Unveiling anharmonic coupling by means of excited state ab initio dynamics: application to diarylethene photoreactivity
In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 21; no. 7; pp. 3606 - 3614 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
13.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, excited state
ab initio
molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S
0
) and the first excited (S
1
) state are well separated. The adiabatic sampling of that region in S
1
shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap Δ
E
(S
1
− S
0
). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/
ab initio
molecular dynamics approach was performed. |
---|---|
AbstractList | In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 − S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed. In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S 0 ) and the first excited (S 1 ) state are well separated. The adiabatic sampling of that region in S 1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap Δ E (S 1 − S 0 ). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ ab initio molecular dynamics approach was performed. In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 - S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed. In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 - S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed.In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 - S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed. |
Author | Rega, Nadia Chiariello, Maria Gabriella Raucci, Umberto Coppola, Federico |
Author_xml | – sequence: 1 givenname: Maria Gabriella surname: Chiariello fullname: Chiariello, Maria Gabriella organization: Dipartimento di Scienze Chimiche, Universita di Napoli Federico II, Napoli, Italy – sequence: 2 givenname: Umberto surname: Raucci fullname: Raucci, Umberto organization: Dipartimento di Scienze Chimiche, Universita di Napoli Federico II, Napoli, Italy – sequence: 3 givenname: Federico surname: Coppola fullname: Coppola, Federico organization: Dipartimento di Scienze Chimiche, Universita di Napoli Federico II, Napoli, Italy – sequence: 4 givenname: Nadia orcidid: 0000-0002-2983-766X surname: Rega fullname: Rega, Nadia organization: Dipartimento di Scienze Chimiche, Universita di Napoli Federico II, Napoli, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30306981$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0UFL5DAUB_AgijrqZT_AEvCyCOMmTadpvEnR3QXBPei5vKavTqRNukk67nx7M447C-IpIfm9R_J_M7JvnUVCvnB2yZlQ36uy-s1yyWS1R455Xoi5YmW-v9vL4ojMQnhmjPEFF4fkSDDBClXyY_LyaFdoemOfKNgl-MFZo6l20_h21qzpgGADdR3Fv9pEbGmIEJFCQ4010Tjari0MRocrCmOq0pAOLY3pwoBf9xiXaJGOSxedR9DRrExcn5KDDvqAZ-_rCXm8vXmofs7v7n_8qq7v5lqUPM51XkqheNd0gmklWQPdQkvVKi5bKZVCnuUcmqaQjQaAcgGq0CpLVgiJXSFOyLdt39G7PxOGWA8maOx7sOimUGeclyKlmIlEzz_QZzd5m16XlFRZUUi1afj1XU3NgG09ejOkb9b_Ik3gYgu0dyF47HaEs3ozr_r_vBJmH3DK-C3A6MH0n5W8AjsHmEk |
CitedBy_id | crossref_primary_10_1002_cctc_202300945 crossref_primary_10_1016_j_jphotochem_2022_114513 crossref_primary_10_1039_D1SC01238J crossref_primary_10_3390_molecules26020342 crossref_primary_10_1021_acs_jpcb_1c05590 crossref_primary_10_1063_5_0085512 crossref_primary_10_1021_acs_jctc_0c00762 crossref_primary_10_1039_C9CP05452A crossref_primary_10_1016_j_jphotochem_2020_113024 crossref_primary_10_1016_j_compbiolchem_2020_107322 crossref_primary_10_3390_molecules28083411 crossref_primary_10_1002_jcc_26384 crossref_primary_10_1002_jcc_27231 crossref_primary_10_1021_acs_jpca_1c00692 crossref_primary_10_1246_bcsj_20220332 crossref_primary_10_1007_s00214_024_03151_8 crossref_primary_10_1002_jcc_26224 crossref_primary_10_3390_app9214691 crossref_primary_10_1039_D3CP06256B crossref_primary_10_1039_D2CP00550F crossref_primary_10_1021_acs_jpca_3c08366 crossref_primary_10_1021_acs_jctc_0c00810 crossref_primary_10_1002_jcc_26505 crossref_primary_10_1016_j_colsurfa_2022_130537 crossref_primary_10_1016_j_cplett_2020_138168 crossref_primary_10_3390_molecules26092724 |
Cites_doi | 10.1021/jp5088948 10.1560/GLW2-8NVQ-4N6T-6C92 10.1016/0009-2614(89)87526-8 10.1109/79.91217 10.1063/1.464304 10.1021/jp036862e 10.1007/s00214-016-1879-8 10.1063/1.1372182 10.1103/PhysRevB.48.2081 10.3390/ma10091021 10.1021/jz401009b 10.1063/1.477483 10.1063/1.2897759 10.1021/ja507518k 10.1063/1.3292571 10.1021/acs.accounts.5b00270 10.1002/anie.201709136 10.1021/acs.jctc.5b00697 10.1063/1.1416876 10.1063/1.1514582 10.1002/qua.10744 10.1021/ja047169n 10.1039/C4CP05323K 10.1063/1.462066 10.1021/acs.jpca.7b12371 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1039/C4CP00068D 10.1021/cr500249p 10.1016/j.molstruc.2011.02.007 10.1002/jcc.24780 10.1109/18.57199 10.1007/s00214-016-1966-x 10.1007/s00214-006-0076-6 10.1016/S0301-0104(00)00194-4 10.1021/acs.jpcc.5b08504 10.1039/b302356g 10.1021/ja972875s 10.1039/c1cs15023e 10.1039/C6SC00672H 10.1021/acs.jpca.6b06419 10.1021/jp0370829 10.1021/ct100625e 10.1021/cr980068l 10.1002/bip.23225 10.1021/jo00130a035 10.1021/ja028262j 10.1016/S1389-5567(04)00023-1 10.1039/c0pp00251h 10.1039/C7SC02803B 10.1021/jp510838m 10.1021/ja105356w 10.1146/annurev-physchem-032210-103522 10.1103/PhysRevLett.52.997 10.1175/1520-0469(1994)051<2523:WPDATL>2.0.CO;2 10.1021/acs.jpclett.7b01388 10.1016/j.ccr.2015.03.027 10.1021/jp5041986 10.1016/j.cplett.2006.02.051 10.1080/00268970512331339378 10.1016/0301-0104(80)80045-0 10.1146/annurev-physchem-032511-143803 10.1016/j.jphotochemrev.2009.05.002 10.1103/PhysRevLett.94.113003 10.1021/acs.jpclett.6b02292 10.1103/PhysRevA.38.3098 10.1146/annurev.fl.24.010192.002143 10.1016/j.dyepig.2016.10.010 10.1038/nature08527 10.1021/jp508947f 10.1021/ct100547a |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/C8CP04707C |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 3614 |
ExternalDocumentID | 30306981 10_1039_C8CP04707C |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 123 29O 2WC 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- P2P R56 R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 YNT NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c381t-c487391fbf30c970baf5c79d917d7799e1241abb67bcaaa85a96c920c9337ef63 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Thu Jul 10 18:05:10 EDT 2025 Mon Jun 30 13:03:55 EDT 2025 Mon Jul 21 05:47:36 EDT 2025 Tue Jul 01 01:55:28 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-c487391fbf30c970baf5c79d917d7799e1241abb67bcaaa85a96c920c9337ef63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2983-766X |
PMID | 30306981 |
PQID | 2179266796 |
PQPubID | 2047499 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2118310323 proquest_journals_2179266796 pubmed_primary_30306981 crossref_primary_10_1039_C8CP04707C crossref_citationtrail_10_1039_C8CP04707C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Feb-13 |
PublicationDateYYYYMMDD | 2019-02-13 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-Feb-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Bhoo (C8CP04707C-(cit7)/*[position()=1]) 1997; 119 Fukaminato (C8CP04707C-(cit16)/*[position()=1]) 2004; 126 Tian (C8CP04707C-(cit1)/*[position()=1]) 2004; 33 Petrone (C8CP04707C-(cit46)/*[position()=1]) 2014; 136 Becke (C8CP04707C-(cit49)/*[position()=1]) 1988; 38 Rini (C8CP04707C-(cit9)/*[position()=1]) 2003; 125 Farge (C8CP04707C-(cit44)/*[position()=1]) 1999 Stratmann (C8CP04707C-(cit29)/*[position()=1]) 1998; 109 Runge (C8CP04707C-(cit33)/*[position()=1]) 1984; 52 Farge (C8CP04707C-(cit45)/*[position()=1]) 1992; 24 Rega (C8CP04707C-(cit58)/*[position()=1]) 2006; 116 Irie (C8CP04707C-(cit6)/*[position()=1]) 1995; 60 Send (C8CP04707C-(cit51)/*[position()=1]) 2010; 132 Pagliai (C8CP04707C-(cit65)/*[position()=1]) 2011; 993 Donati (C8CP04707C-(cit36)/*[position()=1]) 2018; 9 Roos (C8CP04707C-(cit24)/*[position()=1]) 2007; 69 Casida (C8CP04707C-(cit31)/*[position()=1]) 2004; 96 Irie (C8CP04707C-(cit2)/*[position()=1]) 2014; 114 Roos (C8CP04707C-(cit25)/*[position()=1]) 1980; 48 Matsuda (C8CP04707C-(cit13)/*[position()=1]) 2004; 5 Barnett (C8CP04707C-(cit62)/*[position()=1]) 1993; 48 Chiariello (C8CP04707C-(cit37)/*[position()=1]) 2018; 122 Savarese (C8CP04707C-(cit39)/*[position()=1]) 2017; 38 Boggio-Pasqua (C8CP04707C-(cit19)/*[position()=1]) 2003; 107 Morimoto (C8CP04707C-(cit3)/*[position()=1]) 2017; 10 Cederbaum (C8CP04707C-(cit28)/*[position()=1]) 2005; 94 Rega (C8CP04707C-(cit60)/*[position()=1]) 2006; 422 Donati (C8CP04707C-(cit47)/*[position()=1]) 2016; 120 Savarese (C8CP04707C-(cit8)/*[position()=1]) 2016; 135 Dong (C8CP04707C-(cit12)/*[position()=1]) 2015; 48 Morimoto (C8CP04707C-(cit15)/*[position()=1]) 2010; 132 Lingerfelt (C8CP04707C-(cit52)/*[position()=1]) 2016; 12 Muniz-Miranda (C8CP04707C-(cit66)/*[position()=1]) 2011; 7 Liu (C8CP04707C-(cit72)/*[position()=1]) 2016; 7 Beharry (C8CP04707C-(cit11)/*[position()=1]) 2011; 40 Tavernelli (C8CP04707C-(cit63)/*[position()=1]) 2005; 103 Iyengar (C8CP04707C-(cit54)/*[position()=1]) 2001; 115 Adamo (C8CP04707C-(cit32)/*[position()=1]) 2015; 304 Rioul (C8CP04707C-(cit68)/*[position()=1]) 1991; 8 Estrader (C8CP04707C-(cit17)/*[position()=1]) 2017; 56 Yun (C8CP04707C-(cit14)/*[position()=1]) 2009; 10 Ichikawa (C8CP04707C-(cit4)/*[position()=1]) 2017; 137 Perrier (C8CP04707C-(cit70)/*[position()=1]) 2013; 4 Sotome (C8CP04707C-(cit23)/*[position()=1]) 2017; 8 Iyengar (C8CP04707C-(cit56)/*[position()=1]) 2002; 42 Weng (C8CP04707C-(cit69)/*[position()=1]) 1994; 51 Becke (C8CP04707C-(cit50)/*[position()=1]) 1993; 98 Casida (C8CP04707C-(cit30)/*[position()=1]) 2012; 63 Schlegel (C8CP04707C-(cit53)/*[position()=1]) 2001; 114 Becke (C8CP04707C-(cit48)/*[position()=1]) 1992; 96 Hoffman (C8CP04707C-(cit71)/*[position()=1]) 2014; 118 Raucci (C8CP04707C-(cit35)/*[position()=1]) 2015; 119 Ben-Nun (C8CP04707C-(cit26)/*[position()=1]) 2000; 259 Daubechies (C8CP04707C-(cit67)/*[position()=1]) 1990; 36 Valley (C8CP04707C-(cit21)/*[position()=1]) 2015; 17 Petrone (C8CP04707C-(cit42)/*[position()=1]) 2015; 119 Savarese (C8CP04707C-(cit40)/*[position()=1]) 2014; 16 Ward (C8CP04707C-(cit20)/*[position()=1]) 2014; 118 Cimino (C8CP04707C-(cit38)/*[position()=1]) 2016; 135 Irie (C8CP04707C-(cit5)/*[position()=1]) 2000; 100 Rega (C8CP04707C-(cit57)/*[position()=1]) 2004; 108 Torrence (C8CP04707C-(cit43)/*[position()=1]) 1998; 79 Ishibashi (C8CP04707C-(cit22)/*[position()=1]) 2016; 120 Branduardi (C8CP04707C-(cit61)/*[position()=1]) 2011; 7 Petrone (C8CP04707C-(cit34)/*[position()=1]) 2016; 7 Domcke (C8CP04707C-(cit27)/*[position()=1]) 2012; 63 Perrella (C8CP04707C-(cit41)/*[position()=1]) 2018 Brancato (C8CP04707C-(cit59)/*[position()=1]) 2008; 128 Ernsting (C8CP04707C-(cit10)/*[position()=1]) 1989; 159 Irie (C8CP04707C-(cit18)/*[position()=1]) 2010; 9 Schlegel (C8CP04707C-(cit55)/*[position()=1]) 2002; 117 Fang (C8CP04707C-(cit73)/*[position()=1]) 2009; 462 |
References_xml | – volume: 118 start-page: 10011 year: 2014 ident: C8CP04707C-(cit20)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp5088948 – volume: 42 start-page: 191 year: 2002 ident: C8CP04707C-(cit56)/*[position()=1] publication-title: Isr. J. Chem. doi: 10.1560/GLW2-8NVQ-4N6T-6C92 – volume: 159 start-page: 526 year: 1989 ident: C8CP04707C-(cit10)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(89)87526-8 – volume: 8 start-page: 14 year: 1991 ident: C8CP04707C-(cit68)/*[position()=1] publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.91217 – volume: 98 start-page: 1372 year: 1993 ident: C8CP04707C-(cit50)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464304 – volume: 107 start-page: 11139 year: 2003 ident: C8CP04707C-(cit19)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp036862e – volume: 135 start-page: 1 year: 2016 ident: C8CP04707C-(cit38)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-016-1879-8 – volume: 114 start-page: 9758 year: 2001 ident: C8CP04707C-(cit53)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1372182 – volume: 48 start-page: 2081 year: 1993 ident: C8CP04707C-(cit62)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.48.2081 – volume: 10 start-page: 1021 year: 2017 ident: C8CP04707C-(cit3)/*[position()=1] publication-title: Materials doi: 10.3390/ma10091021 – volume: 4 start-page: 2190 year: 2013 ident: C8CP04707C-(cit70)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401009b – volume: 109 start-page: 8218 year: 1998 ident: C8CP04707C-(cit29)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.477483 – volume: 128 start-page: 04B607 year: 2008 ident: C8CP04707C-(cit59)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2897759 – volume: 136 start-page: 14866 year: 2014 ident: C8CP04707C-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507518k – volume: 132 start-page: 044107 year: 2010 ident: C8CP04707C-(cit51)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3292571 – volume: 48 start-page: 2662 year: 2015 ident: C8CP04707C-(cit12)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00270 – volume: 56 start-page: 15622 year: 2017 ident: C8CP04707C-(cit17)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709136 – volume: 12 start-page: 935 year: 2016 ident: C8CP04707C-(cit52)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00697 – volume: 115 start-page: 10291 year: 2001 ident: C8CP04707C-(cit54)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1416876 – volume: 117 start-page: 8694 year: 2002 ident: C8CP04707C-(cit55)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1514582 – volume: 96 start-page: 577 year: 2004 ident: C8CP04707C-(cit31)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.10744 – volume: 126 start-page: 14843 year: 2004 ident: C8CP04707C-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047169n – volume: 17 start-page: 9231 year: 2015 ident: C8CP04707C-(cit21)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05323K – volume: 96 start-page: 2155 year: 1992 ident: C8CP04707C-(cit48)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.462066 – volume: 122 start-page: 2884 year: 2018 ident: C8CP04707C-(cit37)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.7b12371 – volume: 79 start-page: 61 year: 1998 ident: C8CP04707C-(cit43)/*[position()=1] publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – volume: 16 start-page: 8661 year: 2014 ident: C8CP04707C-(cit40)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00068D – volume: 114 start-page: 12174 year: 2014 ident: C8CP04707C-(cit2)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500249p – volume: 993 start-page: 438 year: 2011 ident: C8CP04707C-(cit65)/*[position()=1] publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2011.02.007 – volume: 38 start-page: 1084 year: 2017 ident: C8CP04707C-(cit39)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.24780 – volume: 36 start-page: 961 year: 1990 ident: C8CP04707C-(cit67)/*[position()=1] publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.57199 – volume: 135 start-page: 211 year: 2016 ident: C8CP04707C-(cit8)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-016-1966-x – volume: 116 start-page: 347 year: 2006 ident: C8CP04707C-(cit58)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-006-0076-6 – volume: 259 start-page: 237 year: 2000 ident: C8CP04707C-(cit26)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/S0301-0104(00)00194-4 – volume-title: Wavelets in Physics year: 1999 ident: C8CP04707C-(cit44)/*[position()=1] – volume: 120 start-page: 1170 year: 2016 ident: C8CP04707C-(cit22)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b08504 – volume: 33 start-page: 85 year: 2004 ident: C8CP04707C-(cit1)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b302356g – volume: 119 start-page: 11717 year: 1997 ident: C8CP04707C-(cit7)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja972875s – volume: 40 start-page: 4422 year: 2011 ident: C8CP04707C-(cit11)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15023e – volume: 7 start-page: 5484 year: 2016 ident: C8CP04707C-(cit72)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC00672H – volume: 120 start-page: 7255 year: 2016 ident: C8CP04707C-(cit47)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.6b06419 – volume: 108 start-page: 4210 year: 2004 ident: C8CP04707C-(cit57)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0370829 – volume: 7 start-page: 1109 year: 2011 ident: C8CP04707C-(cit66)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100625e – volume: 100 start-page: 1683 year: 2000 ident: C8CP04707C-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr980068l – year: 2018 ident: C8CP04707C-(cit41)/*[position()=1] publication-title: Biopolymers doi: 10.1002/bip.23225 – volume: 60 start-page: 8305 year: 1995 ident: C8CP04707C-(cit6)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo00130a035 – volume: 125 start-page: 3028 year: 2003 ident: C8CP04707C-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028262j – volume: 5 start-page: 169 year: 2004 ident: C8CP04707C-(cit13)/*[position()=1] publication-title: J. Photochem. Photobiol., C doi: 10.1016/S1389-5567(04)00023-1 – volume: 9 start-page: 1535 year: 2010 ident: C8CP04707C-(cit18)/*[position()=1] publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c0pp00251h – volume: 9 start-page: 1126 year: 2018 ident: C8CP04707C-(cit36)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC02803B – volume: 119 start-page: 5426 year: 2015 ident: C8CP04707C-(cit42)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp510838m – volume: 132 start-page: 14172 year: 2010 ident: C8CP04707C-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105356w – volume: 63 start-page: 325 year: 2012 ident: C8CP04707C-(cit27)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032210-103522 – volume: 69 start-page: 399 year: 2007 ident: C8CP04707C-(cit24)/*[position()=1] publication-title: Adv. Chem. Phys. – volume: 52 start-page: 997 year: 1984 ident: C8CP04707C-(cit33)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.52.997 – volume: 51 start-page: 2523 year: 1994 ident: C8CP04707C-(cit69)/*[position()=1] publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1994)051<2523:WPDATL>2.0.CO;2 – volume: 8 start-page: 3272 year: 2017 ident: C8CP04707C-(cit23)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01388 – volume: 304 start-page: 166 year: 2015 ident: C8CP04707C-(cit32)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.03.027 – volume: 118 start-page: 4955 year: 2014 ident: C8CP04707C-(cit71)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp5041986 – volume: 422 start-page: 367 year: 2006 ident: C8CP04707C-(cit60)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.02.051 – volume: 103 start-page: 963 year: 2005 ident: C8CP04707C-(cit63)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268970512331339378 – volume: 48 start-page: 157 year: 1980 ident: C8CP04707C-(cit25)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(80)80045-0 – volume: 63 start-page: 287 year: 2012 ident: C8CP04707C-(cit30)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032511-143803 – volume: 10 start-page: 111 year: 2009 ident: C8CP04707C-(cit14)/*[position()=1] publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2009.05.002 – volume: 94 start-page: 113003 year: 2005 ident: C8CP04707C-(cit28)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.113003 – volume: 7 start-page: 4501 year: 2016 ident: C8CP04707C-(cit34)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02292 – volume: 38 start-page: 3098 year: 1988 ident: C8CP04707C-(cit49)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.38.3098 – volume: 24 start-page: 395 year: 1992 ident: C8CP04707C-(cit45)/*[position()=1] publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.24.010192.002143 – volume: 137 start-page: 214 year: 2017 ident: C8CP04707C-(cit4)/*[position()=1] publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2016.10.010 – volume: 462 start-page: 200 year: 2009 ident: C8CP04707C-(cit73)/*[position()=1] publication-title: Nature doi: 10.1038/nature08527 – volume: 119 start-page: 2650 year: 2015 ident: C8CP04707C-(cit35)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp508947f – volume: 7 start-page: 539 year: 2011 ident: C8CP04707C-(cit61)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100547a |
SSID | ssj0001513 |
Score | 2.424958 |
Snippet | In this work, excited state
ab initio
molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational... In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3606 |
SubjectTerms | Adiabatic flow Anharmonicity Coupling (molecular) Energy gap Molecular dynamics Multiresolution analysis Oscillations Parameters Potential energy Quantitative analysis Ring opening Wavelet analysis Wavelet transforms |
Title | Unveiling anharmonic coupling by means of excited state ab initio dynamics: application to diarylethene photoreactivity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30306981 https://www.proquest.com/docview/2179266796 https://www.proquest.com/docview/2118310323 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviPs6BjKCF1QFkjq1Y96mqGOgUirUSn2LbMfRKpUm2tLB-PUcX5IGGAh4iawTJ418vtrfsc8FoRcsMatmzIMoj42BooaBIIIGOSlymPwE58pm-5zS00X8fjla9nrdDMHbWr5S366NK_kfrYIM9GqiZP9Bs-1LQQBt0C9cQcNw_SsdLzaXerV2YYYmBbWtZqPKbWVlQCw_a-Hc3PRXZbmljR8aCDlYGaehcpC7gvTWL65zlm0YKQDn_Gpt4oGBh1ZnJRjn2kRBmGITXUo7azStmtpxrmVEbt_kwu47zNJ0V934bGVsdH_u8wHaYvBWSCtq14lPYquUdTZYmKolddk-XVYVWOSWd5tcGADm9hntNoqnJuVCd0fDBFENAxeQ6l2hzL5J47RqnVL853fm6ZiSAOx6n0W7K3MV55rJ3YVfexCzzkxNaEg7qz6hLpb1lxUlJCYhq0pUFcYsZGq3bja-AtOP2cliMsnm4-X8Btofgr0CE-7-8Xj-btKSAiBWxAW6ue9uMuUS_nr37h-50W8MHkt85nfQbW-x4GMHv7uopzf30M12tO6jLy0M8Q6GuIEhllfYwhCXBfYwxBaGWEjsYIgbGL7BHRDiGm50QIh_AuEDtDgZz9PTwNfzCBTwwjpQYBwTHhWyIKHiLJSiGCnGcx6xnDHONXDNSEhJmVRCiGQkOFV8CH0JYbqg5CHa25QbfYBwLJgU0JsnRMS5iDgvkiThCTX5CRWN--hlM5KZ8snuTc2VdWadLgjP0iSd2VFP--h527dyKV6u7XXUKCTzU8BFBvY8B4bLOO2jZ-1tGH5z6iY2utyaPpEt5jckffTIKbL9GWIsdp5Eh39--WN0a_c_OUJ79flWPwEuXMunHmffAQyfvIQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+anharmonic+coupling+by+means+of+excited+state+ab+initio+dynamics%3A+application+to+diarylethene+photoreactivity&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Chiariello%2C+Maria+Gabriella&rft.au=Raucci%2C+Umberto&rft.au=Coppola%2C+Federico&rft.au=Rega%2C+Nadia&rft.date=2019-02-13&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=21&rft.issue=7&rft.spage=3606&rft.epage=3614&rft_id=info:doi/10.1039%2Fc8cp04707c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |