Data-Driven Modeling for Photovoltaic Power Output of Small-Scale Distributed Plants at the 1-s Time Scale
Under the condition of a small time scale (e.g. second), distributed photovoltaic (PV) power generation output has the problems of strongly fluctuating and difficult to accurately simulate. It affects the control strategy and operation mode of hybrid energy systems. To address this problem, a data-d...
Saved in:
Published in | IEEE access Vol. 12; pp. 117560 - 117571 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Under the condition of a small time scale (e.g. second), distributed photovoltaic (PV) power generation output has the problems of strongly fluctuating and difficult to accurately simulate. It affects the control strategy and operation mode of hybrid energy systems. To address this problem, a data-driven small-scale distributed PV plant power output model on a 1-second time scale is proposed for the generation of second-by-second PV power output scenarios in hybrid energy systems. Firstly, this work analyzes the characteristics of PV power output at the 1-second time scale based on the probability distribution of power output fluctuations. Secondly, an index system that characterizes the PV power output fluctuation characteristics at the 1-second time scale is constructed. Then, using the data-driven method, a BP neural network model is constructed to simulate the PV power output at the 1-second time scale. Finally, a simulation is performed using the measured data from the PV plant. The findings demonstrate that compared to PV power output models in seconds based on Pearson systematic random numbers: (1) The correlation coefficient (r) of the proposed model is more than 0.8, in a higher degree of fit; (2) The root mean square error (RMSE) of the proposed model achieves 0.005, generally representing a 37.12% reduction. Overall, both the time scale and model accuracy of this model have deep potential value in PV power output modeling and system regulation. |
---|---|
AbstractList | Under the condition of a small time scale (e.g. second), distributed photovoltaic (PV) power generation output has the problems of strongly fluctuating and difficult to accurately simulate. It affects the control strategy and operation mode of hybrid energy systems. To address this problem, a data-driven small-scale distributed PV plant power output model on a 1-second time scale is proposed for the generation of second-by-second PV power output scenarios in hybrid energy systems. Firstly, this work analyzes the characteristics of PV power output at the 1-second time scale based on the probability distribution of power output fluctuations. Secondly, an index system that characterizes the PV power output fluctuation characteristics at the 1-second time scale is constructed. Then, using the data-driven method, a BP neural network model is constructed to simulate the PV power output at the 1-second time scale. Finally, a simulation is performed using the measured data from the PV plant. The findings demonstrate that compared to PV power output models in seconds based on Pearson systematic random numbers: (1) The correlation coefficient (r) of the proposed model is more than 0.8, in a higher degree of fit; (2) The root mean square error (RMSE) of the proposed model achieves 0.005, generally representing a 37.12% reduction. Overall, both the time scale and model accuracy of this model have deep potential value in PV power output modeling and system regulation. |
Author | Wang, Junsong Li, Xudong Yang, Weijia Wei, Jia |
Author_xml | – sequence: 1 givenname: Jia orcidid: 0009-0002-1590-6190 surname: Wei fullname: Wei, Jia organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China – sequence: 2 givenname: Weijia orcidid: 0000-0003-1638-0792 surname: Yang fullname: Yang, Weijia email: weijia.yang@whu.edu.cn organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China – sequence: 3 givenname: Xudong orcidid: 0000-0002-4667-062X surname: Li fullname: Li, Xudong organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China – sequence: 4 givenname: Junsong surname: Wang fullname: Wang, Junsong organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China |
BookMark | eNp9kdtKAzEQhoMoeHwCvcgLbN0cmmQvpfUEioXqdZjNTjQl3Ug2VXx7a6sgXjg3Mwzz_Qx8h2S3Tz0ScsrqEWN1c34xmVzO5yNeczkSUird1DvkgDPVVGIs1O6veZ-cDMOiXpdZr8b6gCymUKCa5vCGPb1PHcbQP1OfMp29pJLeUiwQHJ2ld8z0YVVeV4UmT-dLiLGaO4hIp2EoObSrgh2dRejLQKHQ8oKUVQN9DEukm8NjsuchDnjy3Y_I09Xl4-Smunu4vp1c3FVOGFYqQMWkaTujOPegWnTcCdVp5k0DykusuXNSeS9azox2qMy4dVwKzblWnRNH5Hab2yVY2NcclpA_bIJgN4uUny3kElxEi4w3ygHTXI-lBwGgmUGnGOcI0sA6q9lmuZyGIaO3LhQoIfUlQ4iW1fbLgd06sF8O7LeDNSv-sD-__E-dbamAiL8IJQWrhfgE6qeU_A |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_en17235831 |
Cites_doi | 10.1109/access.2022.3197609 10.1007/s40974-021-00235-0 10.1016/j.ijepes.2021.107365 10.1016/j.apenergy.2016.01.086 10.1016/j.seta.2021.101832 10.1016/j.energy.2019.116248 10.18280/jesa.560118 10.1016/j.renene.2022.10.005 10.1049/iet-rpg.2018.5779 10.1016/j.ijepes.2023.109609 10.1016/j.epsr.2023.109965 10.1016/j.artint.2018.03.003 10.1016/j.ijepes.2021.107155 10.1016/j.apenergy.2019.114216 10.6028/jres.122.040 10.1016/s0927-0248(00)00334-2 10.1016/j.apenergy.2024.122818 10.1016/j.solener.2023.111979 10.1038/s41467-023-37536-3 10.1109/TIE.2017.2714127 10.1038/s41467-018-05060-4 10.1063/5.0082629 10.1016/j.ijepes.2023.109325 10.1007/s10916-009-9301-x 10.3390/en16134905 10.1016/j.renene.2023.118903 10.1002/pip.1063 10.1007/s00450-016-0316-5 10.1109/tevc.2018.2869001 10.1109/JESTIE.2022.3179961 10.1016/j.egyr.2023.05.237 10.1016/j.seta.2023.103534 10.1016/j.energy.2023.127915 10.1109/TSTE.2014.2359974 10.3389/fenrg.2019.00076 10.1016/j.rser.2014.10.011 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/ACCESS.2024.3446790 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 117571 |
ExternalDocumentID | oai_doaj_org_article_e1296ca172754fa3aa718ec6122ea48a 10_1109_ACCESS_2024_3446790 10643103 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province of China grantid: 2024AFA058 funderid: 10.13039/501100003819 – fundername: National Natural Science Foundation of China grantid: 52079096 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c381t-ae6148bd8622fa6bec2c36d71f89a6f4e02cc46ff3b2187ce685bc24372276dc3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:23:06 EDT 2025 Tue Jul 01 03:02:47 EDT 2025 Thu Apr 24 22:50:56 EDT 2025 Wed Aug 27 02:03:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-ae6148bd8622fa6bec2c36d71f89a6f4e02cc46ff3b2187ce685bc24372276dc3 |
ORCID | 0000-0002-4667-062X 0009-0002-1590-6190 0000-0003-1638-0792 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10643103 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3446790 doaj_primary_oai_doaj_org_article_e1296ca172754fa3aa718ec6122ea48a crossref_citationtrail_10_1109_ACCESS_2024_3446790 ieee_primary_10643103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref36 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref38 Hummon (ref16) ref19 ref18 Shedd (ref29) Lin (ref14) 2018; 42 ref24 ref23 ref26 ref25 ref20 ref22 Yang (ref31) ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref40 doi: 10.1109/access.2022.3197609 – ident: ref4 doi: 10.1007/s40974-021-00235-0 – ident: ref37 doi: 10.1016/j.ijepes.2021.107365 – ident: ref3 doi: 10.1016/j.apenergy.2016.01.086 – ident: ref9 doi: 10.1016/j.seta.2021.101832 – ident: ref12 doi: 10.1016/j.energy.2019.116248 – ident: ref34 doi: 10.18280/jesa.560118 – ident: ref7 doi: 10.1016/j.renene.2022.10.005 – start-page: 951 volume-title: Proc. 11th Int. Conf. Appl. Energy (ICAE) ident: ref31 article-title: Preliminary study on dynamic performance of variable speed pump-turbine unit for hybrid photovoltaic-pumped storage power system – ident: ref20 doi: 10.1049/iet-rpg.2018.5779 – ident: ref28 doi: 10.1016/j.ijepes.2023.109609 – ident: ref22 doi: 10.1016/j.epsr.2023.109965 – ident: ref36 doi: 10.1016/j.artint.2018.03.003 – ident: ref17 doi: 10.1016/j.ijepes.2021.107155 – ident: ref21 doi: 10.1016/j.apenergy.2019.114216 – ident: ref32 doi: 10.6028/jres.122.040 – ident: ref8 doi: 10.1016/s0927-0248(00)00334-2 – volume: 42 start-page: 24 issue: 15 year: 2018 ident: ref14 article-title: Multi-scale clustering analysis based modeling of photovoltaic power characteristics and its application in prediction publication-title: Automat. Electr. Power Syst. – ident: ref39 doi: 10.1016/j.apenergy.2024.122818 – ident: ref23 doi: 10.1016/j.solener.2023.111979 – ident: ref2 doi: 10.1038/s41467-023-37536-3 – ident: ref15 doi: 10.1109/TIE.2017.2714127 – ident: ref1 doi: 10.1038/s41467-018-05060-4 – ident: ref19 doi: 10.1063/5.0082629 – ident: ref35 doi: 10.1016/j.ijepes.2023.109325 – ident: ref38 doi: 10.1007/s10916-009-9301-x – ident: ref26 doi: 10.3390/en16134905 – ident: ref10 doi: 10.1016/j.renene.2023.118903 – ident: ref30 doi: 10.1002/pip.1063 – ident: ref25 doi: 10.1007/s00450-016-0316-5 – start-page: 1 volume-title: Proc. 3rd Int. Workshop Integr. Sol. Power Power Syst. ident: ref16 article-title: Downscaling solar power output to 4-seconds for use in integration studies – ident: ref33 doi: 10.1109/tevc.2018.2869001 – ident: ref24 doi: 10.1109/JESTIE.2022.3179961 – ident: ref27 doi: 10.1016/j.egyr.2023.05.237 – start-page: 1 volume-title: Proc. 2nd Annu. Int. Workshop Integr. Sol. Power into Power Syst. Conf. ident: ref29 article-title: Statistical characterization of solar photovoltaic power variability at small timescales – ident: ref6 doi: 10.1016/j.seta.2023.103534 – ident: ref11 doi: 10.1016/j.energy.2023.127915 – ident: ref18 doi: 10.1109/TSTE.2014.2359974 – ident: ref13 doi: 10.3389/fenrg.2019.00076 – ident: ref5 doi: 10.1016/j.rser.2014.10.011 |
SSID | ssj0000816957 |
Score | 2.306726 |
Snippet | Under the condition of a small time scale (e.g. second), distributed photovoltaic (PV) power generation output has the problems of strongly fluctuating and... |
SourceID | doaj crossref ieee |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 117560 |
SubjectTerms | Accuracy Analytical models Data models data-driven fluctuation characteristics Fluctuations hybrid energy system Hybrid power systems Photovoltaic Photovoltaic systems Power generation Predictive models second-time scale |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQJzggliLKJh84YqiXOMkRWhBCAiqVStwix7GFUGmq4v4_M05A4QIXrpGzzYzmvYni9wg5M1kJuGM4q5TzTHmhWG55ybzl3ALd8E7hfueHR303VfcvyUvH6gv_CWvkgZvAXToAJG0N4myivJHGQDd1FoBZOKOySI0A8zrDVOzBGdd5krYyQ3yQX14Nh_BGMBAKdSFhBkqxC3egKCr2_7BYiQhzu022WmpIr5pH2iFrbr5LNjuCgXvkbWSCYaMltiiKNma4mZwC76Tj1zrU0Gpg0rd0jNZn9GkVFqtAa08n72Y2YxNIh6MjVMpFkytXUXQsCh_UBAo0kHL2QXFHCI0Le2R6e_M8vGOtWwKzgLqBGYeanmUFI4rwRkNuhJW6SrnPcqO9cgNhrdLeyxJgPbVOZ0lpUY9QiFRXVu6T9Xk9dweESi19mUJwZWmU9CiZprJc-UobFNRL-kR8Ba6wrZQ4OlrMijhSDPKiiXaB0S7aaPfJ-fdJi0ZJ4_fl15iR76Uogx0PQHEUbXEUfxVHn_Qwn537AQHjA3n4Hxc_Ihv4wM33mGOyHpYrdwIMJZSnsRg_AdzD344 priority: 102 providerName: Directory of Open Access Journals |
Title | Data-Driven Modeling for Photovoltaic Power Output of Small-Scale Distributed Plants at the 1-s Time Scale |
URI | https://ieeexplore.ieee.org/document/10643103 https://doaj.org/article/e1296ca172754fa3aa718ec6122ea48a |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgJzjwWcTyUfnAES8b23GSY9mlqpAolUql3qKxMxbQZVO1zoVfz4yTrhYkELcochRHz_a8cTzvCfEGak9xBwrVWYzKRm1VEwqvYiiKQHQjouV6508n7vjcfrwoL6Zi9VwLg4j58BnO-TL_y-_6MPBWGc1wip8Fa3vepcxtLNbabqiwg0RTVpOyULFo3h0ul_QRlANqOzeU9lS88O5EnyzS_5urSg4qRw_FyW13xrMkl_Mh-Xn4-YdS43_395F4MNFLeTiOh8fiDm6eiPs7ooNPxfcVJFCra17mJFuhcUG6JO4qT7_2qaflKsG3IE_ZPk1-HtLVkGQf5dkPWK_VGUGKcsVqu2yUhZ1k16N0IyFJopKyUDeSq0pkbrgvzo8-fFkeq8lxQQWK3EkBsi6o7yjN0REc4auDcV1VxLoBFy0udAjWxWg8UYMqoKtLH1jTUOvKdcE8E3ubfoPPhTTORF_ZGowHayLLrtm6sbFzwKJ85UzoWyTaMMmRsyvGus1pyaJpR_hahq-d4JuJt9uHrkY1jn83f88Qb5uylHa-QSi108xskRiPC8BErrQRDACFawzE_DQC9X8m9hnZnfeNoL74y_2X4h73YdymeSX20vWAr4m4JH-QE_6DPGx_ASc56mk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qZQEseLZiWh5ewA4PE8dxkgWLdoZqSh9Uait1F2zHFo_ppOo4QuVf-BW-rfcmmdGABLtK7CLLSRzn2PfYyT0H4JXODMYdHfFSOs-lF5LnNjLc2yiySDe8k5TvfHCoxqfyw1lytgI_F7kwzrnm5zPXp8PmW35Z2Zq2ynCEY_yMBnOv6j139R1XaLN3uyN8na-F2Hl_MhzzzkSAWwxGgWtHUpemROYuvFbYZGFjVaaRz3KtvHQDYa1U3scGo11qncoSY0mmT4hUlTbG696C20g0EtGmhy22cMizIk_STssoGuRvt4ZD7DZcdQrZj3GhldJUvxTvGluA33xcmjC28wB-zTug_XvlW78Opm9__KEN-d_20EO43xFottUi_hGsuOljuLckq_gEvo500Hx0SRM5I7M3SrlnyM7Z0ecqVDghB_3FsiMyiGMf63BRB1Z5dnyuJxN-jKB1bER6wmQF5kpGvk5hxnRgSJZZxGeM8mZYU3ENTm_kYddhdVpN3VNgsYq9SWWmY6Nl7ElYTma59KXSJDuY9EDM33xhO8F18v2YFM3Ca5AXLVwKgkvRwaUHbxYnXbR6I_-uvk2QWlQlsfCmAFFRdHNP4ZDTKauJqibS61hrJCTOIrcVTmP7e7BGSFq6Xwuijb-Uv4Q745OD_WJ_93BvE-5Se9pNqWewGi5r9xxpWjAvmsHC4NNNY-8a1A5H4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Modeling+for+Photovoltaic+Power+Output+of+Small-Scale+Distributed+Plants+at+the+1-s+Time+Scale&rft.jtitle=IEEE+access&rft.au=Wei%2C+Jia&rft.au=Yang%2C+Weijia&rft.au=Li%2C+Xudong&rft.au=Wang%2C+Junsong&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=117560&rft.epage=117571&rft_id=info:doi/10.1109%2FACCESS.2024.3446790&rft.externalDocID=10643103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |