Mucilage exudation facilitates root water uptake in dry soils
As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by m...
Saved in:
Published in | Functional plant biology : FPB Vol. 41; no. 11; pp. 1129 - 1137 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
CSIRO Publishing
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root–soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03cm3cm-3, and used the root pressure probe technique to measure the hydraulic conductivity of the root–soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce. |
---|---|
AbstractList | As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root-soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03cm3cm-3, and used the root pressure probe technique to measure the hydraulic conductivity of the root-soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce.As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root-soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03cm3cm-3, and used the root pressure probe technique to measure the hydraulic conductivity of the root-soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce. As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root–soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03cm3cm-3, and used the root pressure probe technique to measure the hydraulic conductivity of the root–soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce. As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root–soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03 cm3 cm–3, and used the root pressure probe technique to measure the hydraulic conductivity of the root–soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce. |
Author | Ahmed, Mutez A Kroener, Eva Zarebanadkouki, Mohsen Carminati, Andrea Holz, Maire |
Author_xml | – sequence: 1 fullname: Ahmed, Mutez A – sequence: 2 fullname: Kroener, Eva – sequence: 3 fullname: Holz, Maire – sequence: 4 fullname: Zarebanadkouki, Mohsen – sequence: 5 fullname: Carminati, Andrea |
BookMark | eNqFkE1LAzEQhoNUsK3iTzA3vaxmNtmvgwcpVoWKgvYc0uykRLebmuyi_femVjyI4Glehodh3mdEBq1rkZBjYOfACrgwa-Ccsz0yBCGyRAjIBz-ZlQdkFMILY5DxtBiSy_te20YtkeJHX6vOupYaFVe2Ux0G6p3r6HuMnvbrTr0itS2t_YYGZ5twSPaNagIefc8xmU-vnye3yezh5m5yNUs0L6FLVMVMXvDUYC6Ujt8JU6M2gCmAqSrgleFiwU2thcgzVuTAUUOV8cUCEXXNx-Rsd3ft3VuPoZMrGzQ2jWrR9UGmsVgpAFL4F4U855ngRcoimuxQ7V0IHo3U29ZRQeeVbSQwuTUqp49fRiN_-otfe7tSfvMHebIjjXJSLb0Ncv6URueMsaysKsE_AWUkf4s |
CitedBy_id | crossref_primary_10_1016_j_rhisph_2023_100709 crossref_primary_10_1111_nph_18157 crossref_primary_10_3389_fpls_2023_1244591 crossref_primary_10_1016_j_advwatres_2017_03_014 crossref_primary_10_1002_sae2_70004 crossref_primary_10_1094_MPMI_11_21_0281_FI crossref_primary_10_2136_vzj2016_09_0090 crossref_primary_10_2136_vzj2017_04_0083 crossref_primary_10_3389_fpls_2023_1140938 crossref_primary_10_1002_vzj2_20268 crossref_primary_10_1007_s11356_019_07298_x crossref_primary_10_1126_science_aaz5192 crossref_primary_10_1111_pce_14395 crossref_primary_10_1007_s11104_017_3503_7 crossref_primary_10_1007_s11104_015_2749_1 crossref_primary_10_1111_ppl_14520 crossref_primary_10_3390_metabo11060357 crossref_primary_10_1038_s41598_018_30150_0 crossref_primary_10_1002_saj2_20315 crossref_primary_10_1007_s11104_019_03939_9 crossref_primary_10_1016_j_still_2023_105785 crossref_primary_10_1007_s11104_024_06840_2 crossref_primary_10_1016_j_micres_2023_127368 crossref_primary_10_1007_s42729_021_00545_6 crossref_primary_10_1007_s11104_015_2639_6 crossref_primary_10_1007_s11104_017_3424_5 crossref_primary_10_1071_SR18182 crossref_primary_10_1016_j_soilbio_2017_10_041 crossref_primary_10_1111_pce_15012 crossref_primary_10_1029_2019WR026606 crossref_primary_10_3390_agronomy14061221 crossref_primary_10_1007_s42729_023_01269_5 crossref_primary_10_1007_s11104_022_05656_2 crossref_primary_10_1016_j_tplants_2022_01_010 crossref_primary_10_1029_2021WR029976 crossref_primary_10_1093_jxb_erac114 crossref_primary_10_1002_pld3_519 crossref_primary_10_1016_j_geoderma_2023_116576 crossref_primary_10_1002_jpln_202000545 crossref_primary_10_3390_su16041440 crossref_primary_10_1007_s11104_020_04723_w crossref_primary_10_1016_j_advwatres_2025_104915 crossref_primary_10_1007_s11104_019_04408_z crossref_primary_10_1016_j_rhisph_2022_100561 crossref_primary_10_1111_pce_14259 crossref_primary_10_1016_j_tplants_2017_02_001 crossref_primary_10_1111_plb_13652 crossref_primary_10_2136_vzj2015_04_0060 crossref_primary_10_1007_s11104_022_05669_x crossref_primary_10_1111_gcb_16685 crossref_primary_10_1038_s41893_018_0106_0 crossref_primary_10_1016_j_rhisph_2023_100738 crossref_primary_10_1007_s11104_023_06353_4 crossref_primary_10_3390_agronomy14102368 crossref_primary_10_3390_su13063303 crossref_primary_10_1007_s11104_019_04234_3 crossref_primary_10_1016_j_scitotenv_2017_12_078 crossref_primary_10_3390_cells12060858 crossref_primary_10_1007_s11104_017_3227_8 crossref_primary_10_3390_soilsystems7040106 crossref_primary_10_1002_jpln_201500511 crossref_primary_10_1016_j_stress_2024_100549 crossref_primary_10_1007_s11101_025_10084_y crossref_primary_10_1002_2015WR018150 crossref_primary_10_1093_jxb_ery361 crossref_primary_10_3389_fagro_2021_622367 crossref_primary_10_1111_jac_12314 crossref_primary_10_1111_nph_18409 crossref_primary_10_1016_j_measurement_2019_107159 crossref_primary_10_1093_aob_mcac147 crossref_primary_10_1007_s11104_019_04308_2 crossref_primary_10_1002_2015WR018579 crossref_primary_10_1007_s12224_023_09437_2 crossref_primary_10_1016_j_soilbio_2022_108856 crossref_primary_10_1016_j_scitotenv_2018_01_311 crossref_primary_10_1093_jxb_erad221 crossref_primary_10_1016_j_rhisph_2021_100462 crossref_primary_10_3389_fenvs_2018_00087 crossref_primary_10_1007_s11104_024_06584_z crossref_primary_10_1093_treephys_tpx163 crossref_primary_10_1021_acsabm_9b01177 crossref_primary_10_1093_insilicoplants_diab028 crossref_primary_10_1111_nph_14715 crossref_primary_10_1007_s11104_021_05248_6 crossref_primary_10_1016_j_micromeso_2017_07_044 crossref_primary_10_5194_hess_22_2487_2018 crossref_primary_10_1002_jpln_201900426 crossref_primary_10_1007_s11104_023_06421_9 crossref_primary_10_1007_s11104_018_3565_1 crossref_primary_10_1007_s00374_017_1237_6 crossref_primary_10_1007_s11104_022_05306_7 crossref_primary_10_1007_s11104_023_06126_z crossref_primary_10_1016_j_geoderma_2019_01_013 crossref_primary_10_1016_j_micres_2023_127564 crossref_primary_10_1093_aob_mcw113 crossref_primary_10_1007_s42729_023_01417_x crossref_primary_10_1111_ejss_13478 crossref_primary_10_1093_jxb_ery183 crossref_primary_10_2136_vzj2017_03_0056 crossref_primary_10_1038_s41467_024_45272_5 crossref_primary_10_3389_fpls_2021_722954 crossref_primary_10_1002_jpln_201800430 crossref_primary_10_1029_2022WR032845 crossref_primary_10_1002_jpln_201500177 crossref_primary_10_1002_jpln_201800554 crossref_primary_10_1093_aob_mcae193 crossref_primary_10_1016_j_scitotenv_2023_167524 crossref_primary_10_1016_j_jplph_2017_12_003 crossref_primary_10_1016_j_advwatres_2015_09_014 crossref_primary_10_1111_ejss_12535 crossref_primary_10_1139_cjb_2022_0052 crossref_primary_10_1007_s11104_022_05437_x crossref_primary_10_1007_s11101_024_10036_y crossref_primary_10_1103_PhysRevE_91_042706 crossref_primary_10_1002_jsfa_11469 crossref_primary_10_1016_j_foreco_2019_117793 crossref_primary_10_1111_ejss_13189 crossref_primary_10_1111_ppl_14470 crossref_primary_10_1111_nph_15213 crossref_primary_10_1007_s11104_016_2849_6 crossref_primary_10_1016_j_soilbio_2021_108404 crossref_primary_10_1007_s11104_015_2668_1 crossref_primary_10_1016_j_rhisph_2024_101014 crossref_primary_10_3390_plants13141981 crossref_primary_10_1111_ejss_12487 crossref_primary_10_1007_s11104_019_04335_z crossref_primary_10_3389_fpls_2020_587610 |
Cites_doi | 10.1093/aob/mcs293 10.1071/AR05069 10.1023/A:1026439226716 10.2136/vzj2010.0113 10.1104/pp.106.1.179 10.1093/jxb/erh041 10.1104/pp.84.4.1220 10.1111/j.1469-8137.2010.03240.x 10.1146/annurev.arplant.59.032607.092734 10.1016/0144-8617(81)90011-4 10.1007/s11104-013-1910-y 10.1016/j.advwatres.2008.01.008 10.1016/0144-8617(94)90085-X 10.1111/j.1399-3054.1997.tb03445.x 10.1046/j.1469-8137.2003.00665.x 10.1104/pp.91.2.719 10.2136/vzj2006.0080 10.1016/j.jfoodeng.2011.06.037 10.1016/0038-0717(96)00070-3 10.1093/aob/mcl028 10.2136/vzj2011.0106 10.1093/aob/mcs262 10.1111/j.1469-8137.1995.tb01823.x |
ContentType | Journal Article |
DBID | FBQ AAYXX CITATION 7S9 L.6 7X8 |
DOI | 10.1071/fp13330 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1445-4416 |
EndPage | 1137 |
ExternalDocumentID | 10_1071_FP13330 US201500058994 |
GroupedDBID | 0R~ 0VX 29H 4.4 53G 5GY AAHBH ABDBF ACUHS AEIBA AENEX AEUYM AI. ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EJD F5P FBQ MV1 NGGKN RCO TN5 VH1 Y6R ~KM AAYXX CITATION 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c381t-a90f6732fe64ac3334fdecf1e211f99139f34b3fdc446507613ec1953bbeeecd3 |
ISSN | 1445-4408 1445-4416 |
IngestDate | Fri Jul 11 12:45:01 EDT 2025 Fri Jul 11 03:48:53 EDT 2025 Tue Jul 01 03:14:58 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Thu Apr 03 09:40:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-a90f6732fe64ac3334fdecf1e211f99139f34b3fdc446507613ec1953bbeeecd3 |
Notes | http://dx.doi.org/10.1071/FP13330 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1663543720 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2408841121 proquest_miscellaneous_1663543720 crossref_citationtrail_10_1071_FP13330 crossref_primary_10_1071_FP13330 fao_agris_US201500058994 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Functional plant biology : FPB |
PublicationYear | 2014 |
Publisher | CSIRO Publishing |
Publisher_xml | – name: CSIRO Publishing |
References | Chenu (FP13330R9) 1996; 28 Liu (FP13330R15) 2009; 50 McCully (FP13330R18) 1997; 99 Mu oz (FP13330R20) 2012; 108 Maurel (FP13330R17) 2008; 59 Steudle (FP13330R25) 1987; 84 Or (FP13330R21) 2007; 6 Knipfer (FP13330R13) 2010; 187 Carminati (FP13330R8) 2011; 10 Frensch (FP13330R12) 1989; 91 Carminati (FP13330R5) 2012; 11 Carminati (FP13330R6) 2013; 112 Albalasmeh (FP13330R1) 2014; 374 Watt (FP13330R27) 2006; 97 Steudle (FP13330R24) 2000; 226 Watt (FP13330R26) 1994; 106 Morris (FP13330R19) 1981; 1 Ranathunge (FP13330R22) 2004; 55 Lin (FP13330R14) 1994; 23 Read (FP13330R23) 2003; 157 Blum (FP13330R2) 2005; 56 Lynch (FP13330R16) 2013; 112 Young (FP13330R28) 1995; 130 Carminati (FP13330R7) 2008; 31 |
References_xml | – volume: 112 start-page: 347 year: 2013 ident: FP13330R16 publication-title: Annals of Botany doi: 10.1093/aob/mcs293 – volume: 56 start-page: 1159 year: 2005 ident: FP13330R2 publication-title: Australian Journal of Agricultural Research doi: 10.1071/AR05069 – volume: 226 start-page: 45 year: 2000 ident: FP13330R24 publication-title: Plant and Soil doi: 10.1023/A:1026439226716 – volume: 10 start-page: 988 year: 2011 ident: FP13330R8 publication-title: Vadose Zone Journal doi: 10.2136/vzj2010.0113 – volume: 106 start-page: 179 year: 1994 ident: FP13330R26 publication-title: Plant Physiology doi: 10.1104/pp.106.1.179 – volume: 50 start-page: 303 year: 2009 ident: FP13330R15 publication-title: Botanical Studies (Taipei, Taiwan) – volume: 55 start-page: 433 year: 2004 ident: FP13330R22 publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erh041 – volume: 84 start-page: 1220 year: 1987 ident: FP13330R25 publication-title: Plant Physiology doi: 10.1104/pp.84.4.1220 – volume: 187 start-page: 159 year: 2010 ident: FP13330R13 publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03240.x – volume: 59 start-page: 595 year: 2008 ident: FP13330R17 publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.59.032607.092734 – volume: 1 start-page: 5 year: 1981 ident: FP13330R19 publication-title: Carbohydrate Polymers doi: 10.1016/0144-8617(81)90011-4 – volume: 374 start-page: 739 year: 2014 ident: FP13330R1 publication-title: Plant and Soil doi: 10.1007/s11104-013-1910-y – volume: 31 start-page: 1221 year: 2008 ident: FP13330R7 publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2008.01.008 – volume: 23 start-page: 13 year: 1994 ident: FP13330R14 publication-title: Carbohydrate Polymers doi: 10.1016/0144-8617(94)90085-X – volume: 99 start-page: 169 year: 1997 ident: FP13330R18 publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.1997.tb03445.x – volume: 157 start-page: 315 year: 2003 ident: FP13330R23 publication-title: New Phytologist doi: 10.1046/j.1469-8137.2003.00665.x – volume: 91 start-page: 719 year: 1989 ident: FP13330R12 publication-title: Plant Physiology doi: 10.1104/pp.91.2.719 – volume: 6 start-page: 298 year: 2007 ident: FP13330R21 publication-title: Vadose Zone Journal doi: 10.2136/vzj2006.0080 – volume: 108 start-page: 216 year: 2012 ident: FP13330R20 publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2011.06.037 – volume: 28 start-page: 877 year: 1996 ident: FP13330R9 publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(96)00070-3 – volume: 97 start-page: 839 year: 2006 ident: FP13330R27 publication-title: Annals of Botany doi: 10.1093/aob/mcl028 – volume: 11 start-page: 3 year: 2012 ident: FP13330R5 publication-title: Vadose Zone Journal doi: 10.2136/vzj2011.0106 – volume: 112 start-page: 277 year: 2013 ident: FP13330R6 publication-title: Annals of Botany doi: 10.1093/aob/mcs262 – volume: 130 start-page: 135 year: 1995 ident: FP13330R28 publication-title: New Phytologist doi: 10.1111/j.1469-8137.1995.tb01823.x |
SSID | ssj0015327 |
Score | 2.445986 |
Snippet | As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the... |
SourceID | proquest crossref fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1129 |
SubjectTerms | exudation hydraulic conductivity rhizosphere root pressure roots soil water soil water content water content water flow water uptake |
Title | Mucilage exudation facilitates root water uptake in dry soils |
URI | https://www.proquest.com/docview/1663543720 https://www.proquest.com/docview/2408841121 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYxgMviE-tbCAjIV6qQJM4SfPYDqICKkxslSZeIsexWbWQVG0CrH89d7GTppRJwEtURZYb-X66O9_H7wh54YeB4szmFthT12L-0LNCN3QtT4TDVIG9H9ZVldOP_mTG3l94Fxt6grq7pExeifUf-0r-R6rwDuSKXbL_INl2U3gBv0G-8AQJw_OvZDytxDzDohv5s0pN1SAXmndbrvrgFJf9HxxpEKtFya9qfpB0ed1fFfNs1XVLI7BuJii4yOCs-w03EwYMotM2LTO6_KaDo9OqlOtNHPTDspBN58z3VtFPimyt-4E6JbZf-FImWGl2VVR6ZPa0uFyZhjQTfrDZb-GHk7N3nz91QmYdVcqYZ-E8666u1SRXDabsjuZEv69jhW1bc8HsaHhwiVAsC7hbm4TONl327MzBIE49LjFke-TAgfsDKMCD0fjNOGoTTJ5bT_NtP1L3U-Pur83eW47KnuLFjrWuXZDze-SuuTvQkQbCfXJL5g_I7XEB_v31Q9KigbZooB00UEQDrdFANRroPKeABlqj4RGZRW_PTyaWGY5hCXCySouHA-UHrqOkz7iAD2YqlULZEm70KkSyV-WyxFWpQEo8jFa5UmDONEmklCJ1H5P9vMjlIaFcOW6Qpk4K2pk5SRoqZM1T0lbBwA-l6JGXzUnEwjDH4wCTLK4rGAI7jk7rI-sR2i5caLKU3SWHcJQx_womLN6WVY88b843Bh2HiSuey6JaxTa6xZhgHty8Bqn6hgxQZD-5-S-OyJ0Nho_Jfrms5FNwKsvkmQHIL0HedKU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mucilage+exudation+facilitates+root+water+uptake+in+dry+soils&rft.jtitle=Functional+plant+biology+%3A+FPB&rft.au=Ahmed%2C+Mutez+A&rft.au=Kroener%2C+Eva&rft.au=Holz%2C+Maire&rft.au=Zarebanadkouki%2C+Mohsen&rft.date=2014-01-01&rft.pub=CSIRO+Publishing&rft.issn=1445-4408&rft.volume=41&rft.issue=11&rft.spage=1129&rft.epage=1137&rft_id=info:doi/10.1071%2Ffp13330&rft.externalDocID=US201500058994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1445-4408&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1445-4408&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1445-4408&client=summon |