AAM Based Facial Feature Tracking with Kinect
Facial features tracking is widely used in face recognition, gesture, expression analysis, etc. AAM (Active Appearance Model) is one of the powerful methods for objects feature localization. Nevertheless, AAM still suffers from a few drawbacks, such as the view angle change problem. We present a met...
Saved in:
Published in | Cybernetics and information technologies : CIT Vol. 15; no. 3; pp. 127 - 139 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Sofia
De Gruyter Open
01.09.2015
De Gruyter Poland Sciendo |
Subjects | |
Online Access | Get full text |
ISSN | 1314-4081 1311-9702 1314-4081 |
DOI | 10.1515/cait-2015-0046 |
Cover
Loading…
Abstract | Facial features tracking is widely used in face recognition, gesture, expression analysis, etc. AAM (Active Appearance Model) is one of the powerful methods for objects feature localization. Nevertheless, AAM still suffers from a few drawbacks, such as the view angle change problem. We present a method to solve it by using the depth data acquired from Kinect. We use the depth data to get the head pose information and RGB data to match the AAM result. We establish an approximate facial 3D gird model and then initialize the subsequent frames with this model and head pose information. To avoid the local extremum, we divide the model into several parts by the poses and match the facial features with the closest model. The experimental results show improvement of AAM performance when rotating the head. |
---|---|
AbstractList | Facial features tracking is widely used in face recognition, gesture, expression analysis, etc. AAM (Active Appearance Model) is one of the powerful methods for objects feature localization. Nevertheless, AAM still suffers from a few drawbacks, such as the view angle change problem. We present a method to solve it by using the depth data acquired from Kinect. We use the depth data to get the head pose information and RGB data to match the AAM result. We establish an approximate facial 3D gird model and then initialize the subsequent frames with this model and head pose information. To avoid the local extremum, we divide the model into several parts by the poses and match the facial features with the closest model. The experimental results show improvement of AAM performance when rotating the head. |
Author | Wang, Qingxiang Yu, Yanhong |
Author_xml | – sequence: 1 givenname: Qingxiang surname: Wang fullname: Wang, Qingxiang email: wangqx@qlu.edu.cn organization: School of Information, Qilu University of Technology, China – sequence: 2 givenname: Yanhong surname: Yu fullname: Yu, Yanhong organization: Basis Medical College, Shandong University of Traditional Chinese Medicine, China |
BookMark | eNptUE1Lw0AUXKSCtfbqOeA5db-zAS-1WC1WvNTz8rJ5qakxqZuE0n9vYkQ9OJd5PGbmPeacjMqqREIuGZ0xxdS1g7wJOWUqpFTqEzJmgslQUsNGf-YzMq3rHe0gY8GMGpNwPn8KbqHGNFiCy6EIlghN6zHYeHBvebkNDnnzGjzmJbrmgpxmUNQ4_eYJeVnebRYP4fr5frWYr0MnDGvChArkWlEKJk2w40hqlyZJFjNEHclIpVqD4CAocCMMNTqNMswMUxzRSTEhqyE3rWBn9z5_B3-0FeT2a1H5rQXf5K5Ai5rHSkKkkySWPOUAOosTMFI6nWVxn3U1ZO199dFi3dhd1fqye98KpjpQFsWdajaonK_q2mP2c5VR2zds-4Zt37DtG-4MN4PhAEWDPsWtb4_d8Jv-v5EpwXgkPgHo-4EA |
ContentType | Journal Article |
Copyright | 2015. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2015. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1515/cait-2015-0046 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1314-4081 |
EndPage | 139 |
ExternalDocumentID | oai_doaj_org_article_e62954a76bb942d2aa6f9ba844c6ff94 10_1515_cait_2015_0046 10_1515_cait_2015_0046153127 |
GroupedDBID | 0R~ 4.4 5VS 9WM AATOW ABFKT ACGFS ADBBV ADBLJ AFKRA AHGSO AIKXB ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU E0C EBS EJD GROUPED_DOAJ HZ~ J9A KQ8 O9- OK1 P2P PHGZM PHGZT PIMPY QD8 RNS SA. SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c381t-b03e26500a8dbe500746cdbbf91ee67475d66a32a30a2838086d7fef8152eec43 |
IEDL.DBID | BENPR |
ISSN | 1314-4081 1311-9702 |
IngestDate | Wed Aug 27 01:31:17 EDT 2025 Mon Jun 30 13:16:28 EDT 2025 Tue Jul 01 04:30:33 EDT 2025 Thu Jul 10 10:40:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-b03e26500a8dbe500746cdbbf91ee67475d66a32a30a2838086d7fef8152eec43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3155550179?pq-origsite=%requestingapplication% |
PQID | 3155550179 |
PQPubID | 6783493 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e62954a76bb942d2aa6f9ba844c6ff94 proquest_journals_3155550179 crossref_primary_10_1515_cait_2015_0046 walterdegruyter_journals_10_1515_cait_2015_0046153127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-9-1 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-9-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Sofia |
PublicationPlace_xml | – name: Sofia |
PublicationTitle | Cybernetics and information technologies : CIT |
PublicationYear | 2015 |
Publisher | De Gruyter Open De Gruyter Poland Sciendo |
Publisher_xml | – name: De Gruyter Open – name: De Gruyter Poland – name: Sciendo |
SSID | ssj0000493185 |
Score | 1.9671259 |
Snippet | Facial features tracking is widely used in face recognition, gesture, expression analysis, etc. AAM (Active Appearance Model) is one of the powerful methods... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 127 |
SubjectTerms | active appearance model Facial feature tracking Kinect view based model |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3SlZtifWC1ShaCuhiamTxmsmzFUpS6stBdyFN0UaWdIv69NzNTbUVw4zZkEc5Ncs7N41yELtJAPKcadj-ufcIcY4kkwSbGBZk5YSmx8e_w5EGMp-xuxmcbpb7im7DaHrgGru9FvInSuTBGssxlWosgjS4YsyIEWTmBAudtJFMvte6N34Ibl0bg7L7VzyVMiZQnMSXcYqHKrH9LYbbfq7tq558Wq49yfTdaUc5oD7UbrYgH9Rg7aMfP91GnWY1LfNVYRl8foGQwmOAhEJLDIx0PwXGUdquFx8BFNp6G43jgiu9BU9ryEE1Ht48346QphJBYINQyMYT6DKQU0YUznlc1QqwzJsjUewEJAXdCaJppSjTIhQLSFJcHHwogZ-8to0eoNX-d-2OEiRE6lYWQPKeMammIpCYNgmviQCu4LrpcA6Pear8LFfMEgFBFCFWEUEUIu2gYcfvqFX2qqwaInmqip_6KXhf11qirZvEsFQWNA4kTbBVdxH9E4rvX76OCDTzN8pP_GNsp2q3nS3xQ1kOtcrHyZ6BASnNeTbZP8sPWoQ priority: 102 providerName: Directory of Open Access Journals |
Title | AAM Based Facial Feature Tracking with Kinect |
URI | https://www.degruyter.com/doi/10.1515/cait-2015-0046 https://www.proquest.com/docview/3155550179 https://doaj.org/article/e62954a76bb942d2aa6f9ba844c6ff94 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELaguXCpWh4iUCIfkICDVe_6sesTSqBRVWiFEJV6s_ysuCQl2aji3zPjOK2KENfVarX6PJ7vmxl7hpC3TeZJCQfeT7nEZJSSGZ4D8zGbNuogeMC7w-cX-vRSnl2pq5pwW9djlTufWBx1XAbMkR8LID5Q02A_H29-MZwahdXVOkLjMRmBC-4h-BrNTi6-fb_LsoD-xevBJepqGmY6PM5TOjcCjx8H93MAM2kUwzDxATOVBv4PVOf-balfx3S92vwedvXSQkPzA7Jf9SOdbhf8kDxKi6fksO7QNX1f20h_eEbYdHpOZ0BSkc4dJsYpyr3NKlHgp4AZcopJWPoFdGYYnpPL-cmPT6esDkdgAUh2YJ6L1IK84q6PPqkyNyRE77NpUtIQJKiotROtE9yBhOghdIldTrkHwk4pSPGC7C2Wi_SSUO61a0yvjeqEFM54boRvslaOR9APcUze7YCxN9seGBZjB4DQIoQWIbQI4ZjMELe7t7B3dXmwXF3buhVs0lhbdJ323sg2ts7pbLzrpQw6ZyPH5GiHuq0bam3vl39M1F8rcf_Wv_8KnHrTdq_-_9nX5MnWEvD42BHZG1ab9Ab0xuAnZDT9PPt6NqnGNSlx-x8HmdM1 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2V9ACXquVDBAr4AAIOVnfXXu_6gFACjVLSRAi1Um-LPysuSUk2qvqn-huZ2ey2KkLcel1Z1mr8PO_N2J4BeJvGJOTCoPfLTeDSS8l1Eh23PurMKycSR2-HpzM1PpXfzvKzLbju3sLQtcrOJzaO2i8c5cgPBBIfqmnEz-eL35y6RtHpatdCYwOLSbi6xJBt9enoK67vuywbHZ58GfO2qwB3yE41t4kIGeqSxJTehrxpuOG8tVGnIShU17lXyojMiMQg95ao-X0RQyyR6UJwUuC8D2BbCgxlerA9PJx9_3GT1UG9Tc-RmygvTbku6PpQUykSdcOBM79qhGWacwpL7zBh0zDgjsrduWzOy304X66v6u58tqG90S7stHqVDTYA24OtMH8Me61HWLEPbdnqj0-ADwZTNkRS9GxkKBHPSF6ul4EhHzrKyDNK-rIJ6lpXP4XTezHbM-jNF_PwHFhilUl1qXReCCmMtokWNo0qN4lHveL78L4zTHWxqblRUayCJqzIhBWZsCIT9mFIdrsZRbWymw-L5XnVbr0qKDrLNIWyVsvMZ8aoqK0ppXQqRi37sN9ZvWo38Kq6hVsf8r9W4nbUv_8KSSTNihf_n_YNPByfTI-r46PZ5CU82qCCrq7tQ69ersMr1Dq1fd0CjMHP-8b0H49KDWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhMxFL2CRKrYVBSKCJTWi0rQxSie8SPjZQoNgbQFqa3UneVn1E1SJRNV_XuuEyfQx4qtZUvW8eOce20fAxyWkQbBDO5-woSCe84LRaMrrI-q8tIx6tLb4bNzObziP6_F-jbhPF-r9GE8W9w3K4fUrp-6RUqUbbwGkIG7ztw0OMClKFKA17318SW0pVSMt6DdH36_-LVJtKAETi-Es2Hj08YPCGnp2_9AbG7fLY-tN336h30Gr2E7y0bSX43zDrwIkzewkxfmnHzJ7tFHb6Ho98_IMXKTJwOT8uEkqbzFLBCkJZcS4yTlXskI5aVrduFqcHL5dVjkPxEKh9zaFJayUKGqoqb2NojldyHOWxtVGYLE2EB4KQ2rDKMGlUONEYvvxRBr5OkQHGfvoDWZTsJ7INRKU6paKtFjnBllqWK2jFIY6lE2-A58XgOjb1fWFzqFDAihThDqBKFOEHbgOOG2qZUsq5cF09lY5xWgg0xHiqYnrVW88pUxMipras6djFHxDuytUdd5Hc01Q7mDMRTuGh0Qj0bib63ne4V7eVn1PvxnuwPY-v1toE9_nI8-wqvVbEk3y_ag1cwW4RNKkcbu58n2BzSq2Jo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AAM+Based+Facial+Feature+Tracking+with+Kinect&rft.jtitle=Cybernetics+and+information+technologies+%3A+CIT&rft.au=Wang%2C+Qingxiang&rft.au=Yu%2C+Yanhong&rft.date=2015-09-01&rft.issn=1314-4081&rft.eissn=1314-4081&rft.volume=15&rft.issue=3&rft.spage=127&rft.epage=139&rft_id=info:doi/10.1515%2Fcait-2015-0046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_cait_2015_0046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1314-4081&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1314-4081&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1314-4081&client=summon |