Data-Driven Modeling for Photovoltaic Power Output of Small-Scale Distributed Plants at the 1-s Time Scale

Under the condition of a small time scale (e.g. second), distributed photovoltaic (PV) power generation output has the problems of strongly fluctuating and difficult to accurately simulate. It affects the control strategy and operation mode of hybrid energy systems. To address this problem, a data-d...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 117560 - 117571
Main Authors Wei, Jia, Yang, Weijia, Li, Xudong, Wang, Junsong
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under the condition of a small time scale (e.g. second), distributed photovoltaic (PV) power generation output has the problems of strongly fluctuating and difficult to accurately simulate. It affects the control strategy and operation mode of hybrid energy systems. To address this problem, a data-driven small-scale distributed PV plant power output model on a 1-second time scale is proposed for the generation of second-by-second PV power output scenarios in hybrid energy systems. Firstly, this work analyzes the characteristics of PV power output at the 1-second time scale based on the probability distribution of power output fluctuations. Secondly, an index system that characterizes the PV power output fluctuation characteristics at the 1-second time scale is constructed. Then, using the data-driven method, a BP neural network model is constructed to simulate the PV power output at the 1-second time scale. Finally, a simulation is performed using the measured data from the PV plant. The findings demonstrate that compared to PV power output models in seconds based on Pearson systematic random numbers: (1) The correlation coefficient (r) of the proposed model is more than 0.8, in a higher degree of fit; (2) The root mean square error (RMSE) of the proposed model achieves 0.005, generally representing a 37.12% reduction. Overall, both the time scale and model accuracy of this model have deep potential value in PV power output modeling and system regulation.
AbstractList Under the condition of a small time scale (e.g. second), distributed photovoltaic (PV) power generation output has the problems of strongly fluctuating and difficult to accurately simulate. It affects the control strategy and operation mode of hybrid energy systems. To address this problem, a data-driven small-scale distributed PV plant power output model on a 1-second time scale is proposed for the generation of second-by-second PV power output scenarios in hybrid energy systems. Firstly, this work analyzes the characteristics of PV power output at the 1-second time scale based on the probability distribution of power output fluctuations. Secondly, an index system that characterizes the PV power output fluctuation characteristics at the 1-second time scale is constructed. Then, using the data-driven method, a BP neural network model is constructed to simulate the PV power output at the 1-second time scale. Finally, a simulation is performed using the measured data from the PV plant. The findings demonstrate that compared to PV power output models in seconds based on Pearson systematic random numbers: (1) The correlation coefficient (r) of the proposed model is more than 0.8, in a higher degree of fit; (2) The root mean square error (RMSE) of the proposed model achieves 0.005, generally representing a 37.12% reduction. Overall, both the time scale and model accuracy of this model have deep potential value in PV power output modeling and system regulation.
Author Wang, Junsong
Li, Xudong
Yang, Weijia
Wei, Jia
Author_xml – sequence: 1
  givenname: Jia
  orcidid: 0009-0002-1590-6190
  surname: Wei
  fullname: Wei, Jia
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Weijia
  orcidid: 0000-0003-1638-0792
  surname: Yang
  fullname: Yang, Weijia
  email: weijia.yang@whu.edu.cn
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Xudong
  orcidid: 0000-0002-4667-062X
  surname: Li
  fullname: Li, Xudong
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Junsong
  surname: Wang
  fullname: Wang, Junsong
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China
BookMark eNp9kdtKAzEQhoMoeHwCvcgLbN0cmmQvpfUEioXqdZjNTjQl3Ug2VXx7a6sgXjg3Mwzz_Qx8h2S3Tz0ScsrqEWN1c34xmVzO5yNeczkSUird1DvkgDPVVGIs1O6veZ-cDMOiXpdZr8b6gCymUKCa5vCGPb1PHcbQP1OfMp29pJLeUiwQHJ2ld8z0YVVeV4UmT-dLiLGaO4hIp2EoObSrgh2dRejLQKHQ8oKUVQN9DEukm8NjsuchDnjy3Y_I09Xl4-Smunu4vp1c3FVOGFYqQMWkaTujOPegWnTcCdVp5k0DykusuXNSeS9azox2qMy4dVwKzblWnRNH5Hab2yVY2NcclpA_bIJgN4uUny3kElxEi4w3ygHTXI-lBwGgmUGnGOcI0sA6q9lmuZyGIaO3LhQoIfUlQ4iW1fbLgd06sF8O7LeDNSv-sD-__E-dbamAiL8IJQWrhfgE6qeU_A
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_en17235831
Cites_doi 10.1109/access.2022.3197609
10.1007/s40974-021-00235-0
10.1016/j.ijepes.2021.107365
10.1016/j.apenergy.2016.01.086
10.1016/j.seta.2021.101832
10.1016/j.energy.2019.116248
10.18280/jesa.560118
10.1016/j.renene.2022.10.005
10.1049/iet-rpg.2018.5779
10.1016/j.ijepes.2023.109609
10.1016/j.epsr.2023.109965
10.1016/j.artint.2018.03.003
10.1016/j.ijepes.2021.107155
10.1016/j.apenergy.2019.114216
10.6028/jres.122.040
10.1016/s0927-0248(00)00334-2
10.1016/j.apenergy.2024.122818
10.1016/j.solener.2023.111979
10.1038/s41467-023-37536-3
10.1109/TIE.2017.2714127
10.1038/s41467-018-05060-4
10.1063/5.0082629
10.1016/j.ijepes.2023.109325
10.1007/s10916-009-9301-x
10.3390/en16134905
10.1016/j.renene.2023.118903
10.1002/pip.1063
10.1007/s00450-016-0316-5
10.1109/tevc.2018.2869001
10.1109/JESTIE.2022.3179961
10.1016/j.egyr.2023.05.237
10.1016/j.seta.2023.103534
10.1016/j.energy.2023.127915
10.1109/TSTE.2014.2359974
10.3389/fenrg.2019.00076
10.1016/j.rser.2014.10.011
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2024.3446790
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 117571
ExternalDocumentID oai_doaj_org_article_e1296ca172754fa3aa718ec6122ea48a
10_1109_ACCESS_2024_3446790
10643103
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province of China
  grantid: 2024AFA058
  funderid: 10.13039/501100003819
– fundername: National Natural Science Foundation of China
  grantid: 52079096
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c381t-ae6148bd8622fa6bec2c36d71f89a6f4e02cc46ff3b2187ce685bc24372276dc3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:23:06 EDT 2025
Tue Jul 01 03:02:47 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Wed Aug 27 02:03:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-ae6148bd8622fa6bec2c36d71f89a6f4e02cc46ff3b2187ce685bc24372276dc3
ORCID 0000-0002-4667-062X
0009-0002-1590-6190
0000-0003-1638-0792
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10643103
PageCount 12
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3446790
doaj_primary_oai_doaj_org_article_e1296ca172754fa3aa718ec6122ea48a
crossref_citationtrail_10_1109_ACCESS_2024_3446790
ieee_primary_10643103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref36
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref38
Hummon (ref16)
ref19
ref18
Shedd (ref29)
Lin (ref14) 2018; 42
ref24
ref23
ref26
ref25
ref20
ref22
Yang (ref31)
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref40
  doi: 10.1109/access.2022.3197609
– ident: ref4
  doi: 10.1007/s40974-021-00235-0
– ident: ref37
  doi: 10.1016/j.ijepes.2021.107365
– ident: ref3
  doi: 10.1016/j.apenergy.2016.01.086
– ident: ref9
  doi: 10.1016/j.seta.2021.101832
– ident: ref12
  doi: 10.1016/j.energy.2019.116248
– ident: ref34
  doi: 10.18280/jesa.560118
– ident: ref7
  doi: 10.1016/j.renene.2022.10.005
– start-page: 951
  volume-title: Proc. 11th Int. Conf. Appl. Energy (ICAE)
  ident: ref31
  article-title: Preliminary study on dynamic performance of variable speed pump-turbine unit for hybrid photovoltaic-pumped storage power system
– ident: ref20
  doi: 10.1049/iet-rpg.2018.5779
– ident: ref28
  doi: 10.1016/j.ijepes.2023.109609
– ident: ref22
  doi: 10.1016/j.epsr.2023.109965
– ident: ref36
  doi: 10.1016/j.artint.2018.03.003
– ident: ref17
  doi: 10.1016/j.ijepes.2021.107155
– ident: ref21
  doi: 10.1016/j.apenergy.2019.114216
– ident: ref32
  doi: 10.6028/jres.122.040
– ident: ref8
  doi: 10.1016/s0927-0248(00)00334-2
– volume: 42
  start-page: 24
  issue: 15
  year: 2018
  ident: ref14
  article-title: Multi-scale clustering analysis based modeling of photovoltaic power characteristics and its application in prediction
  publication-title: Automat. Electr. Power Syst.
– ident: ref39
  doi: 10.1016/j.apenergy.2024.122818
– ident: ref23
  doi: 10.1016/j.solener.2023.111979
– ident: ref2
  doi: 10.1038/s41467-023-37536-3
– ident: ref15
  doi: 10.1109/TIE.2017.2714127
– ident: ref1
  doi: 10.1038/s41467-018-05060-4
– ident: ref19
  doi: 10.1063/5.0082629
– ident: ref35
  doi: 10.1016/j.ijepes.2023.109325
– ident: ref38
  doi: 10.1007/s10916-009-9301-x
– ident: ref26
  doi: 10.3390/en16134905
– ident: ref10
  doi: 10.1016/j.renene.2023.118903
– ident: ref30
  doi: 10.1002/pip.1063
– ident: ref25
  doi: 10.1007/s00450-016-0316-5
– start-page: 1
  volume-title: Proc. 3rd Int. Workshop Integr. Sol. Power Power Syst.
  ident: ref16
  article-title: Downscaling solar power output to 4-seconds for use in integration studies
– ident: ref33
  doi: 10.1109/tevc.2018.2869001
– ident: ref24
  doi: 10.1109/JESTIE.2022.3179961
– ident: ref27
  doi: 10.1016/j.egyr.2023.05.237
– start-page: 1
  volume-title: Proc. 2nd Annu. Int. Workshop Integr. Sol. Power into Power Syst. Conf.
  ident: ref29
  article-title: Statistical characterization of solar photovoltaic power variability at small timescales
– ident: ref6
  doi: 10.1016/j.seta.2023.103534
– ident: ref11
  doi: 10.1016/j.energy.2023.127915
– ident: ref18
  doi: 10.1109/TSTE.2014.2359974
– ident: ref13
  doi: 10.3389/fenrg.2019.00076
– ident: ref5
  doi: 10.1016/j.rser.2014.10.011
SSID ssj0000816957
Score 2.306726
Snippet Under the condition of a small time scale (e.g. second), distributed photovoltaic (PV) power generation output has the problems of strongly fluctuating and...
SourceID doaj
crossref
ieee
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 117560
SubjectTerms Accuracy
Analytical models
Data models
data-driven
fluctuation characteristics
Fluctuations
hybrid energy system
Hybrid power systems
Photovoltaic
Photovoltaic systems
Power generation
Predictive models
second-time scale
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQJzggliLKJh84YqiXOMkRWhBCAiqVStwix7GFUGmq4v4_M05A4QIXrpGzzYzmvYni9wg5M1kJuGM4q5TzTHmhWG55ybzl3ALd8E7hfueHR303VfcvyUvH6gv_CWvkgZvAXToAJG0N4myivJHGQDd1FoBZOKOySI0A8zrDVOzBGdd5krYyQ3yQX14Nh_BGMBAKdSFhBkqxC3egKCr2_7BYiQhzu022WmpIr5pH2iFrbr5LNjuCgXvkbWSCYaMltiiKNma4mZwC76Tj1zrU0Gpg0rd0jNZn9GkVFqtAa08n72Y2YxNIh6MjVMpFkytXUXQsCh_UBAo0kHL2QXFHCI0Le2R6e_M8vGOtWwKzgLqBGYeanmUFI4rwRkNuhJW6SrnPcqO9cgNhrdLeyxJgPbVOZ0lpUY9QiFRXVu6T9Xk9dweESi19mUJwZWmU9CiZprJc-UobFNRL-kR8Ba6wrZQ4OlrMijhSDPKiiXaB0S7aaPfJ-fdJi0ZJ4_fl15iR76Uogx0PQHEUbXEUfxVHn_Qwn537AQHjA3n4Hxc_Ihv4wM33mGOyHpYrdwIMJZSnsRg_AdzD344
  priority: 102
  providerName: Directory of Open Access Journals
Title Data-Driven Modeling for Photovoltaic Power Output of Small-Scale Distributed Plants at the 1-s Time Scale
URI https://ieeexplore.ieee.org/document/10643103
https://doaj.org/article/e1296ca172754fa3aa718ec6122ea48a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgJzjwWcTyUfnAES8b23GSY9mlqpAolUql3qKxMxbQZVO1zoVfz4yTrhYkELcochRHz_a8cTzvCfEGak9xBwrVWYzKRm1VEwqvYiiKQHQjouV6508n7vjcfrwoL6Zi9VwLg4j58BnO-TL_y-_6MPBWGc1wip8Fa3vepcxtLNbabqiwg0RTVpOyULFo3h0ul_QRlANqOzeU9lS88O5EnyzS_5urSg4qRw_FyW13xrMkl_Mh-Xn4-YdS43_395F4MNFLeTiOh8fiDm6eiPs7ooNPxfcVJFCra17mJFuhcUG6JO4qT7_2qaflKsG3IE_ZPk1-HtLVkGQf5dkPWK_VGUGKcsVqu2yUhZ1k16N0IyFJopKyUDeSq0pkbrgvzo8-fFkeq8lxQQWK3EkBsi6o7yjN0REc4auDcV1VxLoBFy0udAjWxWg8UYMqoKtLH1jTUOvKdcE8E3ubfoPPhTTORF_ZGowHayLLrtm6sbFzwKJ85UzoWyTaMMmRsyvGus1pyaJpR_hahq-d4JuJt9uHrkY1jn83f88Qb5uylHa-QSi108xskRiPC8BErrQRDACFawzE_DQC9X8m9hnZnfeNoL74y_2X4h73YdymeSX20vWAr4m4JH-QE_6DPGx_ASc56mk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qZQEseLZiWh5ewA4PE8dxkgWLdoZqSh9Uait1F2zHFo_ppOo4QuVf-BW-rfcmmdGABLtK7CLLSRzn2PfYyT0H4JXODMYdHfFSOs-lF5LnNjLc2yiySDe8k5TvfHCoxqfyw1lytgI_F7kwzrnm5zPXp8PmW35Z2Zq2ynCEY_yMBnOv6j139R1XaLN3uyN8na-F2Hl_MhzzzkSAWwxGgWtHUpemROYuvFbYZGFjVaaRz3KtvHQDYa1U3scGo11qncoSY0mmT4hUlTbG696C20g0EtGmhy22cMizIk_STssoGuRvt4ZD7DZcdQrZj3GhldJUvxTvGluA33xcmjC28wB-zTug_XvlW78Opm9__KEN-d_20EO43xFottUi_hGsuOljuLckq_gEvo500Hx0SRM5I7M3SrlnyM7Z0ecqVDghB_3FsiMyiGMf63BRB1Z5dnyuJxN-jKB1bER6wmQF5kpGvk5hxnRgSJZZxGeM8mZYU3ENTm_kYddhdVpN3VNgsYq9SWWmY6Nl7ElYTma59KXSJDuY9EDM33xhO8F18v2YFM3Ca5AXLVwKgkvRwaUHbxYnXbR6I_-uvk2QWlQlsfCmAFFRdHNP4ZDTKauJqibS61hrJCTOIrcVTmP7e7BGSFq6Xwuijb-Uv4Q745OD_WJ_93BvE-5Se9pNqWewGi5r9xxpWjAvmsHC4NNNY-8a1A5H4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Modeling+for+Photovoltaic+Power+Output+of+Small-Scale+Distributed+Plants+at+the+1-s+Time+Scale&rft.jtitle=IEEE+access&rft.au=Wei%2C+Jia&rft.au=Yang%2C+Weijia&rft.au=Li%2C+Xudong&rft.au=Wang%2C+Junsong&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=117560&rft.epage=117571&rft_id=info:doi/10.1109%2FACCESS.2024.3446790&rft.externalDocID=10643103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon