Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts

Climate variables are known to be subject to abrupt changes when some threshold levels are surpassed. We use data for the last 798,000 years on global ice volume (Ice), atmospheric carbon dioxide level (CO2), and Antarctic land surface temperature (Temp) to model and measure those long-run nonlinear...

Full description

Saved in:
Bibliographic Details
Published inEnergy economics Vol. 118; p. 106522
Main Authors Blazsek, Szabolcs, Escribano, Alvaro
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Subjects
Online AccessGet full text
ISSN0140-9883
1873-6181
DOI10.1016/j.eneco.2023.106522

Cover

Abstract Climate variables are known to be subject to abrupt changes when some threshold levels are surpassed. We use data for the last 798,000 years on global ice volume (Ice), atmospheric carbon dioxide level (CO2), and Antarctic land surface temperature (Temp) to model and measure those long-run nonlinear climate effects. The climate variables have very long and asymmetric cycles, created by periods of upward trends, followed by periods of downward trends driven by exogenous orbital variables. The exogenous orbital variables considered by the Milankovitch cycles are eccentricity of Earth’s orbit, obliquity, and precession of the equinox. We show that our new score-driven threshold ice-age models improve the statistical inference and forecasting performance of competing ice-age models from the literature. The drawback of using our 1000-year frequency observations, is that we cannot measure the nonlinear climate effects of humanity created during the last 250 years, which are known to have generated abrupt structural changes in the Earth’s climate, due to unprecedented high levels of CO2 and Temp, and low levels of Ice volume. On the other hand, the advantage of using low-frequency data is that they allow us to obtain long-run forecasts on what would have occurred if humanity had not burned fossil fuels since the start of the Industrial Revolution. These long-run forecasts can serve as benchmarks for the long-run evaluation of the impact of humanity on climate variables. Without the impact of humanity on climate, we predict the existence of turning points in the evolution of the three climate variables for the next 5,000 years: an upward trend in global ice volume, and downward trends in atmospheric CO2 level and Antarctic land surface temperature. •We use data for the last 798,000 years on climate variables.•Climate variables are subject to abrupt changes when threshold levels are surpassed.•We suggest the use of new score-driven threshold ice-age models.•The new models improve the forecasting performances over competing ice-age models.•We identify turning points in the climate variables for the next 5 thousand years.
AbstractList Climate variables are known to be subject to abrupt changes when some threshold levels are surpassed. We use data for the last 798,000 years on global ice volume (Ice), atmospheric carbon dioxide level (CO2), and Antarctic land surface temperature (Temp) to model and measure those long-run nonlinear climate effects. The climate variables have very long and asymmetric cycles, created by periods of upward trends, followed by periods of downward trends driven by exogenous orbital variables. The exogenous orbital variables considered by the Milankovitch cycles are eccentricity of Earth’s orbit, obliquity, and precession of the equinox. We show that our new score-driven threshold ice-age models improve the statistical inference and forecasting performance of competing ice-age models from the literature. The drawback of using our 1000-year frequency observations, is that we cannot measure the nonlinear climate effects of humanity created during the last 250 years, which are known to have generated abrupt structural changes in the Earth’s climate, due to unprecedented high levels of CO2 and Temp, and low levels of Ice volume. On the other hand, the advantage of using low-frequency data is that they allow us to obtain long-run forecasts on what would have occurred if humanity had not burned fossil fuels since the start of the Industrial Revolution. These long-run forecasts can serve as benchmarks for the long-run evaluation of the impact of humanity on climate variables. Without the impact of humanity on climate, we predict the existence of turning points in the evolution of the three climate variables for the next 5,000 years: an upward trend in global ice volume, and downward trends in atmospheric CO2 level and Antarctic land surface temperature. •We use data for the last 798,000 years on climate variables.•Climate variables are subject to abrupt changes when threshold levels are surpassed.•We suggest the use of new score-driven threshold ice-age models.•The new models improve the forecasting performances over competing ice-age models.•We identify turning points in the climate variables for the next 5 thousand years.
ArticleNumber 106522
Author Blazsek, Szabolcs
Escribano, Alvaro
Author_xml – sequence: 1
  givenname: Szabolcs
  surname: Blazsek
  fullname: Blazsek, Szabolcs
  email: sblazsek@ufm.edu
  organization: School of Business, Universidad Francisco Marroquín, 01010, Guatemala City, Guatemala
– sequence: 2
  givenname: Alvaro
  orcidid: 0000-0003-4401-0887
  surname: Escribano
  fullname: Escribano, Alvaro
  email: alvaroe@eco.uc3m.es
  organization: Department of Economics, Universidad Carlos III de Madrid, 28903, Getafe, Spain
BookMark eNqFkMtKAzEUhoNUsK0-gZt5gdRkLplEcKHFGxRceNmGTHLSpk4TSWLBt3dqu3KhqwMffAf-b4JGPnhA6JySGSWUXaxn4EGHWUnKaiCsKcsjNKa8rTCjnI7QmNCaYMF5dYImKa0JIQ1r-Bi9PesQAZvotuCLvIqQVqE3hdOA1RKKTTDQp8viBrxebVR8P5DChlj0wS9x_PSF7t1GZdhB0CrldIqOreoTnB3uFL3e3b7MH_Di6f5xfr3AuuI0484QYevalAwYY63qrBZa0a7WUDaiE2AEIxYAbKNaUjNS84ZZ0bGWg6YtraZI7P_qGFKKYKV2WWUXfI7K9ZISuQsk1_InkNwFkvtAg1v9cj_iMCN-_WNd7a0hAmwdRJm0G-KAccP2LE1wf_rfWMqD8A
CitedBy_id crossref_primary_10_2139_ssrn_4526018
crossref_primary_10_1016_j_eneco_2024_107591
crossref_primary_10_3390_econometrics12030025
Cites_doi 10.1029/96EO00259
10.1038/nature06949
10.1093/biomet/65.2.297
10.1016/j.econlet.2016.10.026
10.1016/j.jeconom.2015.10.005
10.1016/j.jeconom.2021.06.003
10.1093/biomet/asu076
10.2307/1912773
10.1029/2004PA001071
10.1111/j.2517-6161.1989.tb01756.x
10.1080/01621459.1963.10500845
10.1016/0304-4076(86)90063-1
10.1126/science.1141038
10.1561/0800000037
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.eneco.2023.106522
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1873-6181
ExternalDocumentID 10_1016_j_eneco_2023_106522
S0140988323000208
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AEYQN
AFKWA
AFODL
AFRAH
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HVGLF
HZ~
IHE
IXIXF
J1W
JARJE
KOM
KZ1
LY5
LY6
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SDP
SEB
SEE
SES
SEW
SPC
SPCBC
SSB
SSF
SSR
SSZ
T5K
TN5
U5U
WH7
WUQ
YK3
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c381t-bd09f44d26e6667abfc9ca1b4ce259b9ed960feeef5a704604856f9b678ec1713
IEDL.DBID AIKHN
ISSN 0140-9883
IngestDate Thu Apr 24 22:53:32 EDT 2025
Tue Jul 01 01:39:31 EDT 2025
Fri Feb 23 02:37:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords C53
C52
C32
Score-driven ice-age models
C38
Generalized autoregressive score
Antarctic land surface temperature
Atmospheric CO2 level
Q54
Climate change
Global ice volume
Dynamic conditional score
C51
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-bd09f44d26e6667abfc9ca1b4ce259b9ed960feeef5a704604856f9b678ec1713
ORCID 0000-0003-4401-0887
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0140988323000208
ParticipantIDs crossref_citationtrail_10_1016_j_eneco_2023_106522
crossref_primary_10_1016_j_eneco_2023_106522
elsevier_sciencedirect_doi_10_1016_j_eneco_2023_106522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Energy economics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Blazsek, Escribano, Licht (b7) 2021
Harvey, Chakravarty (b18) 2008
Blasques, Koopman, Lucas (b3) 2015; 102
Blazsek, Escribano, Licht (b9) 2022
Lüthi, Le Floch, Bereiter, Blunier, Barnola, Steigenhaler, Raynaud, Jouzel, Fischer, Kawamura, Stocker (b24) 2008; 453
Cox (b13) 1981; 8
Harvey (b17) 2013
Blazsek, Escribano (b6) 2022; 10
Ljung, Box (b23) 1978; 65
Castle, Hendry (b12) 2020; 10
Paillard, Labeyrie, Yiou (b25) 1996; 77
Bollerslev (b10) 1986; 31
Ayala, Blazsek, Escribano (b1) 2022
Ruddiman (b26) 2005
Creal, Koopman, Lucas (b14) 2008
Intergovernmental Panel on Climate Change (b19) 2021
Box, Jenkins (b11) 1970
Tiao, Tsay (b27) 1989; 51
Kasahara, Shimotsu (b21) 2018
Ward (b28) 1963; 58
Engle (b15) 1982; 50
Lisiecki, Raymo (b22) 2005; 20
Blasques, van Brummelen, Koopman, Lucas (b2) 2022; 227
Jouzel, Masson-Delmotte, Cattani, Dreyfus, Falourd, Hoffmann (b20) 2007; 317
Blazsek, Escribano (b4) 2016; 191
Blazsek, Escribano (b5) 2016; 149
Blazsek, Escribano, Licht (b8) 2022
Everitt (b16) 1993
Engle (10.1016/j.eneco.2023.106522_b15) 1982; 50
Blazsek (10.1016/j.eneco.2023.106522_b4) 2016; 191
Everitt (10.1016/j.eneco.2023.106522_b16) 1993
Lisiecki (10.1016/j.eneco.2023.106522_b22) 2005; 20
Tiao (10.1016/j.eneco.2023.106522_b27) 1989; 51
Jouzel (10.1016/j.eneco.2023.106522_b20) 2007; 317
Creal (10.1016/j.eneco.2023.106522_b14) 2008
Box (10.1016/j.eneco.2023.106522_b11) 1970
Harvey (10.1016/j.eneco.2023.106522_b17) 2013
Castle (10.1016/j.eneco.2023.106522_b12) 2020; 10
Ayala (10.1016/j.eneco.2023.106522_b1) 2022
Blasques (10.1016/j.eneco.2023.106522_b2) 2022; 227
Lüthi (10.1016/j.eneco.2023.106522_b24) 2008; 453
Harvey (10.1016/j.eneco.2023.106522_b18) 2008
Ljung (10.1016/j.eneco.2023.106522_b23) 1978; 65
Intergovernmental Panel on Climate Change (10.1016/j.eneco.2023.106522_b19) 2021
Paillard (10.1016/j.eneco.2023.106522_b25) 1996; 77
Blazsek (10.1016/j.eneco.2023.106522_b7) 2021
Blazsek (10.1016/j.eneco.2023.106522_b9) 2022
Cox (10.1016/j.eneco.2023.106522_b13) 1981; 8
Ward (10.1016/j.eneco.2023.106522_b28) 1963; 58
Blazsek (10.1016/j.eneco.2023.106522_b6) 2022; 10
Blasques (10.1016/j.eneco.2023.106522_b3) 2015; 102
Bollerslev (10.1016/j.eneco.2023.106522_b10) 1986; 31
Blazsek (10.1016/j.eneco.2023.106522_b5) 2016; 149
Ruddiman (10.1016/j.eneco.2023.106522_b26) 2005
Blazsek (10.1016/j.eneco.2023.106522_b8) 2022
Kasahara (10.1016/j.eneco.2023.106522_b21) 2018
References_xml – volume: 191
  start-page: 145
  year: 2016
  end-page: 163
  ident: b4
  article-title: Patent propensity, R & D and market competition: Dynamic spillovers of innovation leaders and followers
  publication-title: J. Econometrics
– year: 1970
  ident: b11
  article-title: Time Series Analysis, Forecasting and Control
– year: 2022
  ident: b9
  article-title: Score-driven location plus scale models: Asymptotic theory and an application to forecasting Dow Jones volatility
  publication-title: Stud. Nonlinear Dyn. Econ.
– volume: 317
  start-page: 793
  year: 2007
  end-page: 797
  ident: b20
  article-title: Orbital and millennial antarctic climate variability over the past 800, 000 years
  publication-title: Science
– year: 2008
  ident: b14
  article-title: A general framework for observation driven time-varying parameter models
  publication-title: Tinbergen Institute Discussion Paper 08-108/4
– volume: 10
  start-page: 145
  year: 2020
  end-page: 322
  ident: b12
  article-title: Climate econometrics: An overview
  publication-title: Found. Trends Econom.
– volume: 10
  year: 2022
  ident: b6
  article-title: Robust estimation and forecasting of climate change using score-driven ice-age models
  publication-title: Econom. (Special Issue: Econom. Anal. Clim. Change)
– volume: 20
  year: 2005
  ident: b22
  article-title: A pliocene-pleistocene stack of 57 globally distributed benthic
  publication-title: Paleoceanography
– year: 2022
  ident: b8
  article-title: Co-integration with score-driven models: an application to US real GDP growth, US inflation rate, and effective federal funds rate
  publication-title: Macroecon. Dyn.
– year: 2013
  ident: b17
  publication-title: Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series
– volume: 149
  start-page: 116
  year: 2016
  end-page: 119
  ident: b5
  article-title: Score-driven dynamic patent count panel data models
  publication-title: Econom. Lett.
– volume: 102
  start-page: 325
  year: 2015
  end-page: 343
  ident: b3
  article-title: Information-theoretic optimality of observation-driven time series models for continuous responses
  publication-title: Biometrika
– year: 2021
  ident: b7
  article-title: Multivariate Markov-switching score-driven models: An application to the global crude oil market
  publication-title: Stud. Nonlinear Dyn. Econ.
– volume: 227
  start-page: 325
  year: 2022
  end-page: 346
  ident: b2
  article-title: Maximum likelihood estimation for score-driven models
  publication-title: J. Econometrics
– year: 2008
  ident: b18
  article-title: Beta-t-(e)garch
  publication-title: Cambridge Working Papers in Economics 0840, Faculty of Economics
– volume: 77
  start-page: 379
  year: 1996
  ident: b25
  article-title: Macintosh program performs time-series analysis
  publication-title: Eos Trans. AGU
– volume: 50
  start-page: 987
  year: 1982
  end-page: 1007
  ident: b15
  article-title: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
  publication-title: Econometrica
– year: 2021
  ident: b19
  article-title: Sixth assessment report
– year: 2018
  ident: b21
  article-title: Testing the number of regimes in Markov regime switching models
– year: 2022
  ident: b1
  article-title: Anticipating extreme losses using score-driven shape filters
  publication-title: Stud. Nonlinear Dyn. Econ.
– volume: 8
  start-page: 93
  year: 1981
  end-page: 115
  ident: b13
  article-title: Statistical analysis of time series: Some recent developments
  publication-title: Scand. J. Stat.
– volume: 58
  start-page: 236
  year: 1963
  end-page: 244
  ident: b28
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Amer. Statist. Assoc.
– volume: 453
  year: 2008
  ident: b24
  article-title: High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present
  publication-title: Nature
– year: 2005
  ident: b26
  article-title: Plows, Plagues and Petroleum: How Humans Took Control of the Climate
– volume: 31
  start-page: 307
  year: 1986
  end-page: 327
  ident: b10
  article-title: Generalized autoregressive conditional heteroskedasticity
  publication-title: J. Econometrics
– year: 1993
  ident: b16
  article-title: Cluster Analysis
– volume: 65
  start-page: 297
  year: 1978
  end-page: 303
  ident: b23
  article-title: On a measure of lack of fit in time-series models
  publication-title: Biometrika
– volume: 51
  start-page: 157
  year: 1989
  end-page: 213
  ident: b27
  article-title: Model specification in multivariate time series
  publication-title: J. R. Stat. Soc.
– year: 2005
  ident: 10.1016/j.eneco.2023.106522_b26
– volume: 77
  start-page: 379
  issue: 39
  year: 1996
  ident: 10.1016/j.eneco.2023.106522_b25
  article-title: Macintosh program performs time-series analysis
  publication-title: Eos Trans. AGU
  doi: 10.1029/96EO00259
– volume: 453
  year: 2008
  ident: 10.1016/j.eneco.2023.106522_b24
  article-title: High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present
  publication-title: Nature
  doi: 10.1038/nature06949
– volume: 65
  start-page: 297
  issue: 2
  year: 1978
  ident: 10.1016/j.eneco.2023.106522_b23
  article-title: On a measure of lack of fit in time-series models
  publication-title: Biometrika
  doi: 10.1093/biomet/65.2.297
– volume: 149
  start-page: 116
  issue: C
  year: 2016
  ident: 10.1016/j.eneco.2023.106522_b5
  article-title: Score-driven dynamic patent count panel data models
  publication-title: Econom. Lett.
  doi: 10.1016/j.econlet.2016.10.026
– volume: 191
  start-page: 145
  issue: 1
  year: 2016
  ident: 10.1016/j.eneco.2023.106522_b4
  article-title: Patent propensity, R & D and market competition: Dynamic spillovers of innovation leaders and followers
  publication-title: J. Econometrics
  doi: 10.1016/j.jeconom.2015.10.005
– volume: 227
  start-page: 325
  issue: 2
  year: 2022
  ident: 10.1016/j.eneco.2023.106522_b2
  article-title: Maximum likelihood estimation for score-driven models
  publication-title: J. Econometrics
  doi: 10.1016/j.jeconom.2021.06.003
– volume: 102
  start-page: 325
  issue: 2
  year: 2015
  ident: 10.1016/j.eneco.2023.106522_b3
  article-title: Information-theoretic optimality of observation-driven time series models for continuous responses
  publication-title: Biometrika
  doi: 10.1093/biomet/asu076
– volume: 8
  start-page: 93
  issue: 2
  year: 1981
  ident: 10.1016/j.eneco.2023.106522_b13
  article-title: Statistical analysis of time series: Some recent developments
  publication-title: Scand. J. Stat.
– volume: 50
  start-page: 987
  issue: 4
  year: 1982
  ident: 10.1016/j.eneco.2023.106522_b15
  article-title: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
  publication-title: Econometrica
  doi: 10.2307/1912773
– volume: 20
  issue: 1
  year: 2005
  ident: 10.1016/j.eneco.2023.106522_b22
  article-title: A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records
  publication-title: Paleoceanography
  doi: 10.1029/2004PA001071
– year: 2018
  ident: 10.1016/j.eneco.2023.106522_b21
– volume: 51
  start-page: 157
  issue: 2
  year: 1989
  ident: 10.1016/j.eneco.2023.106522_b27
  article-title: Model specification in multivariate time series
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1989.tb01756.x
– year: 2022
  ident: 10.1016/j.eneco.2023.106522_b9
  article-title: Score-driven location plus scale models: Asymptotic theory and an application to forecasting Dow Jones volatility
  publication-title: Stud. Nonlinear Dyn. Econ.
– year: 1970
  ident: 10.1016/j.eneco.2023.106522_b11
– year: 1993
  ident: 10.1016/j.eneco.2023.106522_b16
– year: 2008
  ident: 10.1016/j.eneco.2023.106522_b18
  article-title: Beta-t-(e)garch
– volume: 58
  start-page: 236
  issue: 301
  year: 1963
  ident: 10.1016/j.eneco.2023.106522_b28
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1963.10500845
– year: 2008
  ident: 10.1016/j.eneco.2023.106522_b14
  article-title: A general framework for observation driven time-varying parameter models
– volume: 31
  start-page: 307
  issue: 3
  year: 1986
  ident: 10.1016/j.eneco.2023.106522_b10
  article-title: Generalized autoregressive conditional heteroskedasticity
  publication-title: J. Econometrics
  doi: 10.1016/0304-4076(86)90063-1
– year: 2021
  ident: 10.1016/j.eneco.2023.106522_b7
  article-title: Multivariate Markov-switching score-driven models: An application to the global crude oil market
  publication-title: Stud. Nonlinear Dyn. Econ.
– year: 2022
  ident: 10.1016/j.eneco.2023.106522_b8
  article-title: Co-integration with score-driven models: an application to US real GDP growth, US inflation rate, and effective federal funds rate
  publication-title: Macroecon. Dyn.
– volume: 317
  start-page: 793
  year: 2007
  ident: 10.1016/j.eneco.2023.106522_b20
  article-title: Orbital and millennial antarctic climate variability over the past 800, 000 years
  publication-title: Science
  doi: 10.1126/science.1141038
– year: 2013
  ident: 10.1016/j.eneco.2023.106522_b17
– volume: 10
  issue: 1
  year: 2022
  ident: 10.1016/j.eneco.2023.106522_b6
  article-title: Robust estimation and forecasting of climate change using score-driven ice-age models
  publication-title: Econom. (Special Issue: Econom. Anal. Clim. Change)
– volume: 10
  start-page: 145
  issue: 3–4
  year: 2020
  ident: 10.1016/j.eneco.2023.106522_b12
  article-title: Climate econometrics: An overview
  publication-title: Found. Trends Econom.
  doi: 10.1561/0800000037
– year: 2022
  ident: 10.1016/j.eneco.2023.106522_b1
  article-title: Anticipating extreme losses using score-driven shape filters
  publication-title: Stud. Nonlinear Dyn. Econ.
– year: 2021
  ident: 10.1016/j.eneco.2023.106522_b19
SSID ssj0005658
Score 2.3938599
Snippet Climate variables are known to be subject to abrupt changes when some threshold levels are surpassed. We use data for the last 798,000 years on global ice...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106522
SubjectTerms Antarctic land surface temperature
Atmospheric CO2 level
Climate change
Dynamic conditional score
Generalized autoregressive score
Global ice volume
Score-driven ice-age models
Title Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts
URI https://dx.doi.org/10.1016/j.eneco.2023.106522
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLb2OMAF8RTjMeXAkbCtj3ThNibQAMGFh7hVTerCYHTT2l357Thpy0NCO3CsVUutk3y25S82wFGMiL7GgAcyUdxD1-VRIjzuxDqiwyd9abvt39yK0YN39eQ_1WBY3YUxtMoS-wtMt2hdSjqlNTuz8bhjaUmyTzvStfW0fh2ajiuF34Dm4PJ6dPvN9BB2TKdlMhqFqvmQpXkRomhzCdBxSSJ8x_nbQf1wOhfrsFZGi2xQfNAG1DDdhJXqMnG2BY93pg0lj-cGtFhOC5OZehKj488JKZgddJOdsjP6sZf3aP5WShjFqmwyTZ_5fJEyPRlT4IpGiDrK8mwbHi7O74cjXo5K4Jpcbs5V3JWJ58WOQMpHgkglWuqopzyNlN8oiTFlKgmtS-JHgamFen1fJFKRq0Ldo0R1BxrpNMVdYImLGAiUMg6EqeJKD1XQ7caoAxRKyxY4lX1CXfYRN-MsJmFFGHsNrVFDY9SwMGoLjr-UZkUbjeWvi8rw4a_dEBLQL1Pc-6_iPqyap4KPfQCNfL7AQwo3ctWG-slHr11uqk_2VdUC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGcqCeIo3HhgxbRPHrtmgAhUoXWhRtyh2LlAooWrSld_O2UkQSIiB9WJLztn-7k73-Y6QkxgAAgOSSZVoxsH3WZQIzrzYRHj5VKBctf37geiN-O04GNdIt3oLY2mVJfYXmO7QupQ0S202Z5NJ09GSVAdPpO_yaZ0lsswDX1pe39nHN56HcE06HY_RDq9KDzmSF-KJsU8APR8lIvC8383TN5NzvUZWS1-RXhTLWSc1SDdIo3pKnG2SxwdbhJLFcwtZNMdtyWw2ieLlZ4gT1LW5yc7pJf7W81s0fy0lFD1VOn1Pn9h8kVIznaDbClYIJsrybIuMrq-G3R4rGyUwgwY3ZzpuqYTz2BOA0YiMdGKUidqaG8DoRiuIMU5JcFeSIJI2E8o7gUiURkMFpo1h6japp-8p7BCa-ABSgFKxFDaHqzho2WrFYCQIbdQu8Sr9hKasIm6bWUzDii72EjqlhlapYaHUXXL6NWlWFNH4e7ioFB_-OAshwvxfE_f-O_GYNHrD-37Yvxnc7ZMV-6VgZh-Qej5fwCE6Hrk-cgfrE7_Z1c0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Score-driven+threshold+ice-age+models%3A+Benchmark+models+for+long-run+climate+forecasts&rft.jtitle=Energy+economics&rft.au=Blazsek%2C+Szabolcs&rft.au=Escribano%2C+Alvaro&rft.date=2023-02-01&rft.issn=0140-9883&rft.volume=118&rft.spage=106522&rft_id=info:doi/10.1016%2Fj.eneco.2023.106522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eneco_2023_106522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-9883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-9883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-9883&client=summon