Mucilage exudation facilitates root water uptake in dry soils

As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by m...

Full description

Saved in:
Bibliographic Details
Published inFunctional plant biology : FPB Vol. 41; no. 11; pp. 1129 - 1137
Main Authors Ahmed, Mutez A, Kroener, Eva, Holz, Maire, Zarebanadkouki, Mohsen, Carminati, Andrea
Format Journal Article
LanguageEnglish
Published CSIRO Publishing 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root–soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03cm3cm-3, and used the root pressure probe technique to measure the hydraulic conductivity of the root–soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce.
AbstractList As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root-soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03cm3cm-3, and used the root pressure probe technique to measure the hydraulic conductivity of the root-soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce.As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root-soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03cm3cm-3, and used the root pressure probe technique to measure the hydraulic conductivity of the root-soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce.
As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root–soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03cm3cm-3, and used the root pressure probe technique to measure the hydraulic conductivity of the root–soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce.
As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root–soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03 cm3 cm–3, and used the root pressure probe technique to measure the hydraulic conductivity of the root–soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce.
Author Ahmed, Mutez A
Kroener, Eva
Zarebanadkouki, Mohsen
Carminati, Andrea
Holz, Maire
Author_xml – sequence: 1
  fullname: Ahmed, Mutez A
– sequence: 2
  fullname: Kroener, Eva
– sequence: 3
  fullname: Holz, Maire
– sequence: 4
  fullname: Zarebanadkouki, Mohsen
– sequence: 5
  fullname: Carminati, Andrea
BookMark eNqFkE1LAzEQhoNUsK3iTzA3vaxmNtmvgwcpVoWKgvYc0uykRLebmuyi_femVjyI4Glehodh3mdEBq1rkZBjYOfACrgwa-Ccsz0yBCGyRAjIBz-ZlQdkFMILY5DxtBiSy_te20YtkeJHX6vOupYaFVe2Ux0G6p3r6HuMnvbrTr0itS2t_YYGZ5twSPaNagIefc8xmU-vnye3yezh5m5yNUs0L6FLVMVMXvDUYC6Ujt8JU6M2gCmAqSrgleFiwU2thcgzVuTAUUOV8cUCEXXNx-Rsd3ft3VuPoZMrGzQ2jWrR9UGmsVgpAFL4F4U855ngRcoimuxQ7V0IHo3U29ZRQeeVbSQwuTUqp49fRiN_-otfe7tSfvMHebIjjXJSLb0Ncv6URueMsaysKsE_AWUkf4s
CitedBy_id crossref_primary_10_1016_j_rhisph_2023_100709
crossref_primary_10_1111_nph_18157
crossref_primary_10_3389_fpls_2023_1244591
crossref_primary_10_1016_j_advwatres_2017_03_014
crossref_primary_10_1002_sae2_70004
crossref_primary_10_1094_MPMI_11_21_0281_FI
crossref_primary_10_2136_vzj2016_09_0090
crossref_primary_10_2136_vzj2017_04_0083
crossref_primary_10_3389_fpls_2023_1140938
crossref_primary_10_1002_vzj2_20268
crossref_primary_10_1007_s11356_019_07298_x
crossref_primary_10_1126_science_aaz5192
crossref_primary_10_1111_pce_14395
crossref_primary_10_1007_s11104_017_3503_7
crossref_primary_10_1007_s11104_015_2749_1
crossref_primary_10_1111_ppl_14520
crossref_primary_10_3390_metabo11060357
crossref_primary_10_1038_s41598_018_30150_0
crossref_primary_10_1002_saj2_20315
crossref_primary_10_1007_s11104_019_03939_9
crossref_primary_10_1016_j_still_2023_105785
crossref_primary_10_1007_s11104_024_06840_2
crossref_primary_10_1016_j_micres_2023_127368
crossref_primary_10_1007_s42729_021_00545_6
crossref_primary_10_1007_s11104_015_2639_6
crossref_primary_10_1007_s11104_017_3424_5
crossref_primary_10_1071_SR18182
crossref_primary_10_1016_j_soilbio_2017_10_041
crossref_primary_10_1111_pce_15012
crossref_primary_10_1029_2019WR026606
crossref_primary_10_3390_agronomy14061221
crossref_primary_10_1007_s42729_023_01269_5
crossref_primary_10_1007_s11104_022_05656_2
crossref_primary_10_1016_j_tplants_2022_01_010
crossref_primary_10_1029_2021WR029976
crossref_primary_10_1093_jxb_erac114
crossref_primary_10_1002_pld3_519
crossref_primary_10_1016_j_geoderma_2023_116576
crossref_primary_10_1002_jpln_202000545
crossref_primary_10_3390_su16041440
crossref_primary_10_1007_s11104_020_04723_w
crossref_primary_10_1016_j_advwatres_2025_104915
crossref_primary_10_1007_s11104_019_04408_z
crossref_primary_10_1016_j_rhisph_2022_100561
crossref_primary_10_1111_pce_14259
crossref_primary_10_1016_j_tplants_2017_02_001
crossref_primary_10_1111_plb_13652
crossref_primary_10_2136_vzj2015_04_0060
crossref_primary_10_1007_s11104_022_05669_x
crossref_primary_10_1111_gcb_16685
crossref_primary_10_1038_s41893_018_0106_0
crossref_primary_10_1016_j_rhisph_2023_100738
crossref_primary_10_1007_s11104_023_06353_4
crossref_primary_10_3390_agronomy14102368
crossref_primary_10_3390_su13063303
crossref_primary_10_1007_s11104_019_04234_3
crossref_primary_10_1016_j_scitotenv_2017_12_078
crossref_primary_10_3390_cells12060858
crossref_primary_10_1007_s11104_017_3227_8
crossref_primary_10_3390_soilsystems7040106
crossref_primary_10_1002_jpln_201500511
crossref_primary_10_1016_j_stress_2024_100549
crossref_primary_10_1007_s11101_025_10084_y
crossref_primary_10_1002_2015WR018150
crossref_primary_10_1093_jxb_ery361
crossref_primary_10_3389_fagro_2021_622367
crossref_primary_10_1111_jac_12314
crossref_primary_10_1111_nph_18409
crossref_primary_10_1016_j_measurement_2019_107159
crossref_primary_10_1093_aob_mcac147
crossref_primary_10_1007_s11104_019_04308_2
crossref_primary_10_1002_2015WR018579
crossref_primary_10_1007_s12224_023_09437_2
crossref_primary_10_1016_j_soilbio_2022_108856
crossref_primary_10_1016_j_scitotenv_2018_01_311
crossref_primary_10_1093_jxb_erad221
crossref_primary_10_1016_j_rhisph_2021_100462
crossref_primary_10_3389_fenvs_2018_00087
crossref_primary_10_1007_s11104_024_06584_z
crossref_primary_10_1093_treephys_tpx163
crossref_primary_10_1021_acsabm_9b01177
crossref_primary_10_1093_insilicoplants_diab028
crossref_primary_10_1111_nph_14715
crossref_primary_10_1007_s11104_021_05248_6
crossref_primary_10_1016_j_micromeso_2017_07_044
crossref_primary_10_5194_hess_22_2487_2018
crossref_primary_10_1002_jpln_201900426
crossref_primary_10_1007_s11104_023_06421_9
crossref_primary_10_1007_s11104_018_3565_1
crossref_primary_10_1007_s00374_017_1237_6
crossref_primary_10_1007_s11104_022_05306_7
crossref_primary_10_1007_s11104_023_06126_z
crossref_primary_10_1016_j_geoderma_2019_01_013
crossref_primary_10_1016_j_micres_2023_127564
crossref_primary_10_1093_aob_mcw113
crossref_primary_10_1007_s42729_023_01417_x
crossref_primary_10_1111_ejss_13478
crossref_primary_10_1093_jxb_ery183
crossref_primary_10_2136_vzj2017_03_0056
crossref_primary_10_1038_s41467_024_45272_5
crossref_primary_10_3389_fpls_2021_722954
crossref_primary_10_1002_jpln_201800430
crossref_primary_10_1029_2022WR032845
crossref_primary_10_1002_jpln_201500177
crossref_primary_10_1002_jpln_201800554
crossref_primary_10_1093_aob_mcae193
crossref_primary_10_1016_j_scitotenv_2023_167524
crossref_primary_10_1016_j_jplph_2017_12_003
crossref_primary_10_1016_j_advwatres_2015_09_014
crossref_primary_10_1111_ejss_12535
crossref_primary_10_1139_cjb_2022_0052
crossref_primary_10_1007_s11104_022_05437_x
crossref_primary_10_1007_s11101_024_10036_y
crossref_primary_10_1103_PhysRevE_91_042706
crossref_primary_10_1002_jsfa_11469
crossref_primary_10_1016_j_foreco_2019_117793
crossref_primary_10_1111_ejss_13189
crossref_primary_10_1111_ppl_14470
crossref_primary_10_1111_nph_15213
crossref_primary_10_1007_s11104_016_2849_6
crossref_primary_10_1016_j_soilbio_2021_108404
crossref_primary_10_1007_s11104_015_2668_1
crossref_primary_10_1016_j_rhisph_2024_101014
crossref_primary_10_3390_plants13141981
crossref_primary_10_1111_ejss_12487
crossref_primary_10_1007_s11104_019_04335_z
crossref_primary_10_3389_fpls_2020_587610
Cites_doi 10.1093/aob/mcs293
10.1071/AR05069
10.1023/A:1026439226716
10.2136/vzj2010.0113
10.1104/pp.106.1.179
10.1093/jxb/erh041
10.1104/pp.84.4.1220
10.1111/j.1469-8137.2010.03240.x
10.1146/annurev.arplant.59.032607.092734
10.1016/0144-8617(81)90011-4
10.1007/s11104-013-1910-y
10.1016/j.advwatres.2008.01.008
10.1016/0144-8617(94)90085-X
10.1111/j.1399-3054.1997.tb03445.x
10.1046/j.1469-8137.2003.00665.x
10.1104/pp.91.2.719
10.2136/vzj2006.0080
10.1016/j.jfoodeng.2011.06.037
10.1016/0038-0717(96)00070-3
10.1093/aob/mcl028
10.2136/vzj2011.0106
10.1093/aob/mcs262
10.1111/j.1469-8137.1995.tb01823.x
ContentType Journal Article
DBID FBQ
AAYXX
CITATION
7S9
L.6
7X8
DOI 10.1071/fp13330
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1445-4416
EndPage 1137
ExternalDocumentID 10_1071_FP13330
US201500058994
GroupedDBID 0R~
0VX
29H
4.4
53G
5GY
AAHBH
ABDBF
ACUHS
AEIBA
AENEX
AEUYM
AI.
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EJD
F5P
FBQ
MV1
NGGKN
RCO
TN5
VH1
Y6R
~KM
AAYXX
CITATION
7S9
L.6
7X8
ID FETCH-LOGICAL-c381t-a90f6732fe64ac3334fdecf1e211f99139f34b3fdc446507613ec1953bbeeecd3
ISSN 1445-4408
1445-4416
IngestDate Fri Jul 11 12:45:01 EDT 2025
Fri Jul 11 03:48:53 EDT 2025
Tue Jul 01 03:14:58 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Thu Apr 03 09:40:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-a90f6732fe64ac3334fdecf1e211f99139f34b3fdc446507613ec1953bbeeecd3
Notes http://dx.doi.org/10.1071/FP13330
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663543720
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2408841121
proquest_miscellaneous_1663543720
crossref_citationtrail_10_1071_FP13330
crossref_primary_10_1071_FP13330
fao_agris_US201500058994
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Functional plant biology : FPB
PublicationYear 2014
Publisher CSIRO Publishing
Publisher_xml – name: CSIRO Publishing
References Chenu (FP13330R9) 1996; 28
Liu (FP13330R15) 2009; 50
McCully (FP13330R18) 1997; 99
Mu oz (FP13330R20) 2012; 108
Maurel (FP13330R17) 2008; 59
Steudle (FP13330R25) 1987; 84
Or (FP13330R21) 2007; 6
Knipfer (FP13330R13) 2010; 187
Carminati (FP13330R8) 2011; 10
Frensch (FP13330R12) 1989; 91
Carminati (FP13330R5) 2012; 11
Carminati (FP13330R6) 2013; 112
Albalasmeh (FP13330R1) 2014; 374
Watt (FP13330R27) 2006; 97
Steudle (FP13330R24) 2000; 226
Watt (FP13330R26) 1994; 106
Morris (FP13330R19) 1981; 1
Ranathunge (FP13330R22) 2004; 55
Lin (FP13330R14) 1994; 23
Read (FP13330R23) 2003; 157
Blum (FP13330R2) 2005; 56
Lynch (FP13330R16) 2013; 112
Young (FP13330R28) 1995; 130
Carminati (FP13330R7) 2008; 31
References_xml – volume: 112
  start-page: 347
  year: 2013
  ident: FP13330R16
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs293
– volume: 56
  start-page: 1159
  year: 2005
  ident: FP13330R2
  publication-title: Australian Journal of Agricultural Research
  doi: 10.1071/AR05069
– volume: 226
  start-page: 45
  year: 2000
  ident: FP13330R24
  publication-title: Plant and Soil
  doi: 10.1023/A:1026439226716
– volume: 10
  start-page: 988
  year: 2011
  ident: FP13330R8
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2010.0113
– volume: 106
  start-page: 179
  year: 1994
  ident: FP13330R26
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.1.179
– volume: 50
  start-page: 303
  year: 2009
  ident: FP13330R15
  publication-title: Botanical Studies (Taipei, Taiwan)
– volume: 55
  start-page: 433
  year: 2004
  ident: FP13330R22
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erh041
– volume: 84
  start-page: 1220
  year: 1987
  ident: FP13330R25
  publication-title: Plant Physiology
  doi: 10.1104/pp.84.4.1220
– volume: 187
  start-page: 159
  year: 2010
  ident: FP13330R13
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2010.03240.x
– volume: 59
  start-page: 595
  year: 2008
  ident: FP13330R17
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.59.032607.092734
– volume: 1
  start-page: 5
  year: 1981
  ident: FP13330R19
  publication-title: Carbohydrate Polymers
  doi: 10.1016/0144-8617(81)90011-4
– volume: 374
  start-page: 739
  year: 2014
  ident: FP13330R1
  publication-title: Plant and Soil
  doi: 10.1007/s11104-013-1910-y
– volume: 31
  start-page: 1221
  year: 2008
  ident: FP13330R7
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2008.01.008
– volume: 23
  start-page: 13
  year: 1994
  ident: FP13330R14
  publication-title: Carbohydrate Polymers
  doi: 10.1016/0144-8617(94)90085-X
– volume: 99
  start-page: 169
  year: 1997
  ident: FP13330R18
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1997.tb03445.x
– volume: 157
  start-page: 315
  year: 2003
  ident: FP13330R23
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2003.00665.x
– volume: 91
  start-page: 719
  year: 1989
  ident: FP13330R12
  publication-title: Plant Physiology
  doi: 10.1104/pp.91.2.719
– volume: 6
  start-page: 298
  year: 2007
  ident: FP13330R21
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2006.0080
– volume: 108
  start-page: 216
  year: 2012
  ident: FP13330R20
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2011.06.037
– volume: 28
  start-page: 877
  year: 1996
  ident: FP13330R9
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(96)00070-3
– volume: 97
  start-page: 839
  year: 2006
  ident: FP13330R27
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcl028
– volume: 11
  start-page: 3
  year: 2012
  ident: FP13330R5
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2011.0106
– volume: 112
  start-page: 277
  year: 2013
  ident: FP13330R6
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs262
– volume: 130
  start-page: 135
  year: 1995
  ident: FP13330R28
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1995.tb01823.x
SSID ssj0015327
Score 2.445986
Snippet As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the...
SourceID proquest
crossref
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1129
SubjectTerms exudation
hydraulic conductivity
rhizosphere
root pressure
roots
soil water
soil water content
water content
water flow
water uptake
Title Mucilage exudation facilitates root water uptake in dry soils
URI https://www.proquest.com/docview/1663543720
https://www.proquest.com/docview/2408841121
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYxgMviE-tbCAjIV6qQJM4SfPYDqICKkxslSZeIsexWbWQVG0CrH89d7GTppRJwEtURZYb-X66O9_H7wh54YeB4szmFthT12L-0LNCN3QtT4TDVIG9H9ZVldOP_mTG3l94Fxt6grq7pExeifUf-0r-R6rwDuSKXbL_INl2U3gBv0G-8AQJw_OvZDytxDzDohv5s0pN1SAXmndbrvrgFJf9HxxpEKtFya9qfpB0ed1fFfNs1XVLI7BuJii4yOCs-w03EwYMotM2LTO6_KaDo9OqlOtNHPTDspBN58z3VtFPimyt-4E6JbZf-FImWGl2VVR6ZPa0uFyZhjQTfrDZb-GHk7N3nz91QmYdVcqYZ-E8666u1SRXDabsjuZEv69jhW1bc8HsaHhwiVAsC7hbm4TONl327MzBIE49LjFke-TAgfsDKMCD0fjNOGoTTJ5bT_NtP1L3U-Pur83eW47KnuLFjrWuXZDze-SuuTvQkQbCfXJL5g_I7XEB_v31Q9KigbZooB00UEQDrdFANRroPKeABlqj4RGZRW_PTyaWGY5hCXCySouHA-UHrqOkz7iAD2YqlULZEm70KkSyV-WyxFWpQEo8jFa5UmDONEmklCJ1H5P9vMjlIaFcOW6Qpk4K2pk5SRoqZM1T0lbBwA-l6JGXzUnEwjDH4wCTLK4rGAI7jk7rI-sR2i5caLKU3SWHcJQx_womLN6WVY88b843Bh2HiSuey6JaxTa6xZhgHty8Bqn6hgxQZD-5-S-OyJ0Nho_Jfrms5FNwKsvkmQHIL0HedKU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mucilage+exudation+facilitates+root+water+uptake+in+dry+soils&rft.jtitle=Functional+plant+biology+%3A+FPB&rft.au=Ahmed%2C+Mutez+A&rft.au=Kroener%2C+Eva&rft.au=Holz%2C+Maire&rft.au=Zarebanadkouki%2C+Mohsen&rft.date=2014-01-01&rft.pub=CSIRO+Publishing&rft.issn=1445-4408&rft.volume=41&rft.issue=11&rft.spage=1129&rft.epage=1137&rft_id=info:doi/10.1071%2Ffp13330&rft.externalDocID=US201500058994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1445-4408&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1445-4408&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1445-4408&client=summon