The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle

[Display omitted] The newly discovered hafnium oxide (HfO2)-based ferroelectric film shows many advantages over the traditional perovskite films in the application of information storage. However, the mechanism of ferroelectric phase transition of the HfO2-based film is still confusing to the resear...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 167; pp. 143 - 150
Main Authors Zhou, Y., Zhang, Y.K., Yang, Q., Jiang, J., Fan, P., Liao, M., Zhou, Y.C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] The newly discovered hafnium oxide (HfO2)-based ferroelectric film shows many advantages over the traditional perovskite films in the application of information storage. However, the mechanism of ferroelectric phase transition of the HfO2-based film is still confusing to the researchers. Here, the effects of oxygen vacancies and the complex defects formed by the combination of oxygen vacancies and typical impurity elements on ferroelectric phase transition and polarization performance of HfO2 were systematically investigated by first-principle calculation. Due to the ambiguous effects of electrode/ferroelectric interfaces on the ferroelectricity of HfO2-based film, the influence of oxygen vacancies at the TiN/HfO2 interface was also studied. It was found that the oxygen vacancies, and impurities N and La, which would form defect dipoles by combining with oxygen vacancies and induce a local build-in bias, would promote the ferroelectric phase transition in the bulk of HfO2-based film. Additionally, oxygen vacancies, which are inclined to migrate to the interface, would cause the transition of the interfacial tetragonal phase to the ferroelectric phase, and then to the monoclinic phase. This result may be helpful for the understanding of the origin of ferroelectricity as well as the mechanisms of wake-up and fatigue effects of HfO2-based ferroelectric film.
AbstractList [Display omitted] The newly discovered hafnium oxide (HfO2)-based ferroelectric film shows many advantages over the traditional perovskite films in the application of information storage. However, the mechanism of ferroelectric phase transition of the HfO2-based film is still confusing to the researchers. Here, the effects of oxygen vacancies and the complex defects formed by the combination of oxygen vacancies and typical impurity elements on ferroelectric phase transition and polarization performance of HfO2 were systematically investigated by first-principle calculation. Due to the ambiguous effects of electrode/ferroelectric interfaces on the ferroelectricity of HfO2-based film, the influence of oxygen vacancies at the TiN/HfO2 interface was also studied. It was found that the oxygen vacancies, and impurities N and La, which would form defect dipoles by combining with oxygen vacancies and induce a local build-in bias, would promote the ferroelectric phase transition in the bulk of HfO2-based film. Additionally, oxygen vacancies, which are inclined to migrate to the interface, would cause the transition of the interfacial tetragonal phase to the ferroelectric phase, and then to the monoclinic phase. This result may be helpful for the understanding of the origin of ferroelectricity as well as the mechanisms of wake-up and fatigue effects of HfO2-based ferroelectric film.
Author Zhou, Y.C.
Zhang, Y.K.
Jiang, J.
Yang, Q.
Fan, P.
Zhou, Y.
Liao, M.
Author_xml – sequence: 1
  givenname: Y.
  surname: Zhou
  fullname: Zhou, Y.
– sequence: 2
  givenname: Y.K.
  surname: Zhang
  fullname: Zhang, Y.K.
– sequence: 3
  givenname: Q.
  surname: Yang
  fullname: Yang, Q.
  email: qyang@xtu.edu.cn
– sequence: 4
  givenname: J.
  surname: Jiang
  fullname: Jiang, J.
– sequence: 5
  givenname: P.
  surname: Fan
  fullname: Fan, P.
– sequence: 6
  givenname: M.
  surname: Liao
  fullname: Liao, M.
– sequence: 7
  givenname: Y.C.
  surname: Zhou
  fullname: Zhou, Y.C.
  email: zhouyc@xtu.edu.cn
BookMark eNqNkMtqAyEUhqWk0CTtM9QXmOnRXEYXXYTQGwSySdfiOMfGMNGgEpq3ryGli27ajcLxfD_-34gMfPBIyD2DmgGbP-xqE_Z7nZNxNQcma5jVMGVXZMhEIysQwAZkCJI3FfDZ_IaMUtpBIaXgQ-I3W6RoLZqcaLA0fJ4-0NOjNtobh2XmqcUYA_ZlJTpDD1udkOaofXLZledCvdo1r9oy72jeukK4fk9tDOVwMeXqEF1JO_R4S66t7hPefd9j8v78tFm-Vqv1y9tysarMRLBcGQDQWkjdSCFYyzUzzE55p1uUlumuA2sN8LmQUoC00EytEdC0FpnopDWTMWkuuSaGlCJaVb6w1_GkGKizNrVTP9rUWZuCmSraCvn4izQu63PRUtn1_-AXFx5LvaPDqMoGeoOdi8Wg6oL7M-MLVr2UTw
CitedBy_id crossref_primary_10_1002_pssa_202300100
crossref_primary_10_1016_j_commatsci_2023_112036
crossref_primary_10_1063_5_0028200
crossref_primary_10_1088_1674_4926_44_5_053101
crossref_primary_10_1063_5_0224896
crossref_primary_10_1016_j_ensm_2024_103612
crossref_primary_10_1021_acs_jpcc_3c00420
crossref_primary_10_1038_s41535_024_00652_4
crossref_primary_10_1002_advs_202408687
crossref_primary_10_1002_smsc_202400223
crossref_primary_10_1063_5_0062475
crossref_primary_10_1016_j_jlumin_2021_118004
crossref_primary_10_1016_j_actamat_2023_118707
crossref_primary_10_1063_5_0226390
crossref_primary_10_1109_TNS_2024_3383160
crossref_primary_10_1116_6_0004358
crossref_primary_10_1063_5_0089049
crossref_primary_10_1016_j_fmre_2023_02_010
crossref_primary_10_1088_1674_1056_ad4ff4
crossref_primary_10_1016_j_actamat_2025_120738
crossref_primary_10_1186_s40580_023_00403_4
crossref_primary_10_1038_s41524_023_01176_4
crossref_primary_10_1016_j_mee_2022_111770
crossref_primary_10_1016_j_mtnano_2024_100546
crossref_primary_10_1039_D0TC01105C
crossref_primary_10_1002_admt_202401041
crossref_primary_10_1103_PhysRevApplied_14_064012
crossref_primary_10_1109_TED_2022_3190256
crossref_primary_10_1063_5_0170657
crossref_primary_10_1109_TED_2023_3306730
crossref_primary_10_1063_5_0200154
crossref_primary_10_1088_1361_6528_ad2f74
crossref_primary_10_35848_1347_4065_aba50b
crossref_primary_10_1002_adfm_202104913
crossref_primary_10_1016_j_jallcom_2022_165301
crossref_primary_10_3390_s22114087
crossref_primary_10_1109_LED_2022_3178867
crossref_primary_10_1016_j_commatsci_2023_112708
crossref_primary_10_1016_j_ceramint_2023_02_117
crossref_primary_10_1063_5_0024745
crossref_primary_10_1063_1_5140612
crossref_primary_10_1002_advs_202410765
crossref_primary_10_1021_acsami_1c15082
crossref_primary_10_1021_acsaelm_4c00944
crossref_primary_10_1063_5_0214584
crossref_primary_10_1039_D1QI00167A
crossref_primary_10_1063_5_0164147
crossref_primary_10_1002_advs_202300792
crossref_primary_10_1021_acs_nanolett_3c00085
crossref_primary_10_20517_microstructures_2024_120
crossref_primary_10_35848_1347_4065_acb4fc
crossref_primary_10_1063_5_0190459
crossref_primary_10_35848_1347_4065_ad21bd
crossref_primary_10_1063_5_0011547
crossref_primary_10_3390_ma16165559
crossref_primary_10_1109_LED_2024_3455338
crossref_primary_10_1088_1361_6528_adaf2c
crossref_primary_10_1016_j_jallcom_2022_166961
crossref_primary_10_1016_j_mtla_2023_101887
crossref_primary_10_35848_1347_4065_acfdb2
crossref_primary_10_1002_aelm_202400136
crossref_primary_10_1063_5_0160719
crossref_primary_10_1109_LED_2023_3269070
crossref_primary_10_1039_D0NR07699F
crossref_primary_10_1088_1361_6463_acdaa4
crossref_primary_10_1016_j_jmat_2020_12_012
crossref_primary_10_1016_j_apsusc_2023_158948
crossref_primary_10_1063_5_0075568
crossref_primary_10_1016_j_jmat_2021_09_005
crossref_primary_10_1063_5_0035686
crossref_primary_10_3390_ceramics7010002
crossref_primary_10_1016_j_nantod_2024_102470
crossref_primary_10_35848_1347_4065_ad6fa9
crossref_primary_10_1109_LED_2024_3472060
crossref_primary_10_1103_PhysRevApplied_16_044048
crossref_primary_10_1016_j_actamat_2020_07_012
crossref_primary_10_1039_D2TC03454A
crossref_primary_10_1063_5_0066607
crossref_primary_10_1126_science_abf3789
crossref_primary_10_1002_admi_202102528
crossref_primary_10_1016_j_hybadv_2025_100456
crossref_primary_10_1103_PhysRevB_104_L180102
crossref_primary_10_1063_5_0176345
crossref_primary_10_1039_D4QI01558D
crossref_primary_10_35848_1882_0786_abebf4
crossref_primary_10_1107_S1600576722003673
crossref_primary_10_1063_5_0127136
crossref_primary_10_1107_S1600576723002212
crossref_primary_10_3390_nano13050951
crossref_primary_10_1016_j_jallcom_2024_176327
crossref_primary_10_1103_PhysRevMaterials_8_054416
crossref_primary_10_1109_TED_2024_3465465
crossref_primary_10_1063_5_0205852
crossref_primary_10_35848_1347_4065_ac1250
crossref_primary_10_1021_acsami_4c07728
crossref_primary_10_1038_s41586_023_05759_5
crossref_primary_10_1039_D2TC04182K
crossref_primary_10_1063_5_0055068
crossref_primary_10_1063_5_0243530
crossref_primary_10_1126_science_abk3195
crossref_primary_10_1063_5_0228932
crossref_primary_10_1103_PhysRevApplied_14_014068
crossref_primary_10_1039_D1TC05387F
crossref_primary_10_1088_1361_6463_ac7f00
crossref_primary_10_1021_acs_chemmater_2c03379
crossref_primary_10_1063_5_0087976
crossref_primary_10_1002_adma_202408572
crossref_primary_10_1002_pssa_202100006
crossref_primary_10_1088_1361_6463_aba6b5
crossref_primary_10_1088_1361_6528_ad8bcc
crossref_primary_10_1063_5_0134375
crossref_primary_10_1088_1674_4926_45_4_042301
crossref_primary_10_1002_admi_202400742
crossref_primary_10_1039_D3MH01273E
crossref_primary_10_1103_PhysRevLett_130_096801
crossref_primary_10_1002_admi_202400185
crossref_primary_10_1109_LED_2023_3330784
crossref_primary_10_1039_D4NR04592K
crossref_primary_10_1088_1361_6528_abc115
crossref_primary_10_1109_LED_2023_3265516
crossref_primary_10_1016_j_scriptamat_2023_115953
crossref_primary_10_1088_1674_1056_ad498b
crossref_primary_10_1063_5_0131893
crossref_primary_10_3390_coatings14091121
crossref_primary_10_1109_TED_2023_3238364
crossref_primary_10_1039_D0TC01695K
crossref_primary_10_1002_admt_202300146
crossref_primary_10_1021_acsami_0c13314
crossref_primary_10_1109_LED_2023_3263294
crossref_primary_10_1002_smll_202107575
crossref_primary_10_1016_j_actamat_2021_117405
crossref_primary_10_1063_5_0173297
crossref_primary_10_7498_aps_72_20222221
crossref_primary_10_1111_jace_20362
crossref_primary_10_1063_5_0106750
crossref_primary_10_1016_j_ceramint_2024_09_303
crossref_primary_10_1002_pssr_202200168
crossref_primary_10_1002_apxr_202400194
crossref_primary_10_1063_5_0144958
crossref_primary_10_1016_j_jmat_2025_101016
crossref_primary_10_1063_5_0216890
crossref_primary_10_1038_s41524_024_01352_0
crossref_primary_10_1021_acs_chemrev_9b00507
crossref_primary_10_35848_1347_4065_ad3652
crossref_primary_10_1002_adfm_202214970
crossref_primary_10_1063_5_0028620
crossref_primary_10_1109_LED_2024_3496720
crossref_primary_10_1021_acs_jpcc_9b04106
crossref_primary_10_1126_sciadv_adg4561
crossref_primary_10_1109_TED_2024_3446753
crossref_primary_10_1002_apxr_202200096
crossref_primary_10_1111_jace_19752
crossref_primary_10_1016_j_physb_2025_416884
crossref_primary_10_1063_5_0214873
crossref_primary_10_1109_TED_2023_3317007
crossref_primary_10_35848_1347_4065_ac7fda
crossref_primary_10_3390_nano13050900
crossref_primary_10_1063_5_0166230
crossref_primary_10_1103_PhysRevMaterials_5_124417
crossref_primary_10_1063_5_0039446
crossref_primary_10_1016_j_jssc_2023_124316
crossref_primary_10_1016_j_ceramint_2024_08_124
crossref_primary_10_1103_PhysRevMaterials_9_034402
crossref_primary_10_1002_aelm_202200951
crossref_primary_10_1039_D1TC02921E
crossref_primary_10_1039_D4MH00811A
crossref_primary_10_3390_ma16051959
crossref_primary_10_1109_LED_2022_3226195
crossref_primary_10_1063_5_0029547
crossref_primary_10_1109_TED_2024_3364116
crossref_primary_10_35848_1347_4065_ac5a95
crossref_primary_10_1103_PhysRevApplied_20_054052
crossref_primary_10_1063_5_0064113
crossref_primary_10_1016_j_jallcom_2023_171456
crossref_primary_10_1016_j_actamat_2022_117920
crossref_primary_10_1063_5_0146998
crossref_primary_10_1103_PhysRevLett_133_036202
crossref_primary_10_1063_5_0035653
crossref_primary_10_1088_1361_6528_abfb9a
Cites_doi 10.1063/1.4973928
10.1063/1.4916707
10.1103/PhysRevB.47.1651
10.1039/C7TC01200D
10.1063/1.4940370
10.1021/acsanm.7b00124
10.1002/aelm.201600173
10.7567/APEX.9.091501
10.1038/nmat1051
10.1103/PhysRevB.59.1758
10.1021/acs.chemmater.7b02835
10.1063/1.4867975
10.1063/1.3634052
10.1063/1.3688915
10.1002/admi.201701258
10.1103/PhysRevB.90.064111
10.1021/acsami.6b03586
10.1063/1.4919135
10.1063/1.4981893
10.1063/1.4916715
10.1063/1.4922272
10.1002/adfm.201600590
10.1016/0039-6028(94)00731-4
10.1063/1.4829064
10.1142/S2010135X16300036
10.1039/C5NR05339K
10.1021/acs.jpcc.6b11972
10.1063/1.5021746
10.1002/adma.201404531
10.1063/1.4993739
10.1063/1.5030562
10.1063/1.5000448
10.1021/acs.inorgchem.7b03149
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.commatsci.2019.05.041
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
EndPage 150
ExternalDocumentID 10_1016_j_commatsci_2019_05_041
S0927025619303192
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c381t-c000aa89a79881b2a1c1f42dabe9f1add0ffc026899809f074fc807bfe18d9fc3
IEDL.DBID .~1
ISSN 0927-0256
IngestDate Tue Jul 01 02:01:00 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Fri Feb 23 02:27:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hafnium oxide
Oxygen vacancies
First-principle
Ferroelectric film
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-c000aa89a79881b2a1c1f42dabe9f1add0ffc026899809f074fc807bfe18d9fc3
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_commatsci_2019_05_041
crossref_citationtrail_10_1016_j_commatsci_2019_05_041
elsevier_sciencedirect_doi_10_1016_j_commatsci_2019_05_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle Computational materials science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References King-Smith, Vanderbilt (b0140) 1993; 47
Materlik, Künneth, Falkowski, Mikolajick, Kersch (b0160) 2018; 123
Zhou, Mueller, Xu, Knebel, Braeuhaus, Schroeder (b0060) 2012; 100
Park, Kim, Kim, Moon, Huang (b0065) 2014; 104
Falkowski, Künneth, Materlik, Kersch (b0180) 2018; 73
Min, Han, Yu, Moon, Kim, Hwang (b0015) 2015; 4
Karbasian, Reis, Yadav, Tan, Hu, Salahuddin (b0175) 2017; 111
Park, Lee, Kim, Kim, Moon, Kim, Mueller, Kersch, Schroeder, Mikolajick (b0005) 2015; 27
Polakowski, Müller (b0020) 2015; 106
Batra, Huan, Jones, Rossetti, Ramprasad (b0055) 2017; 121
Hoffmann, Schroeder, Schenk, Shimizu, Funakubo, Sakata, Pohl, Drescher, Adelmann, Materlik (b0085) 2015; 517
Fan, Chen, Wang (b0045) 2016; 06
Zhou, Xu, Li, Guan, Cao, Dong, Schenk, Schroder (b0105) 2013; 103
Pal, Narasimhan, Weeks, Littau, Pramanik, Chiang (b0080) 2017; 110
Ren (b0200) 2004; 3
Park, Kim, Kim, Lee, Moon, Kim, Hyun, Fengler, Schroeder, Hwang (b0050) 2016; 8
Clima, McMitchell, Florent, Nyns, Popovici, Ronchi, Di Piazza, Van Houdt (b0155) 2018
M.D. Glinchuk, A.N. Morozovska, Y. Kim, S.V. Kalinin, Possible electrochemical origin of ferroelectricity in HfO
Nishimura, Xu, Shibayama, Yajima, Migita, Toriumi (b0170) 2016; 55
Schroeder, Richter, Park, Schenk, Peå, Hoffmann, Fpg, Pohl, Rellinghaus, Zhou (b0190) 2018; 57
Batra, Huan, Rossetti, Ramprasad (b0135) 2017; 29
Mills, Jónsson, Schenter (b0145) 1995; 324
Lomenzo, Takmeel, Zhou, Fancher, Lambers, Rudawski, Jones, Moghaddam, Nishida (b0090) 2015; 117
Clima, Wouters, Adelmann, Schenk, Schroeder, Jurczak, Pourtois (b0150) 2014; 104
Kim, Mohan, Young, Colombo, Kim, Summerfelt, San (b0165) 2018
Rüdiger-A, Paul, Petra, Karsten, Hans, Hoffmann (b0195) 2008; 100
Starschich, Menzel, Böttger (b0100) 2016; 108
Starschich, Menzel, Böttger (b0115) 2017; 121
Xu, Nishimura, Shibayama, Yajima, Migita, Toriumi (b0185) 2016; 9
Huan, Sharma, Jr, Ramprasad (b0030) 2014; 90
Park, Schenk, Fancher, Grimley, Zhou, Richter, Lebeau, Jones, Mikolajick, Schroeder (b0035) 2017; 5
Materlik, Künneth, Kersch (b0070) 2015; 117
Han, Min, Yu, Lee, Moon, Kim, Hyun, Hwang (b0210) 2016; 8
Tang, Tang, Geng, Yi, Wei, Chen, Deng (b0130) 2018; 112
Boscke, Muller, Brauhaus, Schroder, Bottger (b0010) 2011; 99
Grimley, Schenk, Mikolajick, Schroeder, Lebeau, Grimley, Schenk, Mikolajick, Schroeder, Lebeau (b0040) 2018; 5
Peši, Fengler, Larcher, Padovani, Schenk, Grimley, Sang, Lebeau, Slesazeck, Schroeder (b0120) 2016; 26
Kresse, Joubert (b0125) 1999; 59
thin films, arXiv preprint arXiv:1811.09787 (2018).
Sang, Grimley, Schenk, Schroeder, Lebeau (b0025) 2015; 106
Buragohain, Richter, Schenk, Lu, Mikolajick, Schroeder, Gruverman (b0095) 2018; 112
Kunneth, Materlik, Falkowski, Kersch (b0075) 2018; 1
Grimley, Schenk, Sang, Peši, Schroeder, Mikolajick, Lebeau (b0110) 2016; 2
Sang (10.1016/j.commatsci.2019.05.041_b0025) 2015; 106
Kresse (10.1016/j.commatsci.2019.05.041_b0125) 1999; 59
Park (10.1016/j.commatsci.2019.05.041_b0035) 2017; 5
Nishimura (10.1016/j.commatsci.2019.05.041_b0170) 2016; 55
Falkowski (10.1016/j.commatsci.2019.05.041_b0180) 2018; 73
Batra (10.1016/j.commatsci.2019.05.041_b0135) 2017; 29
Kunneth (10.1016/j.commatsci.2019.05.041_b0075) 2018; 1
Tang (10.1016/j.commatsci.2019.05.041_b0130) 2018; 112
Mills (10.1016/j.commatsci.2019.05.041_b0145) 1995; 324
Lomenzo (10.1016/j.commatsci.2019.05.041_b0090) 2015; 117
Park (10.1016/j.commatsci.2019.05.041_b0065) 2014; 104
Zhou (10.1016/j.commatsci.2019.05.041_b0060) 2012; 100
Xu (10.1016/j.commatsci.2019.05.041_b0185) 2016; 9
Fan (10.1016/j.commatsci.2019.05.041_b0045) 2016; 06
Schroeder (10.1016/j.commatsci.2019.05.041_b0190) 2018; 57
Rüdiger-A (10.1016/j.commatsci.2019.05.041_b0195) 2008; 100
Pal (10.1016/j.commatsci.2019.05.041_b0080) 2017; 110
Ren (10.1016/j.commatsci.2019.05.041_b0200) 2004; 3
Materlik (10.1016/j.commatsci.2019.05.041_b0070) 2015; 117
Grimley (10.1016/j.commatsci.2019.05.041_b0110) 2016; 2
Clima (10.1016/j.commatsci.2019.05.041_b0155) 2018
Hoffmann (10.1016/j.commatsci.2019.05.041_b0085) 2015; 517
Boscke (10.1016/j.commatsci.2019.05.041_b0010) 2011; 99
Clima (10.1016/j.commatsci.2019.05.041_b0150) 2014; 104
10.1016/j.commatsci.2019.05.041_b0205
Peši (10.1016/j.commatsci.2019.05.041_b0120) 2016; 26
Starschich (10.1016/j.commatsci.2019.05.041_b0115) 2017; 121
Karbasian (10.1016/j.commatsci.2019.05.041_b0175) 2017; 111
Kim (10.1016/j.commatsci.2019.05.041_b0165) 2018
Min (10.1016/j.commatsci.2019.05.041_b0015) 2015; 4
Buragohain (10.1016/j.commatsci.2019.05.041_b0095) 2018; 112
Han (10.1016/j.commatsci.2019.05.041_b0210) 2016; 8
Grimley (10.1016/j.commatsci.2019.05.041_b0040) 2018; 5
Materlik (10.1016/j.commatsci.2019.05.041_b0160) 2018; 123
Batra (10.1016/j.commatsci.2019.05.041_b0055) 2017; 121
Polakowski (10.1016/j.commatsci.2019.05.041_b0020) 2015; 106
Huan (10.1016/j.commatsci.2019.05.041_b0030) 2014; 90
Starschich (10.1016/j.commatsci.2019.05.041_b0100) 2016; 108
Zhou (10.1016/j.commatsci.2019.05.041_b0105) 2013; 103
Park (10.1016/j.commatsci.2019.05.041_b0005) 2015; 27
Park (10.1016/j.commatsci.2019.05.041_b0050) 2016; 8
King-Smith (10.1016/j.commatsci.2019.05.041_b0140) 1993; 47
References_xml – volume: 26
  start-page: 4601
  year: 2016
  end-page: 4612
  ident: b0120
  article-title: Physical mechanisms behind the field-cycling behavior of HfO
  publication-title: Adv. Funct. Mater.
– volume: 106
  year: 2015
  ident: b0025
  article-title: On the structural origins of ferroelectricity in HfO
  publication-title: Appl. Phys. Lett.
– volume: 108
  year: 2016
  ident: b0100
  article-title: Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide
  publication-title: Appl. Phys. Lett.
– volume: 121
  year: 2017
  ident: b0115
  article-title: Pulse wake-up and breakdown investigation of ferroelectric yttrium doped HfO
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 1701258
  year: 2018
  ident: b0040
  article-title: Atomic structure of domain and interphase boundaries in ferroelectric HfO
  publication-title: Adv. Mater. Interfaces
– volume: 117
  year: 2015
  ident: b0090
  article-title: TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO
  publication-title: J. Appl. Phys.
– volume: 2
  start-page: 1600173
  year: 2016
  ident: b0110
  article-title: Structural changes underlying field-cycling phenomena in ferroelectric HfO
  publication-title: Adv. Electron. Mater.
– volume: 57
  start-page: 2752
  year: 2018
  end-page: 2765
  ident: b0190
  article-title: Lanthanum-doped hafnium oxide: a robust ferroelectric material
  publication-title: lnorg Chem.
– volume: 27
  start-page: 1811
  year: 2015
  end-page: 1831
  ident: b0005
  article-title: Ferroelectricity and antiferroelectricity of doped thin HfO
  publication-title: Adv. Mater.
– volume: 123
  year: 2018
  ident: b0160
  article-title: Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO
  publication-title: J. Appl. Phys.
– volume: 117
  year: 2015
  ident: b0070
  article-title: The origin of ferroelectricity in Hf
  publication-title: J. Appl. Phys.
– volume: 111
  year: 2017
  ident: b0175
  article-title: Stabilization of ferroelectric phase in tungsten capped Hf
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 15466
  year: 2016
  end-page: 15475
  ident: b0050
  article-title: Effect of Zr content on the wake-Up effect in Hf
  publication-title: ACS Appl. Mater. Interfaces
– volume: 73
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0180
  article-title: Unexpectedly large energy variations from dopant interactions in ferroelectric HfO
  publication-title: npj Comput. Mater.
– reference: M.D. Glinchuk, A.N. Morozovska, Y. Kim, S.V. Kalinin, Possible electrochemical origin of ferroelectricity in HfO
– volume: 110
  year: 2017
  ident: b0080
  article-title: Enhancing ferroelectricity in dopant-free hafnium oxide
  publication-title: Appl. Phys. Lett.
– volume: 104
  year: 2014
  ident: b0150
  article-title: Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 254
  year: 2018
  end-page: 264
  ident: b0075
  article-title: Impact of four-valent doping on the crystallographic phase formation for ferroelectric HfO
  publication-title: ACS Appl. Nano. Mater.
– volume: 121
  start-page: 4139
  year: 2017
  end-page: 4145
  ident: b0055
  article-title: Factors favoring ferroelectricity in hafnia: a first principles computational study
  publication-title: J. Phys. Chem. C
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: b0125
  article-title: From ultasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 9
  year: 2016
  ident: b0185
  article-title: Ferroelectric phase stabilization of HfO
  publication-title: Appl. Phys Express
– volume: 3
  start-page: 91
  year: 2004
  end-page: 94
  ident: b0200
  article-title: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching
  publication-title: Nat. Mater.
– start-page: 16.5.1
  year: 2018
  end-page: 16.5.4
  ident: b0155
  article-title: First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf
  publication-title: 2018 IEEE International Electron Devices Meeting
– volume: 29
  start-page: 9102
  year: 2017
  end-page: 9109
  ident: b0135
  article-title: Dopants promoting ferroelectricity in hafnia: insights from a comprehensive chemical space exploration
  publication-title: ACS Chem. Mater.
– volume: 103
  year: 2013
  ident: b0105
  article-title: Wake-up effects in Si-doped hafnium oxide ferroelectric thin films
  publication-title: Appl. Phys. Lett.
– volume: 112
  year: 2018
  ident: b0130
  article-title: Tuning transport performance in two-dimensional metal-organic framework semiconductors: role of the metal d band
  publication-title: Appl. Phys. Lett.
– volume: 104
  year: 2014
  ident: b0065
  article-title: The effects of crystallographic orientation and strain of thin Hf
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 1400610
  year: 2015
  ident: b0015
  article-title: Thin Hf
  publication-title: Adv. Energy Mater.
– volume: 100
  year: 2008
  ident: b0195
  article-title: Defect-dipole formation in copper-doped PbTiO
  publication-title: Phys. Rev. Lett.
– volume: 99
  year: 2011
  ident: b0010
  article-title: Ferroelectricity in hafnium oxide thin films
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 1383
  year: 2016
  end-page: 1389
  ident: b0210
  article-title: Study on the wake-up effect of ferroelectric Hf
  publication-title: Nanoscale
– volume: 112
  year: 2018
  ident: b0095
  article-title: Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO
  publication-title: Appl. Phys. Lett.
– volume: 324
  start-page: 305
  year: 1995
  end-page: 337
  ident: b0145
  article-title: Reversible work transition state theory: application to dissociative adsorption of hydrogen
  publication-title: Surf. Sci.
– reference: thin films, arXiv preprint arXiv:1811.09787 (2018).
– volume: 90
  year: 2014
  ident: b0030
  article-title: Pathways towards ferroelectricity in hafnia
  publication-title: Phys. Rev. B
– start-page: 1
  year: 2018
  end-page: 4
  ident: b0165
  article-title: Ferroelectric TiN/Hf
  publication-title: IEEE International Memory Workshop
– volume: 5
  start-page: 4677
  year: 2017
  end-page: 4690
  ident: b0035
  article-title: A comprehensive study on the structural evolution of HfO
  publication-title: J. Mater. Chem. C
– volume: 517
  year: 2015
  ident: b0085
  article-title: Stabilizing the ferroelectric phase in doped hafnium oxide
  publication-title: J. Appl. Phys.
– volume: 06
  start-page: 1630003
  year: 2016
  ident: b0045
  article-title: Ferroelectric HfO
  publication-title: J. Adv. Dielect.
– volume: 47
  start-page: 1651
  year: 1993
  end-page: 1654
  ident: b0140
  article-title: Theory of polarization of crystalline solids
  publication-title: Phys. Rev. B
– volume: 100
  year: 2012
  ident: b0060
  article-title: Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films
  publication-title: Appl. Phys. Lett.
– volume: 106
  year: 2015
  ident: b0020
  article-title: Ferroelectricity in undoped hafnium oxide
  publication-title: Appl. Phys. Lett.
– volume: 55
  start-page: 08PB01
  year: 2016
  ident: b0170
  article-title: Ferroelectricity of nondoped thin HfO
  publication-title: J. Forest. Res.
– volume: 110
  year: 2017
  ident: 10.1016/j.commatsci.2019.05.041_b0080
  article-title: Enhancing ferroelectricity in dopant-free hafnium oxide
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4973928
– volume: 117
  year: 2015
  ident: 10.1016/j.commatsci.2019.05.041_b0070
  article-title: The origin of ferroelectricity in Hf1-xZrxO2: a computational investigation and a surface energy model
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4916707
– volume: 47
  start-page: 1651
  year: 1993
  ident: 10.1016/j.commatsci.2019.05.041_b0140
  article-title: Theory of polarization of crystalline solids
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– volume: 5
  start-page: 4677
  year: 2017
  ident: 10.1016/j.commatsci.2019.05.041_b0035
  article-title: A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01200D
– volume: 108
  year: 2016
  ident: 10.1016/j.commatsci.2019.05.041_b0100
  article-title: Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4940370
– volume: 1
  start-page: 254
  year: 2018
  ident: 10.1016/j.commatsci.2019.05.041_b0075
  article-title: Impact of four-valent doping on the crystallographic phase formation for ferroelectric HfO2 from first-principles: implications for ferroelectric memory and energy-related applications
  publication-title: ACS Appl. Nano. Mater.
  doi: 10.1021/acsanm.7b00124
– volume: 2
  start-page: 1600173
  year: 2016
  ident: 10.1016/j.commatsci.2019.05.041_b0110
  article-title: Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600173
– volume: 9
  year: 2016
  ident: 10.1016/j.commatsci.2019.05.041_b0185
  article-title: Ferroelectric phase stabilization of HfO2 by nitrogen doping
  publication-title: Appl. Phys Express
  doi: 10.7567/APEX.9.091501
– volume: 3
  start-page: 91
  year: 2004
  ident: 10.1016/j.commatsci.2019.05.041_b0200
  article-title: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1051
– start-page: 16.5.1
  year: 2018
  ident: 10.1016/j.commatsci.2019.05.041_b0155
  article-title: First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf1-xZrxO2 for FEFET applications
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.commatsci.2019.05.041_b0125
  article-title: From ultasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 29
  start-page: 9102
  year: 2017
  ident: 10.1016/j.commatsci.2019.05.041_b0135
  article-title: Dopants promoting ferroelectricity in hafnia: insights from a comprehensive chemical space exploration
  publication-title: ACS Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02835
– volume: 104
  year: 2014
  ident: 10.1016/j.commatsci.2019.05.041_b0150
  article-title: Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: a first principles insight
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4867975
– volume: 99
  year: 2011
  ident: 10.1016/j.commatsci.2019.05.041_b0010
  article-title: Ferroelectricity in hafnium oxide thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3634052
– volume: 100
  year: 2012
  ident: 10.1016/j.commatsci.2019.05.041_b0060
  article-title: Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3688915
– volume: 5
  start-page: 1701258
  year: 2018
  ident: 10.1016/j.commatsci.2019.05.041_b0040
  article-title: Atomic structure of domain and interphase boundaries in ferroelectric HfO2
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201701258
– volume: 90
  year: 2014
  ident: 10.1016/j.commatsci.2019.05.041_b0030
  article-title: Pathways towards ferroelectricity in hafnia
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.064111
– volume: 104
  year: 2014
  ident: 10.1016/j.commatsci.2019.05.041_b0065
  article-title: The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 15466
  year: 2016
  ident: 10.1016/j.commatsci.2019.05.041_b0050
  article-title: Effect of Zr content on the wake-Up effect in Hf1-xZrxO2 films
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03586
– volume: 106
  year: 2015
  ident: 10.1016/j.commatsci.2019.05.041_b0025
  article-title: On the structural origins of ferroelectricity in HfO2 thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4919135
– volume: 55
  start-page: 08PB01
  year: 2016
  ident: 10.1016/j.commatsci.2019.05.041_b0170
  article-title: Ferroelectricity of nondoped thin HfO2 films in TiN/HfO2/TiN stacks
  publication-title: J. Forest. Res.
– volume: 121
  year: 2017
  ident: 10.1016/j.commatsci.2019.05.041_b0115
  article-title: Pulse wake-up and breakdown investigation of ferroelectric yttrium doped HfO2
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4981893
– volume: 100
  year: 2008
  ident: 10.1016/j.commatsci.2019.05.041_b0195
  article-title: Defect-dipole formation in copper-doped PbTiO3 ferroelectrics
  publication-title: Phys. Rev. Lett.
– ident: 10.1016/j.commatsci.2019.05.041_b0205
– volume: 117
  year: 2015
  ident: 10.1016/j.commatsci.2019.05.041_b0090
  article-title: TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4916715
– volume: 106
  year: 2015
  ident: 10.1016/j.commatsci.2019.05.041_b0020
  article-title: Ferroelectricity in undoped hafnium oxide
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4922272
– volume: 26
  start-page: 4601
  year: 2016
  ident: 10.1016/j.commatsci.2019.05.041_b0120
  article-title: Physical mechanisms behind the field-cycling behavior of HfO2 based ferroelectric capacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600590
– volume: 324
  start-page: 305
  year: 1995
  ident: 10.1016/j.commatsci.2019.05.041_b0145
  article-title: Reversible work transition state theory: application to dissociative adsorption of hydrogen
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)00731-4
– volume: 103
  year: 2013
  ident: 10.1016/j.commatsci.2019.05.041_b0105
  article-title: Wake-up effects in Si-doped hafnium oxide ferroelectric thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4829064
– start-page: 1
  year: 2018
  ident: 10.1016/j.commatsci.2019.05.041_b0165
  article-title: Ferroelectric TiN/Hf0.5Zr0.5O2/TiN capacitors with low-voltage operation and high reliability for next-generation FRAM applications
– volume: 06
  start-page: 1630003
  year: 2016
  ident: 10.1016/j.commatsci.2019.05.041_b0045
  article-title: Ferroelectric HfO2-based materials for next-generation ferroelectric memories
  publication-title: J. Adv. Dielect.
  doi: 10.1142/S2010135X16300036
– volume: 8
  start-page: 1383
  year: 2016
  ident: 10.1016/j.commatsci.2019.05.041_b0210
  article-title: Study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement
  publication-title: Nanoscale
  doi: 10.1039/C5NR05339K
– volume: 121
  start-page: 4139
  year: 2017
  ident: 10.1016/j.commatsci.2019.05.041_b0055
  article-title: Factors favoring ferroelectricity in hafnia: a first principles computational study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11972
– volume: 123
  year: 2018
  ident: 10.1016/j.commatsci.2019.05.041_b0160
  article-title: Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO2: a first principles study
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5021746
– volume: 4
  start-page: 1400610
  year: 2015
  ident: 10.1016/j.commatsci.2019.05.041_b0015
  article-title: Thin HfxZr1-xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability
  publication-title: Adv. Energy Mater.
– volume: 517
  year: 2015
  ident: 10.1016/j.commatsci.2019.05.041_b0085
  article-title: Stabilizing the ferroelectric phase in doped hafnium oxide
  publication-title: J. Appl. Phys.
– volume: 27
  start-page: 1811
  year: 2015
  ident: 10.1016/j.commatsci.2019.05.041_b0005
  article-title: Ferroelectricity and antiferroelectricity of doped thin HfO2-based films
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404531
– volume: 111
  year: 2017
  ident: 10.1016/j.commatsci.2019.05.041_b0175
  article-title: Stabilization of ferroelectric phase in tungsten capped Hf0.8Zr0.2O2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4993739
– volume: 73
  start-page: 1
  year: 2018
  ident: 10.1016/j.commatsci.2019.05.041_b0180
  article-title: Unexpectedly large energy variations from dopant interactions in ferroelectric HfO2 from high-throughput ab initio calculations
  publication-title: npj Comput. Mater.
– volume: 112
  year: 2018
  ident: 10.1016/j.commatsci.2019.05.041_b0095
  article-title: Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5030562
– volume: 112
  year: 2018
  ident: 10.1016/j.commatsci.2019.05.041_b0130
  article-title: Tuning transport performance in two-dimensional metal-organic framework semiconductors: role of the metal d band
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5000448
– volume: 57
  start-page: 2752
  year: 2018
  ident: 10.1016/j.commatsci.2019.05.041_b0190
  article-title: Lanthanum-doped hafnium oxide: a robust ferroelectric material
  publication-title: lnorg Chem.
  doi: 10.1021/acs.inorgchem.7b03149
SSID ssj0016982
Score 2.6145873
Snippet [Display omitted] The newly discovered hafnium oxide (HfO2)-based ferroelectric film shows many advantages over the traditional perovskite films in the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 143
SubjectTerms Ferroelectric film
First-principle
Hafnium oxide
Oxygen vacancies
Title The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle
URI https://dx.doi.org/10.1016/j.commatsci.2019.05.041
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14XZtXk6y3UixRoR600Nuy2ezSSE1CiaIXf7szeRQLQg_ekmVnCbPLfN-Gb2YIuY5DS2rfhMx3vYB5jnSZjLkLtxTg-onRwBGqap9TP5p5D_PhvEPGbS4Myiqb2F_H9CpaNyODxpuDIk0HzxbHXCrAf-5iKg7GYc8L8JTffK9lHrbPq4ZROJnh7A2NF6wNvBBWR40Xr0p4evbfCPULdSYHZL-hi3RUf9Eh6ejsiOz9KiJ4TDLYadrIMmhuaP75BYeCfkhVNd6FsYwavVrldcebVNFiAdBFS0SpSrCFVpF5chhCWkLLRQoW6fKNYu4JPAFBZEX7U_6EzCZ3L-OINV0UmAI0LpmCoCdlyCVWJrNjR9rKNp6TyFhzY0N4s4xRcBPDi5fFDVAKo0IriI22w4Qb5Z6SbpZn-oxQy-eSJ0DYgJN40nXQGB4CYJ2S6zDuEb_1nFBNiXHsdLEUrZbsVaxdLtDlwhoKcHmPWGvDoq6ysd3ktt0asXFgBGDBNuPz_xhfkF18q4Vml6Rbrt71FTCTMu5XR69Pdkb3j9H0By7Z5eA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIAB8RTl6YHVNK-mMRuqqAqUMtBK3SzHsdWgkkRVQLDw27nLo2olpA5sluOzorNz3-fo8x0h12FgSe2bgPmu12GeI10mQ-7CKQW4fmQ0cIQi2-fQ74-9x0l70iDd-i4Myiqr2F_G9CJaVz2typutLI5brxbHu1SA_9zFqzgQhzc9-HyxjMHNz0LnYfu8qBiFoxkOXxF5weRADGF6FHnxIoenZ_8NUUuw09sjuxVfpHflK-2Thk4OyM5SFsFDksBS00qXQVND069v2BX0U6qi8i70JdTo-TwtS97EimZTwC6aI0wVii206psXhyGmRTSfxmARz94pXj6BFjBEltV_5Y_IuHc_6vZZVUaBKYDjnCmIelIGXGJqMjt0pK1s4zmRDDU3NsQ3yxgFRzE8eVncAKcwKrA6odF2EHGj3GOykaSJPiHU8rnkETA2ICWedB00hkYHaKfkOgibxK89J1SVYxxLXcxELSZ7EwuXC3S5sNoCXN4k1sIwK9NsrDe5rZdGrOwYAWCwzvj0P8ZXZKs_eh6IwcPw6Yxs45NSdXZONvL5h74AmpKHl8U2_AV_COdu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+oxygen+vacancies+on+ferroelectric+phase+transition+of+HfO2-based+thin+film+from+first-principle&rft.jtitle=Computational+materials+science&rft.au=Zhou%2C+Y.&rft.au=Zhang%2C+Y.K.&rft.au=Yang%2C+Q.&rft.au=Jiang%2C+J.&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0927-0256&rft.eissn=1879-0801&rft.volume=167&rft.spage=143&rft.epage=150&rft_id=info:doi/10.1016%2Fj.commatsci.2019.05.041&rft.externalDocID=S0927025619303192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon