, Bandyopadhyay (br000050) 2013; 58 Olver, Lozier, Boisvert, Clark (br000065) 2010 Daftardar-Gejji, Jafari (br000025) 2007; 328 math.DS Lu, Chen (br000085) 2006; 27 Pisano, A., Rapaić, M., Usai, E., & Jeličić, Z. (2012). Continuous finite-time stabilization for some classes of fractional order dynamics. In Sabatier, Moze, Farges (br000110) 2010; 59 . (pp. 16–21). Mumbai, India. Oustaloup, Mathieu, Lanusse (br000070) 1995; 1 Kaczorek (br000045) 2011 Diethelm, Ford (br000035) 2002; 265 Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing. In Tavazoei (br000115) 2010; 46 Tavazoei, Haeri (br000120) 2009; 45 Aghababa (br000005) 2012; 69 Farges, Moze, Sabatier (br000040) 2010; 46 Tavazoei (10.1016/j.automatica.2013.11.018_br000115) 2010; 46 Trigeassou (10.1016/j.automatica.2013.11.018_br000130) 2011; 91 Delbosco (10.1016/j.automatica.2013.11.018_br000030) 1996; 204 Diethelm (10.1016/j.automatica.2013.11.018_br000035) 2002; 265 Podlubny (10.1016/j.automatica.2013.11.018_br000100) 1999 Tavazoei (10.1016/j.automatica.2013.11.018_br000120) 2009; 45 Olver (10.1016/j.automatica.2013.11.018_br000065) 2010 10.1016/j.automatica.2013.11.018_br000125 Choi (10.1016/j.automatica.2013.11.018_br000020) 2011; 74 Oustaloup (10.1016/j.automatica.2013.11.018_br000070) 1995; 1 Lu (10.1016/j.automatica.2013.11.018_br000085) 2006; 27 Bagley (10.1016/j.automatica.2013.11.018_br000010) 1986; 30 Kaczorek (10.1016/j.automatica.2013.11.018_br000045) 2011 Sabatier (10.1016/j.automatica.2013.11.018_br000110) 2010; 59 Nakagawa (10.1016/j.automatica.2013.11.018_br000060) 1992; 75 Daftardar-Gejji (10.1016/j.automatica.2013.11.018_br000025) 2007; 328 10.1016/j.automatica.2013.11.018_br000055 Chilali (10.1016/j.automatica.2013.11.018_br000015) 1999; 44 Pisano (10.1016/j.automatica.2013.11.018_br000090) 2010; 20 Farges (10.1016/j.automatica.2013.11.018_br000040) 2010; 46 Li (10.1016/j.automatica.2013.11.018_br000075) 2009; 45 Li (10.1016/j.automatica.2013.11.018_br000080) 2010; 59 Kamal (10.1016/j.automatica.2013.11.018_br000050) 2013; 58 10.1016/j.automatica.2013.11.018_br000095 Aghababa (10.1016/j.automatica.2013.11.018_br000005) 2012; 69 Podlubny (10.1016/j.automatica.2013.11.018_br000105) 1999; 44 |
References_xml | – volume: 27 start-page: 685 year: 2006 end-page: 688 ident: br000085 article-title: A note on the fractional-order Chen system publication-title: Chaos, Solitons and Fractals – year: 2011 ident: br000045 article-title: Selected problems of fractional systems theory – volume: 1 start-page: 113 year: 1995 end-page: 121 ident: br000070 article-title: The CRONE control of resonant plants: application to a flexible transmission publication-title: European Journal of Control – volume: 75 start-page: 1814 year: 1992 end-page: 1819 ident: br000060 article-title: Basic characteristics of a fractance device publication-title: IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences – volume: 328 start-page: 1026 year: 2007 end-page: 1033 ident: br000025 article-title: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives publication-title: Journal of Mathematical Analysis and Applications – reference: Pisano, A., Rapaić, M., Usai, E., & Jeličić, Z. (2012). Continuous finite-time stabilization for some classes of fractional order dynamics. In – volume: 204 start-page: 609 year: 1996 end-page: 625 ident: br000030 article-title: Existence and uniqueness for a nonlinear fractional differential equation publication-title: Journal of Mathematical Analysis and Applications – reference: (pp. 963–968). Lille, France. – year: 1999 ident: br000100 article-title: Fractional differential equations – reference: Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing. In – volume: 265 start-page: 229 year: 2002 end-page: 248 ident: br000035 article-title: Analysis of fractional differential equations publication-title: Journal of Mathematical Analysis and Applications – volume: 46 start-page: 945 year: 2010 end-page: 948 ident: br000115 article-title: A note on fractional-order derivatives of periodic functions publication-title: Automatica – volume: 74 start-page: 6530 year: 2011 end-page: 6536 ident: br000020 article-title: The monotonic property and stability of solutions of fractional differential equations publication-title: Nonlinear Analysis, Theory, Methods and Applications – year: 2010 ident: br000065 article-title: NIST handbook of mathematical functions – volume: 59 start-page: 1594 year: 2010 end-page: 1609 ident: br000110 article-title: LMI stability conditions for fractional order systems publication-title: Computers and Mathematics with Applications – volume: 45 start-page: 1886 year: 2009 end-page: 1890 ident: br000120 article-title: A proof for non existence of periodic solutions in time invariant fractional order systems publication-title: Automatica – volume: 45 start-page: 1965 year: 2009 end-page: 1969 ident: br000075 article-title: Mittag-Leffler stability of fractional order nonlinear dynamic systems publication-title: Automatica – volume: 20 start-page: 2045 year: 2010 end-page: 2056 ident: br000090 article-title: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics publication-title: International Journal of Robust and Nonlinear Control – reference: . – volume: 59 start-page: 1810 year: 2010 end-page: 1821 ident: br000080 article-title: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability publication-title: Computers and Mathematics with Applications – volume: 30 start-page: 133 year: 1986 end-page: 155 ident: br000010 article-title: On the fractional calculus model of viscoelastic behavior publication-title: Journal of Rheology – volume: 44 start-page: 208 year: 1999 end-page: 214 ident: br000105 article-title: Fractional-order systems and publication-title: IEEE Transactions on Automatic Control – volume: 91 start-page: 437 year: 2011 end-page: 445 ident: br000130 article-title: A Lyapunov approach to the stability of fractional differential equations publication-title: Signal Processing – volume: 58 start-page: 1597 year: 2013 end-page: 1602 ident: br000050 article-title: Finite-time stabilization of fractional order uncertain chain of integrator: an integral sliding mode approach publication-title: IEEE Transactions on Automatic Control – volume: 69 start-page: 247 year: 2012 end-page: 261 ident: br000005 article-title: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique publication-title: Nonlinear Dynamics – reference: [math.DS], – volume: 44 start-page: 2257 year: 1999 end-page: 2270 ident: br000015 article-title: Robust pole placement in LMI regions publication-title: IEEE Transactions on Automatic Control – reference: Tavazoei, M., & Haeri, M. (2012). A simplification in the proof presented for non existence of periodic solutions in time invariant fractional order systems. February – volume: 46 start-page: 1730 year: 2010 end-page: 1734 ident: br000040 article-title: Pseudo-state feedback stabilization of commensurate fractional order systems publication-title: Automatica – reference: (pp. 16–21). Mumbai, India. – year: 2010 ident: 10.1016/j.automatica.2013.11.018_br000065 – volume: 91 start-page: 437 issue: 3 year: 2011 ident: 10.1016/j.automatica.2013.11.018_br000130 article-title: A Lyapunov approach to the stability of fractional differential equations publication-title: Signal Processing doi: 10.1016/j.sigpro.2010.04.024 – volume: 59 start-page: 1810 issue: 5 year: 2010 ident: 10.1016/j.automatica.2013.11.018_br000080 article-title: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability publication-title: Computers and Mathematics with Applications doi: 10.1016/j.camwa.2009.08.019 – ident: 10.1016/j.automatica.2013.11.018_br000125 – volume: 1 start-page: 113 issue: 2 year: 1995 ident: 10.1016/j.automatica.2013.11.018_br000070 article-title: The CRONE control of resonant plants: application to a flexible transmission publication-title: European Journal of Control doi: 10.1016/S0947-3580(95)70014-0 – volume: 20 start-page: 2045 issue: 18 year: 2010 ident: 10.1016/j.automatica.2013.11.018_br000090 article-title: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.1565 – volume: 46 start-page: 945 issue: 5 year: 2010 ident: 10.1016/j.automatica.2013.11.018_br000115 article-title: A note on fractional-order derivatives of periodic functions publication-title: Automatica doi: 10.1016/j.automatica.2010.02.023 – volume: 75 start-page: 1814 issue: 12 year: 1992 ident: 10.1016/j.automatica.2013.11.018_br000060 article-title: Basic characteristics of a fractance device publication-title: IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences – volume: 59 start-page: 1594 issue: 5 year: 2010 ident: 10.1016/j.automatica.2013.11.018_br000110 article-title: LMI stability conditions for fractional order systems publication-title: Computers and Mathematics with Applications doi: 10.1016/j.camwa.2009.08.003 – year: 2011 ident: 10.1016/j.automatica.2013.11.018_br000045 – volume: 44 start-page: 208 issue: 1 year: 1999 ident: 10.1016/j.automatica.2013.11.018_br000105 article-title: Fractional-order systems and PIλDμ-controllers publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.739144 – volume: 45 start-page: 1965 issue: 8 year: 2009 ident: 10.1016/j.automatica.2013.11.018_br000075 article-title: Mittag-Leffler stability of fractional order nonlinear dynamic systems publication-title: Automatica doi: 10.1016/j.automatica.2009.04.003 – volume: 265 start-page: 229 issue: 2 year: 2002 ident: 10.1016/j.automatica.2013.11.018_br000035 article-title: Analysis of fractional differential equations publication-title: Journal of Mathematical Analysis and Applications doi: 10.1006/jmaa.2000.7194 – volume: 30 start-page: 133 issue: 1 year: 1986 ident: 10.1016/j.automatica.2013.11.018_br000010 article-title: On the fractional calculus model of viscoelastic behavior publication-title: Journal of Rheology doi: 10.1122/1.549887 – volume: 45 start-page: 1886 issue: 8 year: 2009 ident: 10.1016/j.automatica.2013.11.018_br000120 article-title: A proof for non existence of periodic solutions in time invariant fractional order systems publication-title: Automatica doi: 10.1016/j.automatica.2009.04.001 – volume: 46 start-page: 1730 issue: 10 year: 2010 ident: 10.1016/j.automatica.2013.11.018_br000040 article-title: Pseudo-state feedback stabilization of commensurate fractional order systems publication-title: Automatica doi: 10.1016/j.automatica.2010.06.038 – year: 1999 ident: 10.1016/j.automatica.2013.11.018_br000100 – volume: 74 start-page: 6530 issue: 17 year: 2011 ident: 10.1016/j.automatica.2013.11.018_br000020 article-title: The monotonic property and stability of solutions of fractional differential equations publication-title: Nonlinear Analysis, Theory, Methods and Applications doi: 10.1016/j.na.2011.06.037 – volume: 58 start-page: 1597 issue: 6 year: 2013 ident: 10.1016/j.automatica.2013.11.018_br000050 article-title: Finite-time stabilization of fractional order uncertain chain of integrator: an integral sliding mode approach publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2012.2228051 – ident: 10.1016/j.automatica.2013.11.018_br000055 – volume: 328 start-page: 1026 issue: 2 year: 2007 ident: 10.1016/j.automatica.2013.11.018_br000025 article-title: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives publication-title: Journal of Mathematical Analysis and Applications doi: 10.1016/j.jmaa.2006.06.007 – volume: 69 start-page: 247 issue: 1–2 year: 2012 ident: 10.1016/j.automatica.2013.11.018_br000005 article-title: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique publication-title: Nonlinear Dynamics doi: 10.1007/s11071-011-0261-6 – volume: 44 start-page: 2257 issue: 12 year: 1999 ident: 10.1016/j.automatica.2013.11.018_br000015 article-title: Robust pole placement in LMI regions publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.811208 – volume: 204 start-page: 609 issue: 2 year: 1996 ident: 10.1016/j.automatica.2013.11.018_br000030 article-title: Existence and uniqueness for a nonlinear fractional differential equation publication-title: Journal of Mathematical Analysis and Applications doi: 10.1006/jmaa.1996.0456 – volume: 27 start-page: 685 issue: 3 year: 2006 ident: 10.1016/j.automatica.2013.11.018_br000085 article-title: A note on the fractional-order Chen system publication-title: Chaos, Solitons and Fractals doi: 10.1016/j.chaos.2005.04.037 – ident: 10.1016/j.automatica.2013.11.018_br000095 doi: 10.1109/VSS.2012.6163471 |
SSID | ssj0004182 |
Score | 2.5098195 |
Snippet | We note that in the literature it is often taken for granted that for fractional-order system without delays, whenever the system trajectory reaches the... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 547 |
SubjectTerms | Applied sciences Asymptotic properties Computer science; control theory; systems Control system analysis Control theory. Systems Delay Dynamical systems Equilibria Exact sciences and technology Finite-time stability Fractional-order nonlinear system Initial value problems Linear Lyapunov function Lyapunov functions Nonlinear dynamics Stability System theory Trajectories |
Title | Non-existence of finite-time stable equilibria in fractional-order nonlinear systems |
URI | https://dx.doi.org/10.1016/j.automatica.2013.11.018 https://www.proquest.com/docview/1531023690 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSE0lfIts2iQq9KLFuyZXoKoWHb0j0lkJsY6wEOi3ezj2t-e2csO2loD4EcbdCDmdHMCH3zDWNfg8-991oKE50SShsnACAKLX1Ak4mQFVTv_Htezq7Uz2t9vcfOx1oYglUOvj_59N5bD39OB2mertqWanzJoGpDDzK60FTEp1RFVn5y9wDzUNIkxvCecbM2A5onYbxgt132zKjEQCSLE-LzpPYf_w9RByvYoOBi6njxj_PuI9LFG_Z6SCX5WdrtW7YXunfs1V8Eg-_Z5XzZCSK77DNjvow8tpRkCmopzzExbBaBh9td2yP_gbcdj-tU6gAL0dNy8i6RacCaJ9bnzQd2dfH98nwmhj4KwmE83gpX-qxCZfkCTA1eNzF3edaACRjgY2FA5R5CRWTs0WdlgBowkYh5XUEeqqIsDtk-rhWOGA864hx1iMoEJRucVDodnK-lNo0r5IRVo-isG0jGqdfFwo5oshv7IHRLQsc7iEWhT5i8H7lKRBtPGPNt1I59ZDQW48ETRk8fKfR-WbyFytLk1YR9GTVs8dDRSwp0YbnbWAwTRHlR1tnHZ23hE3uJXyqhwD-z_e16F44xydk2096Kp-zF2Y9fs_kfclABLA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQBCiFfF8ihGgqPb2LETW4gDAqotbfe0lXozk9iWglbZZR9CXPhT_EHGcdJSwaES6jWRH5oZzzeWZ74h5LV3wjmnONOhlkwqXTMACExx59FkAmR5rHc-mRTjU_n5TJ1tkV9DLUxMq-x9f_Lpnbfuv-z30txfNE2s8Y0GZXR8kFG5Mn1m5ZH_8R3vbat3hx9RyW-EOPg0_TBmfWsBViNErVlduKzE_bsctAGnqiBqkVWgPWJeyDVI4cCXkZ88uKzwYACxNQhTgvBlXuQ47w1yU6K7iG0T9n5e5JVIrhNFeUfxaXSfPpSSymCznndUrJHyiOd7kUA09hv5NybeXcAKNRVSi42_0KKDwIP75F4fu9L3STwPyJZvH5I7fzAaPiLTybxlkV2zC8XpPNDQxKiWxR72FCPRauap_7ZpulIDoE1LwzLVVsCMdTygtE3sHbCkiWZ69ZicXot0d8g2ruWfEOpVwDmMD1J7ySuclNfK185wpas65yNSDqKzdc9qHptrzOyQvvbVXgjdRqHjpcei0EeEn49cJGaPK4x5O2jHXrJSiwB0hdG7lxR6vixee3mhRTkirwYNWzzl8ekGWj_frCziUuTYKEz29L-28JLcGk9Pju3x4eToGbmNf2RKQX9OttfLjX-BEda62u0smpIv132EfgPf2T4C |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-existence+of+finite-time+stable+equilibria+in+fractional-order+nonlinear+systems&rft.jtitle=Automatica+%28Oxford%29&rft.au=Shen%2C+Jun&rft.au=Lam%2C+James&rft.date=2014-02-01&rft.issn=0005-1098&rft.volume=50&rft.issue=2&rft.spage=547&rft.epage=551&rft_id=info:doi/10.1016%2Fj.automatica.2013.11.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |