An integrated approach of Belief Rule Base and Convolutional Neural Network to monitor air quality in Shanghai
•We monitor air quality from satellite images to address spatial coverage limitation.•We customize Convolutional Neural Network (CNN) to analyze satellite images.•We propose mathematical model to integrate CNN with Belief Rule Based Expert System.•We check Relative Humidity to distinguish hazy image...
Saved in:
Published in | Expert systems with applications Vol. 206; p. 117905 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 1873-6793 |
DOI | 10.1016/j.eswa.2022.117905 |
Cover
Loading…
Abstract | •We monitor air quality from satellite images to address spatial coverage limitation.•We customize Convolutional Neural Network (CNN) to analyze satellite images.•We propose mathematical model to integrate CNN with Belief Rule Based Expert System.•We check Relative Humidity to distinguish hazy image between cloud and polluted air.•We address uncertainties of environmental sensor data by this expert system.
Accurate monitoring of air quality can reduce its adverse impact on earth. Ground-level sensors can provide fine particulate matter (PM2.5) concentrations and ground images. But, such sensors have limited spatial coverage and require deployment cost. PM2.5 can be estimated from satellite-retrieved Aerosol Optical Depth (AOD) too. However, AOD is subject to uncertainties associated with its retrieval algorithms and constrain the spatial resolution of estimated PM2.5. AOD is not retrievable under cloudy weather as well. In contrast, satellite images provide continuous spatial coverage with no separate deployment cost. Accuracy of monitoring from such satellite images is hindered due to uncertainties of sensor data of relevant enviromental parameters, such as, relative humidity, temperature, wind speed and wind direction. Belief Rule Based Expert System (BRBES) is an efficient algorithm to address these uncertainties. Convolutional Neural Network (CNN) is suitable for image analytics. Hence, we propose a novel model by integrating CNN with BRBES to monitor air quality from satellite images with improved accuracy. We customized CNN and optimized BRBES to increase monitoring accuracy further. An obscure image has been differentiated between polluted air and cloud in our model. Valid environmental data (temperature, wind speed and wind direction) have been adopted to further strengthen the monitoring performance of our proposed model. Three-year observation data (satellite images and environmental parameters) from 2014 to 2016 of Shanghai have been employed to analyze and design our proposed model. The results conclude that the accuracy of our model to monitor PM2.5 of Shanghai is higher than only CNN and other conventional Machine Learning methods. Real-time validation of our model on near real-time satellite images of April-2021 of Shanghai shows average difference between our calculated PM2.5 concentrations and the actual one within ± 5.51. |
---|---|
AbstractList | Accurate monitoring of air quality can reduce its adverse impact on earth. Ground-level sensors can provide fine particulate matter (PM 2.5 ) concentrations and ground images. But, such sensors have limited spatial coverage and require deployment cost. PM 2.5 can be estimated from satellite-retrieved Aerosol Optical Depth (AOD) too. However, AOD is subject to uncertainties associated with its retrieval algorithms and constrain the spatial resolution of estimated PM 2.5 . AOD is not retrievable under cloudy weather as well. In contrast, satellite images provide continuous spatial coverage with no separate deployment cost. Accuracy of monitoring from such satellite images is hindered due to uncertainties of sensor data of relevant enviromental parameters, such as, relative humidity, temperature, wind speed and wind direction . Belief Rule Based Expert System (BRBES) is an efficient algorithm to address these uncertainties. Convolutional Neural Network (CNN) is suitable for image analytics. Hence, we propose a novel model by integrating CNN with BRBES to monitor air quality from satellite images with improved accuracy. We customized CNN and optimized BRBES to increase monitoring accuracy further. An obscure image has been differentiated between polluted air and cloud in our model. Valid environmental data (temperature, wind speed and wind direction) have been adopted to further strengthen the monitoring performance of our proposed model. Three-year observation data (satellite images and environmental parameters) from 2014 to 2016 of Shanghai have been employed to analyze and design our proposed model. The results conclude that the accuracy of our model to monitor PM 2.5 of Shanghai is higher than only CNN and other conventional Machine Learning methods. Real-time validation of our model on near real-time satellite images of April-2021 of Shanghai shows average difference between our calculated PM 2.5 concentrations and the actual one within ±5.51. •We monitor air quality from satellite images to address spatial coverage limitation.•We customize Convolutional Neural Network (CNN) to analyze satellite images.•We propose mathematical model to integrate CNN with Belief Rule Based Expert System.•We check Relative Humidity to distinguish hazy image between cloud and polluted air.•We address uncertainties of environmental sensor data by this expert system. Accurate monitoring of air quality can reduce its adverse impact on earth. Ground-level sensors can provide fine particulate matter (PM2.5) concentrations and ground images. But, such sensors have limited spatial coverage and require deployment cost. PM2.5 can be estimated from satellite-retrieved Aerosol Optical Depth (AOD) too. However, AOD is subject to uncertainties associated with its retrieval algorithms and constrain the spatial resolution of estimated PM2.5. AOD is not retrievable under cloudy weather as well. In contrast, satellite images provide continuous spatial coverage with no separate deployment cost. Accuracy of monitoring from such satellite images is hindered due to uncertainties of sensor data of relevant enviromental parameters, such as, relative humidity, temperature, wind speed and wind direction. Belief Rule Based Expert System (BRBES) is an efficient algorithm to address these uncertainties. Convolutional Neural Network (CNN) is suitable for image analytics. Hence, we propose a novel model by integrating CNN with BRBES to monitor air quality from satellite images with improved accuracy. We customized CNN and optimized BRBES to increase monitoring accuracy further. An obscure image has been differentiated between polluted air and cloud in our model. Valid environmental data (temperature, wind speed and wind direction) have been adopted to further strengthen the monitoring performance of our proposed model. Three-year observation data (satellite images and environmental parameters) from 2014 to 2016 of Shanghai have been employed to analyze and design our proposed model. The results conclude that the accuracy of our model to monitor PM2.5 of Shanghai is higher than only CNN and other conventional Machine Learning methods. Real-time validation of our model on near real-time satellite images of April-2021 of Shanghai shows average difference between our calculated PM2.5 concentrations and the actual one within ± 5.51. |
ArticleNumber | 117905 |
Author | Hossain, Mohammad Shahadat Andersson, Karl Kabir, Sami Islam, Raihan Ul |
Author_xml | – sequence: 1 givenname: Sami surname: Kabir fullname: Kabir, Sami email: sami.kabir@ltu.se organization: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-931 87 Skellefteå, Sweden – sequence: 2 givenname: Raihan Ul surname: Islam fullname: Islam, Raihan Ul email: raihan.ul.islam@ltu.se organization: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-931 87 Skellefteå, Sweden – sequence: 3 givenname: Mohammad Shahadat surname: Hossain fullname: Hossain, Mohammad Shahadat email: hossain_ms@cu.ac.bd organization: Department of Computer Science & Engineering, University of Chittagong, Chattogram 4331, Bangladesh – sequence: 4 givenname: Karl surname: Andersson fullname: Andersson, Karl email: karl.andersson@ltu.se organization: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-931 87 Skellefteå, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-91874$$DView record from Swedish Publication Index |
BookMark | eNp9kM1uGjEUha0qkQI0L5CVH6BDbI9njKVugCZppaiV8tOtdfHcAdOJTW0PKG-fobSbLrI6m_Odq_uNyZkPHgm54mzKGa-vt1NMB5gKJsSUc6VZ9YGM-EyVRa10eUZGTFeqkFzJCzJOacsYV4ypEfFzT53PuI6QsaGw28UAdkNDSxfYOWzpQ98hXUBCCr6hy-D3oeuzCx46-h37-CfyIcRfNAf6ErzLIVJwkf7uoXP5ddinjxvw6w24j-S8hS7h5d-ckOfbm6fl1-L-x9235fy-sOWM58LWQrYgkUvNLLCqqaTVK8lqhuXwI9RaWFUzrrVQjRQClGzqWSVVuapLJaGckE-n3XTAXb8yu-heIL6aAM58cT_nJsS16XJv9CBJDvXZqW5jSClia6zLcHwyR3Cd4cwcNZutOWo2R83mpHlAxX_ov1vvQp9PEA4O9g6jSdaht9i4iDabJrj38Dffu5kB |
CitedBy_id | crossref_primary_10_1016_j_ijar_2023_108964 crossref_primary_10_1007_s10668_024_05745_5 crossref_primary_10_3390_en17081797 crossref_primary_10_1007_s10115_023_01947_x crossref_primary_10_1155_2022_1738660 crossref_primary_10_1016_j_eswa_2022_119065 crossref_primary_10_1016_j_ijar_2023_109054 crossref_primary_10_3390_math12101457 crossref_primary_10_3390_rs16030467 crossref_primary_10_3390_s22228790 crossref_primary_10_1016_j_apr_2024_102269 crossref_primary_10_1109_JBHI_2024_3485871 crossref_primary_10_1007_s42979_024_02903_4 |
Cites_doi | 10.1016/j.atmosenv.2020.117451 10.1016/j.knosys.2020.106731 10.1021/acs.est.5b00859 10.1109/ICMLC.2017.8107770 10.1016/j.atmosenv.2019.117188 10.3390/app9142789 10.1002/2013JD019630 10.1145/3292500.3330693 10.3155/1047-3289.60.5.596 10.1007/s00521-021-06067-7 10.3390/app10061953 10.1109/TPAMI.2013.50 10.1007/978-94-011-2666-3_5 10.3390/rs9040397 10.1016/j.eswa.2020.114054 10.1007/s00500-017-2732-2 10.3390/s20071956 10.1016/j.chemosphere.2019.124678 10.1109/TSMCA.2005.851270 10.1016/j.eswa.2017.05.039 10.1109/ACCESS.2020.3031438 10.1016/j.knosys.2017.11.039 10.1002/jgrd.50712 10.1007/s00500-016-2425-2 10.3390/rs11182120 10.1109/CVPR.2015.7298965 10.1016/j.coal.2010.11.010 10.1109/TKDE.2011.51 10.1002/2017GL075710 10.1080/01621459.1963.10500830 10.22190/FUME190327035A 10.1016/j.ins.2015.12.009 10.1016/j.atmosenv.2019.04.002 10.5194/angeo-27-2755-2009 10.1016/j.atmosres.2016.06.016 10.1016/j.eswa.2017.04.059 10.3390/ijerph14121510 10.1016/j.atmosres.2020.105162 10.1016/j.rse.2020.112221 10.1109/LGRS.2016.2520480 10.1038/jes.2015.41 10.1109/TGRS.2016.2612821 10.1109/CyberC.2016.38 10.1016/j.rse.2014.09.015 10.3390/rs12060991 10.1111/exsy.12110 10.1016/j.ejor.2004.09.059 10.1023/A:1008202821328 10.1016/j.atmosenv.2019.117198 10.1109/LCNW.2018.8628607 10.3390/ijerph17249471 10.1007/BF00993164 10.2112/SI90-028.1 10.3390/rs13112057 10.3390/su11082319 10.1016/j.ecoenv.2018.05.089 10.1007/978-3-030-16621-2_58 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION ADTPV AOWAS D8T ZZAVC |
DOI | 10.1016/j.eswa.2022.117905 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | oai_DiVA_org_ltu_91874 10_1016_j_eswa_2022_117905 S0957417422011514 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT ADTPV AOWAS D8T EFKBS ZZAVC |
ID | FETCH-LOGICAL-c381t-c624fa4e1490ca05d54c9b4060e3202a692c76019927d422a74d685473b6374a3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 1873-6793 |
IngestDate | Thu Aug 21 06:40:37 EDT 2025 Tue Jul 01 04:06:02 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Fri Feb 23 02:40:17 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Uncertainty Air quality monitoring Belief Rule Based Expert System (BRBES) Convolutional Neural Network (CNN) |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-c624fa4e1490ca05d54c9b4060e3202a692c76019927d422a74d685473b6374a3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0957417422011514 |
ParticipantIDs | swepub_primary_oai_DiVA_org_ltu_91874 crossref_citationtrail_10_1016_j_eswa_2022_117905 crossref_primary_10_1016_j_eswa_2022_117905 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117905 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-15 |
PublicationDateYYYYMMDD | 2022-11-15 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | In Proceedings of the 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Chengdu, China, 13–15 October 2016, pp. 153–156. Affonso, Rossi, Vieira, de Leon Ferreira (b0005) 2017; 85 In Proceedings of the 25 Borlea, Precup, Borlea, Iercan (b0035) 2021; 214 U.S. Department of State Mission China. Retrieved from https://air.plumelabs.com/air-quality-in-Shanghai-7xhy. Accessed June 28, 2021. Wang, Wang, Li, Lu, Peng, Zhao, Pan (b0305) 2020; 17 Yu, Zhang, Wang, Lu, Li (b0365) 2021; 248 Chang, L., Ma, X., Wang, L., & Ling, X. (2016, October). Accessed June 28, 2021. Lin, Li, Yuan, Lau, Li, Fung (b0185) 2015; 156 Planet Team. (2017). Upadhyay, Nagpal (b0275) 2020; 23 Hossain, Rahaman, Mustafa, Andersson (b0110) 2017; 22 Hossain, Zander, Kamal, Chowdhury (b0115) 2015; 32 Retrieved from , Su, Wang, Zhang, Qin, Bilal (b0260) 2021; 253 Liu, Weng, Li, Cribb (b0200) 2019; 11 Master’s Thesis, Luleå University of Technology, Skellefteå, Sweden. Wang, Zhang, Guo, Lu (b0315) 2017; 84 Xiong, Q., Chen, G., Mao, Z., Liao, T., & Chang, L. (2017, July). Ngiam, Khosla, Kim, Nam, Lee, Ng (b0230) 2011 Mintz, D. (2006). Long, J., Shelhamer, E., & Darrell, T. (2015, June). Yuan, Shi, Gu (b0375) 2021; 169, 114417 Liu, Weng, Li (b0195) 2019; 208 In Proceedings of the 2017 International Conference on Machine Learning and Cybernetics (ICMLC), Ningbo, China, 9–12 July 2017; Volume 1, pp. 236–240. Khan, Mehran, Haq, Ullah, Naqvi, Ihsan, Abbass (b0155) 2021; 185, 115695 ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2020.114054. Buchanan, B.G., & Shortliffe, E.H. (1984). Addison-Wesley Reading: Massachusetts, MA, USA. Wang, Chen, Li, Wang, Yu, Si, Zhang (b0290) 2017; 9 Bumm, S. Using Satellite Images to determine AQI Values in California. She, Choi, Belle, Xiao, Bi, Huang, Liu (b0250) 2020; 239 Yan, Li, Sun, Wu (b0340) 2019; 11 Retrieved from https://rhg.com/research/chinas-emissions-surpass-developed-countries/. Accessed December 5, 2021. In Proceedings of the 9 Fedushko, S., & Ustyianovych, T. (2019, January). Wang, Yang, Xu (b0310) 2006; 174 Larsen, K., Pitt, H., Grant, M., & Houser, T. (2021, May). Uzhinskiy, Ososkov, Goncharov, Frontsyeva (b0285) 2018; 145 Albu, Precup, Teban (b0010) 2019; 17 Islam, R.U., Hossain, M.S., & Andersson, K. (2020a). San Francisco, CA, USA. Available online: https://api.planet.com. Accessed June 28, 2021. Barron (b0025) 1994; 14 Zou, Pu, Bilal, Weng, Zhai, Nichol (b0385) 2016; 13 Torrisi, Pollastri, Le (b0270) 2020 Demirel, Emil, Duzgun (b0075) 2011; 86 Babaev, D., Savchenko, M., Tuzhilin, A., & Umerenkov, D. (2019, July). Yang, Liu, Wang, Sii, Wang (b0345) 2006; 36 Yang, Wang, Liu, Martinez (b0350) 2018; 142 Yu, Zhang, Wang, Qin, Lu, Li (b0370) 2020; 223 International Conference on Informatics, Electronics and Vision (ICIEV 2020), Kitakyushu, Fukuoka, Japan, 26-29 August 2020. Accessed December 24, 2020. Munrat, A.A. (2018, October). Aras, M., & Ismael, A.Ş. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images. Chen, Nugent, Wang (b0060) 2011; 24 Islam, Hossain, Andersson (b0140) 2020; 8 World Air Map. Chang, Zhou, You, Yang, Zhou (b0055) 2016; 336 Lee, Kloog, Chudnovsky, Lyapustin, Wang, Melly, Schwartz (b0165) 2016; 26 Christopher, Gupta (b0070) 2010; 60 Wang, Li, Chen, Huang, Huang, Feng, Wumaer (b0300) 2014; 119 In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. Chillrud, R. (2016). Herbst, Garcia, Cooke, Ezquerra, Folks, DePuey (b0100) 1992 Hu, Fu, Wang, Kong, Chen, Chen (b0125) 2016; 181 In Proceedings of the International Conference on Computer Science, Engineering and Education Applications, Springer, Cham., 26 January 2019, pp. 625-636. Guo, Chen (b0090) 2018; 161 Islam, Hossain, Andersson (b0130) 2016; 22 He, Wang, Huang, Wei, Zhou, Zhong (b0095) 2020; 223 Malik, Kanwal, Asghar, Sadiq, Karamat, Fleury (b0215) 2019; 9 Maggiori, Tarabalka, Charpiat, Alliez (b0210) 2016; 55 Li, Shen, Yuan, Zhang, Zhang (b0170) 2017; 44 Hoeffding (b0105) 1963; 58 Gazzea, Pacevicius, Dammann, Sapronova, Lunde, Arghandeh (b0085) 2021 Li, Xie, Ren, Guo, Yang, Xu (b0175) 2020; 10 2057. https://doi.org/10.3390/rs13112057. Just, Wright, Schwartz, Coull, Baccarelli, Tellez-Rojo, Moody, Wang, Lyapustin, Kloog (b0145) 2015; 49 Yang, Xu, Yu (b0355) 2020; 272 Storn, Price (b0255) 1997; 11 Liu, Sun, Wergeles, Shang (b0190) 2021; 172, 114602 Hsu, Jeong, Bettenhausen, Sayer, Hansell, Seftor, Tsay (b0120) 2013; 118 Yang, Yuan, Li, Shen, Zhang (b0360) 2017; 14 World Weather Online. Kabir, Islam, Hossain, Andersson (b0150) 2020; 20 Planet Team, San Francisco, CA, USA. (2016, October). Wang, Chen, Xin, Wang (b0295) 2020; 12 Park, Achmad, Syifa, Lee (b0235) 2019; 90 Zheng, Bergin, Hu, Miller, Carlson (b0380) 2020; 230 Xiong, X., Liu, J., Chen, L., Ju, W., & Moshary, F. (2021). Special Issue “Remote Sensing of Greenhouse Gases and Air Pollution”. Al-Janabi, Alkaim, Al-Janabi, Aljeboree, Mustafa (b0265) 2021; 33 Retrieved from https://www.eesi.org/articles/view/globally-air-pollution-is-fourth-largest-killer-causing-6.5-million-deaths- . Accessed June 28, 2021. Bengio, Courville, Vincent (b0030) 2013; 35 ACM SIGKDD international conference on knowledge discovery & data mining, 25 July 2019, pp. 2183-2190. Li, Zhao, Kahn, Mishchenko, Remer, Lee, Maring (b0180) 2009; 27 Borlea (10.1016/j.eswa.2022.117905_b0035) 2021; 214 Islam (10.1016/j.eswa.2022.117905_b0130) 2016; 22 Park (10.1016/j.eswa.2022.117905_b0235) 2019; 90 Yuan (10.1016/j.eswa.2022.117905_b0375) 2021; 169, 114417 Chang (10.1016/j.eswa.2022.117905_b0055) 2016; 336 Al-Janabi (10.1016/j.eswa.2022.117905_b0265) 2021; 33 Torrisi (10.1016/j.eswa.2022.117905_b0270) 2020 She (10.1016/j.eswa.2022.117905_b0250) 2020; 239 Li (10.1016/j.eswa.2022.117905_b0180) 2009; 27 Demirel (10.1016/j.eswa.2022.117905_b0075) 2011; 86 Khan (10.1016/j.eswa.2022.117905_b0155) 2021; 185, 115695 Wang (10.1016/j.eswa.2022.117905_b0315) 2017; 84 10.1016/j.eswa.2022.117905_b0280 Yang (10.1016/j.eswa.2022.117905_b0360) 2017; 14 Albu (10.1016/j.eswa.2022.117905_b0010) 2019; 17 10.1016/j.eswa.2022.117905_b0160 Ngiam (10.1016/j.eswa.2022.117905_b0230) 2011 10.1016/j.eswa.2022.117905_b0080 Wang (10.1016/j.eswa.2022.117905_b0295) 2020; 12 Storn (10.1016/j.eswa.2022.117905_b0255) 1997; 11 10.1016/j.eswa.2022.117905_b0225 Yang (10.1016/j.eswa.2022.117905_b0350) 2018; 142 10.1016/j.eswa.2022.117905_b0020 10.1016/j.eswa.2022.117905_b0065 Just (10.1016/j.eswa.2022.117905_b0145) 2015; 49 Zheng (10.1016/j.eswa.2022.117905_b0380) 2020; 230 10.1016/j.eswa.2022.117905_b0220 Christopher (10.1016/j.eswa.2022.117905_b0070) 2010; 60 Zou (10.1016/j.eswa.2022.117905_b0385) 2016; 13 Hossain (10.1016/j.eswa.2022.117905_b0110) 2017; 22 Kabir (10.1016/j.eswa.2022.117905_b0150) 2020; 20 He (10.1016/j.eswa.2022.117905_b0095) 2020; 223 Hu (10.1016/j.eswa.2022.117905_b0125) 2016; 181 Hoeffding (10.1016/j.eswa.2022.117905_b0105) 1963; 58 Maggiori (10.1016/j.eswa.2022.117905_b0210) 2016; 55 Bengio (10.1016/j.eswa.2022.117905_b0030) 2013; 35 10.1016/j.eswa.2022.117905_b0015 Hsu (10.1016/j.eswa.2022.117905_b0120) 2013; 118 Liu (10.1016/j.eswa.2022.117905_b0195) 2019; 208 10.1016/j.eswa.2022.117905_b0335 Wang (10.1016/j.eswa.2022.117905_b0300) 2014; 119 Yu (10.1016/j.eswa.2022.117905_b0370) 2020; 223 Li (10.1016/j.eswa.2022.117905_b0175) 2020; 10 10.1016/j.eswa.2022.117905_b0135 10.1016/j.eswa.2022.117905_b0330 Yan (10.1016/j.eswa.2022.117905_b0340) 2019; 11 Wang (10.1016/j.eswa.2022.117905_b0305) 2020; 17 Barron (10.1016/j.eswa.2022.117905_b0025) 1994; 14 Yang (10.1016/j.eswa.2022.117905_b0355) 2020; 272 Islam (10.1016/j.eswa.2022.117905_b0140) 2020; 8 Wang (10.1016/j.eswa.2022.117905_b0290) 2017; 9 Upadhyay (10.1016/j.eswa.2022.117905_b0275) 2020; 23 Yang (10.1016/j.eswa.2022.117905_b0345) 2006; 36 Affonso (10.1016/j.eswa.2022.117905_b0005) 2017; 85 Gazzea (10.1016/j.eswa.2022.117905_b0085) 2021 10.1016/j.eswa.2022.117905_b0325 Lin (10.1016/j.eswa.2022.117905_b0185) 2015; 156 10.1016/j.eswa.2022.117905_b0205 Su (10.1016/j.eswa.2022.117905_b0260) 2021; 253 Guo (10.1016/j.eswa.2022.117905_b0090) 2018; 161 10.1016/j.eswa.2022.117905_b0240 Uzhinskiy (10.1016/j.eswa.2022.117905_b0285) 2018; 145 Yu (10.1016/j.eswa.2022.117905_b0365) 2021; 248 Li (10.1016/j.eswa.2022.117905_b0170) 2017; 44 10.1016/j.eswa.2022.117905_b0040 Chen (10.1016/j.eswa.2022.117905_b0060) 2011; 24 Wang (10.1016/j.eswa.2022.117905_b0310) 2006; 174 10.1016/j.eswa.2022.117905_b0245 Liu (10.1016/j.eswa.2022.117905_b0200) 2019; 11 10.1016/j.eswa.2022.117905_b0045 10.1016/j.eswa.2022.117905_b0320 Lee (10.1016/j.eswa.2022.117905_b0165) 2016; 26 10.1016/j.eswa.2022.117905_b0050 Liu (10.1016/j.eswa.2022.117905_b0190) 2021; 172, 114602 Malik (10.1016/j.eswa.2022.117905_b0215) 2019; 9 Hossain (10.1016/j.eswa.2022.117905_b0115) 2015; 32 Herbst (10.1016/j.eswa.2022.117905_b0100) 1992 |
References_xml | – reference: Xiong, Q., Chen, G., Mao, Z., Liao, T., & Chang, L. (2017, July). – volume: 253 year: 2021 ident: b0260 article-title: A high-precision aerosol retrieval algorithm (HiPARA) for advanced himawari imager (AHI) data: Development and verification publication-title: Remote Sensing of Environment – reference: Planet Team. (2017). – volume: 181 start-page: 95 year: 2016 end-page: 105 ident: b0125 article-title: The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere publication-title: Atmospheric Research – volume: 272 year: 2020 ident: b0355 article-title: Estimating PM2.5 concentrations in Yangtze River Delta region of China using random forest model and the Top-of-Atmosphere reflectance publication-title: The Journal of Environmental Management – reference: ACM SIGKDD international conference on knowledge discovery & data mining, 25 July 2019, pp. 2183-2190. – volume: 142 start-page: 220 year: 2018 end-page: 240 ident: b0350 article-title: A joint optimization method on parameter and structure for belief-rule-based systems publication-title: Knowledge-Based Systems – reference: . Retrieved from https://www.eesi.org/articles/view/globally-air-pollution-is-fourth-largest-killer-causing-6.5-million-deaths- . Accessed June 28, 2021. – reference: Babaev, D., Savchenko, M., Tuzhilin, A., & Umerenkov, D. (2019, July). – year: 2020 ident: b0270 article-title: Deep learning methods in protein structure prediction – reference: . Retrieved from – volume: 36 start-page: 266 year: 2006 end-page: 285 ident: b0345 article-title: Belief rule-base inference methodology using the evidential reasoning Approach-RIMER publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part A – volume: 20 start-page: 1956 year: 2020 ident: b0150 article-title: An integrated approach of belief rule base and deep learning to predict air pollution publication-title: Sensors – reference: . In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. – reference: U.S. Department of State Mission China. – volume: 239 year: 2020 ident: b0250 article-title: Satellite-based estimation of hourly PM2. 5 levels during heavy winter pollution episodes in the Yangtze River Delta, China publication-title: Chemosphere – reference: . Retrieved from https://rhg.com/research/chinas-emissions-surpass-developed-countries/. Accessed December 5, 2021. – volume: 44 start-page: 11 year: 2017 end-page: 985 ident: b0170 article-title: Estimating ground-level PM publication-title: Geophysical Research Letters – reference: Xiong, X., Liu, J., Chen, L., Ju, W., & Moshary, F. (2021). Special Issue “Remote Sensing of Greenhouse Gases and Air Pollution”. – reference: Aras, M., & Ismael, A.Ş. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images. – volume: 9 start-page: 397 year: 2017 ident: b0290 article-title: Interference of heavy aerosol loading on the VIIRS aerosol optical depth (AOD) retrieval algorithm publication-title: Remote Sensors – reference: Chillrud, R. (2016). – volume: 119 start-page: 1903 year: 2014 end-page: 1914 ident: b0300 article-title: Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China publication-title: Journal of Geophysical Research: Atmospheres – reference: . Accessed June 28, 2021. – volume: 22 start-page: 1623 year: 2016 end-page: 1639 ident: b0130 article-title: A novel anomaly detection algorithm for sensor data under uncertainty publication-title: Soft Computing – reference: . In Proceedings of the 9 – reference: , – reference: , Addison-Wesley Reading: Massachusetts, MA, USA. – volume: 8 start-page: 190637 year: 2020 end-page: 190651 ident: b0140 article-title: A deep learning inspired belief rule-based expert system publication-title: IEEE Access – volume: 208 start-page: 113 year: 2019 end-page: 122 ident: b0195 article-title: Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm publication-title: Atmospheric Environment – volume: 118 start-page: 9296 year: 2013 end-page: 9315 ident: b0120 article-title: Enhanced deep blue aerosol retrieval algorithm: The second generation publication-title: J. Geophys. Res.-Atmos. – reference: Buchanan, B.G., & Shortliffe, E.H. (1984). – reference: , ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2020.114054. – volume: 58 start-page: 13 year: 1963 end-page: 30 ident: b0105 article-title: Probability inequalities for sums of bounded random variables publication-title: Journal of American Statistical Association – volume: 14 start-page: 1510 year: 2017 ident: b0360 article-title: The relationships between PM publication-title: International Journal of Environmental Research and Public Health – reference: . In Proceedings of the 25 – reference: Bumm, S. Using Satellite Images to determine AQI Values in California. – reference: Planet Team, San Francisco, CA, USA. (2016, October). – volume: 86 start-page: 3 year: 2011 end-page: 11 ident: b0075 article-title: Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery publication-title: International Journal of Coal geology – reference: Fedushko, S., & Ustyianovych, T. (2019, January). – reference: Chang, L., Ma, X., Wang, L., & Ling, X. (2016, October). – volume: 172, 114602 year: 2021 ident: b0190 article-title: A survey and performance evaluation of deep learning methods for small object detection publication-title: Expert Systems with Applications – volume: 223 year: 2020 ident: b0370 article-title: Clear-sky solar radiation changes over arid and semi-arid areas in China and their determining factors during 2001–2015 publication-title: Atmospheric Environment – volume: 27 start-page: 2755 year: 2009 end-page: 2770 ident: b0180 article-title: July). Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective publication-title: Annales Geophysicae – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0255 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 12 start-page: 991 year: 2020 ident: b0295 article-title: Impact of the dust aerosol model on the VIIRS aerosol optical depth (AOD) product across China publication-title: Remote Sensing – year: 2021 ident: b0085 article-title: Automated power lines vegetation monitoring using high-resolution satellite imagery publication-title: IEEE Transactions on Power Delivery – volume: 85 start-page: 114 year: 2017 end-page: 122 ident: b0005 article-title: Deep learning for biological image classification publication-title: Expert Systems with Applications – reference: World Air Map. – volume: 17 start-page: 285 year: 2019 end-page: 308 ident: b0010 article-title: Results and challenges of artificial neural networks used for decision-making and control in medical applications publication-title: Facta Universitatis, Series: Mechanical Engineering – reference: . In Proceedings of the 2017 International Conference on Machine Learning and Cybernetics (ICMLC), Ningbo, China, 9–12 July 2017; Volume 1, pp. 236–240. – volume: 32 start-page: 563 year: 2015 end-page: 577 ident: b0115 article-title: Belief-rule-based expert systems for evaluation of e-government: A case study publication-title: Expert Syst. – volume: 156 start-page: 117 year: 2015 end-page: 128 ident: b0185 article-title: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 publication-title: Remote Sensor of Environment – volume: 17 start-page: 9471 year: 2020 ident: b0305 article-title: Roadside air quality forecasting in shanghai with a novel sequence-to-sequence model publication-title: International Journal of Environmental Research and Public Health – volume: 26 start-page: 377 year: 2016 end-page: 384 ident: b0165 article-title: Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011 publication-title: Journal of Exposure Science & Environmental Epidemiology – volume: 214 year: 2021 ident: b0035 article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation publication-title: Knowledge-Based Systems – reference: , San Francisco, CA, USA. Available online: https://api.planet.com. Accessed June 28, 2021. – reference: Long, J., Shelhamer, E., & Darrell, T. (2015, June). – volume: 23 start-page: 292 year: 2020 end-page: 310 ident: b0275 article-title: Wavelet based performance analysis of SVM and RBF kernel for classifying stress conditions of sleep EEG publication-title: Science and Technology – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: b0030 article-title: Representation learning: A review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 49 start-page: 8576 year: 2015 end-page: 8584 ident: b0145 article-title: Using high-resolution satellite aerosol optical depth to estimate daily PM publication-title: Environmental Science & Technology – reference: In Proceedings of the International Conference on Computer Science, Engineering and Education Applications, Springer, Cham., 26 January 2019, pp. 625-636. – volume: 223 year: 2020 ident: b0095 article-title: Anthropogenic and meteorological drivers of 1980–2016 trend in aerosol optical and radiative properties over the Yangtze River Basin publication-title: Atmospheric Environ. – start-page: 77 year: 1992 end-page: 88 ident: b0100 article-title: Myocardial ischemia detection by expert system interpretation of thallium-201 tomograms publication-title: Cardiovascular nuclear medicine and MRI – volume: 11 start-page: 2120 year: 2019 ident: b0200 article-title: Hourly PM2.5 estimates from a geostationary satellite based on an ensemble learning algorithm and their spatiotemporal patterns over central east China publication-title: Remote Sensorns – reference: Munrat, A.A. (2018, October). – volume: 33 start-page: 14199 year: 2021 end-page: 14229 ident: b0265 article-title: Intelligent forecaster of concentrations (PM2. 5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP) publication-title: Neural Computing and Applications – volume: 55 start-page: 645 year: 2016 end-page: 657 ident: b0210 article-title: Convolutional neural networks for large-scale remote-sensing image classification publication-title: IEEE Transactions on Geoscience and Remote Sensing – reference: Mintz, D. (2006). – reference: Islam, R.U., Hossain, M.S., & Andersson, K. (2020a). – reference: Larsen, K., Pitt, H., Grant, M., & Houser, T. (2021, May). – reference: , 2057. https://doi.org/10.3390/rs13112057. – volume: 9 start-page: 2789 year: 2019 ident: b0215 article-title: Data driven approach for eye disease classification with machine learning publication-title: Applied Sciences – reference: World Weather Online. – volume: 169, 114417 year: 2021 ident: b0375 article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery publication-title: Expert Systems with Applications – volume: 185, 115695 year: 2021 ident: b0155 article-title: Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review publication-title: Expert Systems with Applications – volume: 90 start-page: 228 year: 2019 end-page: 235 ident: b0235 article-title: Machine learning application for coastal area change detection in gangwon province, South Korea using high-resolution satellite imagery publication-title: Journal of Coastal Research – volume: 248 year: 2021 ident: b0365 article-title: Effects of aerosols and water vapour on spatial-temporal variations of the clear-sky surface solar radiation in China publication-title: Atmospheric Research – volume: 13 start-page: 495 year: 2016 end-page: 499 ident: b0385 article-title: High-resolution satellite mapping of fine particulates based on geographically weighted regression publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 161 start-page: 184 year: 2018 end-page: 189 ident: b0090 article-title: Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs publication-title: Ecotoxicology and Environment Safety – reference: International Conference on Informatics, Electronics and Vision (ICIEV 2020), Kitakyushu, Fukuoka, Japan, 26-29 August 2020. – reference: . Master’s Thesis, Luleå University of Technology, Skellefteå, Sweden. – volume: 60 start-page: 596 year: 2010 end-page: 602 ident: b0070 article-title: Satellite remote sensing of particulate matter air quality: The cloud-cover problem publication-title: Journal of the Air & Waste Management Association – volume: 24 start-page: 961 year: 2011 end-page: 974 ident: b0060 article-title: A knowledge-driven approach to activity recognition in smart homes publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: In Proceedings of the 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Chengdu, China, 13–15 October 2016, pp. 153–156. – volume: 230 year: 2020 ident: b0380 article-title: Estimating ground-level PM2.5 using micro-satellite images by a convolutional neural network and random forest approach publication-title: Atmospheric Environment – reference: . Accessed December 24, 2020. – volume: 84 start-page: 102 year: 2017 end-page: 116 ident: b0315 article-title: Developing an early-warning system for air quality prediction and assessment of cities in China publication-title: Expert Systems with Applications – volume: 14 start-page: 115 year: 1994 end-page: 133 ident: b0025 article-title: Approximation and estimation bounds for artificial neural networks publication-title: Machine Learning – volume: 22 start-page: 7571 year: 2017 end-page: 7586 ident: b0110 article-title: Belief rule-based expert system to assess suspicion of acute coronary syndrome (ACS) under uncertainty publication-title: Soft Computing – volume: 336 start-page: 75 year: 2016 end-page: 91 ident: b0055 article-title: Belief rule based expert system for classification problems with new rule activation and weight calculation procedures publication-title: Information Sciences – volume: 10 start-page: 1953 year: 2020 ident: b0175 article-title: Urban PM2.5 concentration prediction via attention-based CNN–LSTM publication-title: Applied Sciences – start-page: 689 year: 2011 end-page: 696 ident: b0230 article-title: Multimodal deep learning publication-title: In Proceedings of the 28th International Conference on Machine Learning – volume: 174 start-page: 1885 year: 2006 end-page: 1913 ident: b0310 article-title: Environmental impact assessment using the evidential reasoning approach publication-title: European Journal of Operational Research – volume: 145 year: 2018 ident: b0285 article-title: Combining satellite imagery and machine learning to predict atmospheric heavy metal contamination publication-title: Advisory Committee – volume: 11 start-page: 2319 year: 2019 ident: b0340 article-title: Primary pollutants and air quality analysis for urban air in China: Evidence from Shanghai publication-title: Sustainability – reference: . Retrieved from https://air.plumelabs.com/air-quality-in-Shanghai-7xhy. Accessed June 28, 2021. – volume: 230 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0380 article-title: Estimating ground-level PM2.5 using micro-satellite images by a convolutional neural network and random forest approach publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2020.117451 – volume: 214 year: 2021 ident: 10.1016/j.eswa.2022.117905_b0035 article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106731 – volume: 49 start-page: 8576 year: 2015 ident: 10.1016/j.eswa.2022.117905_b0145 article-title: Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City publication-title: Environmental Science & Technology doi: 10.1021/acs.est.5b00859 – ident: 10.1016/j.eswa.2022.117905_b0330 doi: 10.1109/ICMLC.2017.8107770 – ident: 10.1016/j.eswa.2022.117905_b0240 – volume: 272 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0355 article-title: Estimating PM2.5 concentrations in Yangtze River Delta region of China using random forest model and the Top-of-Atmosphere reflectance publication-title: The Journal of Environmental Management – year: 2021 ident: 10.1016/j.eswa.2022.117905_b0085 article-title: Automated power lines vegetation monitoring using high-resolution satellite imagery publication-title: IEEE Transactions on Power Delivery – volume: 223 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0095 article-title: Anthropogenic and meteorological drivers of 1980–2016 trend in aerosol optical and radiative properties over the Yangtze River Basin publication-title: Atmospheric Environ. doi: 10.1016/j.atmosenv.2019.117188 – ident: 10.1016/j.eswa.2022.117905_b0135 – volume: 9 start-page: 2789 issue: 14 year: 2019 ident: 10.1016/j.eswa.2022.117905_b0215 article-title: Data driven approach for eye disease classification with machine learning publication-title: Applied Sciences doi: 10.3390/app9142789 – volume: 119 start-page: 1903 issue: 4 year: 2014 ident: 10.1016/j.eswa.2022.117905_b0300 article-title: Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1002/2013JD019630 – ident: 10.1016/j.eswa.2022.117905_b0045 – ident: 10.1016/j.eswa.2022.117905_b0320 – ident: 10.1016/j.eswa.2022.117905_b0020 doi: 10.1145/3292500.3330693 – volume: 60 start-page: 596 issue: 5 year: 2010 ident: 10.1016/j.eswa.2022.117905_b0070 article-title: Satellite remote sensing of particulate matter air quality: The cloud-cover problem publication-title: Journal of the Air & Waste Management Association doi: 10.3155/1047-3289.60.5.596 – volume: 33 start-page: 14199 issue: 21 year: 2021 ident: 10.1016/j.eswa.2022.117905_b0265 article-title: Intelligent forecaster of concentrations (PM2. 5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP) publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06067-7 – volume: 23 start-page: 292 issue: 3 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0275 article-title: Wavelet based performance analysis of SVM and RBF kernel for classifying stress conditions of sleep EEG publication-title: Science and Technology – volume: 10 start-page: 1953 issue: 6 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0175 article-title: Urban PM2.5 concentration prediction via attention-based CNN–LSTM publication-title: Applied Sciences doi: 10.3390/app10061953 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.eswa.2022.117905_b0030 article-title: Representation learning: A review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.50 – ident: 10.1016/j.eswa.2022.117905_b0160 – year: 2020 ident: 10.1016/j.eswa.2022.117905_b0270 – start-page: 77 year: 1992 ident: 10.1016/j.eswa.2022.117905_b0100 article-title: Myocardial ischemia detection by expert system interpretation of thallium-201 tomograms publication-title: Cardiovascular nuclear medicine and MRI doi: 10.1007/978-94-011-2666-3_5 – volume: 9 start-page: 397 issue: 4 year: 2017 ident: 10.1016/j.eswa.2022.117905_b0290 article-title: Interference of heavy aerosol loading on the VIIRS aerosol optical depth (AOD) retrieval algorithm publication-title: Remote Sensors doi: 10.3390/rs9040397 – ident: 10.1016/j.eswa.2022.117905_b0015 doi: 10.1016/j.eswa.2020.114054 – volume: 22 start-page: 7571 year: 2017 ident: 10.1016/j.eswa.2022.117905_b0110 article-title: Belief rule-based expert system to assess suspicion of acute coronary syndrome (ACS) under uncertainty publication-title: Soft Computing doi: 10.1007/s00500-017-2732-2 – volume: 20 start-page: 1956 issue: 7 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0150 article-title: An integrated approach of belief rule base and deep learning to predict air pollution publication-title: Sensors doi: 10.3390/s20071956 – volume: 239 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0250 article-title: Satellite-based estimation of hourly PM2. 5 levels during heavy winter pollution episodes in the Yangtze River Delta, China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124678 – volume: 36 start-page: 266 year: 2006 ident: 10.1016/j.eswa.2022.117905_b0345 article-title: Belief rule-base inference methodology using the evidential reasoning Approach-RIMER publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part A doi: 10.1109/TSMCA.2005.851270 – ident: 10.1016/j.eswa.2022.117905_b0040 – ident: 10.1016/j.eswa.2022.117905_b0065 – volume: 85 start-page: 114 year: 2017 ident: 10.1016/j.eswa.2022.117905_b0005 article-title: Deep learning for biological image classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.05.039 – volume: 169, 114417 year: 2021 ident: 10.1016/j.eswa.2022.117905_b0375 article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery publication-title: Expert Systems with Applications – volume: 8 start-page: 190637 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0140 article-title: A deep learning inspired belief rule-based expert system publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031438 – volume: 142 start-page: 220 year: 2018 ident: 10.1016/j.eswa.2022.117905_b0350 article-title: A joint optimization method on parameter and structure for belief-rule-based systems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.11.039 – volume: 185, 115695 year: 2021 ident: 10.1016/j.eswa.2022.117905_b0155 article-title: Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review publication-title: Expert Systems with Applications – start-page: 689 year: 2011 ident: 10.1016/j.eswa.2022.117905_b0230 article-title: Multimodal deep learning – ident: 10.1016/j.eswa.2022.117905_b0245 – volume: 118 start-page: 9296 issue: 16 year: 2013 ident: 10.1016/j.eswa.2022.117905_b0120 article-title: Enhanced deep blue aerosol retrieval algorithm: The second generation publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/jgrd.50712 – volume: 22 start-page: 1623 year: 2016 ident: 10.1016/j.eswa.2022.117905_b0130 article-title: A novel anomaly detection algorithm for sensor data under uncertainty publication-title: Soft Computing doi: 10.1007/s00500-016-2425-2 – volume: 11 start-page: 2120 issue: 18 year: 2019 ident: 10.1016/j.eswa.2022.117905_b0200 article-title: Hourly PM2.5 estimates from a geostationary satellite based on an ensemble learning algorithm and their spatiotemporal patterns over central east China publication-title: Remote Sensorns doi: 10.3390/rs11182120 – ident: 10.1016/j.eswa.2022.117905_b0220 – ident: 10.1016/j.eswa.2022.117905_b0205 doi: 10.1109/CVPR.2015.7298965 – volume: 86 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.eswa.2022.117905_b0075 article-title: Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery publication-title: International Journal of Coal geology doi: 10.1016/j.coal.2010.11.010 – volume: 24 start-page: 961 issue: 6 year: 2011 ident: 10.1016/j.eswa.2022.117905_b0060 article-title: A knowledge-driven approach to activity recognition in smart homes publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2011.51 – volume: 44 start-page: 11 year: 2017 ident: 10.1016/j.eswa.2022.117905_b0170 article-title: Estimating ground-level PM2.5 by fusing satellite and station observations: A geo-intelligent deep learning approach publication-title: Geophysical Research Letters doi: 10.1002/2017GL075710 – volume: 58 start-page: 13 year: 1963 ident: 10.1016/j.eswa.2022.117905_b0105 article-title: Probability inequalities for sums of bounded random variables publication-title: Journal of American Statistical Association doi: 10.1080/01621459.1963.10500830 – volume: 17 start-page: 285 issue: 3 year: 2019 ident: 10.1016/j.eswa.2022.117905_b0010 article-title: Results and challenges of artificial neural networks used for decision-making and control in medical applications publication-title: Facta Universitatis, Series: Mechanical Engineering doi: 10.22190/FUME190327035A – ident: 10.1016/j.eswa.2022.117905_b0280 – volume: 172, 114602 year: 2021 ident: 10.1016/j.eswa.2022.117905_b0190 article-title: A survey and performance evaluation of deep learning methods for small object detection publication-title: Expert Systems with Applications – volume: 336 start-page: 75 year: 2016 ident: 10.1016/j.eswa.2022.117905_b0055 article-title: Belief rule based expert system for classification problems with new rule activation and weight calculation procedures publication-title: Information Sciences doi: 10.1016/j.ins.2015.12.009 – volume: 208 start-page: 113 year: 2019 ident: 10.1016/j.eswa.2022.117905_b0195 article-title: Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2019.04.002 – volume: 27 start-page: 2755 issue: 7 year: 2009 ident: 10.1016/j.eswa.2022.117905_b0180 article-title: July). Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective publication-title: Annales Geophysicae doi: 10.5194/angeo-27-2755-2009 – volume: 181 start-page: 95 year: 2016 ident: 10.1016/j.eswa.2022.117905_b0125 article-title: The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere publication-title: Atmospheric Research doi: 10.1016/j.atmosres.2016.06.016 – volume: 84 start-page: 102 year: 2017 ident: 10.1016/j.eswa.2022.117905_b0315 article-title: Developing an early-warning system for air quality prediction and assessment of cities in China publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.04.059 – volume: 14 start-page: 1510 year: 2017 ident: 10.1016/j.eswa.2022.117905_b0360 article-title: The relationships between PM2.5 and meteorological factors in China: Seasonal and regional variations publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph14121510 – volume: 248 year: 2021 ident: 10.1016/j.eswa.2022.117905_b0365 article-title: Effects of aerosols and water vapour on spatial-temporal variations of the clear-sky surface solar radiation in China publication-title: Atmospheric Research doi: 10.1016/j.atmosres.2020.105162 – volume: 253 year: 2021 ident: 10.1016/j.eswa.2022.117905_b0260 article-title: A high-precision aerosol retrieval algorithm (HiPARA) for advanced himawari imager (AHI) data: Development and verification publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2020.112221 – volume: 13 start-page: 495 issue: 4 year: 2016 ident: 10.1016/j.eswa.2022.117905_b0385 article-title: High-resolution satellite mapping of fine particulates based on geographically weighted regression publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2016.2520480 – volume: 26 start-page: 377 issue: 4 year: 2016 ident: 10.1016/j.eswa.2022.117905_b0165 article-title: Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011 publication-title: Journal of Exposure Science & Environmental Epidemiology doi: 10.1038/jes.2015.41 – volume: 55 start-page: 645 year: 2016 ident: 10.1016/j.eswa.2022.117905_b0210 article-title: Convolutional neural networks for large-scale remote-sensing image classification publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2016.2612821 – ident: 10.1016/j.eswa.2022.117905_b0050 doi: 10.1109/CyberC.2016.38 – volume: 156 start-page: 117 year: 2015 ident: 10.1016/j.eswa.2022.117905_b0185 article-title: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 publication-title: Remote Sensor of Environment doi: 10.1016/j.rse.2014.09.015 – volume: 12 start-page: 991 issue: 6 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0295 article-title: Impact of the dust aerosol model on the VIIRS aerosol optical depth (AOD) product across China publication-title: Remote Sensing doi: 10.3390/rs12060991 – volume: 32 start-page: 563 issue: 5 year: 2015 ident: 10.1016/j.eswa.2022.117905_b0115 article-title: Belief-rule-based expert systems for evaluation of e-government: A case study publication-title: Expert Syst. doi: 10.1111/exsy.12110 – volume: 174 start-page: 1885 year: 2006 ident: 10.1016/j.eswa.2022.117905_b0310 article-title: Environmental impact assessment using the evidential reasoning approach publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.09.059 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.eswa.2022.117905_b0255 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – ident: 10.1016/j.eswa.2022.117905_b0325 – volume: 223 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0370 article-title: Clear-sky solar radiation changes over arid and semi-arid areas in China and their determining factors during 2001–2015 publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2019.117198 – volume: 145 year: 2018 ident: 10.1016/j.eswa.2022.117905_b0285 article-title: Combining satellite imagery and machine learning to predict atmospheric heavy metal contamination publication-title: Advisory Committee – ident: 10.1016/j.eswa.2022.117905_b0225 doi: 10.1109/LCNW.2018.8628607 – volume: 17 start-page: 9471 issue: 24 year: 2020 ident: 10.1016/j.eswa.2022.117905_b0305 article-title: Roadside air quality forecasting in shanghai with a novel sequence-to-sequence model publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph17249471 – volume: 14 start-page: 115 year: 1994 ident: 10.1016/j.eswa.2022.117905_b0025 article-title: Approximation and estimation bounds for artificial neural networks publication-title: Machine Learning doi: 10.1007/BF00993164 – volume: 90 start-page: 228 issue: SI year: 2019 ident: 10.1016/j.eswa.2022.117905_b0235 article-title: Machine learning application for coastal area change detection in gangwon province, South Korea using high-resolution satellite imagery publication-title: Journal of Coastal Research doi: 10.2112/SI90-028.1 – ident: 10.1016/j.eswa.2022.117905_b0335 doi: 10.3390/rs13112057 – volume: 11 start-page: 2319 issue: 8 year: 2019 ident: 10.1016/j.eswa.2022.117905_b0340 article-title: Primary pollutants and air quality analysis for urban air in China: Evidence from Shanghai publication-title: Sustainability doi: 10.3390/su11082319 – volume: 161 start-page: 184 year: 2018 ident: 10.1016/j.eswa.2022.117905_b0090 article-title: Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs publication-title: Ecotoxicology and Environment Safety doi: 10.1016/j.ecoenv.2018.05.089 – ident: 10.1016/j.eswa.2022.117905_b0080 doi: 10.1007/978-3-030-16621-2_58 |
SSID | ssj0017007 |
Score | 2.480063 |
Snippet | •We monitor air quality from satellite images to address spatial coverage limitation.•We customize Convolutional Neural Network (CNN) to analyze satellite... Accurate monitoring of air quality can reduce its adverse impact on earth. Ground-level sensors can provide fine particulate matter (PM 2.5 ) concentrations... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 117905 |
SubjectTerms | Air quality monitoring Belief Rule Based Expert System (BRBES) Convolutional Neural Network (CNN) Distribuerade datorsystem Pervasive Mobile Computing Uncertainty |
Title | An integrated approach of Belief Rule Base and Convolutional Neural Network to monitor air quality in Shanghai |
URI | https://dx.doi.org/10.1016/j.eswa.2022.117905 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-91874 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I97yABMKzcOO67EUqgISAy-xWY7jQlBJqpKCWPjt3CVOBQMMTFEi-xKdHX--5O77CDlIAYL8OJFeKDsQoMQy8jST1mM89SOW-EIPqyzfq3hwxy4e-EOL9JpaGEyrdGt_vaZXq7W70nbebI-zrH0DmwOAQwjtEMN4JWbNmED-_OPPWZoH0s-Jmm9PeNjaFc7UOV729R25h8IQ_11KlLD7BZy-s4hWyNNfJotuy0i79VOtkJbNV8lSI8dA3du5RvJuTmfsDylt2MJpMaQnFraaQ3o9HVl6ArhFdZ7SXpG_uYkH5pGlozpUaeG0LOhL9bpPqM4mtK69_AD79AY_MT_pbJ3c9c9uewPPySl4BmC59EwcsqFmFmIi32ifp5wZmQCg-xZF1HUsQ4MZMlKGIgWvasHSuIPaxEkcCaajDTKXF7ndJLSDPIUmAkPCssCEiWbcCK4hPEoDFiRbJGj8qIzjGkfJi5FqksqeFfpeoe9V7fstcjTrM66ZNv5szZvhUT_miwIo-LPfYT2Ws3sgv_Zpdt9VxeRRjcqpkihTuP1P-ztkAc-wWjHgu2SunEztHmxbymS_mpf7ZL57fjm4-gKWA-pW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGDhjXjjASYUNQ87qcdSQIVCB2gRm-U4LgSVBJUUxL_nLnEqGGBgipTYl-h89ueL774j5CgBCHLDWDi-aIGDEorAUUwYh_HEDVjsRmpURvn2w-6QXT3whwbp1LkwGFZp1_5qTS9Xa3unabXZfE3T5h1sDgAOwbVDDONYzHoe2anA2Ofbl71uf3aYELlV1jS0d7CDzZ2pwrzM2wfSD_k-Hl8KrGL3Cz59JxItwedihSzZXSNtVx-2ShomWyPLdUUGaifoOsnaGZ0RQCS0Jgyn-YieGthtjujtdGzoKUAXVVlCO3n2bm0PxCNRR3kpI8NpkdOXcsZPqEontEq__AT59A7_Mj-pdIMML84Hna5jKyo4GpC5cHTos5FiBtwiVyuXJ5xpEQOmuwbrqKtQ-BqDZITwowQUqyKWhC1UahwGEVPBJpnL8sxsEdpCqkIdgKDIME_7sWJcR1yBh5R4zIu3iVfrUWpLN45VL8ayjit7lqh7ibqXle63ycmsz2tFtvFna14Pj_xhMhLQ4M9-x9VYzt6BFNtn6X1b5pNHOS6mUmClwp1_yj8kC93BzbW8vuz3dskiPsHkRY_vkbliMjX7sIsp4gNrpV-lTO0H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+approach+of+Belief+Rule+Base+and+Convolutional+Neural+Network+to+monitor+air+quality+in+Shanghai&rft.jtitle=Expert+systems+with+applications&rft.au=Kabir%2C+Sami&rft.au=Islam%2C+Raihan+Ul&rft.au=Hossain%2C+Mohammad+Shahadat&rft.au=Andersson%2C+Karl&rft.date=2022-11-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=206&rft_id=info:doi/10.1016%2Fj.eswa.2022.117905&rft.externalDocID=S0957417422011514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |