Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts
Climate variables are known to be subject to abrupt changes when some threshold levels are surpassed. We use data for the last 798,000 years on global ice volume (Ice), atmospheric carbon dioxide level (CO2), and Antarctic land surface temperature (Temp) to model and measure those long-run nonlinear...
Saved in:
Published in | Energy economics Vol. 118; p. 106522 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0140-9883 1873-6181 |
DOI | 10.1016/j.eneco.2023.106522 |
Cover
Abstract | Climate variables are known to be subject to abrupt changes when some threshold levels are surpassed. We use data for the last 798,000 years on global ice volume (Ice), atmospheric carbon dioxide level (CO2), and Antarctic land surface temperature (Temp) to model and measure those long-run nonlinear climate effects. The climate variables have very long and asymmetric cycles, created by periods of upward trends, followed by periods of downward trends driven by exogenous orbital variables. The exogenous orbital variables considered by the Milankovitch cycles are eccentricity of Earth’s orbit, obliquity, and precession of the equinox. We show that our new score-driven threshold ice-age models improve the statistical inference and forecasting performance of competing ice-age models from the literature. The drawback of using our 1000-year frequency observations, is that we cannot measure the nonlinear climate effects of humanity created during the last 250 years, which are known to have generated abrupt structural changes in the Earth’s climate, due to unprecedented high levels of CO2 and Temp, and low levels of Ice volume. On the other hand, the advantage of using low-frequency data is that they allow us to obtain long-run forecasts on what would have occurred if humanity had not burned fossil fuels since the start of the Industrial Revolution. These long-run forecasts can serve as benchmarks for the long-run evaluation of the impact of humanity on climate variables. Without the impact of humanity on climate, we predict the existence of turning points in the evolution of the three climate variables for the next 5,000 years: an upward trend in global ice volume, and downward trends in atmospheric CO2 level and Antarctic land surface temperature.
•We use data for the last 798,000 years on climate variables.•Climate variables are subject to abrupt changes when threshold levels are surpassed.•We suggest the use of new score-driven threshold ice-age models.•The new models improve the forecasting performances over competing ice-age models.•We identify turning points in the climate variables for the next 5 thousand years. |
---|---|
AbstractList | Climate variables are known to be subject to abrupt changes when some threshold levels are surpassed. We use data for the last 798,000 years on global ice volume (Ice), atmospheric carbon dioxide level (CO2), and Antarctic land surface temperature (Temp) to model and measure those long-run nonlinear climate effects. The climate variables have very long and asymmetric cycles, created by periods of upward trends, followed by periods of downward trends driven by exogenous orbital variables. The exogenous orbital variables considered by the Milankovitch cycles are eccentricity of Earth’s orbit, obliquity, and precession of the equinox. We show that our new score-driven threshold ice-age models improve the statistical inference and forecasting performance of competing ice-age models from the literature. The drawback of using our 1000-year frequency observations, is that we cannot measure the nonlinear climate effects of humanity created during the last 250 years, which are known to have generated abrupt structural changes in the Earth’s climate, due to unprecedented high levels of CO2 and Temp, and low levels of Ice volume. On the other hand, the advantage of using low-frequency data is that they allow us to obtain long-run forecasts on what would have occurred if humanity had not burned fossil fuels since the start of the Industrial Revolution. These long-run forecasts can serve as benchmarks for the long-run evaluation of the impact of humanity on climate variables. Without the impact of humanity on climate, we predict the existence of turning points in the evolution of the three climate variables for the next 5,000 years: an upward trend in global ice volume, and downward trends in atmospheric CO2 level and Antarctic land surface temperature.
•We use data for the last 798,000 years on climate variables.•Climate variables are subject to abrupt changes when threshold levels are surpassed.•We suggest the use of new score-driven threshold ice-age models.•The new models improve the forecasting performances over competing ice-age models.•We identify turning points in the climate variables for the next 5 thousand years. |
ArticleNumber | 106522 |
Author | Blazsek, Szabolcs Escribano, Alvaro |
Author_xml | – sequence: 1 givenname: Szabolcs surname: Blazsek fullname: Blazsek, Szabolcs email: sblazsek@ufm.edu organization: School of Business, Universidad Francisco Marroquín, 01010, Guatemala City, Guatemala – sequence: 2 givenname: Alvaro orcidid: 0000-0003-4401-0887 surname: Escribano fullname: Escribano, Alvaro email: alvaroe@eco.uc3m.es organization: Department of Economics, Universidad Carlos III de Madrid, 28903, Getafe, Spain |
BookMark | eNqFkMtKAzEUhoNUsK0-gZt5gdRkLplEcKHFGxRceNmGTHLSpk4TSWLBt3dqu3KhqwMffAf-b4JGPnhA6JySGSWUXaxn4EGHWUnKaiCsKcsjNKa8rTCjnI7QmNCaYMF5dYImKa0JIQ1r-Bi9PesQAZvotuCLvIqQVqE3hdOA1RKKTTDQp8viBrxebVR8P5DChlj0wS9x_PSF7t1GZdhB0CrldIqOreoTnB3uFL3e3b7MH_Di6f5xfr3AuuI0484QYevalAwYY63qrBZa0a7WUDaiE2AEIxYAbKNaUjNS84ZZ0bGWg6YtraZI7P_qGFKKYKV2WWUXfI7K9ZISuQsk1_InkNwFkvtAg1v9cj_iMCN-_WNd7a0hAmwdRJm0G-KAccP2LE1wf_rfWMqD8A |
CitedBy_id | crossref_primary_10_2139_ssrn_4526018 crossref_primary_10_1016_j_eneco_2024_107591 crossref_primary_10_3390_econometrics12030025 |
Cites_doi | 10.1029/96EO00259 10.1038/nature06949 10.1093/biomet/65.2.297 10.1016/j.econlet.2016.10.026 10.1016/j.jeconom.2015.10.005 10.1016/j.jeconom.2021.06.003 10.1093/biomet/asu076 10.2307/1912773 10.1029/2004PA001071 10.1111/j.2517-6161.1989.tb01756.x 10.1080/01621459.1963.10500845 10.1016/0304-4076(86)90063-1 10.1126/science.1141038 10.1561/0800000037 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.eneco.2023.106522 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 1873-6181 |
ExternalDocumentID | 10_1016_j_eneco_2023_106522 S0140988323000208 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFFL AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACIWK ACRLP ACROA ADBBV ADEZE ADFHU ADIYS ADMUD AEBSH AEFWE AEKER AEYQN AFKWA AFODL AFRAH AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AHIDL AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BELTK BEZPJ BGSCR BKOJK BKOMP BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMB HVGLF HZ~ IHE IXIXF J1W JARJE KOM KZ1 LY5 LY6 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SDP SEB SEE SES SEW SPC SPCBC SSB SSF SSR SSZ T5K TN5 U5U WH7 WUQ YK3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c381t-bd09f44d26e6667abfc9ca1b4ce259b9ed960feeef5a704604856f9b678ec1713 |
IEDL.DBID | AIKHN |
ISSN | 0140-9883 |
IngestDate | Thu Apr 24 22:53:32 EDT 2025 Tue Jul 01 01:39:31 EDT 2025 Fri Feb 23 02:37:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | C53 C52 C32 Score-driven ice-age models C38 Generalized autoregressive score Antarctic land surface temperature Atmospheric CO2 level Q54 Climate change Global ice volume Dynamic conditional score C51 |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-bd09f44d26e6667abfc9ca1b4ce259b9ed960feeef5a704604856f9b678ec1713 |
ORCID | 0000-0003-4401-0887 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0140988323000208 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eneco_2023_106522 crossref_primary_10_1016_j_eneco_2023_106522 elsevier_sciencedirect_doi_10_1016_j_eneco_2023_106522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Energy economics |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Blazsek, Escribano, Licht (b7) 2021 Harvey, Chakravarty (b18) 2008 Blasques, Koopman, Lucas (b3) 2015; 102 Blazsek, Escribano, Licht (b9) 2022 Lüthi, Le Floch, Bereiter, Blunier, Barnola, Steigenhaler, Raynaud, Jouzel, Fischer, Kawamura, Stocker (b24) 2008; 453 Cox (b13) 1981; 8 Harvey (b17) 2013 Blazsek, Escribano (b6) 2022; 10 Ljung, Box (b23) 1978; 65 Castle, Hendry (b12) 2020; 10 Paillard, Labeyrie, Yiou (b25) 1996; 77 Bollerslev (b10) 1986; 31 Ayala, Blazsek, Escribano (b1) 2022 Ruddiman (b26) 2005 Creal, Koopman, Lucas (b14) 2008 Intergovernmental Panel on Climate Change (b19) 2021 Box, Jenkins (b11) 1970 Tiao, Tsay (b27) 1989; 51 Kasahara, Shimotsu (b21) 2018 Ward (b28) 1963; 58 Engle (b15) 1982; 50 Lisiecki, Raymo (b22) 2005; 20 Blasques, van Brummelen, Koopman, Lucas (b2) 2022; 227 Jouzel, Masson-Delmotte, Cattani, Dreyfus, Falourd, Hoffmann (b20) 2007; 317 Blazsek, Escribano (b4) 2016; 191 Blazsek, Escribano (b5) 2016; 149 Blazsek, Escribano, Licht (b8) 2022 Everitt (b16) 1993 Engle (10.1016/j.eneco.2023.106522_b15) 1982; 50 Blazsek (10.1016/j.eneco.2023.106522_b4) 2016; 191 Everitt (10.1016/j.eneco.2023.106522_b16) 1993 Lisiecki (10.1016/j.eneco.2023.106522_b22) 2005; 20 Tiao (10.1016/j.eneco.2023.106522_b27) 1989; 51 Jouzel (10.1016/j.eneco.2023.106522_b20) 2007; 317 Creal (10.1016/j.eneco.2023.106522_b14) 2008 Box (10.1016/j.eneco.2023.106522_b11) 1970 Harvey (10.1016/j.eneco.2023.106522_b17) 2013 Castle (10.1016/j.eneco.2023.106522_b12) 2020; 10 Ayala (10.1016/j.eneco.2023.106522_b1) 2022 Blasques (10.1016/j.eneco.2023.106522_b2) 2022; 227 Lüthi (10.1016/j.eneco.2023.106522_b24) 2008; 453 Harvey (10.1016/j.eneco.2023.106522_b18) 2008 Ljung (10.1016/j.eneco.2023.106522_b23) 1978; 65 Intergovernmental Panel on Climate Change (10.1016/j.eneco.2023.106522_b19) 2021 Paillard (10.1016/j.eneco.2023.106522_b25) 1996; 77 Blazsek (10.1016/j.eneco.2023.106522_b7) 2021 Blazsek (10.1016/j.eneco.2023.106522_b9) 2022 Cox (10.1016/j.eneco.2023.106522_b13) 1981; 8 Ward (10.1016/j.eneco.2023.106522_b28) 1963; 58 Blazsek (10.1016/j.eneco.2023.106522_b6) 2022; 10 Blasques (10.1016/j.eneco.2023.106522_b3) 2015; 102 Bollerslev (10.1016/j.eneco.2023.106522_b10) 1986; 31 Blazsek (10.1016/j.eneco.2023.106522_b5) 2016; 149 Ruddiman (10.1016/j.eneco.2023.106522_b26) 2005 Blazsek (10.1016/j.eneco.2023.106522_b8) 2022 Kasahara (10.1016/j.eneco.2023.106522_b21) 2018 |
References_xml | – volume: 191 start-page: 145 year: 2016 end-page: 163 ident: b4 article-title: Patent propensity, R & D and market competition: Dynamic spillovers of innovation leaders and followers publication-title: J. Econometrics – year: 1970 ident: b11 article-title: Time Series Analysis, Forecasting and Control – year: 2022 ident: b9 article-title: Score-driven location plus scale models: Asymptotic theory and an application to forecasting Dow Jones volatility publication-title: Stud. Nonlinear Dyn. Econ. – volume: 317 start-page: 793 year: 2007 end-page: 797 ident: b20 article-title: Orbital and millennial antarctic climate variability over the past 800, 000 years publication-title: Science – year: 2008 ident: b14 article-title: A general framework for observation driven time-varying parameter models publication-title: Tinbergen Institute Discussion Paper 08-108/4 – volume: 10 start-page: 145 year: 2020 end-page: 322 ident: b12 article-title: Climate econometrics: An overview publication-title: Found. Trends Econom. – volume: 10 year: 2022 ident: b6 article-title: Robust estimation and forecasting of climate change using score-driven ice-age models publication-title: Econom. (Special Issue: Econom. Anal. Clim. Change) – volume: 20 year: 2005 ident: b22 article-title: A pliocene-pleistocene stack of 57 globally distributed benthic publication-title: Paleoceanography – year: 2022 ident: b8 article-title: Co-integration with score-driven models: an application to US real GDP growth, US inflation rate, and effective federal funds rate publication-title: Macroecon. Dyn. – year: 2013 ident: b17 publication-title: Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series – volume: 149 start-page: 116 year: 2016 end-page: 119 ident: b5 article-title: Score-driven dynamic patent count panel data models publication-title: Econom. Lett. – volume: 102 start-page: 325 year: 2015 end-page: 343 ident: b3 article-title: Information-theoretic optimality of observation-driven time series models for continuous responses publication-title: Biometrika – year: 2021 ident: b7 article-title: Multivariate Markov-switching score-driven models: An application to the global crude oil market publication-title: Stud. Nonlinear Dyn. Econ. – volume: 227 start-page: 325 year: 2022 end-page: 346 ident: b2 article-title: Maximum likelihood estimation for score-driven models publication-title: J. Econometrics – year: 2008 ident: b18 article-title: Beta-t-(e)garch publication-title: Cambridge Working Papers in Economics 0840, Faculty of Economics – volume: 77 start-page: 379 year: 1996 ident: b25 article-title: Macintosh program performs time-series analysis publication-title: Eos Trans. AGU – volume: 50 start-page: 987 year: 1982 end-page: 1007 ident: b15 article-title: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation publication-title: Econometrica – year: 2021 ident: b19 article-title: Sixth assessment report – year: 2018 ident: b21 article-title: Testing the number of regimes in Markov regime switching models – year: 2022 ident: b1 article-title: Anticipating extreme losses using score-driven shape filters publication-title: Stud. Nonlinear Dyn. Econ. – volume: 8 start-page: 93 year: 1981 end-page: 115 ident: b13 article-title: Statistical analysis of time series: Some recent developments publication-title: Scand. J. Stat. – volume: 58 start-page: 236 year: 1963 end-page: 244 ident: b28 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Amer. Statist. Assoc. – volume: 453 year: 2008 ident: b24 article-title: High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present publication-title: Nature – year: 2005 ident: b26 article-title: Plows, Plagues and Petroleum: How Humans Took Control of the Climate – volume: 31 start-page: 307 year: 1986 end-page: 327 ident: b10 article-title: Generalized autoregressive conditional heteroskedasticity publication-title: J. Econometrics – year: 1993 ident: b16 article-title: Cluster Analysis – volume: 65 start-page: 297 year: 1978 end-page: 303 ident: b23 article-title: On a measure of lack of fit in time-series models publication-title: Biometrika – volume: 51 start-page: 157 year: 1989 end-page: 213 ident: b27 article-title: Model specification in multivariate time series publication-title: J. R. Stat. Soc. – year: 2005 ident: 10.1016/j.eneco.2023.106522_b26 – volume: 77 start-page: 379 issue: 39 year: 1996 ident: 10.1016/j.eneco.2023.106522_b25 article-title: Macintosh program performs time-series analysis publication-title: Eos Trans. AGU doi: 10.1029/96EO00259 – volume: 453 year: 2008 ident: 10.1016/j.eneco.2023.106522_b24 article-title: High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present publication-title: Nature doi: 10.1038/nature06949 – volume: 65 start-page: 297 issue: 2 year: 1978 ident: 10.1016/j.eneco.2023.106522_b23 article-title: On a measure of lack of fit in time-series models publication-title: Biometrika doi: 10.1093/biomet/65.2.297 – volume: 149 start-page: 116 issue: C year: 2016 ident: 10.1016/j.eneco.2023.106522_b5 article-title: Score-driven dynamic patent count panel data models publication-title: Econom. Lett. doi: 10.1016/j.econlet.2016.10.026 – volume: 191 start-page: 145 issue: 1 year: 2016 ident: 10.1016/j.eneco.2023.106522_b4 article-title: Patent propensity, R & D and market competition: Dynamic spillovers of innovation leaders and followers publication-title: J. Econometrics doi: 10.1016/j.jeconom.2015.10.005 – volume: 227 start-page: 325 issue: 2 year: 2022 ident: 10.1016/j.eneco.2023.106522_b2 article-title: Maximum likelihood estimation for score-driven models publication-title: J. Econometrics doi: 10.1016/j.jeconom.2021.06.003 – volume: 102 start-page: 325 issue: 2 year: 2015 ident: 10.1016/j.eneco.2023.106522_b3 article-title: Information-theoretic optimality of observation-driven time series models for continuous responses publication-title: Biometrika doi: 10.1093/biomet/asu076 – volume: 8 start-page: 93 issue: 2 year: 1981 ident: 10.1016/j.eneco.2023.106522_b13 article-title: Statistical analysis of time series: Some recent developments publication-title: Scand. J. Stat. – volume: 50 start-page: 987 issue: 4 year: 1982 ident: 10.1016/j.eneco.2023.106522_b15 article-title: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation publication-title: Econometrica doi: 10.2307/1912773 – volume: 20 issue: 1 year: 2005 ident: 10.1016/j.eneco.2023.106522_b22 article-title: A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records publication-title: Paleoceanography doi: 10.1029/2004PA001071 – year: 2018 ident: 10.1016/j.eneco.2023.106522_b21 – volume: 51 start-page: 157 issue: 2 year: 1989 ident: 10.1016/j.eneco.2023.106522_b27 article-title: Model specification in multivariate time series publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1989.tb01756.x – year: 2022 ident: 10.1016/j.eneco.2023.106522_b9 article-title: Score-driven location plus scale models: Asymptotic theory and an application to forecasting Dow Jones volatility publication-title: Stud. Nonlinear Dyn. Econ. – year: 1970 ident: 10.1016/j.eneco.2023.106522_b11 – year: 1993 ident: 10.1016/j.eneco.2023.106522_b16 – year: 2008 ident: 10.1016/j.eneco.2023.106522_b18 article-title: Beta-t-(e)garch – volume: 58 start-page: 236 issue: 301 year: 1963 ident: 10.1016/j.eneco.2023.106522_b28 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1963.10500845 – year: 2008 ident: 10.1016/j.eneco.2023.106522_b14 article-title: A general framework for observation driven time-varying parameter models – volume: 31 start-page: 307 issue: 3 year: 1986 ident: 10.1016/j.eneco.2023.106522_b10 article-title: Generalized autoregressive conditional heteroskedasticity publication-title: J. Econometrics doi: 10.1016/0304-4076(86)90063-1 – year: 2021 ident: 10.1016/j.eneco.2023.106522_b7 article-title: Multivariate Markov-switching score-driven models: An application to the global crude oil market publication-title: Stud. Nonlinear Dyn. Econ. – year: 2022 ident: 10.1016/j.eneco.2023.106522_b8 article-title: Co-integration with score-driven models: an application to US real GDP growth, US inflation rate, and effective federal funds rate publication-title: Macroecon. Dyn. – volume: 317 start-page: 793 year: 2007 ident: 10.1016/j.eneco.2023.106522_b20 article-title: Orbital and millennial antarctic climate variability over the past 800, 000 years publication-title: Science doi: 10.1126/science.1141038 – year: 2013 ident: 10.1016/j.eneco.2023.106522_b17 – volume: 10 issue: 1 year: 2022 ident: 10.1016/j.eneco.2023.106522_b6 article-title: Robust estimation and forecasting of climate change using score-driven ice-age models publication-title: Econom. (Special Issue: Econom. Anal. Clim. Change) – volume: 10 start-page: 145 issue: 3–4 year: 2020 ident: 10.1016/j.eneco.2023.106522_b12 article-title: Climate econometrics: An overview publication-title: Found. Trends Econom. doi: 10.1561/0800000037 – year: 2022 ident: 10.1016/j.eneco.2023.106522_b1 article-title: Anticipating extreme losses using score-driven shape filters publication-title: Stud. Nonlinear Dyn. Econ. – year: 2021 ident: 10.1016/j.eneco.2023.106522_b19 |
SSID | ssj0005658 |
Score | 2.3938599 |
Snippet | Climate variables are known to be subject to abrupt changes when some threshold levels are surpassed. We use data for the last 798,000 years on global ice... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106522 |
SubjectTerms | Antarctic land surface temperature Atmospheric CO2 level Climate change Dynamic conditional score Generalized autoregressive score Global ice volume Score-driven ice-age models |
Title | Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts |
URI | https://dx.doi.org/10.1016/j.eneco.2023.106522 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLb2OMAF8RTjMeXAkbCtj3ThNibQAMGFh7hVTerCYHTT2l357Thpy0NCO3CsVUutk3y25S82wFGMiL7GgAcyUdxD1-VRIjzuxDqiwyd9abvt39yK0YN39eQ_1WBY3YUxtMoS-wtMt2hdSjqlNTuz8bhjaUmyTzvStfW0fh2ajiuF34Dm4PJ6dPvN9BB2TKdlMhqFqvmQpXkRomhzCdBxSSJ8x_nbQf1wOhfrsFZGi2xQfNAG1DDdhJXqMnG2BY93pg0lj-cGtFhOC5OZehKj488JKZgddJOdsjP6sZf3aP5WShjFqmwyTZ_5fJEyPRlT4IpGiDrK8mwbHi7O74cjXo5K4Jpcbs5V3JWJ58WOQMpHgkglWuqopzyNlN8oiTFlKgmtS-JHgamFen1fJFKRq0Ldo0R1BxrpNMVdYImLGAiUMg6EqeJKD1XQ7caoAxRKyxY4lX1CXfYRN-MsJmFFGHsNrVFDY9SwMGoLjr-UZkUbjeWvi8rw4a_dEBLQL1Pc-6_iPqyap4KPfQCNfL7AQwo3ctWG-slHr11uqk_2VdUC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGcqCeIo3HhgxbRPHrtmgAhUoXWhRtyh2LlAooWrSld_O2UkQSIiB9WJLztn-7k73-Y6QkxgAAgOSSZVoxsH3WZQIzrzYRHj5VKBctf37geiN-O04GNdIt3oLY2mVJfYXmO7QupQ0S202Z5NJ09GSVAdPpO_yaZ0lsswDX1pe39nHN56HcE06HY_RDq9KDzmSF-KJsU8APR8lIvC8383TN5NzvUZWS1-RXhTLWSc1SDdIo3pKnG2SxwdbhJLFcwtZNMdtyWw2ieLlZ4gT1LW5yc7pJf7W81s0fy0lFD1VOn1Pn9h8kVIznaDbClYIJsrybIuMrq-G3R4rGyUwgwY3ZzpuqYTz2BOA0YiMdGKUidqaG8DoRiuIMU5JcFeSIJI2E8o7gUiURkMFpo1h6japp-8p7BCa-ABSgFKxFDaHqzho2WrFYCQIbdQu8Sr9hKasIm6bWUzDii72EjqlhlapYaHUXXL6NWlWFNH4e7ioFB_-OAshwvxfE_f-O_GYNHrD-37Yvxnc7ZMV-6VgZh-Qej5fwCE6Hrk-cgfrE7_Z1c0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Score-driven+threshold+ice-age+models%3A+Benchmark+models+for+long-run+climate+forecasts&rft.jtitle=Energy+economics&rft.au=Blazsek%2C+Szabolcs&rft.au=Escribano%2C+Alvaro&rft.date=2023-02-01&rft.issn=0140-9883&rft.volume=118&rft.spage=106522&rft_id=info:doi/10.1016%2Fj.eneco.2023.106522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eneco_2023_106522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-9883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-9883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-9883&client=summon |