Unveiling anharmonic coupling by means of excited state ab initio dynamics: application to diarylethene photoreactivity

In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 21; no. 7; pp. 3606 - 3614
Main Authors Chiariello, Maria Gabriella, Raucci, Umberto, Coppola, Federico, Rega, Nadia
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 13.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S 0 ) and the first excited (S 1 ) state are well separated. The adiabatic sampling of that region in S 1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap Δ E (S 1 − S 0 ). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ ab initio molecular dynamics approach was performed.
AbstractList In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 − S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed.
In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S 0 ) and the first excited (S 1 ) state are well separated. The adiabatic sampling of that region in S 1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap Δ E (S 1 − S 0 ). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ ab initio molecular dynamics approach was performed.
In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 - S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed.
In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 - S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed.In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 - S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed.
Author Rega, Nadia
Chiariello, Maria Gabriella
Raucci, Umberto
Coppola, Federico
Author_xml – sequence: 1
  givenname: Maria Gabriella
  surname: Chiariello
  fullname: Chiariello, Maria Gabriella
  organization: Dipartimento di Scienze Chimiche, Universita di Napoli Federico II, Napoli, Italy
– sequence: 2
  givenname: Umberto
  surname: Raucci
  fullname: Raucci, Umberto
  organization: Dipartimento di Scienze Chimiche, Universita di Napoli Federico II, Napoli, Italy
– sequence: 3
  givenname: Federico
  surname: Coppola
  fullname: Coppola, Federico
  organization: Dipartimento di Scienze Chimiche, Universita di Napoli Federico II, Napoli, Italy
– sequence: 4
  givenname: Nadia
  orcidid: 0000-0002-2983-766X
  surname: Rega
  fullname: Rega, Nadia
  organization: Dipartimento di Scienze Chimiche, Universita di Napoli Federico II, Napoli, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30306981$$D View this record in MEDLINE/PubMed
BookMark eNpt0UFL5DAUB_AgijrqZT_AEvCyCOMmTadpvEnR3QXBPei5vKavTqRNukk67nx7M447C-IpIfm9R_J_M7JvnUVCvnB2yZlQ36uy-s1yyWS1R455Xoi5YmW-v9vL4ojMQnhmjPEFF4fkSDDBClXyY_LyaFdoemOfKNgl-MFZo6l20_h21qzpgGADdR3Fv9pEbGmIEJFCQ4010Tjari0MRocrCmOq0pAOLY3pwoBf9xiXaJGOSxedR9DRrExcn5KDDvqAZ-_rCXm8vXmofs7v7n_8qq7v5lqUPM51XkqheNd0gmklWQPdQkvVKi5bKZVCnuUcmqaQjQaAcgGq0CpLVgiJXSFOyLdt39G7PxOGWA8maOx7sOimUGeclyKlmIlEzz_QZzd5m16XlFRZUUi1afj1XU3NgG09ejOkb9b_Ik3gYgu0dyF47HaEs3ozr_r_vBJmH3DK-C3A6MH0n5W8AjsHmEk
CitedBy_id crossref_primary_10_1002_cctc_202300945
crossref_primary_10_1016_j_jphotochem_2022_114513
crossref_primary_10_1039_D1SC01238J
crossref_primary_10_3390_molecules26020342
crossref_primary_10_1021_acs_jpcb_1c05590
crossref_primary_10_1063_5_0085512
crossref_primary_10_1021_acs_jctc_0c00762
crossref_primary_10_1039_C9CP05452A
crossref_primary_10_1016_j_jphotochem_2020_113024
crossref_primary_10_1016_j_compbiolchem_2020_107322
crossref_primary_10_3390_molecules28083411
crossref_primary_10_1002_jcc_26384
crossref_primary_10_1002_jcc_27231
crossref_primary_10_1021_acs_jpca_1c00692
crossref_primary_10_1246_bcsj_20220332
crossref_primary_10_1007_s00214_024_03151_8
crossref_primary_10_1002_jcc_26224
crossref_primary_10_3390_app9214691
crossref_primary_10_1039_D3CP06256B
crossref_primary_10_1039_D2CP00550F
crossref_primary_10_1021_acs_jpca_3c08366
crossref_primary_10_1021_acs_jctc_0c00810
crossref_primary_10_1002_jcc_26505
crossref_primary_10_1016_j_colsurfa_2022_130537
crossref_primary_10_1016_j_cplett_2020_138168
crossref_primary_10_3390_molecules26092724
Cites_doi 10.1021/jp5088948
10.1560/GLW2-8NVQ-4N6T-6C92
10.1016/0009-2614(89)87526-8
10.1109/79.91217
10.1063/1.464304
10.1021/jp036862e
10.1007/s00214-016-1879-8
10.1063/1.1372182
10.1103/PhysRevB.48.2081
10.3390/ma10091021
10.1021/jz401009b
10.1063/1.477483
10.1063/1.2897759
10.1021/ja507518k
10.1063/1.3292571
10.1021/acs.accounts.5b00270
10.1002/anie.201709136
10.1021/acs.jctc.5b00697
10.1063/1.1416876
10.1063/1.1514582
10.1002/qua.10744
10.1021/ja047169n
10.1039/C4CP05323K
10.1063/1.462066
10.1021/acs.jpca.7b12371
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1039/C4CP00068D
10.1021/cr500249p
10.1016/j.molstruc.2011.02.007
10.1002/jcc.24780
10.1109/18.57199
10.1007/s00214-016-1966-x
10.1007/s00214-006-0076-6
10.1016/S0301-0104(00)00194-4
10.1021/acs.jpcc.5b08504
10.1039/b302356g
10.1021/ja972875s
10.1039/c1cs15023e
10.1039/C6SC00672H
10.1021/acs.jpca.6b06419
10.1021/jp0370829
10.1021/ct100625e
10.1021/cr980068l
10.1002/bip.23225
10.1021/jo00130a035
10.1021/ja028262j
10.1016/S1389-5567(04)00023-1
10.1039/c0pp00251h
10.1039/C7SC02803B
10.1021/jp510838m
10.1021/ja105356w
10.1146/annurev-physchem-032210-103522
10.1103/PhysRevLett.52.997
10.1175/1520-0469(1994)051<2523:WPDATL>2.0.CO;2
10.1021/acs.jpclett.7b01388
10.1016/j.ccr.2015.03.027
10.1021/jp5041986
10.1016/j.cplett.2006.02.051
10.1080/00268970512331339378
10.1016/0301-0104(80)80045-0
10.1146/annurev-physchem-032511-143803
10.1016/j.jphotochemrev.2009.05.002
10.1103/PhysRevLett.94.113003
10.1021/acs.jpclett.6b02292
10.1103/PhysRevA.38.3098
10.1146/annurev.fl.24.010192.002143
10.1016/j.dyepig.2016.10.010
10.1038/nature08527
10.1021/jp508947f
10.1021/ct100547a
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/C8CP04707C
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 3614
ExternalDocumentID 30306981
10_1039_C8CP04707C
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
123
29O
2WC
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
YNT
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c381t-c487391fbf30c970baf5c79d917d7799e1241abb67bcaaa85a96c920c9337ef63
ISSN 1463-9076
1463-9084
IngestDate Thu Jul 10 18:05:10 EDT 2025
Mon Jun 30 13:03:55 EDT 2025
Mon Jul 21 05:47:36 EDT 2025
Tue Jul 01 01:55:28 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-c487391fbf30c970baf5c79d917d7799e1241abb67bcaaa85a96c920c9337ef63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2983-766X
PMID 30306981
PQID 2179266796
PQPubID 2047499
PageCount 9
ParticipantIDs proquest_miscellaneous_2118310323
proquest_journals_2179266796
pubmed_primary_30306981
crossref_primary_10_1039_C8CP04707C
crossref_citationtrail_10_1039_C8CP04707C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Feb-13
PublicationDateYYYYMMDD 2019-02-13
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-Feb-13
  day: 13
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Bhoo (C8CP04707C-(cit7)/*[position()=1]) 1997; 119
Fukaminato (C8CP04707C-(cit16)/*[position()=1]) 2004; 126
Tian (C8CP04707C-(cit1)/*[position()=1]) 2004; 33
Petrone (C8CP04707C-(cit46)/*[position()=1]) 2014; 136
Becke (C8CP04707C-(cit49)/*[position()=1]) 1988; 38
Rini (C8CP04707C-(cit9)/*[position()=1]) 2003; 125
Farge (C8CP04707C-(cit44)/*[position()=1]) 1999
Stratmann (C8CP04707C-(cit29)/*[position()=1]) 1998; 109
Runge (C8CP04707C-(cit33)/*[position()=1]) 1984; 52
Farge (C8CP04707C-(cit45)/*[position()=1]) 1992; 24
Rega (C8CP04707C-(cit58)/*[position()=1]) 2006; 116
Irie (C8CP04707C-(cit6)/*[position()=1]) 1995; 60
Send (C8CP04707C-(cit51)/*[position()=1]) 2010; 132
Pagliai (C8CP04707C-(cit65)/*[position()=1]) 2011; 993
Donati (C8CP04707C-(cit36)/*[position()=1]) 2018; 9
Roos (C8CP04707C-(cit24)/*[position()=1]) 2007; 69
Casida (C8CP04707C-(cit31)/*[position()=1]) 2004; 96
Irie (C8CP04707C-(cit2)/*[position()=1]) 2014; 114
Roos (C8CP04707C-(cit25)/*[position()=1]) 1980; 48
Matsuda (C8CP04707C-(cit13)/*[position()=1]) 2004; 5
Barnett (C8CP04707C-(cit62)/*[position()=1]) 1993; 48
Chiariello (C8CP04707C-(cit37)/*[position()=1]) 2018; 122
Savarese (C8CP04707C-(cit39)/*[position()=1]) 2017; 38
Boggio-Pasqua (C8CP04707C-(cit19)/*[position()=1]) 2003; 107
Morimoto (C8CP04707C-(cit3)/*[position()=1]) 2017; 10
Cederbaum (C8CP04707C-(cit28)/*[position()=1]) 2005; 94
Rega (C8CP04707C-(cit60)/*[position()=1]) 2006; 422
Donati (C8CP04707C-(cit47)/*[position()=1]) 2016; 120
Savarese (C8CP04707C-(cit8)/*[position()=1]) 2016; 135
Dong (C8CP04707C-(cit12)/*[position()=1]) 2015; 48
Morimoto (C8CP04707C-(cit15)/*[position()=1]) 2010; 132
Lingerfelt (C8CP04707C-(cit52)/*[position()=1]) 2016; 12
Muniz-Miranda (C8CP04707C-(cit66)/*[position()=1]) 2011; 7
Liu (C8CP04707C-(cit72)/*[position()=1]) 2016; 7
Beharry (C8CP04707C-(cit11)/*[position()=1]) 2011; 40
Tavernelli (C8CP04707C-(cit63)/*[position()=1]) 2005; 103
Iyengar (C8CP04707C-(cit54)/*[position()=1]) 2001; 115
Adamo (C8CP04707C-(cit32)/*[position()=1]) 2015; 304
Rioul (C8CP04707C-(cit68)/*[position()=1]) 1991; 8
Estrader (C8CP04707C-(cit17)/*[position()=1]) 2017; 56
Yun (C8CP04707C-(cit14)/*[position()=1]) 2009; 10
Ichikawa (C8CP04707C-(cit4)/*[position()=1]) 2017; 137
Perrier (C8CP04707C-(cit70)/*[position()=1]) 2013; 4
Sotome (C8CP04707C-(cit23)/*[position()=1]) 2017; 8
Iyengar (C8CP04707C-(cit56)/*[position()=1]) 2002; 42
Weng (C8CP04707C-(cit69)/*[position()=1]) 1994; 51
Becke (C8CP04707C-(cit50)/*[position()=1]) 1993; 98
Casida (C8CP04707C-(cit30)/*[position()=1]) 2012; 63
Schlegel (C8CP04707C-(cit53)/*[position()=1]) 2001; 114
Becke (C8CP04707C-(cit48)/*[position()=1]) 1992; 96
Hoffman (C8CP04707C-(cit71)/*[position()=1]) 2014; 118
Raucci (C8CP04707C-(cit35)/*[position()=1]) 2015; 119
Ben-Nun (C8CP04707C-(cit26)/*[position()=1]) 2000; 259
Daubechies (C8CP04707C-(cit67)/*[position()=1]) 1990; 36
Valley (C8CP04707C-(cit21)/*[position()=1]) 2015; 17
Petrone (C8CP04707C-(cit42)/*[position()=1]) 2015; 119
Savarese (C8CP04707C-(cit40)/*[position()=1]) 2014; 16
Ward (C8CP04707C-(cit20)/*[position()=1]) 2014; 118
Cimino (C8CP04707C-(cit38)/*[position()=1]) 2016; 135
Irie (C8CP04707C-(cit5)/*[position()=1]) 2000; 100
Rega (C8CP04707C-(cit57)/*[position()=1]) 2004; 108
Torrence (C8CP04707C-(cit43)/*[position()=1]) 1998; 79
Ishibashi (C8CP04707C-(cit22)/*[position()=1]) 2016; 120
Branduardi (C8CP04707C-(cit61)/*[position()=1]) 2011; 7
Petrone (C8CP04707C-(cit34)/*[position()=1]) 2016; 7
Domcke (C8CP04707C-(cit27)/*[position()=1]) 2012; 63
Perrella (C8CP04707C-(cit41)/*[position()=1]) 2018
Brancato (C8CP04707C-(cit59)/*[position()=1]) 2008; 128
Ernsting (C8CP04707C-(cit10)/*[position()=1]) 1989; 159
Irie (C8CP04707C-(cit18)/*[position()=1]) 2010; 9
Schlegel (C8CP04707C-(cit55)/*[position()=1]) 2002; 117
Fang (C8CP04707C-(cit73)/*[position()=1]) 2009; 462
References_xml – volume: 118
  start-page: 10011
  year: 2014
  ident: C8CP04707C-(cit20)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp5088948
– volume: 42
  start-page: 191
  year: 2002
  ident: C8CP04707C-(cit56)/*[position()=1]
  publication-title: Isr. J. Chem.
  doi: 10.1560/GLW2-8NVQ-4N6T-6C92
– volume: 159
  start-page: 526
  year: 1989
  ident: C8CP04707C-(cit10)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)87526-8
– volume: 8
  start-page: 14
  year: 1991
  ident: C8CP04707C-(cit68)/*[position()=1]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.91217
– volume: 98
  start-page: 1372
  year: 1993
  ident: C8CP04707C-(cit50)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464304
– volume: 107
  start-page: 11139
  year: 2003
  ident: C8CP04707C-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp036862e
– volume: 135
  start-page: 1
  year: 2016
  ident: C8CP04707C-(cit38)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-016-1879-8
– volume: 114
  start-page: 9758
  year: 2001
  ident: C8CP04707C-(cit53)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1372182
– volume: 48
  start-page: 2081
  year: 1993
  ident: C8CP04707C-(cit62)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.48.2081
– volume: 10
  start-page: 1021
  year: 2017
  ident: C8CP04707C-(cit3)/*[position()=1]
  publication-title: Materials
  doi: 10.3390/ma10091021
– volume: 4
  start-page: 2190
  year: 2013
  ident: C8CP04707C-(cit70)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401009b
– volume: 109
  start-page: 8218
  year: 1998
  ident: C8CP04707C-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477483
– volume: 128
  start-page: 04B607
  year: 2008
  ident: C8CP04707C-(cit59)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2897759
– volume: 136
  start-page: 14866
  year: 2014
  ident: C8CP04707C-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja507518k
– volume: 132
  start-page: 044107
  year: 2010
  ident: C8CP04707C-(cit51)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3292571
– volume: 48
  start-page: 2662
  year: 2015
  ident: C8CP04707C-(cit12)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00270
– volume: 56
  start-page: 15622
  year: 2017
  ident: C8CP04707C-(cit17)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709136
– volume: 12
  start-page: 935
  year: 2016
  ident: C8CP04707C-(cit52)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00697
– volume: 115
  start-page: 10291
  year: 2001
  ident: C8CP04707C-(cit54)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1416876
– volume: 117
  start-page: 8694
  year: 2002
  ident: C8CP04707C-(cit55)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1514582
– volume: 96
  start-page: 577
  year: 2004
  ident: C8CP04707C-(cit31)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.10744
– volume: 126
  start-page: 14843
  year: 2004
  ident: C8CP04707C-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047169n
– volume: 17
  start-page: 9231
  year: 2015
  ident: C8CP04707C-(cit21)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05323K
– volume: 96
  start-page: 2155
  year: 1992
  ident: C8CP04707C-(cit48)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462066
– volume: 122
  start-page: 2884
  year: 2018
  ident: C8CP04707C-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.7b12371
– volume: 79
  start-page: 61
  year: 1998
  ident: C8CP04707C-(cit43)/*[position()=1]
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– volume: 16
  start-page: 8661
  year: 2014
  ident: C8CP04707C-(cit40)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00068D
– volume: 114
  start-page: 12174
  year: 2014
  ident: C8CP04707C-(cit2)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500249p
– volume: 993
  start-page: 438
  year: 2011
  ident: C8CP04707C-(cit65)/*[position()=1]
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2011.02.007
– volume: 38
  start-page: 1084
  year: 2017
  ident: C8CP04707C-(cit39)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24780
– volume: 36
  start-page: 961
  year: 1990
  ident: C8CP04707C-(cit67)/*[position()=1]
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.57199
– volume: 135
  start-page: 211
  year: 2016
  ident: C8CP04707C-(cit8)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-016-1966-x
– volume: 116
  start-page: 347
  year: 2006
  ident: C8CP04707C-(cit58)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-006-0076-6
– volume: 259
  start-page: 237
  year: 2000
  ident: C8CP04707C-(cit26)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(00)00194-4
– volume-title: Wavelets in Physics
  year: 1999
  ident: C8CP04707C-(cit44)/*[position()=1]
– volume: 120
  start-page: 1170
  year: 2016
  ident: C8CP04707C-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b08504
– volume: 33
  start-page: 85
  year: 2004
  ident: C8CP04707C-(cit1)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b302356g
– volume: 119
  start-page: 11717
  year: 1997
  ident: C8CP04707C-(cit7)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja972875s
– volume: 40
  start-page: 4422
  year: 2011
  ident: C8CP04707C-(cit11)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15023e
– volume: 7
  start-page: 5484
  year: 2016
  ident: C8CP04707C-(cit72)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC00672H
– volume: 120
  start-page: 7255
  year: 2016
  ident: C8CP04707C-(cit47)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b06419
– volume: 108
  start-page: 4210
  year: 2004
  ident: C8CP04707C-(cit57)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0370829
– volume: 7
  start-page: 1109
  year: 2011
  ident: C8CP04707C-(cit66)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100625e
– volume: 100
  start-page: 1683
  year: 2000
  ident: C8CP04707C-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr980068l
– year: 2018
  ident: C8CP04707C-(cit41)/*[position()=1]
  publication-title: Biopolymers
  doi: 10.1002/bip.23225
– volume: 60
  start-page: 8305
  year: 1995
  ident: C8CP04707C-(cit6)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00130a035
– volume: 125
  start-page: 3028
  year: 2003
  ident: C8CP04707C-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028262j
– volume: 5
  start-page: 169
  year: 2004
  ident: C8CP04707C-(cit13)/*[position()=1]
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/S1389-5567(04)00023-1
– volume: 9
  start-page: 1535
  year: 2010
  ident: C8CP04707C-(cit18)/*[position()=1]
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c0pp00251h
– volume: 9
  start-page: 1126
  year: 2018
  ident: C8CP04707C-(cit36)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02803B
– volume: 119
  start-page: 5426
  year: 2015
  ident: C8CP04707C-(cit42)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp510838m
– volume: 132
  start-page: 14172
  year: 2010
  ident: C8CP04707C-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105356w
– volume: 63
  start-page: 325
  year: 2012
  ident: C8CP04707C-(cit27)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-032210-103522
– volume: 69
  start-page: 399
  year: 2007
  ident: C8CP04707C-(cit24)/*[position()=1]
  publication-title: Adv. Chem. Phys.
– volume: 52
  start-page: 997
  year: 1984
  ident: C8CP04707C-(cit33)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.52.997
– volume: 51
  start-page: 2523
  year: 1994
  ident: C8CP04707C-(cit69)/*[position()=1]
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1994)051<2523:WPDATL>2.0.CO;2
– volume: 8
  start-page: 3272
  year: 2017
  ident: C8CP04707C-(cit23)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01388
– volume: 304
  start-page: 166
  year: 2015
  ident: C8CP04707C-(cit32)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.03.027
– volume: 118
  start-page: 4955
  year: 2014
  ident: C8CP04707C-(cit71)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp5041986
– volume: 422
  start-page: 367
  year: 2006
  ident: C8CP04707C-(cit60)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.02.051
– volume: 103
  start-page: 963
  year: 2005
  ident: C8CP04707C-(cit63)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268970512331339378
– volume: 48
  start-page: 157
  year: 1980
  ident: C8CP04707C-(cit25)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(80)80045-0
– volume: 63
  start-page: 287
  year: 2012
  ident: C8CP04707C-(cit30)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-032511-143803
– volume: 10
  start-page: 111
  year: 2009
  ident: C8CP04707C-(cit14)/*[position()=1]
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/j.jphotochemrev.2009.05.002
– volume: 94
  start-page: 113003
  year: 2005
  ident: C8CP04707C-(cit28)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.113003
– volume: 7
  start-page: 4501
  year: 2016
  ident: C8CP04707C-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02292
– volume: 38
  start-page: 3098
  year: 1988
  ident: C8CP04707C-(cit49)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.38.3098
– volume: 24
  start-page: 395
  year: 1992
  ident: C8CP04707C-(cit45)/*[position()=1]
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.24.010192.002143
– volume: 137
  start-page: 214
  year: 2017
  ident: C8CP04707C-(cit4)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2016.10.010
– volume: 462
  start-page: 200
  year: 2009
  ident: C8CP04707C-(cit73)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08527
– volume: 119
  start-page: 2650
  year: 2015
  ident: C8CP04707C-(cit35)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp508947f
– volume: 7
  start-page: 539
  year: 2011
  ident: C8CP04707C-(cit61)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100547a
SSID ssj0001513
Score 2.424958
Snippet In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational...
In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 3606
SubjectTerms Adiabatic flow
Anharmonicity
Coupling (molecular)
Energy gap
Molecular dynamics
Multiresolution analysis
Oscillations
Parameters
Potential energy
Quantitative analysis
Ring opening
Wavelet analysis
Wavelet transforms
Title Unveiling anharmonic coupling by means of excited state ab initio dynamics: application to diarylethene photoreactivity
URI https://www.ncbi.nlm.nih.gov/pubmed/30306981
https://www.proquest.com/docview/2179266796
https://www.proquest.com/docview/2118310323
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviPs6BjKCF1QFkjq1Y96mqGOgUirUSn2LbMfRKpUm2tLB-PUcX5IGGAh4iawTJ418vtrfsc8FoRcsMatmzIMoj42BooaBIIIGOSlymPwE58pm-5zS00X8fjla9nrdDMHbWr5S366NK_kfrYIM9GqiZP9Bs-1LQQBt0C9cQcNw_SsdLzaXerV2YYYmBbWtZqPKbWVlQCw_a-Hc3PRXZbmljR8aCDlYGaehcpC7gvTWL65zlm0YKQDn_Gpt4oGBh1ZnJRjn2kRBmGITXUo7azStmtpxrmVEbt_kwu47zNJ0V934bGVsdH_u8wHaYvBWSCtq14lPYquUdTZYmKolddk-XVYVWOSWd5tcGADm9hntNoqnJuVCd0fDBFENAxeQ6l2hzL5J47RqnVL853fm6ZiSAOx6n0W7K3MV55rJ3YVfexCzzkxNaEg7qz6hLpb1lxUlJCYhq0pUFcYsZGq3bja-AtOP2cliMsnm4-X8Btofgr0CE-7-8Xj-btKSAiBWxAW6ue9uMuUS_nr37h-50W8MHkt85nfQbW-x4GMHv7uopzf30M12tO6jLy0M8Q6GuIEhllfYwhCXBfYwxBaGWEjsYIgbGL7BHRDiGm50QIh_AuEDtDgZz9PTwNfzCBTwwjpQYBwTHhWyIKHiLJSiGCnGcx6xnDHONXDNSEhJmVRCiGQkOFV8CH0JYbqg5CHa25QbfYBwLJgU0JsnRMS5iDgvkiThCTX5CRWN--hlM5KZ8snuTc2VdWadLgjP0iSd2VFP--h527dyKV6u7XXUKCTzU8BFBvY8B4bLOO2jZ-1tGH5z6iY2utyaPpEt5jckffTIKbL9GWIsdp5Eh39--WN0a_c_OUJ79flWPwEuXMunHmffAQyfvIQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+anharmonic+coupling+by+means+of+excited+state+ab+initio+dynamics%3A+application+to+diarylethene+photoreactivity&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Chiariello%2C+Maria+Gabriella&rft.au=Raucci%2C+Umberto&rft.au=Coppola%2C+Federico&rft.au=Rega%2C+Nadia&rft.date=2019-02-13&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=21&rft.issue=7&rft.spage=3606&rft.epage=3614&rft_id=info:doi/10.1039%2Fc8cp04707c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon