Improvements to the linear differential inclusion approach to stability analysis of linear systems with saturated linear feedback

Ellipsoids, as level sets of quadratic Lyapunov functions, and the convex hull of ellipsoids, as a level set of a certain composite quadratic Lyapunov function, have both been extensively used as estimates of the domain of attraction of a linear system under saturated linear feedback. By expressing...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 49; no. 3; pp. 821 - 828
Main Authors Li, Yuanlong, Lin, Zongli
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0005-1098
1873-2836
DOI10.1016/j.automatica.2012.12.002

Cover

Loading…
Abstract Ellipsoids, as level sets of quadratic Lyapunov functions, and the convex hull of ellipsoids, as a level set of a certain composite quadratic Lyapunov function, have both been extensively used as estimates of the domain of attraction of a linear system under saturated linear feedback. By expressing the saturated linear feedback law on the convex hull of a group of linear feedback laws, which in turn expresses the linear system under this saturated linear feedback in a linear differential inclusion, conditions have been established under which an ellipsoid or the convex hull of a group of ellipsoids are contractively invariant sets and are thus estimates of the domain of attraction. These conditions are usually less conservative for single input systems than for multiple input systems. In this paper, we consider multiple input systems and establish conditions for contractive invariance of the convex hull of ellipsoids that are less conservative than the existing conditions.
AbstractList Ellipsoids, as level sets of quadratic Lyapunov functions, and the convex hull of ellipsoids, as a level set of a certain composite quadratic Lyapunov function, have both been extensively used as estimates of the domain of attraction of a linear system under saturated linear feedback. By expressing the saturated linear feedback law on the convex hull of a group of linear feedback laws, which in turn expresses the linear system under this saturated linear feedback in a linear differential inclusion, conditions have been established under which an ellipsoid or the convex hull of a group of ellipsoids are contractively invariant sets and are thus estimates of the domain of attraction. These conditions are usually less conservative for single input systems than for multiple input systems. In this paper, we consider multiple input systems and establish conditions for contractive invariance of the convex hull of ellipsoids that are less conservative than the existing conditions.
Author Li, Yuanlong
Lin, Zongli
Author_xml – sequence: 1
  givenname: Yuanlong
  surname: Li
  fullname: Li, Yuanlong
  email: liyuanlong0301@163.com
  organization: Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing of Ministry of Education, Shanghai 200240, China
– sequence: 2
  givenname: Zongli
  surname: Lin
  fullname: Lin, Zongli
  email: zl5y@virginia.edu
  organization: Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing of Ministry of Education, Shanghai 200240, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27124966$$DView record in Pascal Francis
BookMark eNqNkU2LFDEQhoOs4Ozqf8hF8DJjPnrS6Yugix8LC170HKrTFSZjOhmT9Moc_eebYXYV9qJQUBT1vC9FvZfkIqaIhFDONpxx9Xa_gaWmGaq3sBGMi00rxsQzsuK6l2uhpbogK8bYds3ZoF-Qy1L2bey4Fivy-2Y-5HSHM8ZaaE207pAGHxEynbxzmNvCQ6A-2rAUnyKFQ1OA3Z3oUmH0wdcjhQjhWHyhyT3qy7FUnAv95euOFqhLhorT49YhTiPYHy_Jcweh4KuHfkW-f_r47frL-vbr55vr97drKzWva9CjZa6HiY3SaS7tCMPAmFJbK-zUCdEzCYBMuU7BoK1VqptE73o3SKsZyivy5uzbrv-5YKlm9sViCBAxLcVwKaTYDoLrhr5-QKFYCC5DtL6YQ_Yz5KMRPRfdoFTj9JmzOZWS0f1BODOndMze_E3HnNIxrVo6TfruidT62rAUawYf_sfgw9kA28_uPGZTrMdocfIZbTVT8v82uQeHfrhY
CODEN ATCAA9
CitedBy_id crossref_primary_10_1016_j_jfranklin_2023_04_033
crossref_primary_10_1109_TCYB_2020_2987326
crossref_primary_10_1016_j_ifacol_2017_08_1361
crossref_primary_10_1002_rnc_3456
crossref_primary_10_1109_TAC_2014_2322211
crossref_primary_10_1016_j_jfranklin_2021_10_026
crossref_primary_10_12677_PM_2021_115092
crossref_primary_10_1016_j_automatica_2016_11_004
crossref_primary_10_1016_j_automatica_2019_05_038
crossref_primary_10_1080_00207721_2022_2043483
crossref_primary_10_1016_j_fss_2024_109155
crossref_primary_10_1007_s00034_016_0275_x
crossref_primary_10_1177_10775463211030078
crossref_primary_10_1002_rnc_5783
crossref_primary_10_1002_rnc_4751
crossref_primary_10_1007_s12555_021_0896_0
crossref_primary_10_1109_TAC_2021_3088810
crossref_primary_10_1109_TNNLS_2021_3138997
crossref_primary_10_1109_TFUZZ_2020_3039676
crossref_primary_10_1109_TAC_2021_3092556
crossref_primary_10_1016_j_neunet_2021_04_012
crossref_primary_10_1016_j_oceaneng_2019_04_041
crossref_primary_10_3390_math11041038
crossref_primary_10_1109_TCNS_2023_3336542
crossref_primary_10_1080_00207179_2014_962616
crossref_primary_10_1016_j_automatica_2014_10_006
crossref_primary_10_1016_j_automatica_2014_12_033
crossref_primary_10_1016_j_ifacol_2015_09_170
crossref_primary_10_1080_00207721_2023_2268245
crossref_primary_10_1109_TFUZZ_2019_2921267
crossref_primary_10_1155_2020_7025761
crossref_primary_10_1007_s11768_017_7095_9
crossref_primary_10_1080_21642583_2020_1740113
crossref_primary_10_3934_mbe_2022503
crossref_primary_10_1007_s12555_018_0270_z
crossref_primary_10_1109_TIE_2022_3156167
Cites_doi 10.1109/TAC.2006.884942
10.1016/j.automatica.2004.01.029
10.1016/j.sysconle.2009.01.003
10.1016/j.automatica.2010.03.016
10.1016/S0005-1098(02)00193-0
10.1016/S0005-1098(01)00209-6
10.1016/S0167-6911(01)00168-2
10.1109/CDC.1997.649683
10.1016/j.automatica.2010.10.001
10.1109/9.898703
10.1109/9.981738
10.1109/TAC.2005.849201
10.1109/CDC.2005.1583157
10.1109/TAC.2006.872764
10.1016/j.automatica.2009.05.020
10.1109/TAC.2003.809149
10.1080/00207720600784684
10.1109/TAC.2004.835589
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.automatica.2012.12.002
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Law
EISSN 1873-2836
EndPage 828
ExternalDocumentID 27124966
10_1016_j_automatica_2012_12_002
S0005109812006012
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 60934007; 91029738
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c381t-a8bc0f7ad0b3f813cba9900665c2cd422703aae06f46a98cc664d27f7f93c80e3
IEDL.DBID .~1
ISSN 0005-1098
IngestDate Fri Jul 11 15:38:33 EDT 2025
Wed Apr 02 07:15:07 EDT 2025
Tue Jul 01 00:43:18 EDT 2025
Thu Apr 24 23:07:35 EDT 2025
Fri Feb 23 02:14:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Domain of attraction
Composite Lyapunov function
Actuator saturation
Set invariance
Saturation
Feedback regulation
Linear condition
Invariant set
Dynamical system
Conservative system
Convex hull
Convex function
Differential inclusion
Ellipsoid
Actuator
Lyapunov function
Quadratic function
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-a8bc0f7ad0b3f813cba9900665c2cd422703aae06f46a98cc664d27f7f93c80e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1323259218
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1323259218
pascalfrancis_primary_27124966
crossref_primary_10_1016_j_automatica_2012_12_002
crossref_citationtrail_10_1016_j_automatica_2012_12_002
elsevier_sciencedirect_doi_10_1016_j_automatica_2012_12_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Automatica (Oxford)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References (pp. 1385–1389). San Diego, California.
(pp. 5499–5505). The Bahamas.
Zhou, Zheng, Duan (br000120) 2011; 47
(pp. 4518–4523). San Diego, California.
Hu, Lin (br000055) 2002; 47
Alamo, T., Cepeda, A., & Limon, D. (2005). Improved computation of ellipsoidal invariant sets for saturated control systems. In
Hu, T., Lin, Z., Teel, A.R., & Goebel, R. (2004). Stability regions for saturated Linear systems via conjugate Lyapnov functions. In
Hu, Lin, Chen (br000070) 2002; 38
Hassibi, A., How, J., & Boyd, S. (1999). A path-following method for solving BMI problems in control. In
Alamo, Cepeda, Limon, Camacho (br000010) 2006; 37
Milani (br000095) 2002; 38
Hindi, H., & Boyd, S. (1998). Analysis of linear systems with saturating using convex optimization. In
Hu, Lin (br000050) 2001
Hu, Lin (br000065) 2005; 50
(pp. 903–908). Tampa, Florida.
Tarbouriech, Garcia, Gomes da Silva, Queinnee (br000105) 2011
Chesi (br000015) 2004; 49
Hu, Lin, Chen (br000075) 2002; 45
Khalil (br000090) 1996
Fridman, Dambrine (br000025) 2009; 45
Hu, Lin (br000060) 2003; 48
Xu, Tan, Lee (br000115) 2004; 40
Pittet, C., Tarbouriech, S., & Burgat, C. (1997). Stabilityregions for linear systems with saturating controls via circle and Popov criteria. In
Valmorbida, Tarbouriech, Garcia (br000110) 2010; 46
Hu, Teel, Zaccarian (br000085) 2006; 51
(pp. 6216-6221). Seville, Spain.
Goebel, Teel, Hu, Lin (br000030) 2006; 51
Dai, Hu, Teel, Zaccarian (br000020) 2009; 58
Gomes da Silva, Tarbouriech (br000035) 2001; 46
Fridman (10.1016/j.automatica.2012.12.002_br000025) 2009; 45
10.1016/j.automatica.2012.12.002_br000045
Milani (10.1016/j.automatica.2012.12.002_br000095) 2002; 38
10.1016/j.automatica.2012.12.002_br000100
Khalil (10.1016/j.automatica.2012.12.002_br000090) 1996
Zhou (10.1016/j.automatica.2012.12.002_br000120) 2011; 47
10.1016/j.automatica.2012.12.002_br000005
Chesi (10.1016/j.automatica.2012.12.002_br000015) 2004; 49
Hu (10.1016/j.automatica.2012.12.002_br000065) 2005; 50
Hu (10.1016/j.automatica.2012.12.002_br000060) 2003; 48
Tarbouriech (10.1016/j.automatica.2012.12.002_br000105) 2011
Xu (10.1016/j.automatica.2012.12.002_br000115) 2004; 40
Alamo (10.1016/j.automatica.2012.12.002_br000010) 2006; 37
Hu (10.1016/j.automatica.2012.12.002_br000050) 2001
Hu (10.1016/j.automatica.2012.12.002_br000070) 2002; 38
Gomes da Silva (10.1016/j.automatica.2012.12.002_br000035) 2001; 46
Goebel (10.1016/j.automatica.2012.12.002_br000030) 2006; 51
Hu (10.1016/j.automatica.2012.12.002_br000085) 2006; 51
Valmorbida (10.1016/j.automatica.2012.12.002_br000110) 2010; 46
10.1016/j.automatica.2012.12.002_br000080
Dai (10.1016/j.automatica.2012.12.002_br000020) 2009; 58
Hu (10.1016/j.automatica.2012.12.002_br000055) 2002; 47
Hu (10.1016/j.automatica.2012.12.002_br000075) 2002; 45
10.1016/j.automatica.2012.12.002_br000040
References_xml – volume: 40
  start-page: 1371
  year: 2004
  end-page: 1377
  ident: br000115
  article-title: Iterative learning control design based on composite energy function with input saturation
  publication-title: Automatica
– volume: 45
  start-page: 97
  year: 2002
  end-page: 112
  ident: br000075
  article-title: Analysis and design for discrete-time linear systems subject to actuator saturation
  publication-title: Systems & Control Letters
– volume: 50
  start-page: 781
  year: 2005
  end-page: 797
  ident: br000065
  article-title: Absolute stability analysis of discrete-time systems with composite quadratic Lyapunov functions
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 5499–5505). The Bahamas.
– reference: Hassibi, A., How, J., & Boyd, S. (1999). A path-following method for solving BMI problems in control. In
– volume: 46
  start-page: 119
  year: 2001
  end-page: 125
  ident: br000035
  article-title: Local stabilization of discrete-time linear systems with saturating controls: an LMI-based approach
  publication-title: IEEE Transactions on Automatic Control
– volume: 51
  start-page: 1770
  year: 2006
  end-page: 1785
  ident: br000085
  article-title: Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions
  publication-title: IEEE Transactions on Automatic Control
– reference: Pittet, C., Tarbouriech, S., & Burgat, C. (1997). Stabilityregions for linear systems with saturating controls via circle and Popov criteria. In
– volume: 58
  start-page: 365
  year: 2009
  end-page: 371
  ident: br000020
  article-title: Piecewise-quadratic Lyapunov functions for systems with deadzones or saturations
  publication-title: Systems & Control Letters
– volume: 46
  start-page: 1196
  year: 2010
  end-page: 1202
  ident: br000110
  article-title: State feedback design for input-saturating quadratic systems
  publication-title: Automatica
– reference: Hu, T., Lin, Z., Teel, A.R., & Goebel, R. (2004). Stability regions for saturated Linear systems via conjugate Lyapnov functions. In
– year: 2001
  ident: br000050
  article-title: Control systems with actuator saturation: analysis and design
– volume: 47
  start-page: 164
  year: 2002
  end-page: 169
  ident: br000055
  article-title: Exact characterization of invariant ellipsoids for linear systems with saturating actuators
  publication-title: IEEE Transactions on Automatic Control
– volume: 49
  start-page: 1846
  year: 2004
  end-page: 1850
  ident: br000015
  article-title: Computing output feedback controllers to enlarge the domain of attraction in polynomial systems
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 1385–1389). San Diego, California.
– volume: 51
  start-page: 661
  year: 2006
  end-page: 666
  ident: br000030
  article-title: Conjugate convex Lyapunov functions for dual linear differential inclusions
  publication-title: IEEE Transactions on Automatic Control
– volume: 38
  start-page: 351
  year: 2002
  end-page: 359
  ident: br000070
  article-title: An analysis and design method for linear systems subject to actuator saturation and disturbance
  publication-title: Automatica
– volume: 48
  start-page: 440
  year: 2003
  end-page: 452
  ident: br000060
  article-title: Composite quadratic Lyapunov functions for constrained control systems
  publication-title: IEEE Transactions on Automatic Control
– reference: Hindi, H., & Boyd, S. (1998). Analysis of linear systems with saturating using convex optimization. In
– year: 1996
  ident: br000090
  article-title: Nonlinear systems
– volume: 38
  start-page: 2177
  year: 2002
  end-page: 2184
  ident: br000095
  article-title: Piecewise-affine Lyapunov functions for discrete-time linear systems with saturating controls
  publication-title: Automatica
– year: 2011
  ident: br000105
  article-title: Stability and stabilization of linear systems with saturating actuators
– volume: 37
  start-page: 575
  year: 2006
  end-page: 583
  ident: br000010
  article-title: Estimation of the domain of attraction for saturated discrete-time systems
  publication-title: International Journal of Systems Science
– reference: (pp. 6216-6221). Seville, Spain.
– reference: (pp. 903–908). Tampa, Florida.
– volume: 45
  start-page: 2258
  year: 2009
  end-page: 2264
  ident: br000025
  article-title: Control under quantization, saturation and delay: an LMI approach
  publication-title: Automatica
– volume: 47
  start-page: 306
  year: 2011
  end-page: 315
  ident: br000120
  article-title: An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation
  publication-title: Automatica
– reference: Alamo, T., Cepeda, A., & Limon, D. (2005). Improved computation of ellipsoidal invariant sets for saturated control systems. In
– reference: (pp. 4518–4523). San Diego, California.
– volume: 51
  start-page: 1770
  issue: 11
  year: 2006
  ident: 10.1016/j.automatica.2012.12.002_br000085
  article-title: Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2006.884942
– volume: 40
  start-page: 1371
  issue: 8
  year: 2004
  ident: 10.1016/j.automatica.2012.12.002_br000115
  article-title: Iterative learning control design based on composite energy function with input saturation
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.01.029
– volume: 58
  start-page: 365
  issue: 5
  year: 2009
  ident: 10.1016/j.automatica.2012.12.002_br000020
  article-title: Piecewise-quadratic Lyapunov functions for systems with deadzones or saturations
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2009.01.003
– volume: 46
  start-page: 1196
  issue: 7
  year: 2010
  ident: 10.1016/j.automatica.2012.12.002_br000110
  article-title: State feedback design for input-saturating quadratic systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.03.016
– volume: 38
  start-page: 2177
  issue: 12
  year: 2002
  ident: 10.1016/j.automatica.2012.12.002_br000095
  article-title: Piecewise-affine Lyapunov functions for discrete-time linear systems with saturating controls
  publication-title: Automatica
  doi: 10.1016/S0005-1098(02)00193-0
– ident: 10.1016/j.automatica.2012.12.002_br000080
– volume: 38
  start-page: 351
  issue: 2
  year: 2002
  ident: 10.1016/j.automatica.2012.12.002_br000070
  article-title: An analysis and design method for linear systems subject to actuator saturation and disturbance
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00209-6
– volume: 45
  start-page: 97
  issue: 2
  year: 2002
  ident: 10.1016/j.automatica.2012.12.002_br000075
  article-title: Analysis and design for discrete-time linear systems subject to actuator saturation
  publication-title: Systems & Control Letters
  doi: 10.1016/S0167-6911(01)00168-2
– ident: 10.1016/j.automatica.2012.12.002_br000045
– ident: 10.1016/j.automatica.2012.12.002_br000100
  doi: 10.1109/CDC.1997.649683
– year: 2011
  ident: 10.1016/j.automatica.2012.12.002_br000105
– volume: 47
  start-page: 306
  issue: 8
  year: 2011
  ident: 10.1016/j.automatica.2012.12.002_br000120
  article-title: An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.10.001
– ident: 10.1016/j.automatica.2012.12.002_br000040
– volume: 46
  start-page: 119
  issue: 1
  year: 2001
  ident: 10.1016/j.automatica.2012.12.002_br000035
  article-title: Local stabilization of discrete-time linear systems with saturating controls: an LMI-based approach
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.898703
– volume: 47
  start-page: 164
  issue: 1
  year: 2002
  ident: 10.1016/j.automatica.2012.12.002_br000055
  article-title: Exact characterization of invariant ellipsoids for linear systems with saturating actuators
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.981738
– year: 2001
  ident: 10.1016/j.automatica.2012.12.002_br000050
– volume: 50
  start-page: 781
  issue: 6
  year: 2005
  ident: 10.1016/j.automatica.2012.12.002_br000065
  article-title: Absolute stability analysis of discrete-time systems with composite quadratic Lyapunov functions
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2005.849201
– ident: 10.1016/j.automatica.2012.12.002_br000005
  doi: 10.1109/CDC.2005.1583157
– volume: 51
  start-page: 661
  issue: 4
  year: 2006
  ident: 10.1016/j.automatica.2012.12.002_br000030
  article-title: Conjugate convex Lyapunov functions for dual linear differential inclusions
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2006.872764
– volume: 45
  start-page: 2258
  issue: 10
  year: 2009
  ident: 10.1016/j.automatica.2012.12.002_br000025
  article-title: Control under quantization, saturation and delay: an LMI approach
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.05.020
– volume: 48
  start-page: 440
  issue: 3
  year: 2003
  ident: 10.1016/j.automatica.2012.12.002_br000060
  article-title: Composite quadratic Lyapunov functions for constrained control systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2003.809149
– year: 1996
  ident: 10.1016/j.automatica.2012.12.002_br000090
– volume: 37
  start-page: 575
  issue: 8
  year: 2006
  ident: 10.1016/j.automatica.2012.12.002_br000010
  article-title: Estimation of the domain of attraction for saturated discrete-time systems
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207720600784684
– volume: 49
  start-page: 1846
  issue: 10
  year: 2004
  ident: 10.1016/j.automatica.2012.12.002_br000015
  article-title: Computing output feedback controllers to enlarge the domain of attraction in polynomial systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2004.835589
SSID ssj0004182
Score 2.3111212
Snippet Ellipsoids, as level sets of quadratic Lyapunov functions, and the convex hull of ellipsoids, as a level set of a certain composite quadratic Lyapunov...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 821
SubjectTerms Actuator saturation
Applied sciences
Attraction
Composite Lyapunov function
Computer science; control theory; systems
Control system analysis
Control theory. Systems
Domain of attraction
Ellipsoids
Exact sciences and technology
Feedback
Hulls
Hulls (structures)
Law
Linear systems
Lyapunov functions
Set invariance
System theory
Title Improvements to the linear differential inclusion approach to stability analysis of linear systems with saturated linear feedback
URI https://dx.doi.org/10.1016/j.automatica.2012.12.002
https://www.proquest.com/docview/1323259218
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BatwwEBUhuaSUkqQp3TZdFOjVjdfWSjY9hZCwbWlOCeQmpLEE2y72EnsPvRT6552RpaQhPQQCPtkebDSjeaPR6A1jH3NllTIFZHOEu0wYIbM6L11W-mpuLYCV4VDY90u5uBZfb-Y3W-wsnYWhssro-0efHrx1vHMSR_NkvVzSGV8yqBoRKpCKkB8WQpGVf_p9X-YhZtXIGB4YN-sqVvOMNV5mM3SBGZUYiGZFSAzGBMt_IOrl2vQ4cH7sePHIeQdEuthjr2IoyU_Hv91nW649YC_-IRh8zf6MOYOQAuz50HEM9zgFluaWp9YoOMVXfNnCakOJM55IxultjBxD7ewvbiJ3Ce98kh85oHtOmVzeEz8ohq1NeuoRFa2Bn4fs-uL86myRxaYLGSB4D5mpLORemSa3qK9ZCdYgYNEGDRTQiKJAF2GMy6UX0tQVgJSiKZRXvi6hyl35hm23XeveMt6AkCCB1mxWuFoYm7tGOW8x6qxxbTxhKo2zhshITo0xVjqVnv3Q9xrSpCGNF2powmZ3kuuRleMJMp-TKvUDC9MIHk-Qnj7Q_t1nC0Xtu6WcsONkDhpnKG27mNZ1m17jer_ERSbGUu-e9Qvv2W4RenFQAdwR2x5uN-4DRkSDnQaTn7Kd0y_fFpd_AaTeEG8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7C5tCWUvok20eqQq8mXlsr2fQUQsOmSfaUQG5CGkuw7WIvsffQY_55RrKUNLSHQMEn24ONRppvNJr5BuBrLo2UusBsTnCXcc1FVuelzUpXzY1BNCIUhZ0vxeKS_7iaX-3AUaqF8WmV0faPNj1Y63jnII7mwWa18jW-fkLVhFCBVITs8K5np5pPYPfw5HSxvC-PnFUjaXgg3ayrmNAzpnnp7dAFclRPQjQrQmwwxlj-gVLPN7qnsXNj04u_7HcApeOX8CJ6k-xw_OFXsGPb1_DsD47BN3Azhg1CFLBnQ8fI42Pet9TXLHVHoVW-ZqsW11sfO2OJZ9y_Tc5jSJ_9zXSkL2GdS_IjDXTPfDCX9Z4ilDzXJj11BIxG46-3cHn8_eJokcW-CxkSfg-ZrgzmTuomN6SyWYlGE2b5MxossOFFQVZCa5sLx4WuK0QheFNIJ11dYpXb8h1M2q61e8Aa5AIF-m2b4bbm2uS2kdYZcjxr2h5PQaZxVhhJyX1vjLVK2Wc_1b2GlNeQoos0NIXZneRmJOZ4hMy3pEr1YJIpwo9HSO8_0P7dZwvpO3gLMYUvaTooWqT-5EW3ttv2irb8Je0zyZ16_1-_8BmeLC7Oz9TZyfL0AzwtQmsOnw_3ESbD9dZ-IgdpMPtxAdwC4BsTIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvements+to+the+linear+differential+inclusion+approach+to+stability+analysis+of+linear+systems+with+saturated+linear+feedback&rft.jtitle=Automatica+%28Oxford%29&rft.au=Li%2C+Yuanlong&rft.au=Lin%2C+Zongli&rft.date=2013-03-01&rft.issn=0005-1098&rft.volume=49&rft.issue=3&rft.spage=821&rft.epage=828&rft_id=info:doi/10.1016%2Fj.automatica.2012.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2012_12_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon