An integrated approach of Belief Rule Base and Convolutional Neural Network to monitor air quality in Shanghai

•We monitor air quality from satellite images to address spatial coverage limitation.•We customize Convolutional Neural Network (CNN) to analyze satellite images.•We propose mathematical model to integrate CNN with Belief Rule Based Expert System.•We check Relative Humidity to distinguish hazy image...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 206; p. 117905
Main Authors Kabir, Sami, Islam, Raihan Ul, Hossain, Mohammad Shahadat, Andersson, Karl
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2022
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
1873-6793
DOI10.1016/j.eswa.2022.117905

Cover

Loading…
Abstract •We monitor air quality from satellite images to address spatial coverage limitation.•We customize Convolutional Neural Network (CNN) to analyze satellite images.•We propose mathematical model to integrate CNN with Belief Rule Based Expert System.•We check Relative Humidity to distinguish hazy image between cloud and polluted air.•We address uncertainties of environmental sensor data by this expert system. Accurate monitoring of air quality can reduce its adverse impact on earth. Ground-level sensors can provide fine particulate matter (PM2.5) concentrations and ground images. But, such sensors have limited spatial coverage and require deployment cost. PM2.5 can be estimated from satellite-retrieved Aerosol Optical Depth (AOD) too. However, AOD is subject to uncertainties associated with its retrieval algorithms and constrain the spatial resolution of estimated PM2.5. AOD is not retrievable under cloudy weather as well. In contrast, satellite images provide continuous spatial coverage with no separate deployment cost. Accuracy of monitoring from such satellite images is hindered due to uncertainties of sensor data of relevant enviromental parameters, such as, relative humidity, temperature, wind speed and wind direction. Belief Rule Based Expert System (BRBES) is an efficient algorithm to address these uncertainties. Convolutional Neural Network (CNN) is suitable for image analytics. Hence, we propose a novel model by integrating CNN with BRBES to monitor air quality from satellite images with improved accuracy. We customized CNN and optimized BRBES to increase monitoring accuracy further. An obscure image has been differentiated between polluted air and cloud in our model. Valid environmental data (temperature, wind speed and wind direction) have been adopted to further strengthen the monitoring performance of our proposed model. Three-year observation data (satellite images and environmental parameters) from 2014 to 2016 of Shanghai have been employed to analyze and design our proposed model. The results conclude that the accuracy of our model to monitor PM2.5 of Shanghai is higher than only CNN and other conventional Machine Learning methods. Real-time validation of our model on near real-time satellite images of April-2021 of Shanghai shows average difference between our calculated PM2.5 concentrations and the actual one within ± 5.51.
AbstractList Accurate monitoring of air quality can reduce its adverse impact on earth. Ground-level sensors can provide fine particulate matter (PM 2.5 ) concentrations and ground images. But, such sensors have limited spatial coverage and require deployment cost. PM 2.5 can be estimated from satellite-retrieved Aerosol Optical Depth (AOD) too. However, AOD is subject to uncertainties associated with its retrieval algorithms and constrain the spatial resolution of estimated PM 2.5 . AOD is not retrievable under cloudy weather as well. In contrast, satellite images provide continuous spatial coverage with no separate deployment cost. Accuracy of monitoring from such satellite images is hindered due to uncertainties of sensor data of relevant enviromental parameters, such as, relative humidity, temperature, wind speed and wind direction . Belief Rule Based Expert System (BRBES) is an efficient algorithm to address these uncertainties. Convolutional Neural Network (CNN) is suitable for image analytics. Hence, we propose a novel model by integrating CNN with BRBES to monitor air quality from satellite images with improved accuracy. We customized CNN and optimized BRBES to increase monitoring accuracy further. An obscure image has been differentiated between polluted air and cloud in our model. Valid environmental data (temperature, wind speed and wind direction) have been adopted to further strengthen the monitoring performance of our proposed model. Three-year observation data (satellite images and environmental parameters) from 2014 to 2016 of Shanghai have been employed to analyze and design our proposed model. The results conclude that the accuracy of our model to monitor PM 2.5 of Shanghai is higher than only CNN and other conventional Machine Learning methods. Real-time validation of our model on near real-time satellite images of April-2021 of Shanghai shows average difference between our calculated PM 2.5 concentrations and the actual one within ±5.51.
•We monitor air quality from satellite images to address spatial coverage limitation.•We customize Convolutional Neural Network (CNN) to analyze satellite images.•We propose mathematical model to integrate CNN with Belief Rule Based Expert System.•We check Relative Humidity to distinguish hazy image between cloud and polluted air.•We address uncertainties of environmental sensor data by this expert system. Accurate monitoring of air quality can reduce its adverse impact on earth. Ground-level sensors can provide fine particulate matter (PM2.5) concentrations and ground images. But, such sensors have limited spatial coverage and require deployment cost. PM2.5 can be estimated from satellite-retrieved Aerosol Optical Depth (AOD) too. However, AOD is subject to uncertainties associated with its retrieval algorithms and constrain the spatial resolution of estimated PM2.5. AOD is not retrievable under cloudy weather as well. In contrast, satellite images provide continuous spatial coverage with no separate deployment cost. Accuracy of monitoring from such satellite images is hindered due to uncertainties of sensor data of relevant enviromental parameters, such as, relative humidity, temperature, wind speed and wind direction. Belief Rule Based Expert System (BRBES) is an efficient algorithm to address these uncertainties. Convolutional Neural Network (CNN) is suitable for image analytics. Hence, we propose a novel model by integrating CNN with BRBES to monitor air quality from satellite images with improved accuracy. We customized CNN and optimized BRBES to increase monitoring accuracy further. An obscure image has been differentiated between polluted air and cloud in our model. Valid environmental data (temperature, wind speed and wind direction) have been adopted to further strengthen the monitoring performance of our proposed model. Three-year observation data (satellite images and environmental parameters) from 2014 to 2016 of Shanghai have been employed to analyze and design our proposed model. The results conclude that the accuracy of our model to monitor PM2.5 of Shanghai is higher than only CNN and other conventional Machine Learning methods. Real-time validation of our model on near real-time satellite images of April-2021 of Shanghai shows average difference between our calculated PM2.5 concentrations and the actual one within ± 5.51.
ArticleNumber 117905
Author Hossain, Mohammad Shahadat
Andersson, Karl
Kabir, Sami
Islam, Raihan Ul
Author_xml – sequence: 1
  givenname: Sami
  surname: Kabir
  fullname: Kabir, Sami
  email: sami.kabir@ltu.se
  organization: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-931 87 Skellefteå, Sweden
– sequence: 2
  givenname: Raihan Ul
  surname: Islam
  fullname: Islam, Raihan Ul
  email: raihan.ul.islam@ltu.se
  organization: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-931 87 Skellefteå, Sweden
– sequence: 3
  givenname: Mohammad Shahadat
  surname: Hossain
  fullname: Hossain, Mohammad Shahadat
  email: hossain_ms@cu.ac.bd
  organization: Department of Computer Science & Engineering, University of Chittagong, Chattogram 4331, Bangladesh
– sequence: 4
  givenname: Karl
  surname: Andersson
  fullname: Andersson, Karl
  email: karl.andersson@ltu.se
  organization: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-931 87 Skellefteå, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-91874$$DView record from Swedish Publication Index
BookMark eNp9kM1uGjEUha0qkQI0L5CVH6BDbI9njKVugCZppaiV8tOtdfHcAdOJTW0PKG-fobSbLrI6m_Odq_uNyZkPHgm54mzKGa-vt1NMB5gKJsSUc6VZ9YGM-EyVRa10eUZGTFeqkFzJCzJOacsYV4ypEfFzT53PuI6QsaGw28UAdkNDSxfYOWzpQ98hXUBCCr6hy-D3oeuzCx46-h37-CfyIcRfNAf6ErzLIVJwkf7uoXP5ddinjxvw6w24j-S8hS7h5d-ckOfbm6fl1-L-x9235fy-sOWM58LWQrYgkUvNLLCqqaTVK8lqhuXwI9RaWFUzrrVQjRQClGzqWSVVuapLJaGckE-n3XTAXb8yu-heIL6aAM58cT_nJsS16XJv9CBJDvXZqW5jSClia6zLcHwyR3Cd4cwcNZutOWo2R83mpHlAxX_ov1vvQp9PEA4O9g6jSdaht9i4iDabJrj38Dffu5kB
CitedBy_id crossref_primary_10_1016_j_ijar_2023_108964
crossref_primary_10_1007_s10668_024_05745_5
crossref_primary_10_3390_en17081797
crossref_primary_10_1007_s10115_023_01947_x
crossref_primary_10_1155_2022_1738660
crossref_primary_10_1016_j_eswa_2022_119065
crossref_primary_10_1016_j_ijar_2023_109054
crossref_primary_10_3390_math12101457
crossref_primary_10_3390_rs16030467
crossref_primary_10_3390_s22228790
crossref_primary_10_1016_j_apr_2024_102269
crossref_primary_10_1109_JBHI_2024_3485871
crossref_primary_10_1007_s42979_024_02903_4
Cites_doi 10.1016/j.atmosenv.2020.117451
10.1016/j.knosys.2020.106731
10.1021/acs.est.5b00859
10.1109/ICMLC.2017.8107770
10.1016/j.atmosenv.2019.117188
10.3390/app9142789
10.1002/2013JD019630
10.1145/3292500.3330693
10.3155/1047-3289.60.5.596
10.1007/s00521-021-06067-7
10.3390/app10061953
10.1109/TPAMI.2013.50
10.1007/978-94-011-2666-3_5
10.3390/rs9040397
10.1016/j.eswa.2020.114054
10.1007/s00500-017-2732-2
10.3390/s20071956
10.1016/j.chemosphere.2019.124678
10.1109/TSMCA.2005.851270
10.1016/j.eswa.2017.05.039
10.1109/ACCESS.2020.3031438
10.1016/j.knosys.2017.11.039
10.1002/jgrd.50712
10.1007/s00500-016-2425-2
10.3390/rs11182120
10.1109/CVPR.2015.7298965
10.1016/j.coal.2010.11.010
10.1109/TKDE.2011.51
10.1002/2017GL075710
10.1080/01621459.1963.10500830
10.22190/FUME190327035A
10.1016/j.ins.2015.12.009
10.1016/j.atmosenv.2019.04.002
10.5194/angeo-27-2755-2009
10.1016/j.atmosres.2016.06.016
10.1016/j.eswa.2017.04.059
10.3390/ijerph14121510
10.1016/j.atmosres.2020.105162
10.1016/j.rse.2020.112221
10.1109/LGRS.2016.2520480
10.1038/jes.2015.41
10.1109/TGRS.2016.2612821
10.1109/CyberC.2016.38
10.1016/j.rse.2014.09.015
10.3390/rs12060991
10.1111/exsy.12110
10.1016/j.ejor.2004.09.059
10.1023/A:1008202821328
10.1016/j.atmosenv.2019.117198
10.1109/LCNW.2018.8628607
10.3390/ijerph17249471
10.1007/BF00993164
10.2112/SI90-028.1
10.3390/rs13112057
10.3390/su11082319
10.1016/j.ecoenv.2018.05.089
10.1007/978-3-030-16621-2_58
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1016/j.eswa.2022.117905
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID oai_DiVA_org_ltu_91874
10_1016_j_eswa_2022_117905
S0957417422011514
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
ADTPV
AOWAS
D8T
EFKBS
ZZAVC
ID FETCH-LOGICAL-c381t-c624fa4e1490ca05d54c9b4060e3202a692c76019927d422a74d685473b6374a3
IEDL.DBID .~1
ISSN 0957-4174
1873-6793
IngestDate Thu Aug 21 06:40:37 EDT 2025
Tue Jul 01 04:06:02 EDT 2025
Thu Apr 24 22:54:32 EDT 2025
Fri Feb 23 02:40:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty
Air quality monitoring
Belief Rule Based Expert System (BRBES)
Convolutional Neural Network (CNN)
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-c624fa4e1490ca05d54c9b4060e3202a692c76019927d422a74d685473b6374a3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957417422011514
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_91874
crossref_citationtrail_10_1016_j_eswa_2022_117905
crossref_primary_10_1016_j_eswa_2022_117905
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117905
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References In Proceedings of the 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Chengdu, China, 13–15 October 2016, pp. 153–156.
Affonso, Rossi, Vieira, de Leon Ferreira (b0005) 2017; 85
In Proceedings of the 25
Borlea, Precup, Borlea, Iercan (b0035) 2021; 214
U.S. Department of State Mission China.
Retrieved from https://air.plumelabs.com/air-quality-in-Shanghai-7xhy. Accessed June 28, 2021.
Wang, Wang, Li, Lu, Peng, Zhao, Pan (b0305) 2020; 17
Yu, Zhang, Wang, Lu, Li (b0365) 2021; 248
Chang, L., Ma, X., Wang, L., & Ling, X. (2016, October).
Accessed June 28, 2021.
Lin, Li, Yuan, Lau, Li, Fung (b0185) 2015; 156
Planet Team. (2017).
Upadhyay, Nagpal (b0275) 2020; 23
Hossain, Rahaman, Mustafa, Andersson (b0110) 2017; 22
Hossain, Zander, Kamal, Chowdhury (b0115) 2015; 32
Retrieved from
,
Su, Wang, Zhang, Qin, Bilal (b0260) 2021; 253
Liu, Weng, Li, Cribb (b0200) 2019; 11
Master’s Thesis, Luleå University of Technology, Skellefteå, Sweden.
Wang, Zhang, Guo, Lu (b0315) 2017; 84
Xiong, Q., Chen, G., Mao, Z., Liao, T., & Chang, L. (2017, July).
Ngiam, Khosla, Kim, Nam, Lee, Ng (b0230) 2011
Mintz, D. (2006).
Long, J., Shelhamer, E., & Darrell, T. (2015, June).
Yuan, Shi, Gu (b0375) 2021; 169, 114417
Liu, Weng, Li (b0195) 2019; 208
In Proceedings of the 2017 International Conference on Machine Learning and Cybernetics (ICMLC), Ningbo, China, 9–12 July 2017; Volume 1, pp. 236–240.
Khan, Mehran, Haq, Ullah, Naqvi, Ihsan, Abbass (b0155) 2021; 185, 115695
ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2020.114054.
Buchanan, B.G., & Shortliffe, E.H. (1984).
Addison-Wesley Reading: Massachusetts, MA, USA.
Wang, Chen, Li, Wang, Yu, Si, Zhang (b0290) 2017; 9
Bumm, S. Using Satellite Images to determine AQI Values in California.
She, Choi, Belle, Xiao, Bi, Huang, Liu (b0250) 2020; 239
Yan, Li, Sun, Wu (b0340) 2019; 11
Retrieved from https://rhg.com/research/chinas-emissions-surpass-developed-countries/. Accessed December 5, 2021.
In Proceedings of the 9
Fedushko, S., & Ustyianovych, T. (2019, January).
Wang, Yang, Xu (b0310) 2006; 174
Larsen, K., Pitt, H., Grant, M., & Houser, T. (2021, May).
Uzhinskiy, Ososkov, Goncharov, Frontsyeva (b0285) 2018; 145
Albu, Precup, Teban (b0010) 2019; 17
Islam, R.U., Hossain, M.S., & Andersson, K. (2020a).
San Francisco, CA, USA. Available online: https://api.planet.com. Accessed June 28, 2021.
Barron (b0025) 1994; 14
Zou, Pu, Bilal, Weng, Zhai, Nichol (b0385) 2016; 13
Torrisi, Pollastri, Le (b0270) 2020
Demirel, Emil, Duzgun (b0075) 2011; 86
Babaev, D., Savchenko, M., Tuzhilin, A., & Umerenkov, D. (2019, July).
Yang, Liu, Wang, Sii, Wang (b0345) 2006; 36
Yang, Wang, Liu, Martinez (b0350) 2018; 142
Yu, Zhang, Wang, Qin, Lu, Li (b0370) 2020; 223
International Conference on Informatics, Electronics and Vision (ICIEV 2020), Kitakyushu, Fukuoka, Japan, 26-29 August 2020.
Accessed December 24, 2020.
Munrat, A.A. (2018, October).
Aras, M., & Ismael, A.Ş. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images.
Chen, Nugent, Wang (b0060) 2011; 24
Islam, Hossain, Andersson (b0140) 2020; 8
World Air Map.
Chang, Zhou, You, Yang, Zhou (b0055) 2016; 336
Lee, Kloog, Chudnovsky, Lyapustin, Wang, Melly, Schwartz (b0165) 2016; 26
Christopher, Gupta (b0070) 2010; 60
Wang, Li, Chen, Huang, Huang, Feng, Wumaer (b0300) 2014; 119
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
Chillrud, R. (2016).
Herbst, Garcia, Cooke, Ezquerra, Folks, DePuey (b0100) 1992
Hu, Fu, Wang, Kong, Chen, Chen (b0125) 2016; 181
In Proceedings of the International Conference on Computer Science, Engineering and Education Applications, Springer, Cham., 26 January 2019, pp. 625-636.
Guo, Chen (b0090) 2018; 161
Islam, Hossain, Andersson (b0130) 2016; 22
He, Wang, Huang, Wei, Zhou, Zhong (b0095) 2020; 223
Malik, Kanwal, Asghar, Sadiq, Karamat, Fleury (b0215) 2019; 9
Maggiori, Tarabalka, Charpiat, Alliez (b0210) 2016; 55
Li, Shen, Yuan, Zhang, Zhang (b0170) 2017; 44
Hoeffding (b0105) 1963; 58
Gazzea, Pacevicius, Dammann, Sapronova, Lunde, Arghandeh (b0085) 2021
Li, Xie, Ren, Guo, Yang, Xu (b0175) 2020; 10
2057. https://doi.org/10.3390/rs13112057.
Just, Wright, Schwartz, Coull, Baccarelli, Tellez-Rojo, Moody, Wang, Lyapustin, Kloog (b0145) 2015; 49
Yang, Xu, Yu (b0355) 2020; 272
Storn, Price (b0255) 1997; 11
Liu, Sun, Wergeles, Shang (b0190) 2021; 172, 114602
Hsu, Jeong, Bettenhausen, Sayer, Hansell, Seftor, Tsay (b0120) 2013; 118
Yang, Yuan, Li, Shen, Zhang (b0360) 2017; 14
World Weather Online.
Kabir, Islam, Hossain, Andersson (b0150) 2020; 20
Planet Team, San Francisco, CA, USA. (2016, October).
Wang, Chen, Xin, Wang (b0295) 2020; 12
Park, Achmad, Syifa, Lee (b0235) 2019; 90
Zheng, Bergin, Hu, Miller, Carlson (b0380) 2020; 230
Xiong, X., Liu, J., Chen, L., Ju, W., & Moshary, F. (2021). Special Issue “Remote Sensing of Greenhouse Gases and Air Pollution”.
Al-Janabi, Alkaim, Al-Janabi, Aljeboree, Mustafa (b0265) 2021; 33
Retrieved from https://www.eesi.org/articles/view/globally-air-pollution-is-fourth-largest-killer-causing-6.5-million-deaths- . Accessed June 28, 2021.
Bengio, Courville, Vincent (b0030) 2013; 35
ACM SIGKDD international conference on knowledge discovery & data mining, 25 July 2019, pp. 2183-2190.
Li, Zhao, Kahn, Mishchenko, Remer, Lee, Maring (b0180) 2009; 27
Borlea (10.1016/j.eswa.2022.117905_b0035) 2021; 214
Islam (10.1016/j.eswa.2022.117905_b0130) 2016; 22
Park (10.1016/j.eswa.2022.117905_b0235) 2019; 90
Yuan (10.1016/j.eswa.2022.117905_b0375) 2021; 169, 114417
Chang (10.1016/j.eswa.2022.117905_b0055) 2016; 336
Al-Janabi (10.1016/j.eswa.2022.117905_b0265) 2021; 33
Torrisi (10.1016/j.eswa.2022.117905_b0270) 2020
She (10.1016/j.eswa.2022.117905_b0250) 2020; 239
Li (10.1016/j.eswa.2022.117905_b0180) 2009; 27
Demirel (10.1016/j.eswa.2022.117905_b0075) 2011; 86
Khan (10.1016/j.eswa.2022.117905_b0155) 2021; 185, 115695
Wang (10.1016/j.eswa.2022.117905_b0315) 2017; 84
10.1016/j.eswa.2022.117905_b0280
Yang (10.1016/j.eswa.2022.117905_b0360) 2017; 14
Albu (10.1016/j.eswa.2022.117905_b0010) 2019; 17
10.1016/j.eswa.2022.117905_b0160
Ngiam (10.1016/j.eswa.2022.117905_b0230) 2011
10.1016/j.eswa.2022.117905_b0080
Wang (10.1016/j.eswa.2022.117905_b0295) 2020; 12
Storn (10.1016/j.eswa.2022.117905_b0255) 1997; 11
10.1016/j.eswa.2022.117905_b0225
Yang (10.1016/j.eswa.2022.117905_b0350) 2018; 142
10.1016/j.eswa.2022.117905_b0020
10.1016/j.eswa.2022.117905_b0065
Just (10.1016/j.eswa.2022.117905_b0145) 2015; 49
Zheng (10.1016/j.eswa.2022.117905_b0380) 2020; 230
10.1016/j.eswa.2022.117905_b0220
Christopher (10.1016/j.eswa.2022.117905_b0070) 2010; 60
Zou (10.1016/j.eswa.2022.117905_b0385) 2016; 13
Hossain (10.1016/j.eswa.2022.117905_b0110) 2017; 22
Kabir (10.1016/j.eswa.2022.117905_b0150) 2020; 20
He (10.1016/j.eswa.2022.117905_b0095) 2020; 223
Hu (10.1016/j.eswa.2022.117905_b0125) 2016; 181
Hoeffding (10.1016/j.eswa.2022.117905_b0105) 1963; 58
Maggiori (10.1016/j.eswa.2022.117905_b0210) 2016; 55
Bengio (10.1016/j.eswa.2022.117905_b0030) 2013; 35
10.1016/j.eswa.2022.117905_b0015
Hsu (10.1016/j.eswa.2022.117905_b0120) 2013; 118
Liu (10.1016/j.eswa.2022.117905_b0195) 2019; 208
10.1016/j.eswa.2022.117905_b0335
Wang (10.1016/j.eswa.2022.117905_b0300) 2014; 119
Yu (10.1016/j.eswa.2022.117905_b0370) 2020; 223
Li (10.1016/j.eswa.2022.117905_b0175) 2020; 10
10.1016/j.eswa.2022.117905_b0135
10.1016/j.eswa.2022.117905_b0330
Yan (10.1016/j.eswa.2022.117905_b0340) 2019; 11
Wang (10.1016/j.eswa.2022.117905_b0305) 2020; 17
Barron (10.1016/j.eswa.2022.117905_b0025) 1994; 14
Yang (10.1016/j.eswa.2022.117905_b0355) 2020; 272
Islam (10.1016/j.eswa.2022.117905_b0140) 2020; 8
Wang (10.1016/j.eswa.2022.117905_b0290) 2017; 9
Upadhyay (10.1016/j.eswa.2022.117905_b0275) 2020; 23
Yang (10.1016/j.eswa.2022.117905_b0345) 2006; 36
Affonso (10.1016/j.eswa.2022.117905_b0005) 2017; 85
Gazzea (10.1016/j.eswa.2022.117905_b0085) 2021
10.1016/j.eswa.2022.117905_b0325
Lin (10.1016/j.eswa.2022.117905_b0185) 2015; 156
10.1016/j.eswa.2022.117905_b0205
Su (10.1016/j.eswa.2022.117905_b0260) 2021; 253
Guo (10.1016/j.eswa.2022.117905_b0090) 2018; 161
10.1016/j.eswa.2022.117905_b0240
Uzhinskiy (10.1016/j.eswa.2022.117905_b0285) 2018; 145
Yu (10.1016/j.eswa.2022.117905_b0365) 2021; 248
Li (10.1016/j.eswa.2022.117905_b0170) 2017; 44
10.1016/j.eswa.2022.117905_b0040
Chen (10.1016/j.eswa.2022.117905_b0060) 2011; 24
Wang (10.1016/j.eswa.2022.117905_b0310) 2006; 174
10.1016/j.eswa.2022.117905_b0245
Liu (10.1016/j.eswa.2022.117905_b0200) 2019; 11
10.1016/j.eswa.2022.117905_b0045
10.1016/j.eswa.2022.117905_b0320
Lee (10.1016/j.eswa.2022.117905_b0165) 2016; 26
10.1016/j.eswa.2022.117905_b0050
Liu (10.1016/j.eswa.2022.117905_b0190) 2021; 172, 114602
Malik (10.1016/j.eswa.2022.117905_b0215) 2019; 9
Hossain (10.1016/j.eswa.2022.117905_b0115) 2015; 32
Herbst (10.1016/j.eswa.2022.117905_b0100) 1992
References_xml – reference: Xiong, Q., Chen, G., Mao, Z., Liao, T., & Chang, L. (2017, July).
– volume: 253
  year: 2021
  ident: b0260
  article-title: A high-precision aerosol retrieval algorithm (HiPARA) for advanced himawari imager (AHI) data: Development and verification
  publication-title: Remote Sensing of Environment
– reference: Planet Team. (2017).
– volume: 181
  start-page: 95
  year: 2016
  end-page: 105
  ident: b0125
  article-title: The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere
  publication-title: Atmospheric Research
– volume: 272
  year: 2020
  ident: b0355
  article-title: Estimating PM2.5 concentrations in Yangtze River Delta region of China using random forest model and the Top-of-Atmosphere reflectance
  publication-title: The Journal of Environmental Management
– reference: ACM SIGKDD international conference on knowledge discovery & data mining, 25 July 2019, pp. 2183-2190.
– volume: 142
  start-page: 220
  year: 2018
  end-page: 240
  ident: b0350
  article-title: A joint optimization method on parameter and structure for belief-rule-based systems
  publication-title: Knowledge-Based Systems
– reference: . Retrieved from https://www.eesi.org/articles/view/globally-air-pollution-is-fourth-largest-killer-causing-6.5-million-deaths- . Accessed June 28, 2021.
– reference: Babaev, D., Savchenko, M., Tuzhilin, A., & Umerenkov, D. (2019, July).
– year: 2020
  ident: b0270
  article-title: Deep learning methods in protein structure prediction
– reference: . Retrieved from
– volume: 36
  start-page: 266
  year: 2006
  end-page: 285
  ident: b0345
  article-title: Belief rule-base inference methodology using the evidential reasoning Approach-RIMER
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part A
– volume: 20
  start-page: 1956
  year: 2020
  ident: b0150
  article-title: An integrated approach of belief rule base and deep learning to predict air pollution
  publication-title: Sensors
– reference: . In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
– reference: U.S. Department of State Mission China.
– volume: 239
  year: 2020
  ident: b0250
  article-title: Satellite-based estimation of hourly PM2. 5 levels during heavy winter pollution episodes in the Yangtze River Delta, China
  publication-title: Chemosphere
– reference: . Retrieved from https://rhg.com/research/chinas-emissions-surpass-developed-countries/. Accessed December 5, 2021.
– volume: 44
  start-page: 11
  year: 2017
  end-page: 985
  ident: b0170
  article-title: Estimating ground-level PM
  publication-title: Geophysical Research Letters
– reference: Xiong, X., Liu, J., Chen, L., Ju, W., & Moshary, F. (2021). Special Issue “Remote Sensing of Greenhouse Gases and Air Pollution”.
– reference: Aras, M., & Ismael, A.Ş. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images.
– volume: 9
  start-page: 397
  year: 2017
  ident: b0290
  article-title: Interference of heavy aerosol loading on the VIIRS aerosol optical depth (AOD) retrieval algorithm
  publication-title: Remote Sensors
– reference: Chillrud, R. (2016).
– volume: 119
  start-page: 1903
  year: 2014
  end-page: 1914
  ident: b0300
  article-title: Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China
  publication-title: Journal of Geophysical Research: Atmospheres
– reference: . Accessed June 28, 2021.
– volume: 22
  start-page: 1623
  year: 2016
  end-page: 1639
  ident: b0130
  article-title: A novel anomaly detection algorithm for sensor data under uncertainty
  publication-title: Soft Computing
– reference: . In Proceedings of the 9
– reference: ,
– reference: , Addison-Wesley Reading: Massachusetts, MA, USA.
– volume: 8
  start-page: 190637
  year: 2020
  end-page: 190651
  ident: b0140
  article-title: A deep learning inspired belief rule-based expert system
  publication-title: IEEE Access
– volume: 208
  start-page: 113
  year: 2019
  end-page: 122
  ident: b0195
  article-title: Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm
  publication-title: Atmospheric Environment
– volume: 118
  start-page: 9296
  year: 2013
  end-page: 9315
  ident: b0120
  article-title: Enhanced deep blue aerosol retrieval algorithm: The second generation
  publication-title: J. Geophys. Res.-Atmos.
– reference: Buchanan, B.G., & Shortliffe, E.H. (1984).
– reference: , ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2020.114054.
– volume: 58
  start-page: 13
  year: 1963
  end-page: 30
  ident: b0105
  article-title: Probability inequalities for sums of bounded random variables
  publication-title: Journal of American Statistical Association
– volume: 14
  start-page: 1510
  year: 2017
  ident: b0360
  article-title: The relationships between PM
  publication-title: International Journal of Environmental Research and Public Health
– reference: . In Proceedings of the 25
– reference: Bumm, S. Using Satellite Images to determine AQI Values in California.
– reference: Planet Team, San Francisco, CA, USA. (2016, October).
– volume: 86
  start-page: 3
  year: 2011
  end-page: 11
  ident: b0075
  article-title: Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery
  publication-title: International Journal of Coal geology
– reference: Fedushko, S., & Ustyianovych, T. (2019, January).
– reference: Chang, L., Ma, X., Wang, L., & Ling, X. (2016, October).
– volume: 172, 114602
  year: 2021
  ident: b0190
  article-title: A survey and performance evaluation of deep learning methods for small object detection
  publication-title: Expert Systems with Applications
– volume: 223
  year: 2020
  ident: b0370
  article-title: Clear-sky solar radiation changes over arid and semi-arid areas in China and their determining factors during 2001–2015
  publication-title: Atmospheric Environment
– volume: 27
  start-page: 2755
  year: 2009
  end-page: 2770
  ident: b0180
  article-title: July). Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective
  publication-title: Annales Geophysicae
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0255
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 12
  start-page: 991
  year: 2020
  ident: b0295
  article-title: Impact of the dust aerosol model on the VIIRS aerosol optical depth (AOD) product across China
  publication-title: Remote Sensing
– year: 2021
  ident: b0085
  article-title: Automated power lines vegetation monitoring using high-resolution satellite imagery
  publication-title: IEEE Transactions on Power Delivery
– volume: 85
  start-page: 114
  year: 2017
  end-page: 122
  ident: b0005
  article-title: Deep learning for biological image classification
  publication-title: Expert Systems with Applications
– reference: World Air Map.
– volume: 17
  start-page: 285
  year: 2019
  end-page: 308
  ident: b0010
  article-title: Results and challenges of artificial neural networks used for decision-making and control in medical applications
  publication-title: Facta Universitatis, Series: Mechanical Engineering
– reference: . In Proceedings of the 2017 International Conference on Machine Learning and Cybernetics (ICMLC), Ningbo, China, 9–12 July 2017; Volume 1, pp. 236–240.
– volume: 32
  start-page: 563
  year: 2015
  end-page: 577
  ident: b0115
  article-title: Belief-rule-based expert systems for evaluation of e-government: A case study
  publication-title: Expert Syst.
– volume: 156
  start-page: 117
  year: 2015
  end-page: 128
  ident: b0185
  article-title: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5
  publication-title: Remote Sensor of Environment
– volume: 17
  start-page: 9471
  year: 2020
  ident: b0305
  article-title: Roadside air quality forecasting in shanghai with a novel sequence-to-sequence model
  publication-title: International Journal of Environmental Research and Public Health
– volume: 26
  start-page: 377
  year: 2016
  end-page: 384
  ident: b0165
  article-title: Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011
  publication-title: Journal of Exposure Science & Environmental Epidemiology
– volume: 214
  year: 2021
  ident: b0035
  article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation
  publication-title: Knowledge-Based Systems
– reference: , San Francisco, CA, USA. Available online: https://api.planet.com. Accessed June 28, 2021.
– reference: Long, J., Shelhamer, E., & Darrell, T. (2015, June).
– volume: 23
  start-page: 292
  year: 2020
  end-page: 310
  ident: b0275
  article-title: Wavelet based performance analysis of SVM and RBF kernel for classifying stress conditions of sleep EEG
  publication-title: Science and Technology
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b0030
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 49
  start-page: 8576
  year: 2015
  end-page: 8584
  ident: b0145
  article-title: Using high-resolution satellite aerosol optical depth to estimate daily PM
  publication-title: Environmental Science & Technology
– reference: In Proceedings of the International Conference on Computer Science, Engineering and Education Applications, Springer, Cham., 26 January 2019, pp. 625-636.
– volume: 223
  year: 2020
  ident: b0095
  article-title: Anthropogenic and meteorological drivers of 1980–2016 trend in aerosol optical and radiative properties over the Yangtze River Basin
  publication-title: Atmospheric Environ.
– start-page: 77
  year: 1992
  end-page: 88
  ident: b0100
  article-title: Myocardial ischemia detection by expert system interpretation of thallium-201 tomograms
  publication-title: Cardiovascular nuclear medicine and MRI
– volume: 11
  start-page: 2120
  year: 2019
  ident: b0200
  article-title: Hourly PM2.5 estimates from a geostationary satellite based on an ensemble learning algorithm and their spatiotemporal patterns over central east China
  publication-title: Remote Sensorns
– reference: Munrat, A.A. (2018, October).
– volume: 33
  start-page: 14199
  year: 2021
  end-page: 14229
  ident: b0265
  article-title: Intelligent forecaster of concentrations (PM2. 5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP)
  publication-title: Neural Computing and Applications
– volume: 55
  start-page: 645
  year: 2016
  end-page: 657
  ident: b0210
  article-title: Convolutional neural networks for large-scale remote-sensing image classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: Mintz, D. (2006).
– reference: Islam, R.U., Hossain, M.S., & Andersson, K. (2020a).
– reference: Larsen, K., Pitt, H., Grant, M., & Houser, T. (2021, May).
– reference: , 2057. https://doi.org/10.3390/rs13112057.
– volume: 9
  start-page: 2789
  year: 2019
  ident: b0215
  article-title: Data driven approach for eye disease classification with machine learning
  publication-title: Applied Sciences
– reference: World Weather Online.
– volume: 169, 114417
  year: 2021
  ident: b0375
  article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery
  publication-title: Expert Systems with Applications
– volume: 185, 115695
  year: 2021
  ident: b0155
  article-title: Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review
  publication-title: Expert Systems with Applications
– volume: 90
  start-page: 228
  year: 2019
  end-page: 235
  ident: b0235
  article-title: Machine learning application for coastal area change detection in gangwon province, South Korea using high-resolution satellite imagery
  publication-title: Journal of Coastal Research
– volume: 248
  year: 2021
  ident: b0365
  article-title: Effects of aerosols and water vapour on spatial-temporal variations of the clear-sky surface solar radiation in China
  publication-title: Atmospheric Research
– volume: 13
  start-page: 495
  year: 2016
  end-page: 499
  ident: b0385
  article-title: High-resolution satellite mapping of fine particulates based on geographically weighted regression
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 161
  start-page: 184
  year: 2018
  end-page: 189
  ident: b0090
  article-title: Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs
  publication-title: Ecotoxicology and Environment Safety
– reference: International Conference on Informatics, Electronics and Vision (ICIEV 2020), Kitakyushu, Fukuoka, Japan, 26-29 August 2020.
– reference: . Master’s Thesis, Luleå University of Technology, Skellefteå, Sweden.
– volume: 60
  start-page: 596
  year: 2010
  end-page: 602
  ident: b0070
  article-title: Satellite remote sensing of particulate matter air quality: The cloud-cover problem
  publication-title: Journal of the Air & Waste Management Association
– volume: 24
  start-page: 961
  year: 2011
  end-page: 974
  ident: b0060
  article-title: A knowledge-driven approach to activity recognition in smart homes
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: In Proceedings of the 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Chengdu, China, 13–15 October 2016, pp. 153–156.
– volume: 230
  year: 2020
  ident: b0380
  article-title: Estimating ground-level PM2.5 using micro-satellite images by a convolutional neural network and random forest approach
  publication-title: Atmospheric Environment
– reference: . Accessed December 24, 2020.
– volume: 84
  start-page: 102
  year: 2017
  end-page: 116
  ident: b0315
  article-title: Developing an early-warning system for air quality prediction and assessment of cities in China
  publication-title: Expert Systems with Applications
– volume: 14
  start-page: 115
  year: 1994
  end-page: 133
  ident: b0025
  article-title: Approximation and estimation bounds for artificial neural networks
  publication-title: Machine Learning
– volume: 22
  start-page: 7571
  year: 2017
  end-page: 7586
  ident: b0110
  article-title: Belief rule-based expert system to assess suspicion of acute coronary syndrome (ACS) under uncertainty
  publication-title: Soft Computing
– volume: 336
  start-page: 75
  year: 2016
  end-page: 91
  ident: b0055
  article-title: Belief rule based expert system for classification problems with new rule activation and weight calculation procedures
  publication-title: Information Sciences
– volume: 10
  start-page: 1953
  year: 2020
  ident: b0175
  article-title: Urban PM2.5 concentration prediction via attention-based CNN–LSTM
  publication-title: Applied Sciences
– start-page: 689
  year: 2011
  end-page: 696
  ident: b0230
  article-title: Multimodal deep learning
  publication-title: In Proceedings of the 28th International Conference on Machine Learning
– volume: 174
  start-page: 1885
  year: 2006
  end-page: 1913
  ident: b0310
  article-title: Environmental impact assessment using the evidential reasoning approach
  publication-title: European Journal of Operational Research
– volume: 145
  year: 2018
  ident: b0285
  article-title: Combining satellite imagery and machine learning to predict atmospheric heavy metal contamination
  publication-title: Advisory Committee
– volume: 11
  start-page: 2319
  year: 2019
  ident: b0340
  article-title: Primary pollutants and air quality analysis for urban air in China: Evidence from Shanghai
  publication-title: Sustainability
– reference: . Retrieved from https://air.plumelabs.com/air-quality-in-Shanghai-7xhy. Accessed June 28, 2021.
– volume: 230
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0380
  article-title: Estimating ground-level PM2.5 using micro-satellite images by a convolutional neural network and random forest approach
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2020.117451
– volume: 214
  year: 2021
  ident: 10.1016/j.eswa.2022.117905_b0035
  article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106731
– volume: 49
  start-page: 8576
  year: 2015
  ident: 10.1016/j.eswa.2022.117905_b0145
  article-title: Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City
  publication-title: Environmental Science & Technology
  doi: 10.1021/acs.est.5b00859
– ident: 10.1016/j.eswa.2022.117905_b0330
  doi: 10.1109/ICMLC.2017.8107770
– ident: 10.1016/j.eswa.2022.117905_b0240
– volume: 272
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0355
  article-title: Estimating PM2.5 concentrations in Yangtze River Delta region of China using random forest model and the Top-of-Atmosphere reflectance
  publication-title: The Journal of Environmental Management
– year: 2021
  ident: 10.1016/j.eswa.2022.117905_b0085
  article-title: Automated power lines vegetation monitoring using high-resolution satellite imagery
  publication-title: IEEE Transactions on Power Delivery
– volume: 223
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0095
  article-title: Anthropogenic and meteorological drivers of 1980–2016 trend in aerosol optical and radiative properties over the Yangtze River Basin
  publication-title: Atmospheric Environ.
  doi: 10.1016/j.atmosenv.2019.117188
– ident: 10.1016/j.eswa.2022.117905_b0135
– volume: 9
  start-page: 2789
  issue: 14
  year: 2019
  ident: 10.1016/j.eswa.2022.117905_b0215
  article-title: Data driven approach for eye disease classification with machine learning
  publication-title: Applied Sciences
  doi: 10.3390/app9142789
– volume: 119
  start-page: 1903
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2022.117905_b0300
  article-title: Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1002/2013JD019630
– ident: 10.1016/j.eswa.2022.117905_b0045
– ident: 10.1016/j.eswa.2022.117905_b0320
– ident: 10.1016/j.eswa.2022.117905_b0020
  doi: 10.1145/3292500.3330693
– volume: 60
  start-page: 596
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2022.117905_b0070
  article-title: Satellite remote sensing of particulate matter air quality: The cloud-cover problem
  publication-title: Journal of the Air & Waste Management Association
  doi: 10.3155/1047-3289.60.5.596
– volume: 33
  start-page: 14199
  issue: 21
  year: 2021
  ident: 10.1016/j.eswa.2022.117905_b0265
  article-title: Intelligent forecaster of concentrations (PM2. 5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP)
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06067-7
– volume: 23
  start-page: 292
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0275
  article-title: Wavelet based performance analysis of SVM and RBF kernel for classifying stress conditions of sleep EEG
  publication-title: Science and Technology
– volume: 10
  start-page: 1953
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0175
  article-title: Urban PM2.5 concentration prediction via attention-based CNN–LSTM
  publication-title: Applied Sciences
  doi: 10.3390/app10061953
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.eswa.2022.117905_b0030
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.50
– ident: 10.1016/j.eswa.2022.117905_b0160
– year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0270
– start-page: 77
  year: 1992
  ident: 10.1016/j.eswa.2022.117905_b0100
  article-title: Myocardial ischemia detection by expert system interpretation of thallium-201 tomograms
  publication-title: Cardiovascular nuclear medicine and MRI
  doi: 10.1007/978-94-011-2666-3_5
– volume: 9
  start-page: 397
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2022.117905_b0290
  article-title: Interference of heavy aerosol loading on the VIIRS aerosol optical depth (AOD) retrieval algorithm
  publication-title: Remote Sensors
  doi: 10.3390/rs9040397
– ident: 10.1016/j.eswa.2022.117905_b0015
  doi: 10.1016/j.eswa.2020.114054
– volume: 22
  start-page: 7571
  year: 2017
  ident: 10.1016/j.eswa.2022.117905_b0110
  article-title: Belief rule-based expert system to assess suspicion of acute coronary syndrome (ACS) under uncertainty
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2732-2
– volume: 20
  start-page: 1956
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0150
  article-title: An integrated approach of belief rule base and deep learning to predict air pollution
  publication-title: Sensors
  doi: 10.3390/s20071956
– volume: 239
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0250
  article-title: Satellite-based estimation of hourly PM2. 5 levels during heavy winter pollution episodes in the Yangtze River Delta, China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124678
– volume: 36
  start-page: 266
  year: 2006
  ident: 10.1016/j.eswa.2022.117905_b0345
  article-title: Belief rule-base inference methodology using the evidential reasoning Approach-RIMER
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part A
  doi: 10.1109/TSMCA.2005.851270
– ident: 10.1016/j.eswa.2022.117905_b0040
– ident: 10.1016/j.eswa.2022.117905_b0065
– volume: 85
  start-page: 114
  year: 2017
  ident: 10.1016/j.eswa.2022.117905_b0005
  article-title: Deep learning for biological image classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.05.039
– volume: 169, 114417
  year: 2021
  ident: 10.1016/j.eswa.2022.117905_b0375
  article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: 190637
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0140
  article-title: A deep learning inspired belief rule-based expert system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031438
– volume: 142
  start-page: 220
  year: 2018
  ident: 10.1016/j.eswa.2022.117905_b0350
  article-title: A joint optimization method on parameter and structure for belief-rule-based systems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.11.039
– volume: 185, 115695
  year: 2021
  ident: 10.1016/j.eswa.2022.117905_b0155
  article-title: Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review
  publication-title: Expert Systems with Applications
– start-page: 689
  year: 2011
  ident: 10.1016/j.eswa.2022.117905_b0230
  article-title: Multimodal deep learning
– ident: 10.1016/j.eswa.2022.117905_b0245
– volume: 118
  start-page: 9296
  issue: 16
  year: 2013
  ident: 10.1016/j.eswa.2022.117905_b0120
  article-title: Enhanced deep blue aerosol retrieval algorithm: The second generation
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/jgrd.50712
– volume: 22
  start-page: 1623
  year: 2016
  ident: 10.1016/j.eswa.2022.117905_b0130
  article-title: A novel anomaly detection algorithm for sensor data under uncertainty
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2425-2
– volume: 11
  start-page: 2120
  issue: 18
  year: 2019
  ident: 10.1016/j.eswa.2022.117905_b0200
  article-title: Hourly PM2.5 estimates from a geostationary satellite based on an ensemble learning algorithm and their spatiotemporal patterns over central east China
  publication-title: Remote Sensorns
  doi: 10.3390/rs11182120
– ident: 10.1016/j.eswa.2022.117905_b0220
– ident: 10.1016/j.eswa.2022.117905_b0205
  doi: 10.1109/CVPR.2015.7298965
– volume: 86
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2022.117905_b0075
  article-title: Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery
  publication-title: International Journal of Coal geology
  doi: 10.1016/j.coal.2010.11.010
– volume: 24
  start-page: 961
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2022.117905_b0060
  article-title: A knowledge-driven approach to activity recognition in smart homes
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2011.51
– volume: 44
  start-page: 11
  year: 2017
  ident: 10.1016/j.eswa.2022.117905_b0170
  article-title: Estimating ground-level PM2.5 by fusing satellite and station observations: A geo-intelligent deep learning approach
  publication-title: Geophysical Research Letters
  doi: 10.1002/2017GL075710
– volume: 58
  start-page: 13
  year: 1963
  ident: 10.1016/j.eswa.2022.117905_b0105
  article-title: Probability inequalities for sums of bounded random variables
  publication-title: Journal of American Statistical Association
  doi: 10.1080/01621459.1963.10500830
– volume: 17
  start-page: 285
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2022.117905_b0010
  article-title: Results and challenges of artificial neural networks used for decision-making and control in medical applications
  publication-title: Facta Universitatis, Series: Mechanical Engineering
  doi: 10.22190/FUME190327035A
– ident: 10.1016/j.eswa.2022.117905_b0280
– volume: 172, 114602
  year: 2021
  ident: 10.1016/j.eswa.2022.117905_b0190
  article-title: A survey and performance evaluation of deep learning methods for small object detection
  publication-title: Expert Systems with Applications
– volume: 336
  start-page: 75
  year: 2016
  ident: 10.1016/j.eswa.2022.117905_b0055
  article-title: Belief rule based expert system for classification problems with new rule activation and weight calculation procedures
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.12.009
– volume: 208
  start-page: 113
  year: 2019
  ident: 10.1016/j.eswa.2022.117905_b0195
  article-title: Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2019.04.002
– volume: 27
  start-page: 2755
  issue: 7
  year: 2009
  ident: 10.1016/j.eswa.2022.117905_b0180
  article-title: July). Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective
  publication-title: Annales Geophysicae
  doi: 10.5194/angeo-27-2755-2009
– volume: 181
  start-page: 95
  year: 2016
  ident: 10.1016/j.eswa.2022.117905_b0125
  article-title: The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere
  publication-title: Atmospheric Research
  doi: 10.1016/j.atmosres.2016.06.016
– volume: 84
  start-page: 102
  year: 2017
  ident: 10.1016/j.eswa.2022.117905_b0315
  article-title: Developing an early-warning system for air quality prediction and assessment of cities in China
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.059
– volume: 14
  start-page: 1510
  year: 2017
  ident: 10.1016/j.eswa.2022.117905_b0360
  article-title: The relationships between PM2.5 and meteorological factors in China: Seasonal and regional variations
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph14121510
– volume: 248
  year: 2021
  ident: 10.1016/j.eswa.2022.117905_b0365
  article-title: Effects of aerosols and water vapour on spatial-temporal variations of the clear-sky surface solar radiation in China
  publication-title: Atmospheric Research
  doi: 10.1016/j.atmosres.2020.105162
– volume: 253
  year: 2021
  ident: 10.1016/j.eswa.2022.117905_b0260
  article-title: A high-precision aerosol retrieval algorithm (HiPARA) for advanced himawari imager (AHI) data: Development and verification
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2020.112221
– volume: 13
  start-page: 495
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2022.117905_b0385
  article-title: High-resolution satellite mapping of fine particulates based on geographically weighted regression
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2016.2520480
– volume: 26
  start-page: 377
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2022.117905_b0165
  article-title: Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011
  publication-title: Journal of Exposure Science & Environmental Epidemiology
  doi: 10.1038/jes.2015.41
– volume: 55
  start-page: 645
  year: 2016
  ident: 10.1016/j.eswa.2022.117905_b0210
  article-title: Convolutional neural networks for large-scale remote-sensing image classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2016.2612821
– ident: 10.1016/j.eswa.2022.117905_b0050
  doi: 10.1109/CyberC.2016.38
– volume: 156
  start-page: 117
  year: 2015
  ident: 10.1016/j.eswa.2022.117905_b0185
  article-title: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5
  publication-title: Remote Sensor of Environment
  doi: 10.1016/j.rse.2014.09.015
– volume: 12
  start-page: 991
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0295
  article-title: Impact of the dust aerosol model on the VIIRS aerosol optical depth (AOD) product across China
  publication-title: Remote Sensing
  doi: 10.3390/rs12060991
– volume: 32
  start-page: 563
  issue: 5
  year: 2015
  ident: 10.1016/j.eswa.2022.117905_b0115
  article-title: Belief-rule-based expert systems for evaluation of e-government: A case study
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12110
– volume: 174
  start-page: 1885
  year: 2006
  ident: 10.1016/j.eswa.2022.117905_b0310
  article-title: Environmental impact assessment using the evidential reasoning approach
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.09.059
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.eswa.2022.117905_b0255
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– ident: 10.1016/j.eswa.2022.117905_b0325
– volume: 223
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0370
  article-title: Clear-sky solar radiation changes over arid and semi-arid areas in China and their determining factors during 2001–2015
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2019.117198
– volume: 145
  year: 2018
  ident: 10.1016/j.eswa.2022.117905_b0285
  article-title: Combining satellite imagery and machine learning to predict atmospheric heavy metal contamination
  publication-title: Advisory Committee
– ident: 10.1016/j.eswa.2022.117905_b0225
  doi: 10.1109/LCNW.2018.8628607
– volume: 17
  start-page: 9471
  issue: 24
  year: 2020
  ident: 10.1016/j.eswa.2022.117905_b0305
  article-title: Roadside air quality forecasting in shanghai with a novel sequence-to-sequence model
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph17249471
– volume: 14
  start-page: 115
  year: 1994
  ident: 10.1016/j.eswa.2022.117905_b0025
  article-title: Approximation and estimation bounds for artificial neural networks
  publication-title: Machine Learning
  doi: 10.1007/BF00993164
– volume: 90
  start-page: 228
  issue: SI
  year: 2019
  ident: 10.1016/j.eswa.2022.117905_b0235
  article-title: Machine learning application for coastal area change detection in gangwon province, South Korea using high-resolution satellite imagery
  publication-title: Journal of Coastal Research
  doi: 10.2112/SI90-028.1
– ident: 10.1016/j.eswa.2022.117905_b0335
  doi: 10.3390/rs13112057
– volume: 11
  start-page: 2319
  issue: 8
  year: 2019
  ident: 10.1016/j.eswa.2022.117905_b0340
  article-title: Primary pollutants and air quality analysis for urban air in China: Evidence from Shanghai
  publication-title: Sustainability
  doi: 10.3390/su11082319
– volume: 161
  start-page: 184
  year: 2018
  ident: 10.1016/j.eswa.2022.117905_b0090
  article-title: Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs
  publication-title: Ecotoxicology and Environment Safety
  doi: 10.1016/j.ecoenv.2018.05.089
– ident: 10.1016/j.eswa.2022.117905_b0080
  doi: 10.1007/978-3-030-16621-2_58
SSID ssj0017007
Score 2.480063
Snippet •We monitor air quality from satellite images to address spatial coverage limitation.•We customize Convolutional Neural Network (CNN) to analyze satellite...
Accurate monitoring of air quality can reduce its adverse impact on earth. Ground-level sensors can provide fine particulate matter (PM 2.5 ) concentrations...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 117905
SubjectTerms Air quality monitoring
Belief Rule Based Expert System (BRBES)
Convolutional Neural Network (CNN)
Distribuerade datorsystem
Pervasive Mobile Computing
Uncertainty
Title An integrated approach of Belief Rule Base and Convolutional Neural Network to monitor air quality in Shanghai
URI https://dx.doi.org/10.1016/j.eswa.2022.117905
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-91874
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I97yABMKzcOO67EUqgISAy-xWY7jQlBJqpKCWPjt3CVOBQMMTFEi-xKdHX--5O77CDlIAYL8OJFeKDsQoMQy8jST1mM89SOW-EIPqyzfq3hwxy4e-EOL9JpaGEyrdGt_vaZXq7W70nbebI-zrH0DmwOAQwjtEMN4JWbNmED-_OPPWZoH0s-Jmm9PeNjaFc7UOV729R25h8IQ_11KlLD7BZy-s4hWyNNfJotuy0i79VOtkJbNV8lSI8dA3du5RvJuTmfsDylt2MJpMaQnFraaQ3o9HVl6ArhFdZ7SXpG_uYkH5pGlozpUaeG0LOhL9bpPqM4mtK69_AD79AY_MT_pbJ3c9c9uewPPySl4BmC59EwcsqFmFmIi32ifp5wZmQCg-xZF1HUsQ4MZMlKGIgWvasHSuIPaxEkcCaajDTKXF7ndJLSDPIUmAkPCssCEiWbcCK4hPEoDFiRbJGj8qIzjGkfJi5FqksqeFfpeoe9V7fstcjTrM66ZNv5szZvhUT_miwIo-LPfYT2Ws3sgv_Zpdt9VxeRRjcqpkihTuP1P-ztkAc-wWjHgu2SunEztHmxbymS_mpf7ZL57fjm4-gKWA-pW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGDhjXjjASYUNQ87qcdSQIVCB2gRm-U4LgSVBJUUxL_nLnEqGGBgipTYl-h89ueL774j5CgBCHLDWDi-aIGDEorAUUwYh_HEDVjsRmpURvn2w-6QXT3whwbp1LkwGFZp1_5qTS9Xa3unabXZfE3T5h1sDgAOwbVDDONYzHoe2anA2Ofbl71uf3aYELlV1jS0d7CDzZ2pwrzM2wfSD_k-Hl8KrGL3Cz59JxItwedihSzZXSNtVx-2ShomWyPLdUUGaifoOsnaGZ0RQCS0Jgyn-YieGthtjujtdGzoKUAXVVlCO3n2bm0PxCNRR3kpI8NpkdOXcsZPqEontEq__AT59A7_Mj-pdIMML84Hna5jKyo4GpC5cHTos5FiBtwiVyuXJ5xpEQOmuwbrqKtQ-BqDZITwowQUqyKWhC1UahwGEVPBJpnL8sxsEdpCqkIdgKDIME_7sWJcR1yBh5R4zIu3iVfrUWpLN45VL8ayjit7lqh7ibqXle63ycmsz2tFtvFna14Pj_xhMhLQ4M9-x9VYzt6BFNtn6X1b5pNHOS6mUmClwp1_yj8kC93BzbW8vuz3dskiPsHkRY_vkbliMjX7sIsp4gNrpV-lTO0H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+approach+of+Belief+Rule+Base+and+Convolutional+Neural+Network+to+monitor+air+quality+in+Shanghai&rft.jtitle=Expert+systems+with+applications&rft.au=Kabir%2C+Sami&rft.au=Islam%2C+Raihan+Ul&rft.au=Hossain%2C+Mohammad+Shahadat&rft.au=Andersson%2C+Karl&rft.date=2022-11-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=206&rft_id=info:doi/10.1016%2Fj.eswa.2022.117905&rft.externalDocID=S0957417422011514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon