Non-existence of finite-time stable equilibria in fractional-order nonlinear systems

We note that in the literature it is often taken for granted that for fractional-order system without delays, whenever the system trajectory reaches the equilibrium, it will stay there. In fact, this is the well-known phenomenon of finite-time stability. However, in this paper, we will prove that fo...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 50; no. 2; pp. 547 - 551
Main Authors Shen, Jun, Lam, James
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We note that in the literature it is often taken for granted that for fractional-order system without delays, whenever the system trajectory reaches the equilibrium, it will stay there. In fact, this is the well-known phenomenon of finite-time stability. However, in this paper, we will prove that for fractional-order nonlinear system described by Caputo’s or Riemann–Liouville’s definition, any equilibrium cannot be finite-time stable as long as the continuous solution corresponding to the initial value problem globally exists. In addition, some examples of stability analysis are revisited and linear Lyapunov function is used to prove the asymptotic stability of positive fractional-order nonlinear systems.
AbstractList We note that in the literature it is often taken for granted that for fractional-order system without delays, whenever the system trajectory reaches the equilibrium, it will stay there. In fact, this is the well-known phenomenon of finite-time stability. However, in this paper, we will prove that for fractional-order nonlinear system described by Caputo's or Riemann-Liouville's definition, any equilibrium cannot be finite-time stable as long as the continuous solution corresponding to the initial value problem globally exists. In addition, some examples of stability analysis are revisited and linear Lyapunov function is used to prove the asymptotic stability of positive fractional-order nonlinear systems.
Author Shen, Jun
Lam, James
Author_xml – sequence: 1
  givenname: Jun
  surname: Shen
  fullname: Shen, Jun
  email: junshen2009@gmail.com
– sequence: 2
  givenname: James
  surname: Lam
  fullname: Lam, James
  email: james.lam@hku.hk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28216827$$DView record in Pascal Francis
BookMark eNqNkU1rHDEMhk1JIJs0_8GXQi8z9Ud2xnMptKFpA6G9JGej8cigxWMntrc0_75eNqXQS3oyglePrEfn7CSmiIxxKXop5PBh18O-phUqOeiVkLqXshfSvGEbaUbdKaOHE7YRQmw7KSZzxs5L2bXyShq1YfffU-zwF5WK0SFPnnuKVLGrtCIvFeaAHJ_2FGjOBJwi9xlcpRQhdCkvmHn7UaCIkHl5bpy1vGWnHkLBy5f3gj3cfLm__tbd_fh6e_3prnPayNq5YREjzrhoMBMs29krp8QMBoWSXhu4UgvgKNRk_CIGhAnEuPVqGkHhqAd9wd4fuY85Pe2xVLtScRgCREz7YuVWS6H0MIkWffcSheIgtB2io2IfM62Qn60ySg5GjS338ZhzOZWS0VtHFQ7r1gwUrBT2oN3u7F_t9qDdSmmb9gYw_wD-zPiP1s_HVmzOfhJmWxwdzrJQRlftkuh1yG_KhadN
CODEN ATCAA9
CitedBy_id crossref_primary_10_1007_s11071_017_4029_5
crossref_primary_10_1016_j_isatra_2021_05_025
crossref_primary_10_3390_e17085580
crossref_primary_10_1016_j_jfranklin_2015_10_009
crossref_primary_10_1016_j_jmaa_2019_123759
crossref_primary_10_1016_j_nahs_2024_101497
crossref_primary_10_1016_j_neucom_2019_12_056
crossref_primary_10_1109_TSMC_2018_2790975
crossref_primary_10_7498_aps_64_070503
crossref_primary_10_1109_ACCESS_2020_2988520
crossref_primary_10_1016_j_jfranklin_2018_05_058
crossref_primary_10_3390_e17107185
crossref_primary_10_1007_s00521_020_05135_8
crossref_primary_10_1016_j_sysconle_2018_04_006
crossref_primary_10_1109_TSMC_2024_3518513
crossref_primary_10_1007_s12555_020_0685_1
crossref_primary_10_1155_2020_3814902
crossref_primary_10_1016_j_jfranklin_2020_09_019
crossref_primary_10_1049_iet_cta_2014_0375
crossref_primary_10_1063_5_0170419
crossref_primary_10_1016_j_chaos_2020_110571
crossref_primary_10_1155_2020_4308589
crossref_primary_10_1016_j_chaos_2023_114036
crossref_primary_10_1142_S1793962319410095
crossref_primary_10_1016_j_neucom_2020_06_082
crossref_primary_10_1155_2016_2090583
crossref_primary_10_1007_s11063_017_9634_2
crossref_primary_10_1049_iet_cta_2018_5325
crossref_primary_10_1109_ACCESS_2019_2948657
crossref_primary_10_1177_0142331218785694
crossref_primary_10_1002_asjc_1370
crossref_primary_10_1016_j_matcom_2023_03_020
crossref_primary_10_1109_TNNLS_2021_3082984
crossref_primary_10_1002_cplx_21696
crossref_primary_10_3934_dcdsb_2017164
crossref_primary_10_3390_fractalfract9020084
crossref_primary_10_1109_TAC_2016_2560145
crossref_primary_10_3390_fractalfract7010012
crossref_primary_10_1063_1_5085276
crossref_primary_10_1142_S0218127417501619
crossref_primary_10_1016_j_neunet_2021_08_004
crossref_primary_10_1007_s40815_021_01189_5
crossref_primary_10_1016_j_ifacol_2017_08_681
crossref_primary_10_1016_j_cnsns_2019_104886
crossref_primary_10_1007_s11071_019_05267_0
crossref_primary_10_1155_2014_392598
crossref_primary_10_3390_math9182204
crossref_primary_10_1007_s13042_017_0646_z
crossref_primary_10_1155_2019_1410278
crossref_primary_10_1371_journal_pone_0164791
crossref_primary_10_1016_j_automatica_2016_09_023
crossref_primary_10_1109_TSMC_2016_2640950
crossref_primary_10_1007_s13538_022_01201_9
crossref_primary_10_1049_iet_cta_2018_5233
crossref_primary_10_1155_2021_8962251
crossref_primary_10_1049_iet_cta_2019_0027
crossref_primary_10_1186_s13662_018_1470_9
crossref_primary_10_1142_S0218127418501213
crossref_primary_10_1049_iet_cta_2016_1076
crossref_primary_10_1080_00207721_2017_1412535
crossref_primary_10_1080_00207721_2017_1348564
crossref_primary_10_1016_j_jfranklin_2019_02_042
crossref_primary_10_1007_s11071_016_3086_5
crossref_primary_10_2139_ssrn_5053244
crossref_primary_10_1049_cth2_12189
crossref_primary_10_3390_fractalfract6110622
crossref_primary_10_1016_j_jfranklin_2019_12_014
crossref_primary_10_1109_TCYB_2021_3123377
crossref_primary_10_1142_S021812742150187X
crossref_primary_10_1109_TSMC_2023_3253191
crossref_primary_10_1007_s13042_017_0644_1
crossref_primary_10_12677_PM_2017_73022
crossref_primary_10_1002_mma_10634
crossref_primary_10_1007_s11071_022_07554_9
crossref_primary_10_1007_s11071_016_2943_6
crossref_primary_10_1016_j_aml_2022_107961
crossref_primary_10_1177_01423312211005619
crossref_primary_10_1016_j_cnsns_2022_107072
crossref_primary_10_1016_j_ins_2018_04_069
crossref_primary_10_1007_s11071_017_3559_1
crossref_primary_10_1002_asjc_2447
crossref_primary_10_1002_rnc_7642
crossref_primary_10_1002_mma_5628
crossref_primary_10_1016_j_jfranklin_2024_106753
crossref_primary_10_1007_s11071_024_09409_x
crossref_primary_10_1109_ACCESS_2019_2920399
crossref_primary_10_3390_fractalfract4040050
crossref_primary_10_1016_j_matcom_2022_10_029
crossref_primary_10_1155_2019_5643298
crossref_primary_10_1186_s13662_020_03003_2
crossref_primary_10_1016_j_ifacol_2020_12_595
crossref_primary_10_3390_fractalfract7010068
crossref_primary_10_1016_j_apm_2019_01_002
crossref_primary_10_3390_fractalfract7040320
crossref_primary_10_1016_j_ejcon_2020_02_005
crossref_primary_10_3233_IFS_151758
crossref_primary_10_1587_transfun_E98_A_2109
crossref_primary_10_1002_asjc_1589
crossref_primary_10_3233_JIFS_182623
crossref_primary_10_1016_j_chaos_2022_112714
crossref_primary_10_1049_iet_cta_2015_1048
crossref_primary_10_1007_s11071_017_3520_3
crossref_primary_10_1109_TNNLS_2021_3103809
crossref_primary_10_1007_s11071_018_04754_0
crossref_primary_10_1016_j_chaos_2016_05_007
crossref_primary_10_1016_j_neucom_2016_09_050
crossref_primary_10_1109_TFUZZ_2022_3214070
crossref_primary_10_3934_dcdss_2021144
crossref_primary_10_1007_s11071_016_2907_x
crossref_primary_10_1016_j_jfranklin_2021_06_022
crossref_primary_10_1007_s40815_017_0371_5
crossref_primary_10_1088_1674_1056_24_9_090505
crossref_primary_10_1109_ACCESS_2018_2878772
crossref_primary_10_1016_j_cnsns_2020_105313
crossref_primary_10_1007_s11071_021_06264_y
crossref_primary_10_1155_2018_3545083
crossref_primary_10_1109_ACCESS_2018_2878018
crossref_primary_10_1080_21642583_2023_2207602
crossref_primary_10_1109_TCYB_2019_2938754
crossref_primary_10_1063_1_5142989
crossref_primary_10_1016_j_isatra_2016_01_011
crossref_primary_10_1109_ACCESS_2019_2943657
crossref_primary_10_1016_j_automatica_2024_111680
crossref_primary_10_3390_fractalfract6110652
crossref_primary_10_1109_TCYB_2023_3289946
crossref_primary_10_1007_s40435_023_01373_5
crossref_primary_10_1007_s11071_015_2292_x
crossref_primary_10_1016_j_ijleo_2015_11_197
crossref_primary_10_1016_j_neucom_2018_03_060
crossref_primary_10_1109_TAES_2021_3061815
crossref_primary_10_1137_19M1282970
crossref_primary_10_1007_s11071_015_2337_1
crossref_primary_10_1016_j_chaos_2024_114718
crossref_primary_10_1080_09720529_2017_1339435
crossref_primary_10_1109_ACCESS_2019_2927518
crossref_primary_10_1109_LCSYS_2019_2946620
crossref_primary_10_1016_j_physa_2018_06_014
crossref_primary_10_3390_aerospace9100616
crossref_primary_10_1049_iet_cta_2017_0315
crossref_primary_10_1016_j_jfranklin_2018_11_001
crossref_primary_10_1016_j_cnsns_2025_108600
crossref_primary_10_1063_1_4978393
crossref_primary_10_1186_s13662_017_1106_5
crossref_primary_10_3390_e18020055
crossref_primary_10_3390_math10020213
crossref_primary_10_1080_18824889_2022_2090801
crossref_primary_10_1007_s11071_023_08846_4
crossref_primary_10_1088_1674_1056_26_3_030504
crossref_primary_10_1109_TSMC_2018_2877042
crossref_primary_10_1063_1_4960110
crossref_primary_10_1049_iet_cta_2015_0130
crossref_primary_10_3390_e20010054
crossref_primary_10_1007_s40435_023_01361_9
Cites_doi 10.1016/j.sigpro.2010.04.024
10.1016/j.camwa.2009.08.019
10.1016/S0947-3580(95)70014-0
10.1002/rnc.1565
10.1016/j.automatica.2010.02.023
10.1016/j.camwa.2009.08.003
10.1109/9.739144
10.1016/j.automatica.2009.04.003
10.1006/jmaa.2000.7194
10.1122/1.549887
10.1016/j.automatica.2009.04.001
10.1016/j.automatica.2010.06.038
10.1016/j.na.2011.06.037
10.1109/TAC.2012.2228051
10.1016/j.jmaa.2006.06.007
10.1007/s11071-011-0261-6
10.1109/9.811208
10.1006/jmaa.1996.0456
10.1016/j.chaos.2005.04.037
10.1109/VSS.2012.6163471
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.automatica.2013.11.018
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2836
EndPage 551
ExternalDocumentID 28216827
10_1016_j_automatica_2013_11_018
S0005109813005359
GrantInformation_xml – fundername: GRF HKU
  grantid: 7138/10E
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c381t-c6d07ebed3a89ad5bf2c20ba8e021f38a42dae70298fd06ea9a075f297a2e7363
IEDL.DBID .~1
ISSN 0005-1098
IngestDate Mon Jul 21 09:43:04 EDT 2025
Wed Apr 02 07:25:26 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Tue Jul 01 00:43:24 EDT 2025
Fri Feb 23 02:23:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Finite-time stability
Fractional-order nonlinear system
Equilibria
Linear Lyapunov function
Initial value problem
Non linear control
Delay system
Non linear system
Positive system
Modeling
Fractional derivative
Asymptotic stability
Time interval
Lyapunov function
Non existence
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-c6d07ebed3a89ad5bf2c20ba8e021f38a42dae70298fd06ea9a075f297a2e7363
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1531023690
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1531023690
pascalfrancis_primary_28216827
crossref_citationtrail_10_1016_j_automatica_2013_11_018
crossref_primary_10_1016_j_automatica_2013_11_018
elsevier_sciencedirect_doi_10_1016_j_automatica_2013_11_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Automatica (Oxford)
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chilali, Gahinet, Apkarian (br000015) 1999; 44
Choi, Koo (br000020) 2011; 74
Nakagawa, Sorimachi (br000060) 1992; 75
Podlubny (br000100) 1999
Pisano, Rapaić, Jeličić, Usai (br000090) 2010; 20
Bagley, Torvik (br000010) 1986; 30
Podlubny (br000105) 1999; 44
(pp. 963–968). Lille, France.
Tavazoei, M., & Haeri, M. (2012). A simplification in the proof presented for non existence of periodic solutions in time invariant fractional order systems. February
Li, Chen, Podlubny (br000075) 2009; 45
Li, Chen, Podlubny (br000080) 2010; 59
Trigeassou, Maamri, Sabatier, Oustaloup (br000130) 2011; 91
Delbosco, Rodino (br000030) 1996; 204
Kamal, Raman, Bandyopadhyay (br000050) 2013; 58
Olver, Lozier, Boisvert, Clark (br000065) 2010
Daftardar-Gejji, Jafari (br000025) 2007; 328
math.DS
Lu, Chen (br000085) 2006; 27
Pisano, A., Rapaić, M., Usai, E., & Jeličić, Z. (2012). Continuous finite-time stabilization for some classes of fractional order dynamics. In
Sabatier, Moze, Farges (br000110) 2010; 59
.
(pp. 16–21). Mumbai, India.
Oustaloup, Mathieu, Lanusse (br000070) 1995; 1
Kaczorek (br000045) 2011
Diethelm, Ford (br000035) 2002; 265
Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing. In
Tavazoei (br000115) 2010; 46
Tavazoei, Haeri (br000120) 2009; 45
Aghababa (br000005) 2012; 69
Farges, Moze, Sabatier (br000040) 2010; 46
Tavazoei (10.1016/j.automatica.2013.11.018_br000115) 2010; 46
Trigeassou (10.1016/j.automatica.2013.11.018_br000130) 2011; 91
Delbosco (10.1016/j.automatica.2013.11.018_br000030) 1996; 204
Diethelm (10.1016/j.automatica.2013.11.018_br000035) 2002; 265
Podlubny (10.1016/j.automatica.2013.11.018_br000100) 1999
Tavazoei (10.1016/j.automatica.2013.11.018_br000120) 2009; 45
Olver (10.1016/j.automatica.2013.11.018_br000065) 2010
10.1016/j.automatica.2013.11.018_br000125
Choi (10.1016/j.automatica.2013.11.018_br000020) 2011; 74
Oustaloup (10.1016/j.automatica.2013.11.018_br000070) 1995; 1
Lu (10.1016/j.automatica.2013.11.018_br000085) 2006; 27
Bagley (10.1016/j.automatica.2013.11.018_br000010) 1986; 30
Kaczorek (10.1016/j.automatica.2013.11.018_br000045) 2011
Sabatier (10.1016/j.automatica.2013.11.018_br000110) 2010; 59
Nakagawa (10.1016/j.automatica.2013.11.018_br000060) 1992; 75
Daftardar-Gejji (10.1016/j.automatica.2013.11.018_br000025) 2007; 328
10.1016/j.automatica.2013.11.018_br000055
Chilali (10.1016/j.automatica.2013.11.018_br000015) 1999; 44
Pisano (10.1016/j.automatica.2013.11.018_br000090) 2010; 20
Farges (10.1016/j.automatica.2013.11.018_br000040) 2010; 46
Li (10.1016/j.automatica.2013.11.018_br000075) 2009; 45
Li (10.1016/j.automatica.2013.11.018_br000080) 2010; 59
Kamal (10.1016/j.automatica.2013.11.018_br000050) 2013; 58
10.1016/j.automatica.2013.11.018_br000095
Aghababa (10.1016/j.automatica.2013.11.018_br000005) 2012; 69
Podlubny (10.1016/j.automatica.2013.11.018_br000105) 1999; 44
References_xml – volume: 27
  start-page: 685
  year: 2006
  end-page: 688
  ident: br000085
  article-title: A note on the fractional-order Chen system
  publication-title: Chaos, Solitons and Fractals
– year: 2011
  ident: br000045
  article-title: Selected problems of fractional systems theory
– volume: 1
  start-page: 113
  year: 1995
  end-page: 121
  ident: br000070
  article-title: The CRONE control of resonant plants: application to a flexible transmission
  publication-title: European Journal of Control
– volume: 75
  start-page: 1814
  year: 1992
  end-page: 1819
  ident: br000060
  article-title: Basic characteristics of a fractance device
  publication-title: IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences
– volume: 328
  start-page: 1026
  year: 2007
  end-page: 1033
  ident: br000025
  article-title: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives
  publication-title: Journal of Mathematical Analysis and Applications
– reference: Pisano, A., Rapaić, M., Usai, E., & Jeličić, Z. (2012). Continuous finite-time stabilization for some classes of fractional order dynamics. In
– volume: 204
  start-page: 609
  year: 1996
  end-page: 625
  ident: br000030
  article-title: Existence and uniqueness for a nonlinear fractional differential equation
  publication-title: Journal of Mathematical Analysis and Applications
– reference: (pp. 963–968). Lille, France.
– year: 1999
  ident: br000100
  article-title: Fractional differential equations
– reference: Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing. In
– volume: 265
  start-page: 229
  year: 2002
  end-page: 248
  ident: br000035
  article-title: Analysis of fractional differential equations
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 46
  start-page: 945
  year: 2010
  end-page: 948
  ident: br000115
  article-title: A note on fractional-order derivatives of periodic functions
  publication-title: Automatica
– volume: 74
  start-page: 6530
  year: 2011
  end-page: 6536
  ident: br000020
  article-title: The monotonic property and stability of solutions of fractional differential equations
  publication-title: Nonlinear Analysis, Theory, Methods and Applications
– year: 2010
  ident: br000065
  article-title: NIST handbook of mathematical functions
– volume: 59
  start-page: 1594
  year: 2010
  end-page: 1609
  ident: br000110
  article-title: LMI stability conditions for fractional order systems
  publication-title: Computers and Mathematics with Applications
– volume: 45
  start-page: 1886
  year: 2009
  end-page: 1890
  ident: br000120
  article-title: A proof for non existence of periodic solutions in time invariant fractional order systems
  publication-title: Automatica
– volume: 45
  start-page: 1965
  year: 2009
  end-page: 1969
  ident: br000075
  article-title: Mittag-Leffler stability of fractional order nonlinear dynamic systems
  publication-title: Automatica
– volume: 20
  start-page: 2045
  year: 2010
  end-page: 2056
  ident: br000090
  article-title: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics
  publication-title: International Journal of Robust and Nonlinear Control
– reference: .
– volume: 59
  start-page: 1810
  year: 2010
  end-page: 1821
  ident: br000080
  article-title: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability
  publication-title: Computers and Mathematics with Applications
– volume: 30
  start-page: 133
  year: 1986
  end-page: 155
  ident: br000010
  article-title: On the fractional calculus model of viscoelastic behavior
  publication-title: Journal of Rheology
– volume: 44
  start-page: 208
  year: 1999
  end-page: 214
  ident: br000105
  article-title: Fractional-order systems and
  publication-title: IEEE Transactions on Automatic Control
– volume: 91
  start-page: 437
  year: 2011
  end-page: 445
  ident: br000130
  article-title: A Lyapunov approach to the stability of fractional differential equations
  publication-title: Signal Processing
– volume: 58
  start-page: 1597
  year: 2013
  end-page: 1602
  ident: br000050
  article-title: Finite-time stabilization of fractional order uncertain chain of integrator: an integral sliding mode approach
  publication-title: IEEE Transactions on Automatic Control
– volume: 69
  start-page: 247
  year: 2012
  end-page: 261
  ident: br000005
  article-title: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique
  publication-title: Nonlinear Dynamics
– reference:  [math.DS],
– volume: 44
  start-page: 2257
  year: 1999
  end-page: 2270
  ident: br000015
  article-title: Robust pole placement in LMI regions
  publication-title: IEEE Transactions on Automatic Control
– reference: Tavazoei, M., & Haeri, M. (2012). A simplification in the proof presented for non existence of periodic solutions in time invariant fractional order systems. February
– volume: 46
  start-page: 1730
  year: 2010
  end-page: 1734
  ident: br000040
  article-title: Pseudo-state feedback stabilization of commensurate fractional order systems
  publication-title: Automatica
– reference: (pp. 16–21). Mumbai, India.
– year: 2010
  ident: 10.1016/j.automatica.2013.11.018_br000065
– volume: 91
  start-page: 437
  issue: 3
  year: 2011
  ident: 10.1016/j.automatica.2013.11.018_br000130
  article-title: A Lyapunov approach to the stability of fractional differential equations
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2010.04.024
– volume: 59
  start-page: 1810
  issue: 5
  year: 2010
  ident: 10.1016/j.automatica.2013.11.018_br000080
  article-title: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability
  publication-title: Computers and Mathematics with Applications
  doi: 10.1016/j.camwa.2009.08.019
– ident: 10.1016/j.automatica.2013.11.018_br000125
– volume: 1
  start-page: 113
  issue: 2
  year: 1995
  ident: 10.1016/j.automatica.2013.11.018_br000070
  article-title: The CRONE control of resonant plants: application to a flexible transmission
  publication-title: European Journal of Control
  doi: 10.1016/S0947-3580(95)70014-0
– volume: 20
  start-page: 2045
  issue: 18
  year: 2010
  ident: 10.1016/j.automatica.2013.11.018_br000090
  article-title: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.1565
– volume: 46
  start-page: 945
  issue: 5
  year: 2010
  ident: 10.1016/j.automatica.2013.11.018_br000115
  article-title: A note on fractional-order derivatives of periodic functions
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.02.023
– volume: 75
  start-page: 1814
  issue: 12
  year: 1992
  ident: 10.1016/j.automatica.2013.11.018_br000060
  article-title: Basic characteristics of a fractance device
  publication-title: IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences
– volume: 59
  start-page: 1594
  issue: 5
  year: 2010
  ident: 10.1016/j.automatica.2013.11.018_br000110
  article-title: LMI stability conditions for fractional order systems
  publication-title: Computers and Mathematics with Applications
  doi: 10.1016/j.camwa.2009.08.003
– year: 2011
  ident: 10.1016/j.automatica.2013.11.018_br000045
– volume: 44
  start-page: 208
  issue: 1
  year: 1999
  ident: 10.1016/j.automatica.2013.11.018_br000105
  article-title: Fractional-order systems and PIλDμ-controllers
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.739144
– volume: 45
  start-page: 1965
  issue: 8
  year: 2009
  ident: 10.1016/j.automatica.2013.11.018_br000075
  article-title: Mittag-Leffler stability of fractional order nonlinear dynamic systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.04.003
– volume: 265
  start-page: 229
  issue: 2
  year: 2002
  ident: 10.1016/j.automatica.2013.11.018_br000035
  article-title: Analysis of fractional differential equations
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1006/jmaa.2000.7194
– volume: 30
  start-page: 133
  issue: 1
  year: 1986
  ident: 10.1016/j.automatica.2013.11.018_br000010
  article-title: On the fractional calculus model of viscoelastic behavior
  publication-title: Journal of Rheology
  doi: 10.1122/1.549887
– volume: 45
  start-page: 1886
  issue: 8
  year: 2009
  ident: 10.1016/j.automatica.2013.11.018_br000120
  article-title: A proof for non existence of periodic solutions in time invariant fractional order systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.04.001
– volume: 46
  start-page: 1730
  issue: 10
  year: 2010
  ident: 10.1016/j.automatica.2013.11.018_br000040
  article-title: Pseudo-state feedback stabilization of commensurate fractional order systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.06.038
– year: 1999
  ident: 10.1016/j.automatica.2013.11.018_br000100
– volume: 74
  start-page: 6530
  issue: 17
  year: 2011
  ident: 10.1016/j.automatica.2013.11.018_br000020
  article-title: The monotonic property and stability of solutions of fractional differential equations
  publication-title: Nonlinear Analysis, Theory, Methods and Applications
  doi: 10.1016/j.na.2011.06.037
– volume: 58
  start-page: 1597
  issue: 6
  year: 2013
  ident: 10.1016/j.automatica.2013.11.018_br000050
  article-title: Finite-time stabilization of fractional order uncertain chain of integrator: an integral sliding mode approach
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2012.2228051
– ident: 10.1016/j.automatica.2013.11.018_br000055
– volume: 328
  start-page: 1026
  issue: 2
  year: 2007
  ident: 10.1016/j.automatica.2013.11.018_br000025
  article-title: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/j.jmaa.2006.06.007
– volume: 69
  start-page: 247
  issue: 1–2
  year: 2012
  ident: 10.1016/j.automatica.2013.11.018_br000005
  article-title: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-011-0261-6
– volume: 44
  start-page: 2257
  issue: 12
  year: 1999
  ident: 10.1016/j.automatica.2013.11.018_br000015
  article-title: Robust pole placement in LMI regions
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.811208
– volume: 204
  start-page: 609
  issue: 2
  year: 1996
  ident: 10.1016/j.automatica.2013.11.018_br000030
  article-title: Existence and uniqueness for a nonlinear fractional differential equation
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1006/jmaa.1996.0456
– volume: 27
  start-page: 685
  issue: 3
  year: 2006
  ident: 10.1016/j.automatica.2013.11.018_br000085
  article-title: A note on the fractional-order Chen system
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2005.04.037
– ident: 10.1016/j.automatica.2013.11.018_br000095
  doi: 10.1109/VSS.2012.6163471
SSID ssj0004182
Score 2.5098195
Snippet We note that in the literature it is often taken for granted that for fractional-order system without delays, whenever the system trajectory reaches the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 547
SubjectTerms Applied sciences
Asymptotic properties
Computer science; control theory; systems
Control system analysis
Control theory. Systems
Delay
Dynamical systems
Equilibria
Exact sciences and technology
Finite-time stability
Fractional-order nonlinear system
Initial value problems
Linear Lyapunov function
Lyapunov functions
Nonlinear dynamics
Stability
System theory
Trajectories
Title Non-existence of finite-time stable equilibria in fractional-order nonlinear systems
URI https://dx.doi.org/10.1016/j.automatica.2013.11.018
https://www.proquest.com/docview/1531023690
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSE0lfIts2iQq9KLFuyZXoKoWHb0j0lkJsY6wEOi3ezj2t-e2csO2loD4EcbdCDmdHMCH3zDWNfg8-991oKE50SShsnACAKLX1Ak4mQFVTv_Htezq7Uz2t9vcfOx1oYglUOvj_59N5bD39OB2mertqWanzJoGpDDzK60FTEp1RFVn5y9wDzUNIkxvCecbM2A5onYbxgt132zKjEQCSLE-LzpPYf_w9RByvYoOBi6njxj_PuI9LFG_Z6SCX5WdrtW7YXunfs1V8Eg-_Z5XzZCSK77DNjvow8tpRkCmopzzExbBaBh9td2yP_gbcdj-tU6gAL0dNy8i6RacCaJ9bnzQd2dfH98nwmhj4KwmE83gpX-qxCZfkCTA1eNzF3edaACRjgY2FA5R5CRWTs0WdlgBowkYh5XUEeqqIsDtk-rhWOGA864hx1iMoEJRucVDodnK-lNo0r5IRVo-isG0jGqdfFwo5oshv7IHRLQsc7iEWhT5i8H7lKRBtPGPNt1I59ZDQW48ETRk8fKfR-WbyFytLk1YR9GTVs8dDRSwp0YbnbWAwTRHlR1tnHZ23hE3uJXyqhwD-z_e16F44xydk2096Kp-zF2Y9fs_kfclABLA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQBCiFfF8ihGgqPb2LETW4gDAqotbfe0lXozk9iWglbZZR9CXPhT_EHGcdJSwaES6jWRH5oZzzeWZ74h5LV3wjmnONOhlkwqXTMACExx59FkAmR5rHc-mRTjU_n5TJ1tkV9DLUxMq-x9f_Lpnbfuv-z30txfNE2s8Y0GZXR8kFG5Mn1m5ZH_8R3vbat3hx9RyW-EOPg0_TBmfWsBViNErVlduKzE_bsctAGnqiBqkVWgPWJeyDVI4cCXkZ88uKzwYACxNQhTgvBlXuQ47w1yU6K7iG0T9n5e5JVIrhNFeUfxaXSfPpSSymCznndUrJHyiOd7kUA09hv5NybeXcAKNRVSi42_0KKDwIP75F4fu9L3STwPyJZvH5I7fzAaPiLTybxlkV2zC8XpPNDQxKiWxR72FCPRauap_7ZpulIDoE1LwzLVVsCMdTygtE3sHbCkiWZ69ZicXot0d8g2ruWfEOpVwDmMD1J7ySuclNfK185wpas65yNSDqKzdc9qHptrzOyQvvbVXgjdRqHjpcei0EeEn49cJGaPK4x5O2jHXrJSiwB0hdG7lxR6vixee3mhRTkirwYNWzzl8ekGWj_frCziUuTYKEz29L-28JLcGk9Pju3x4eToGbmNf2RKQX9OttfLjX-BEda62u0smpIv132EfgPf2T4C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-existence+of+finite-time+stable+equilibria+in+fractional-order+nonlinear+systems&rft.jtitle=Automatica+%28Oxford%29&rft.au=Shen%2C+Jun&rft.au=Lam%2C+James&rft.date=2014-02-01&rft.issn=0005-1098&rft.volume=50&rft.issue=2&rft.spage=547&rft.epage=551&rft_id=info:doi/10.1016%2Fj.automatica.2013.11.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon