The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle
[Display omitted] The newly discovered hafnium oxide (HfO2)-based ferroelectric film shows many advantages over the traditional perovskite films in the application of information storage. However, the mechanism of ferroelectric phase transition of the HfO2-based film is still confusing to the resear...
Saved in:
Published in | Computational materials science Vol. 167; pp. 143 - 150 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
The newly discovered hafnium oxide (HfO2)-based ferroelectric film shows many advantages over the traditional perovskite films in the application of information storage. However, the mechanism of ferroelectric phase transition of the HfO2-based film is still confusing to the researchers. Here, the effects of oxygen vacancies and the complex defects formed by the combination of oxygen vacancies and typical impurity elements on ferroelectric phase transition and polarization performance of HfO2 were systematically investigated by first-principle calculation. Due to the ambiguous effects of electrode/ferroelectric interfaces on the ferroelectricity of HfO2-based film, the influence of oxygen vacancies at the TiN/HfO2 interface was also studied. It was found that the oxygen vacancies, and impurities N and La, which would form defect dipoles by combining with oxygen vacancies and induce a local build-in bias, would promote the ferroelectric phase transition in the bulk of HfO2-based film. Additionally, oxygen vacancies, which are inclined to migrate to the interface, would cause the transition of the interfacial tetragonal phase to the ferroelectric phase, and then to the monoclinic phase. This result may be helpful for the understanding of the origin of ferroelectricity as well as the mechanisms of wake-up and fatigue effects of HfO2-based ferroelectric film. |
---|---|
AbstractList | [Display omitted]
The newly discovered hafnium oxide (HfO2)-based ferroelectric film shows many advantages over the traditional perovskite films in the application of information storage. However, the mechanism of ferroelectric phase transition of the HfO2-based film is still confusing to the researchers. Here, the effects of oxygen vacancies and the complex defects formed by the combination of oxygen vacancies and typical impurity elements on ferroelectric phase transition and polarization performance of HfO2 were systematically investigated by first-principle calculation. Due to the ambiguous effects of electrode/ferroelectric interfaces on the ferroelectricity of HfO2-based film, the influence of oxygen vacancies at the TiN/HfO2 interface was also studied. It was found that the oxygen vacancies, and impurities N and La, which would form defect dipoles by combining with oxygen vacancies and induce a local build-in bias, would promote the ferroelectric phase transition in the bulk of HfO2-based film. Additionally, oxygen vacancies, which are inclined to migrate to the interface, would cause the transition of the interfacial tetragonal phase to the ferroelectric phase, and then to the monoclinic phase. This result may be helpful for the understanding of the origin of ferroelectricity as well as the mechanisms of wake-up and fatigue effects of HfO2-based ferroelectric film. |
Author | Zhou, Y.C. Zhang, Y.K. Jiang, J. Yang, Q. Fan, P. Zhou, Y. Liao, M. |
Author_xml | – sequence: 1 givenname: Y. surname: Zhou fullname: Zhou, Y. – sequence: 2 givenname: Y.K. surname: Zhang fullname: Zhang, Y.K. – sequence: 3 givenname: Q. surname: Yang fullname: Yang, Q. email: qyang@xtu.edu.cn – sequence: 4 givenname: J. surname: Jiang fullname: Jiang, J. – sequence: 5 givenname: P. surname: Fan fullname: Fan, P. – sequence: 6 givenname: M. surname: Liao fullname: Liao, M. – sequence: 7 givenname: Y.C. surname: Zhou fullname: Zhou, Y.C. email: zhouyc@xtu.edu.cn |
BookMark | eNqNkMtqAyEUhqWk0CTtM9QXmOnRXEYXXYTQGwSySdfiOMfGMNGgEpq3ryGli27ajcLxfD_-34gMfPBIyD2DmgGbP-xqE_Z7nZNxNQcma5jVMGVXZMhEIysQwAZkCJI3FfDZ_IaMUtpBIaXgQ-I3W6RoLZqcaLA0fJ4-0NOjNtobh2XmqcUYA_ZlJTpDD1udkOaofXLZledCvdo1r9oy72jeukK4fk9tDOVwMeXqEF1JO_R4S66t7hPefd9j8v78tFm-Vqv1y9tysarMRLBcGQDQWkjdSCFYyzUzzE55p1uUlumuA2sN8LmQUoC00EytEdC0FpnopDWTMWkuuSaGlCJaVb6w1_GkGKizNrVTP9rUWZuCmSraCvn4izQu63PRUtn1_-AXFx5LvaPDqMoGeoOdi8Wg6oL7M-MLVr2UTw |
CitedBy_id | crossref_primary_10_1002_pssa_202300100 crossref_primary_10_1016_j_commatsci_2023_112036 crossref_primary_10_1063_5_0028200 crossref_primary_10_1088_1674_4926_44_5_053101 crossref_primary_10_1063_5_0224896 crossref_primary_10_1016_j_ensm_2024_103612 crossref_primary_10_1021_acs_jpcc_3c00420 crossref_primary_10_1038_s41535_024_00652_4 crossref_primary_10_1002_advs_202408687 crossref_primary_10_1002_smsc_202400223 crossref_primary_10_1063_5_0062475 crossref_primary_10_1016_j_jlumin_2021_118004 crossref_primary_10_1016_j_actamat_2023_118707 crossref_primary_10_1063_5_0226390 crossref_primary_10_1109_TNS_2024_3383160 crossref_primary_10_1116_6_0004358 crossref_primary_10_1063_5_0089049 crossref_primary_10_1016_j_fmre_2023_02_010 crossref_primary_10_1088_1674_1056_ad4ff4 crossref_primary_10_1016_j_actamat_2025_120738 crossref_primary_10_1186_s40580_023_00403_4 crossref_primary_10_1038_s41524_023_01176_4 crossref_primary_10_1016_j_mee_2022_111770 crossref_primary_10_1016_j_mtnano_2024_100546 crossref_primary_10_1039_D0TC01105C crossref_primary_10_1002_admt_202401041 crossref_primary_10_1103_PhysRevApplied_14_064012 crossref_primary_10_1109_TED_2022_3190256 crossref_primary_10_1063_5_0170657 crossref_primary_10_1109_TED_2023_3306730 crossref_primary_10_1063_5_0200154 crossref_primary_10_1088_1361_6528_ad2f74 crossref_primary_10_35848_1347_4065_aba50b crossref_primary_10_1002_adfm_202104913 crossref_primary_10_1016_j_jallcom_2022_165301 crossref_primary_10_3390_s22114087 crossref_primary_10_1109_LED_2022_3178867 crossref_primary_10_1016_j_commatsci_2023_112708 crossref_primary_10_1016_j_ceramint_2023_02_117 crossref_primary_10_1063_5_0024745 crossref_primary_10_1063_1_5140612 crossref_primary_10_1002_advs_202410765 crossref_primary_10_1021_acsami_1c15082 crossref_primary_10_1021_acsaelm_4c00944 crossref_primary_10_1063_5_0214584 crossref_primary_10_1039_D1QI00167A crossref_primary_10_1063_5_0164147 crossref_primary_10_1002_advs_202300792 crossref_primary_10_1021_acs_nanolett_3c00085 crossref_primary_10_20517_microstructures_2024_120 crossref_primary_10_35848_1347_4065_acb4fc crossref_primary_10_1063_5_0190459 crossref_primary_10_35848_1347_4065_ad21bd crossref_primary_10_1063_5_0011547 crossref_primary_10_3390_ma16165559 crossref_primary_10_1109_LED_2024_3455338 crossref_primary_10_1088_1361_6528_adaf2c crossref_primary_10_1016_j_jallcom_2022_166961 crossref_primary_10_1016_j_mtla_2023_101887 crossref_primary_10_35848_1347_4065_acfdb2 crossref_primary_10_1002_aelm_202400136 crossref_primary_10_1063_5_0160719 crossref_primary_10_1109_LED_2023_3269070 crossref_primary_10_1039_D0NR07699F crossref_primary_10_1088_1361_6463_acdaa4 crossref_primary_10_1016_j_jmat_2020_12_012 crossref_primary_10_1016_j_apsusc_2023_158948 crossref_primary_10_1063_5_0075568 crossref_primary_10_1016_j_jmat_2021_09_005 crossref_primary_10_1063_5_0035686 crossref_primary_10_3390_ceramics7010002 crossref_primary_10_1016_j_nantod_2024_102470 crossref_primary_10_35848_1347_4065_ad6fa9 crossref_primary_10_1109_LED_2024_3472060 crossref_primary_10_1103_PhysRevApplied_16_044048 crossref_primary_10_1016_j_actamat_2020_07_012 crossref_primary_10_1039_D2TC03454A crossref_primary_10_1063_5_0066607 crossref_primary_10_1126_science_abf3789 crossref_primary_10_1002_admi_202102528 crossref_primary_10_1016_j_hybadv_2025_100456 crossref_primary_10_1103_PhysRevB_104_L180102 crossref_primary_10_1063_5_0176345 crossref_primary_10_1039_D4QI01558D crossref_primary_10_35848_1882_0786_abebf4 crossref_primary_10_1107_S1600576722003673 crossref_primary_10_1063_5_0127136 crossref_primary_10_1107_S1600576723002212 crossref_primary_10_3390_nano13050951 crossref_primary_10_1016_j_jallcom_2024_176327 crossref_primary_10_1103_PhysRevMaterials_8_054416 crossref_primary_10_1109_TED_2024_3465465 crossref_primary_10_1063_5_0205852 crossref_primary_10_35848_1347_4065_ac1250 crossref_primary_10_1021_acsami_4c07728 crossref_primary_10_1038_s41586_023_05759_5 crossref_primary_10_1039_D2TC04182K crossref_primary_10_1063_5_0055068 crossref_primary_10_1063_5_0243530 crossref_primary_10_1126_science_abk3195 crossref_primary_10_1063_5_0228932 crossref_primary_10_1103_PhysRevApplied_14_014068 crossref_primary_10_1039_D1TC05387F crossref_primary_10_1088_1361_6463_ac7f00 crossref_primary_10_1021_acs_chemmater_2c03379 crossref_primary_10_1063_5_0087976 crossref_primary_10_1002_adma_202408572 crossref_primary_10_1002_pssa_202100006 crossref_primary_10_1088_1361_6463_aba6b5 crossref_primary_10_1088_1361_6528_ad8bcc crossref_primary_10_1063_5_0134375 crossref_primary_10_1088_1674_4926_45_4_042301 crossref_primary_10_1002_admi_202400742 crossref_primary_10_1039_D3MH01273E crossref_primary_10_1103_PhysRevLett_130_096801 crossref_primary_10_1002_admi_202400185 crossref_primary_10_1109_LED_2023_3330784 crossref_primary_10_1039_D4NR04592K crossref_primary_10_1088_1361_6528_abc115 crossref_primary_10_1109_LED_2023_3265516 crossref_primary_10_1016_j_scriptamat_2023_115953 crossref_primary_10_1088_1674_1056_ad498b crossref_primary_10_1063_5_0131893 crossref_primary_10_3390_coatings14091121 crossref_primary_10_1109_TED_2023_3238364 crossref_primary_10_1039_D0TC01695K crossref_primary_10_1002_admt_202300146 crossref_primary_10_1021_acsami_0c13314 crossref_primary_10_1109_LED_2023_3263294 crossref_primary_10_1002_smll_202107575 crossref_primary_10_1016_j_actamat_2021_117405 crossref_primary_10_1063_5_0173297 crossref_primary_10_7498_aps_72_20222221 crossref_primary_10_1111_jace_20362 crossref_primary_10_1063_5_0106750 crossref_primary_10_1016_j_ceramint_2024_09_303 crossref_primary_10_1002_pssr_202200168 crossref_primary_10_1002_apxr_202400194 crossref_primary_10_1063_5_0144958 crossref_primary_10_1016_j_jmat_2025_101016 crossref_primary_10_1063_5_0216890 crossref_primary_10_1038_s41524_024_01352_0 crossref_primary_10_1021_acs_chemrev_9b00507 crossref_primary_10_35848_1347_4065_ad3652 crossref_primary_10_1002_adfm_202214970 crossref_primary_10_1063_5_0028620 crossref_primary_10_1109_LED_2024_3496720 crossref_primary_10_1021_acs_jpcc_9b04106 crossref_primary_10_1126_sciadv_adg4561 crossref_primary_10_1109_TED_2024_3446753 crossref_primary_10_1002_apxr_202200096 crossref_primary_10_1111_jace_19752 crossref_primary_10_1016_j_physb_2025_416884 crossref_primary_10_1063_5_0214873 crossref_primary_10_1109_TED_2023_3317007 crossref_primary_10_35848_1347_4065_ac7fda crossref_primary_10_3390_nano13050900 crossref_primary_10_1063_5_0166230 crossref_primary_10_1103_PhysRevMaterials_5_124417 crossref_primary_10_1063_5_0039446 crossref_primary_10_1016_j_jssc_2023_124316 crossref_primary_10_1016_j_ceramint_2024_08_124 crossref_primary_10_1103_PhysRevMaterials_9_034402 crossref_primary_10_1002_aelm_202200951 crossref_primary_10_1039_D1TC02921E crossref_primary_10_1039_D4MH00811A crossref_primary_10_3390_ma16051959 crossref_primary_10_1109_LED_2022_3226195 crossref_primary_10_1063_5_0029547 crossref_primary_10_1109_TED_2024_3364116 crossref_primary_10_35848_1347_4065_ac5a95 crossref_primary_10_1103_PhysRevApplied_20_054052 crossref_primary_10_1063_5_0064113 crossref_primary_10_1016_j_jallcom_2023_171456 crossref_primary_10_1016_j_actamat_2022_117920 crossref_primary_10_1063_5_0146998 crossref_primary_10_1103_PhysRevLett_133_036202 crossref_primary_10_1063_5_0035653 crossref_primary_10_1088_1361_6528_abfb9a |
Cites_doi | 10.1063/1.4973928 10.1063/1.4916707 10.1103/PhysRevB.47.1651 10.1039/C7TC01200D 10.1063/1.4940370 10.1021/acsanm.7b00124 10.1002/aelm.201600173 10.7567/APEX.9.091501 10.1038/nmat1051 10.1103/PhysRevB.59.1758 10.1021/acs.chemmater.7b02835 10.1063/1.4867975 10.1063/1.3634052 10.1063/1.3688915 10.1002/admi.201701258 10.1103/PhysRevB.90.064111 10.1021/acsami.6b03586 10.1063/1.4919135 10.1063/1.4981893 10.1063/1.4916715 10.1063/1.4922272 10.1002/adfm.201600590 10.1016/0039-6028(94)00731-4 10.1063/1.4829064 10.1142/S2010135X16300036 10.1039/C5NR05339K 10.1021/acs.jpcc.6b11972 10.1063/1.5021746 10.1002/adma.201404531 10.1063/1.4993739 10.1063/1.5030562 10.1063/1.5000448 10.1021/acs.inorgchem.7b03149 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.commatsci.2019.05.041 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0801 |
EndPage | 150 |
ExternalDocumentID | 10_1016_j_commatsci_2019_05_041 S0927025619303192 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c381t-c000aa89a79881b2a1c1f42dabe9f1add0ffc026899809f074fc807bfe18d9fc3 |
IEDL.DBID | .~1 |
ISSN | 0927-0256 |
IngestDate | Tue Jul 01 02:01:00 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Fri Feb 23 02:27:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hafnium oxide Oxygen vacancies First-principle Ferroelectric film |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-c000aa89a79881b2a1c1f42dabe9f1add0ffc026899809f074fc807bfe18d9fc3 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_commatsci_2019_05_041 crossref_citationtrail_10_1016_j_commatsci_2019_05_041 elsevier_sciencedirect_doi_10_1016_j_commatsci_2019_05_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 2019-09-00 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationTitle | Computational materials science |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | King-Smith, Vanderbilt (b0140) 1993; 47 Materlik, Künneth, Falkowski, Mikolajick, Kersch (b0160) 2018; 123 Zhou, Mueller, Xu, Knebel, Braeuhaus, Schroeder (b0060) 2012; 100 Park, Kim, Kim, Moon, Huang (b0065) 2014; 104 Falkowski, Künneth, Materlik, Kersch (b0180) 2018; 73 Min, Han, Yu, Moon, Kim, Hwang (b0015) 2015; 4 Karbasian, Reis, Yadav, Tan, Hu, Salahuddin (b0175) 2017; 111 Park, Lee, Kim, Kim, Moon, Kim, Mueller, Kersch, Schroeder, Mikolajick (b0005) 2015; 27 Polakowski, Müller (b0020) 2015; 106 Batra, Huan, Jones, Rossetti, Ramprasad (b0055) 2017; 121 Hoffmann, Schroeder, Schenk, Shimizu, Funakubo, Sakata, Pohl, Drescher, Adelmann, Materlik (b0085) 2015; 517 Fan, Chen, Wang (b0045) 2016; 06 Zhou, Xu, Li, Guan, Cao, Dong, Schenk, Schroder (b0105) 2013; 103 Pal, Narasimhan, Weeks, Littau, Pramanik, Chiang (b0080) 2017; 110 Ren (b0200) 2004; 3 Park, Kim, Kim, Lee, Moon, Kim, Hyun, Fengler, Schroeder, Hwang (b0050) 2016; 8 Clima, McMitchell, Florent, Nyns, Popovici, Ronchi, Di Piazza, Van Houdt (b0155) 2018 M.D. Glinchuk, A.N. Morozovska, Y. Kim, S.V. Kalinin, Possible electrochemical origin of ferroelectricity in HfO Nishimura, Xu, Shibayama, Yajima, Migita, Toriumi (b0170) 2016; 55 Schroeder, Richter, Park, Schenk, Peå, Hoffmann, Fpg, Pohl, Rellinghaus, Zhou (b0190) 2018; 57 Batra, Huan, Rossetti, Ramprasad (b0135) 2017; 29 Mills, Jónsson, Schenter (b0145) 1995; 324 Lomenzo, Takmeel, Zhou, Fancher, Lambers, Rudawski, Jones, Moghaddam, Nishida (b0090) 2015; 117 Clima, Wouters, Adelmann, Schenk, Schroeder, Jurczak, Pourtois (b0150) 2014; 104 Kim, Mohan, Young, Colombo, Kim, Summerfelt, San (b0165) 2018 Rüdiger-A, Paul, Petra, Karsten, Hans, Hoffmann (b0195) 2008; 100 Starschich, Menzel, Böttger (b0100) 2016; 108 Starschich, Menzel, Böttger (b0115) 2017; 121 Xu, Nishimura, Shibayama, Yajima, Migita, Toriumi (b0185) 2016; 9 Huan, Sharma, Jr, Ramprasad (b0030) 2014; 90 Park, Schenk, Fancher, Grimley, Zhou, Richter, Lebeau, Jones, Mikolajick, Schroeder (b0035) 2017; 5 Materlik, Künneth, Kersch (b0070) 2015; 117 Han, Min, Yu, Lee, Moon, Kim, Hyun, Hwang (b0210) 2016; 8 Tang, Tang, Geng, Yi, Wei, Chen, Deng (b0130) 2018; 112 Boscke, Muller, Brauhaus, Schroder, Bottger (b0010) 2011; 99 Grimley, Schenk, Mikolajick, Schroeder, Lebeau, Grimley, Schenk, Mikolajick, Schroeder, Lebeau (b0040) 2018; 5 Peši, Fengler, Larcher, Padovani, Schenk, Grimley, Sang, Lebeau, Slesazeck, Schroeder (b0120) 2016; 26 Kresse, Joubert (b0125) 1999; 59 thin films, arXiv preprint arXiv:1811.09787 (2018). Sang, Grimley, Schenk, Schroeder, Lebeau (b0025) 2015; 106 Buragohain, Richter, Schenk, Lu, Mikolajick, Schroeder, Gruverman (b0095) 2018; 112 Kunneth, Materlik, Falkowski, Kersch (b0075) 2018; 1 Grimley, Schenk, Sang, Peši, Schroeder, Mikolajick, Lebeau (b0110) 2016; 2 Sang (10.1016/j.commatsci.2019.05.041_b0025) 2015; 106 Kresse (10.1016/j.commatsci.2019.05.041_b0125) 1999; 59 Park (10.1016/j.commatsci.2019.05.041_b0035) 2017; 5 Nishimura (10.1016/j.commatsci.2019.05.041_b0170) 2016; 55 Falkowski (10.1016/j.commatsci.2019.05.041_b0180) 2018; 73 Batra (10.1016/j.commatsci.2019.05.041_b0135) 2017; 29 Kunneth (10.1016/j.commatsci.2019.05.041_b0075) 2018; 1 Tang (10.1016/j.commatsci.2019.05.041_b0130) 2018; 112 Mills (10.1016/j.commatsci.2019.05.041_b0145) 1995; 324 Lomenzo (10.1016/j.commatsci.2019.05.041_b0090) 2015; 117 Park (10.1016/j.commatsci.2019.05.041_b0065) 2014; 104 Zhou (10.1016/j.commatsci.2019.05.041_b0060) 2012; 100 Xu (10.1016/j.commatsci.2019.05.041_b0185) 2016; 9 Fan (10.1016/j.commatsci.2019.05.041_b0045) 2016; 06 Schroeder (10.1016/j.commatsci.2019.05.041_b0190) 2018; 57 Rüdiger-A (10.1016/j.commatsci.2019.05.041_b0195) 2008; 100 Pal (10.1016/j.commatsci.2019.05.041_b0080) 2017; 110 Ren (10.1016/j.commatsci.2019.05.041_b0200) 2004; 3 Materlik (10.1016/j.commatsci.2019.05.041_b0070) 2015; 117 Grimley (10.1016/j.commatsci.2019.05.041_b0110) 2016; 2 Clima (10.1016/j.commatsci.2019.05.041_b0155) 2018 Hoffmann (10.1016/j.commatsci.2019.05.041_b0085) 2015; 517 Boscke (10.1016/j.commatsci.2019.05.041_b0010) 2011; 99 Clima (10.1016/j.commatsci.2019.05.041_b0150) 2014; 104 10.1016/j.commatsci.2019.05.041_b0205 Peši (10.1016/j.commatsci.2019.05.041_b0120) 2016; 26 Starschich (10.1016/j.commatsci.2019.05.041_b0115) 2017; 121 Karbasian (10.1016/j.commatsci.2019.05.041_b0175) 2017; 111 Kim (10.1016/j.commatsci.2019.05.041_b0165) 2018 Min (10.1016/j.commatsci.2019.05.041_b0015) 2015; 4 Buragohain (10.1016/j.commatsci.2019.05.041_b0095) 2018; 112 Han (10.1016/j.commatsci.2019.05.041_b0210) 2016; 8 Grimley (10.1016/j.commatsci.2019.05.041_b0040) 2018; 5 Materlik (10.1016/j.commatsci.2019.05.041_b0160) 2018; 123 Batra (10.1016/j.commatsci.2019.05.041_b0055) 2017; 121 Polakowski (10.1016/j.commatsci.2019.05.041_b0020) 2015; 106 Huan (10.1016/j.commatsci.2019.05.041_b0030) 2014; 90 Starschich (10.1016/j.commatsci.2019.05.041_b0100) 2016; 108 Zhou (10.1016/j.commatsci.2019.05.041_b0105) 2013; 103 Park (10.1016/j.commatsci.2019.05.041_b0005) 2015; 27 Park (10.1016/j.commatsci.2019.05.041_b0050) 2016; 8 King-Smith (10.1016/j.commatsci.2019.05.041_b0140) 1993; 47 |
References_xml | – volume: 26 start-page: 4601 year: 2016 end-page: 4612 ident: b0120 article-title: Physical mechanisms behind the field-cycling behavior of HfO publication-title: Adv. Funct. Mater. – volume: 106 year: 2015 ident: b0025 article-title: On the structural origins of ferroelectricity in HfO publication-title: Appl. Phys. Lett. – volume: 108 year: 2016 ident: b0100 article-title: Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide publication-title: Appl. Phys. Lett. – volume: 121 year: 2017 ident: b0115 article-title: Pulse wake-up and breakdown investigation of ferroelectric yttrium doped HfO publication-title: J. Appl. Phys. – volume: 5 start-page: 1701258 year: 2018 ident: b0040 article-title: Atomic structure of domain and interphase boundaries in ferroelectric HfO publication-title: Adv. Mater. Interfaces – volume: 117 year: 2015 ident: b0090 article-title: TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO publication-title: J. Appl. Phys. – volume: 2 start-page: 1600173 year: 2016 ident: b0110 article-title: Structural changes underlying field-cycling phenomena in ferroelectric HfO publication-title: Adv. Electron. Mater. – volume: 57 start-page: 2752 year: 2018 end-page: 2765 ident: b0190 article-title: Lanthanum-doped hafnium oxide: a robust ferroelectric material publication-title: lnorg Chem. – volume: 27 start-page: 1811 year: 2015 end-page: 1831 ident: b0005 article-title: Ferroelectricity and antiferroelectricity of doped thin HfO publication-title: Adv. Mater. – volume: 123 year: 2018 ident: b0160 article-title: Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO publication-title: J. Appl. Phys. – volume: 117 year: 2015 ident: b0070 article-title: The origin of ferroelectricity in Hf publication-title: J. Appl. Phys. – volume: 111 year: 2017 ident: b0175 article-title: Stabilization of ferroelectric phase in tungsten capped Hf publication-title: Appl. Phys. Lett. – volume: 8 start-page: 15466 year: 2016 end-page: 15475 ident: b0050 article-title: Effect of Zr content on the wake-Up effect in Hf publication-title: ACS Appl. Mater. Interfaces – volume: 73 start-page: 1 year: 2018 end-page: 9 ident: b0180 article-title: Unexpectedly large energy variations from dopant interactions in ferroelectric HfO publication-title: npj Comput. Mater. – reference: M.D. Glinchuk, A.N. Morozovska, Y. Kim, S.V. Kalinin, Possible electrochemical origin of ferroelectricity in HfO – volume: 110 year: 2017 ident: b0080 article-title: Enhancing ferroelectricity in dopant-free hafnium oxide publication-title: Appl. Phys. Lett. – volume: 104 year: 2014 ident: b0150 article-title: Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO publication-title: Appl. Phys. Lett. – volume: 1 start-page: 254 year: 2018 end-page: 264 ident: b0075 article-title: Impact of four-valent doping on the crystallographic phase formation for ferroelectric HfO publication-title: ACS Appl. Nano. Mater. – volume: 121 start-page: 4139 year: 2017 end-page: 4145 ident: b0055 article-title: Factors favoring ferroelectricity in hafnia: a first principles computational study publication-title: J. Phys. Chem. C – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: b0125 article-title: From ultasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 9 year: 2016 ident: b0185 article-title: Ferroelectric phase stabilization of HfO publication-title: Appl. Phys Express – volume: 3 start-page: 91 year: 2004 end-page: 94 ident: b0200 article-title: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching publication-title: Nat. Mater. – start-page: 16.5.1 year: 2018 end-page: 16.5.4 ident: b0155 article-title: First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf publication-title: 2018 IEEE International Electron Devices Meeting – volume: 29 start-page: 9102 year: 2017 end-page: 9109 ident: b0135 article-title: Dopants promoting ferroelectricity in hafnia: insights from a comprehensive chemical space exploration publication-title: ACS Chem. Mater. – volume: 103 year: 2013 ident: b0105 article-title: Wake-up effects in Si-doped hafnium oxide ferroelectric thin films publication-title: Appl. Phys. Lett. – volume: 112 year: 2018 ident: b0130 article-title: Tuning transport performance in two-dimensional metal-organic framework semiconductors: role of the metal d band publication-title: Appl. Phys. Lett. – volume: 104 year: 2014 ident: b0065 article-title: The effects of crystallographic orientation and strain of thin Hf publication-title: Appl. Phys. Lett. – volume: 4 start-page: 1400610 year: 2015 ident: b0015 article-title: Thin Hf publication-title: Adv. Energy Mater. – volume: 100 year: 2008 ident: b0195 article-title: Defect-dipole formation in copper-doped PbTiO publication-title: Phys. Rev. Lett. – volume: 99 year: 2011 ident: b0010 article-title: Ferroelectricity in hafnium oxide thin films publication-title: Appl. Phys. Lett. – volume: 8 start-page: 1383 year: 2016 end-page: 1389 ident: b0210 article-title: Study on the wake-up effect of ferroelectric Hf publication-title: Nanoscale – volume: 112 year: 2018 ident: b0095 article-title: Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO publication-title: Appl. Phys. Lett. – volume: 324 start-page: 305 year: 1995 end-page: 337 ident: b0145 article-title: Reversible work transition state theory: application to dissociative adsorption of hydrogen publication-title: Surf. Sci. – reference: thin films, arXiv preprint arXiv:1811.09787 (2018). – volume: 90 year: 2014 ident: b0030 article-title: Pathways towards ferroelectricity in hafnia publication-title: Phys. Rev. B – start-page: 1 year: 2018 end-page: 4 ident: b0165 article-title: Ferroelectric TiN/Hf publication-title: IEEE International Memory Workshop – volume: 5 start-page: 4677 year: 2017 end-page: 4690 ident: b0035 article-title: A comprehensive study on the structural evolution of HfO publication-title: J. Mater. Chem. C – volume: 517 year: 2015 ident: b0085 article-title: Stabilizing the ferroelectric phase in doped hafnium oxide publication-title: J. Appl. Phys. – volume: 06 start-page: 1630003 year: 2016 ident: b0045 article-title: Ferroelectric HfO publication-title: J. Adv. Dielect. – volume: 47 start-page: 1651 year: 1993 end-page: 1654 ident: b0140 article-title: Theory of polarization of crystalline solids publication-title: Phys. Rev. B – volume: 100 year: 2012 ident: b0060 article-title: Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films publication-title: Appl. Phys. Lett. – volume: 106 year: 2015 ident: b0020 article-title: Ferroelectricity in undoped hafnium oxide publication-title: Appl. Phys. Lett. – volume: 55 start-page: 08PB01 year: 2016 ident: b0170 article-title: Ferroelectricity of nondoped thin HfO publication-title: J. Forest. Res. – volume: 110 year: 2017 ident: 10.1016/j.commatsci.2019.05.041_b0080 article-title: Enhancing ferroelectricity in dopant-free hafnium oxide publication-title: Appl. Phys. Lett. doi: 10.1063/1.4973928 – volume: 117 year: 2015 ident: 10.1016/j.commatsci.2019.05.041_b0070 article-title: The origin of ferroelectricity in Hf1-xZrxO2: a computational investigation and a surface energy model publication-title: J. Appl. Phys. doi: 10.1063/1.4916707 – volume: 47 start-page: 1651 year: 1993 ident: 10.1016/j.commatsci.2019.05.041_b0140 article-title: Theory of polarization of crystalline solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 5 start-page: 4677 year: 2017 ident: 10.1016/j.commatsci.2019.05.041_b0035 article-title: A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01200D – volume: 108 year: 2016 ident: 10.1016/j.commatsci.2019.05.041_b0100 article-title: Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide publication-title: Appl. Phys. Lett. doi: 10.1063/1.4940370 – volume: 1 start-page: 254 year: 2018 ident: 10.1016/j.commatsci.2019.05.041_b0075 article-title: Impact of four-valent doping on the crystallographic phase formation for ferroelectric HfO2 from first-principles: implications for ferroelectric memory and energy-related applications publication-title: ACS Appl. Nano. Mater. doi: 10.1021/acsanm.7b00124 – volume: 2 start-page: 1600173 year: 2016 ident: 10.1016/j.commatsci.2019.05.041_b0110 article-title: Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600173 – volume: 9 year: 2016 ident: 10.1016/j.commatsci.2019.05.041_b0185 article-title: Ferroelectric phase stabilization of HfO2 by nitrogen doping publication-title: Appl. Phys Express doi: 10.7567/APEX.9.091501 – volume: 3 start-page: 91 year: 2004 ident: 10.1016/j.commatsci.2019.05.041_b0200 article-title: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching publication-title: Nat. Mater. doi: 10.1038/nmat1051 – start-page: 16.5.1 year: 2018 ident: 10.1016/j.commatsci.2019.05.041_b0155 article-title: First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf1-xZrxO2 for FEFET applications – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.commatsci.2019.05.041_b0125 article-title: From ultasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 29 start-page: 9102 year: 2017 ident: 10.1016/j.commatsci.2019.05.041_b0135 article-title: Dopants promoting ferroelectricity in hafnia: insights from a comprehensive chemical space exploration publication-title: ACS Chem. Mater. doi: 10.1021/acs.chemmater.7b02835 – volume: 104 year: 2014 ident: 10.1016/j.commatsci.2019.05.041_b0150 article-title: Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: a first principles insight publication-title: Appl. Phys. Lett. doi: 10.1063/1.4867975 – volume: 99 year: 2011 ident: 10.1016/j.commatsci.2019.05.041_b0010 article-title: Ferroelectricity in hafnium oxide thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3634052 – volume: 100 year: 2012 ident: 10.1016/j.commatsci.2019.05.041_b0060 article-title: Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3688915 – volume: 5 start-page: 1701258 year: 2018 ident: 10.1016/j.commatsci.2019.05.041_b0040 article-title: Atomic structure of domain and interphase boundaries in ferroelectric HfO2 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201701258 – volume: 90 year: 2014 ident: 10.1016/j.commatsci.2019.05.041_b0030 article-title: Pathways towards ferroelectricity in hafnia publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.064111 – volume: 104 year: 2014 ident: 10.1016/j.commatsci.2019.05.041_b0065 article-title: The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity publication-title: Appl. Phys. Lett. – volume: 8 start-page: 15466 year: 2016 ident: 10.1016/j.commatsci.2019.05.041_b0050 article-title: Effect of Zr content on the wake-Up effect in Hf1-xZrxO2 films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03586 – volume: 106 year: 2015 ident: 10.1016/j.commatsci.2019.05.041_b0025 article-title: On the structural origins of ferroelectricity in HfO2 thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4919135 – volume: 55 start-page: 08PB01 year: 2016 ident: 10.1016/j.commatsci.2019.05.041_b0170 article-title: Ferroelectricity of nondoped thin HfO2 films in TiN/HfO2/TiN stacks publication-title: J. Forest. Res. – volume: 121 year: 2017 ident: 10.1016/j.commatsci.2019.05.041_b0115 article-title: Pulse wake-up and breakdown investigation of ferroelectric yttrium doped HfO2 publication-title: J. Appl. Phys. doi: 10.1063/1.4981893 – volume: 100 year: 2008 ident: 10.1016/j.commatsci.2019.05.041_b0195 article-title: Defect-dipole formation in copper-doped PbTiO3 ferroelectrics publication-title: Phys. Rev. Lett. – ident: 10.1016/j.commatsci.2019.05.041_b0205 – volume: 117 year: 2015 ident: 10.1016/j.commatsci.2019.05.041_b0090 article-title: TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films publication-title: J. Appl. Phys. doi: 10.1063/1.4916715 – volume: 106 year: 2015 ident: 10.1016/j.commatsci.2019.05.041_b0020 article-title: Ferroelectricity in undoped hafnium oxide publication-title: Appl. Phys. Lett. doi: 10.1063/1.4922272 – volume: 26 start-page: 4601 year: 2016 ident: 10.1016/j.commatsci.2019.05.041_b0120 article-title: Physical mechanisms behind the field-cycling behavior of HfO2 based ferroelectric capacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600590 – volume: 324 start-page: 305 year: 1995 ident: 10.1016/j.commatsci.2019.05.041_b0145 article-title: Reversible work transition state theory: application to dissociative adsorption of hydrogen publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)00731-4 – volume: 103 year: 2013 ident: 10.1016/j.commatsci.2019.05.041_b0105 article-title: Wake-up effects in Si-doped hafnium oxide ferroelectric thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4829064 – start-page: 1 year: 2018 ident: 10.1016/j.commatsci.2019.05.041_b0165 article-title: Ferroelectric TiN/Hf0.5Zr0.5O2/TiN capacitors with low-voltage operation and high reliability for next-generation FRAM applications – volume: 06 start-page: 1630003 year: 2016 ident: 10.1016/j.commatsci.2019.05.041_b0045 article-title: Ferroelectric HfO2-based materials for next-generation ferroelectric memories publication-title: J. Adv. Dielect. doi: 10.1142/S2010135X16300036 – volume: 8 start-page: 1383 year: 2016 ident: 10.1016/j.commatsci.2019.05.041_b0210 article-title: Study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement publication-title: Nanoscale doi: 10.1039/C5NR05339K – volume: 121 start-page: 4139 year: 2017 ident: 10.1016/j.commatsci.2019.05.041_b0055 article-title: Factors favoring ferroelectricity in hafnia: a first principles computational study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b11972 – volume: 123 year: 2018 ident: 10.1016/j.commatsci.2019.05.041_b0160 article-title: Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO2: a first principles study publication-title: J. Appl. Phys. doi: 10.1063/1.5021746 – volume: 4 start-page: 1400610 year: 2015 ident: 10.1016/j.commatsci.2019.05.041_b0015 article-title: Thin HfxZr1-xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability publication-title: Adv. Energy Mater. – volume: 517 year: 2015 ident: 10.1016/j.commatsci.2019.05.041_b0085 article-title: Stabilizing the ferroelectric phase in doped hafnium oxide publication-title: J. Appl. Phys. – volume: 27 start-page: 1811 year: 2015 ident: 10.1016/j.commatsci.2019.05.041_b0005 article-title: Ferroelectricity and antiferroelectricity of doped thin HfO2-based films publication-title: Adv. Mater. doi: 10.1002/adma.201404531 – volume: 111 year: 2017 ident: 10.1016/j.commatsci.2019.05.041_b0175 article-title: Stabilization of ferroelectric phase in tungsten capped Hf0.8Zr0.2O2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4993739 – volume: 73 start-page: 1 year: 2018 ident: 10.1016/j.commatsci.2019.05.041_b0180 article-title: Unexpectedly large energy variations from dopant interactions in ferroelectric HfO2 from high-throughput ab initio calculations publication-title: npj Comput. Mater. – volume: 112 year: 2018 ident: 10.1016/j.commatsci.2019.05.041_b0095 article-title: Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors publication-title: Appl. Phys. Lett. doi: 10.1063/1.5030562 – volume: 112 year: 2018 ident: 10.1016/j.commatsci.2019.05.041_b0130 article-title: Tuning transport performance in two-dimensional metal-organic framework semiconductors: role of the metal d band publication-title: Appl. Phys. Lett. doi: 10.1063/1.5000448 – volume: 57 start-page: 2752 year: 2018 ident: 10.1016/j.commatsci.2019.05.041_b0190 article-title: Lanthanum-doped hafnium oxide: a robust ferroelectric material publication-title: lnorg Chem. doi: 10.1021/acs.inorgchem.7b03149 |
SSID | ssj0016982 |
Score | 2.6145873 |
Snippet | [Display omitted]
The newly discovered hafnium oxide (HfO2)-based ferroelectric film shows many advantages over the traditional perovskite films in the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 143 |
SubjectTerms | Ferroelectric film First-principle Hafnium oxide Oxygen vacancies |
Title | The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle |
URI | https://dx.doi.org/10.1016/j.commatsci.2019.05.041 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14XZtXk6y3UixRoR600Nuy2ezSSE1CiaIXf7szeRQLQg_ekmVnCbPLfN-Gb2YIuY5DS2rfhMx3vYB5jnSZjLkLtxTg-onRwBGqap9TP5p5D_PhvEPGbS4Myiqb2F_H9CpaNyODxpuDIk0HzxbHXCrAf-5iKg7GYc8L8JTffK9lHrbPq4ZROJnh7A2NF6wNvBBWR40Xr0p4evbfCPULdSYHZL-hi3RUf9Eh6ejsiOz9KiJ4TDLYadrIMmhuaP75BYeCfkhVNd6FsYwavVrldcebVNFiAdBFS0SpSrCFVpF5chhCWkLLRQoW6fKNYu4JPAFBZEX7U_6EzCZ3L-OINV0UmAI0LpmCoCdlyCVWJrNjR9rKNp6TyFhzY0N4s4xRcBPDi5fFDVAKo0IriI22w4Qb5Z6SbpZn-oxQy-eSJ0DYgJN40nXQGB4CYJ2S6zDuEb_1nFBNiXHsdLEUrZbsVaxdLtDlwhoKcHmPWGvDoq6ysd3ktt0asXFgBGDBNuPz_xhfkF18q4Vml6Rbrt71FTCTMu5XR69Pdkb3j9H0By7Z5eA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIAB8RTl6YHVNK-mMRuqqAqUMtBK3SzHsdWgkkRVQLDw27nLo2olpA5sluOzorNz3-fo8x0h12FgSe2bgPmu12GeI10mQ-7CKQW4fmQ0cIQi2-fQ74-9x0l70iDd-i4Myiqr2F_G9CJaVz2typutLI5brxbHu1SA_9zFqzgQhzc9-HyxjMHNz0LnYfu8qBiFoxkOXxF5weRADGF6FHnxIoenZ_8NUUuw09sjuxVfpHflK-2Thk4OyM5SFsFDksBS00qXQVND069v2BX0U6qi8i70JdTo-TwtS97EimZTwC6aI0wVii206psXhyGmRTSfxmARz94pXj6BFjBEltV_5Y_IuHc_6vZZVUaBKYDjnCmIelIGXGJqMjt0pK1s4zmRDDU3NsQ3yxgFRzE8eVncAKcwKrA6odF2EHGj3GOykaSJPiHU8rnkETA2ICWedB00hkYHaKfkOgibxK89J1SVYxxLXcxELSZ7EwuXC3S5sNoCXN4k1sIwK9NsrDe5rZdGrOwYAWCwzvj0P8ZXZKs_eh6IwcPw6Yxs45NSdXZONvL5h74AmpKHl8U2_AV_COdu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+oxygen+vacancies+on+ferroelectric+phase+transition+of+HfO2-based+thin+film+from+first-principle&rft.jtitle=Computational+materials+science&rft.au=Zhou%2C+Y.&rft.au=Zhang%2C+Y.K.&rft.au=Yang%2C+Q.&rft.au=Jiang%2C+J.&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0927-0256&rft.eissn=1879-0801&rft.volume=167&rft.spage=143&rft.epage=150&rft_id=info:doi/10.1016%2Fj.commatsci.2019.05.041&rft.externalDocID=S0927025619303192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |