Improvements to the linear differential inclusion approach to stability analysis of linear systems with saturated linear feedback
Ellipsoids, as level sets of quadratic Lyapunov functions, and the convex hull of ellipsoids, as a level set of a certain composite quadratic Lyapunov function, have both been extensively used as estimates of the domain of attraction of a linear system under saturated linear feedback. By expressing...
Saved in:
Published in | Automatica (Oxford) Vol. 49; no. 3; pp. 821 - 828 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.03.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0005-1098 1873-2836 |
DOI | 10.1016/j.automatica.2012.12.002 |
Cover
Loading…
Abstract | Ellipsoids, as level sets of quadratic Lyapunov functions, and the convex hull of ellipsoids, as a level set of a certain composite quadratic Lyapunov function, have both been extensively used as estimates of the domain of attraction of a linear system under saturated linear feedback. By expressing the saturated linear feedback law on the convex hull of a group of linear feedback laws, which in turn expresses the linear system under this saturated linear feedback in a linear differential inclusion, conditions have been established under which an ellipsoid or the convex hull of a group of ellipsoids are contractively invariant sets and are thus estimates of the domain of attraction. These conditions are usually less conservative for single input systems than for multiple input systems. In this paper, we consider multiple input systems and establish conditions for contractive invariance of the convex hull of ellipsoids that are less conservative than the existing conditions. |
---|---|
AbstractList | Ellipsoids, as level sets of quadratic Lyapunov functions, and the convex hull of ellipsoids, as a level set of a certain composite quadratic Lyapunov function, have both been extensively used as estimates of the domain of attraction of a linear system under saturated linear feedback. By expressing the saturated linear feedback law on the convex hull of a group of linear feedback laws, which in turn expresses the linear system under this saturated linear feedback in a linear differential inclusion, conditions have been established under which an ellipsoid or the convex hull of a group of ellipsoids are contractively invariant sets and are thus estimates of the domain of attraction. These conditions are usually less conservative for single input systems than for multiple input systems. In this paper, we consider multiple input systems and establish conditions for contractive invariance of the convex hull of ellipsoids that are less conservative than the existing conditions. |
Author | Li, Yuanlong Lin, Zongli |
Author_xml | – sequence: 1 givenname: Yuanlong surname: Li fullname: Li, Yuanlong email: liyuanlong0301@163.com organization: Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing of Ministry of Education, Shanghai 200240, China – sequence: 2 givenname: Zongli surname: Lin fullname: Lin, Zongli email: zl5y@virginia.edu organization: Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing of Ministry of Education, Shanghai 200240, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27124966$$DView record in Pascal Francis |
BookMark | eNqNkU2LFDEQhoOs4Ozqf8hF8DJjPnrS6Yugix8LC170HKrTFSZjOhmT9Moc_eebYXYV9qJQUBT1vC9FvZfkIqaIhFDONpxx9Xa_gaWmGaq3sBGMi00rxsQzsuK6l2uhpbogK8bYds3ZoF-Qy1L2bey4Fivy-2Y-5HSHM8ZaaE207pAGHxEynbxzmNvCQ6A-2rAUnyKFQ1OA3Z3oUmH0wdcjhQjhWHyhyT3qy7FUnAv95euOFqhLhorT49YhTiPYHy_Jcweh4KuHfkW-f_r47frL-vbr55vr97drKzWva9CjZa6HiY3SaS7tCMPAmFJbK-zUCdEzCYBMuU7BoK1VqptE73o3SKsZyivy5uzbrv-5YKlm9sViCBAxLcVwKaTYDoLrhr5-QKFYCC5DtL6YQ_Yz5KMRPRfdoFTj9JmzOZWS0f1BODOndMze_E3HnNIxrVo6TfruidT62rAUawYf_sfgw9kA28_uPGZTrMdocfIZbTVT8v82uQeHfrhY |
CODEN | ATCAA9 |
CitedBy_id | crossref_primary_10_1016_j_jfranklin_2023_04_033 crossref_primary_10_1109_TCYB_2020_2987326 crossref_primary_10_1016_j_ifacol_2017_08_1361 crossref_primary_10_1002_rnc_3456 crossref_primary_10_1109_TAC_2014_2322211 crossref_primary_10_1016_j_jfranklin_2021_10_026 crossref_primary_10_12677_PM_2021_115092 crossref_primary_10_1016_j_automatica_2016_11_004 crossref_primary_10_1016_j_automatica_2019_05_038 crossref_primary_10_1080_00207721_2022_2043483 crossref_primary_10_1016_j_fss_2024_109155 crossref_primary_10_1007_s00034_016_0275_x crossref_primary_10_1177_10775463211030078 crossref_primary_10_1002_rnc_5783 crossref_primary_10_1002_rnc_4751 crossref_primary_10_1007_s12555_021_0896_0 crossref_primary_10_1109_TAC_2021_3088810 crossref_primary_10_1109_TNNLS_2021_3138997 crossref_primary_10_1109_TFUZZ_2020_3039676 crossref_primary_10_1109_TAC_2021_3092556 crossref_primary_10_1016_j_neunet_2021_04_012 crossref_primary_10_1016_j_oceaneng_2019_04_041 crossref_primary_10_3390_math11041038 crossref_primary_10_1109_TCNS_2023_3336542 crossref_primary_10_1080_00207179_2014_962616 crossref_primary_10_1016_j_automatica_2014_10_006 crossref_primary_10_1016_j_automatica_2014_12_033 crossref_primary_10_1016_j_ifacol_2015_09_170 crossref_primary_10_1080_00207721_2023_2268245 crossref_primary_10_1109_TFUZZ_2019_2921267 crossref_primary_10_1155_2020_7025761 crossref_primary_10_1007_s11768_017_7095_9 crossref_primary_10_1080_21642583_2020_1740113 crossref_primary_10_3934_mbe_2022503 crossref_primary_10_1007_s12555_018_0270_z crossref_primary_10_1109_TIE_2022_3156167 |
Cites_doi | 10.1109/TAC.2006.884942 10.1016/j.automatica.2004.01.029 10.1016/j.sysconle.2009.01.003 10.1016/j.automatica.2010.03.016 10.1016/S0005-1098(02)00193-0 10.1016/S0005-1098(01)00209-6 10.1016/S0167-6911(01)00168-2 10.1109/CDC.1997.649683 10.1016/j.automatica.2010.10.001 10.1109/9.898703 10.1109/9.981738 10.1109/TAC.2005.849201 10.1109/CDC.2005.1583157 10.1109/TAC.2006.872764 10.1016/j.automatica.2009.05.020 10.1109/TAC.2003.809149 10.1080/00207720600784684 10.1109/TAC.2004.835589 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.automatica.2012.12.002 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Law |
EISSN | 1873-2836 |
EndPage | 828 |
ExternalDocumentID | 27124966 10_1016_j_automatica_2012_12_002 S0005109812006012 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 60934007; 91029738 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c381t-a8bc0f7ad0b3f813cba9900665c2cd422703aae06f46a98cc664d27f7f93c80e3 |
IEDL.DBID | .~1 |
ISSN | 0005-1098 |
IngestDate | Fri Jul 11 15:38:33 EDT 2025 Wed Apr 02 07:15:07 EDT 2025 Tue Jul 01 00:43:18 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Fri Feb 23 02:14:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Domain of attraction Composite Lyapunov function Actuator saturation Set invariance Saturation Feedback regulation Linear condition Invariant set Dynamical system Conservative system Convex hull Convex function Differential inclusion Ellipsoid Actuator Lyapunov function Quadratic function |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-a8bc0f7ad0b3f813cba9900665c2cd422703aae06f46a98cc664d27f7f93c80e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1323259218 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1323259218 pascalfrancis_primary_27124966 crossref_primary_10_1016_j_automatica_2012_12_002 crossref_citationtrail_10_1016_j_automatica_2012_12_002 elsevier_sciencedirect_doi_10_1016_j_automatica_2012_12_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-01 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Automatica (Oxford) |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | (pp. 1385–1389). San Diego, California. (pp. 5499–5505). The Bahamas. Zhou, Zheng, Duan (br000120) 2011; 47 (pp. 4518–4523). San Diego, California. Hu, Lin (br000055) 2002; 47 Alamo, T., Cepeda, A., & Limon, D. (2005). Improved computation of ellipsoidal invariant sets for saturated control systems. In Hu, T., Lin, Z., Teel, A.R., & Goebel, R. (2004). Stability regions for saturated Linear systems via conjugate Lyapnov functions. In Hu, Lin, Chen (br000070) 2002; 38 Hassibi, A., How, J., & Boyd, S. (1999). A path-following method for solving BMI problems in control. In Alamo, Cepeda, Limon, Camacho (br000010) 2006; 37 Milani (br000095) 2002; 38 Hindi, H., & Boyd, S. (1998). Analysis of linear systems with saturating using convex optimization. In Hu, Lin (br000050) 2001 Hu, Lin (br000065) 2005; 50 (pp. 903–908). Tampa, Florida. Tarbouriech, Garcia, Gomes da Silva, Queinnee (br000105) 2011 Chesi (br000015) 2004; 49 Hu, Lin, Chen (br000075) 2002; 45 Khalil (br000090) 1996 Fridman, Dambrine (br000025) 2009; 45 Hu, Lin (br000060) 2003; 48 Xu, Tan, Lee (br000115) 2004; 40 Pittet, C., Tarbouriech, S., & Burgat, C. (1997). Stabilityregions for linear systems with saturating controls via circle and Popov criteria. In Valmorbida, Tarbouriech, Garcia (br000110) 2010; 46 Hu, Teel, Zaccarian (br000085) 2006; 51 (pp. 6216-6221). Seville, Spain. Goebel, Teel, Hu, Lin (br000030) 2006; 51 Dai, Hu, Teel, Zaccarian (br000020) 2009; 58 Gomes da Silva, Tarbouriech (br000035) 2001; 46 Fridman (10.1016/j.automatica.2012.12.002_br000025) 2009; 45 10.1016/j.automatica.2012.12.002_br000045 Milani (10.1016/j.automatica.2012.12.002_br000095) 2002; 38 10.1016/j.automatica.2012.12.002_br000100 Khalil (10.1016/j.automatica.2012.12.002_br000090) 1996 Zhou (10.1016/j.automatica.2012.12.002_br000120) 2011; 47 10.1016/j.automatica.2012.12.002_br000005 Chesi (10.1016/j.automatica.2012.12.002_br000015) 2004; 49 Hu (10.1016/j.automatica.2012.12.002_br000065) 2005; 50 Hu (10.1016/j.automatica.2012.12.002_br000060) 2003; 48 Tarbouriech (10.1016/j.automatica.2012.12.002_br000105) 2011 Xu (10.1016/j.automatica.2012.12.002_br000115) 2004; 40 Alamo (10.1016/j.automatica.2012.12.002_br000010) 2006; 37 Hu (10.1016/j.automatica.2012.12.002_br000050) 2001 Hu (10.1016/j.automatica.2012.12.002_br000070) 2002; 38 Gomes da Silva (10.1016/j.automatica.2012.12.002_br000035) 2001; 46 Goebel (10.1016/j.automatica.2012.12.002_br000030) 2006; 51 Hu (10.1016/j.automatica.2012.12.002_br000085) 2006; 51 Valmorbida (10.1016/j.automatica.2012.12.002_br000110) 2010; 46 10.1016/j.automatica.2012.12.002_br000080 Dai (10.1016/j.automatica.2012.12.002_br000020) 2009; 58 Hu (10.1016/j.automatica.2012.12.002_br000055) 2002; 47 Hu (10.1016/j.automatica.2012.12.002_br000075) 2002; 45 10.1016/j.automatica.2012.12.002_br000040 |
References_xml | – volume: 40 start-page: 1371 year: 2004 end-page: 1377 ident: br000115 article-title: Iterative learning control design based on composite energy function with input saturation publication-title: Automatica – volume: 45 start-page: 97 year: 2002 end-page: 112 ident: br000075 article-title: Analysis and design for discrete-time linear systems subject to actuator saturation publication-title: Systems & Control Letters – volume: 50 start-page: 781 year: 2005 end-page: 797 ident: br000065 article-title: Absolute stability analysis of discrete-time systems with composite quadratic Lyapunov functions publication-title: IEEE Transactions on Automatic Control – reference: (pp. 5499–5505). The Bahamas. – reference: Hassibi, A., How, J., & Boyd, S. (1999). A path-following method for solving BMI problems in control. In – volume: 46 start-page: 119 year: 2001 end-page: 125 ident: br000035 article-title: Local stabilization of discrete-time linear systems with saturating controls: an LMI-based approach publication-title: IEEE Transactions on Automatic Control – volume: 51 start-page: 1770 year: 2006 end-page: 1785 ident: br000085 article-title: Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions publication-title: IEEE Transactions on Automatic Control – reference: Pittet, C., Tarbouriech, S., & Burgat, C. (1997). Stabilityregions for linear systems with saturating controls via circle and Popov criteria. In – volume: 58 start-page: 365 year: 2009 end-page: 371 ident: br000020 article-title: Piecewise-quadratic Lyapunov functions for systems with deadzones or saturations publication-title: Systems & Control Letters – volume: 46 start-page: 1196 year: 2010 end-page: 1202 ident: br000110 article-title: State feedback design for input-saturating quadratic systems publication-title: Automatica – reference: Hu, T., Lin, Z., Teel, A.R., & Goebel, R. (2004). Stability regions for saturated Linear systems via conjugate Lyapnov functions. In – year: 2001 ident: br000050 article-title: Control systems with actuator saturation: analysis and design – volume: 47 start-page: 164 year: 2002 end-page: 169 ident: br000055 article-title: Exact characterization of invariant ellipsoids for linear systems with saturating actuators publication-title: IEEE Transactions on Automatic Control – volume: 49 start-page: 1846 year: 2004 end-page: 1850 ident: br000015 article-title: Computing output feedback controllers to enlarge the domain of attraction in polynomial systems publication-title: IEEE Transactions on Automatic Control – reference: (pp. 1385–1389). San Diego, California. – volume: 51 start-page: 661 year: 2006 end-page: 666 ident: br000030 article-title: Conjugate convex Lyapunov functions for dual linear differential inclusions publication-title: IEEE Transactions on Automatic Control – volume: 38 start-page: 351 year: 2002 end-page: 359 ident: br000070 article-title: An analysis and design method for linear systems subject to actuator saturation and disturbance publication-title: Automatica – volume: 48 start-page: 440 year: 2003 end-page: 452 ident: br000060 article-title: Composite quadratic Lyapunov functions for constrained control systems publication-title: IEEE Transactions on Automatic Control – reference: Hindi, H., & Boyd, S. (1998). Analysis of linear systems with saturating using convex optimization. In – year: 1996 ident: br000090 article-title: Nonlinear systems – volume: 38 start-page: 2177 year: 2002 end-page: 2184 ident: br000095 article-title: Piecewise-affine Lyapunov functions for discrete-time linear systems with saturating controls publication-title: Automatica – year: 2011 ident: br000105 article-title: Stability and stabilization of linear systems with saturating actuators – volume: 37 start-page: 575 year: 2006 end-page: 583 ident: br000010 article-title: Estimation of the domain of attraction for saturated discrete-time systems publication-title: International Journal of Systems Science – reference: (pp. 6216-6221). Seville, Spain. – reference: (pp. 903–908). Tampa, Florida. – volume: 45 start-page: 2258 year: 2009 end-page: 2264 ident: br000025 article-title: Control under quantization, saturation and delay: an LMI approach publication-title: Automatica – volume: 47 start-page: 306 year: 2011 end-page: 315 ident: br000120 article-title: An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation publication-title: Automatica – reference: Alamo, T., Cepeda, A., & Limon, D. (2005). Improved computation of ellipsoidal invariant sets for saturated control systems. In – reference: (pp. 4518–4523). San Diego, California. – volume: 51 start-page: 1770 issue: 11 year: 2006 ident: 10.1016/j.automatica.2012.12.002_br000085 article-title: Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2006.884942 – volume: 40 start-page: 1371 issue: 8 year: 2004 ident: 10.1016/j.automatica.2012.12.002_br000115 article-title: Iterative learning control design based on composite energy function with input saturation publication-title: Automatica doi: 10.1016/j.automatica.2004.01.029 – volume: 58 start-page: 365 issue: 5 year: 2009 ident: 10.1016/j.automatica.2012.12.002_br000020 article-title: Piecewise-quadratic Lyapunov functions for systems with deadzones or saturations publication-title: Systems & Control Letters doi: 10.1016/j.sysconle.2009.01.003 – volume: 46 start-page: 1196 issue: 7 year: 2010 ident: 10.1016/j.automatica.2012.12.002_br000110 article-title: State feedback design for input-saturating quadratic systems publication-title: Automatica doi: 10.1016/j.automatica.2010.03.016 – volume: 38 start-page: 2177 issue: 12 year: 2002 ident: 10.1016/j.automatica.2012.12.002_br000095 article-title: Piecewise-affine Lyapunov functions for discrete-time linear systems with saturating controls publication-title: Automatica doi: 10.1016/S0005-1098(02)00193-0 – ident: 10.1016/j.automatica.2012.12.002_br000080 – volume: 38 start-page: 351 issue: 2 year: 2002 ident: 10.1016/j.automatica.2012.12.002_br000070 article-title: An analysis and design method for linear systems subject to actuator saturation and disturbance publication-title: Automatica doi: 10.1016/S0005-1098(01)00209-6 – volume: 45 start-page: 97 issue: 2 year: 2002 ident: 10.1016/j.automatica.2012.12.002_br000075 article-title: Analysis and design for discrete-time linear systems subject to actuator saturation publication-title: Systems & Control Letters doi: 10.1016/S0167-6911(01)00168-2 – ident: 10.1016/j.automatica.2012.12.002_br000045 – ident: 10.1016/j.automatica.2012.12.002_br000100 doi: 10.1109/CDC.1997.649683 – year: 2011 ident: 10.1016/j.automatica.2012.12.002_br000105 – volume: 47 start-page: 306 issue: 8 year: 2011 ident: 10.1016/j.automatica.2012.12.002_br000120 article-title: An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation publication-title: Automatica doi: 10.1016/j.automatica.2010.10.001 – ident: 10.1016/j.automatica.2012.12.002_br000040 – volume: 46 start-page: 119 issue: 1 year: 2001 ident: 10.1016/j.automatica.2012.12.002_br000035 article-title: Local stabilization of discrete-time linear systems with saturating controls: an LMI-based approach publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.898703 – volume: 47 start-page: 164 issue: 1 year: 2002 ident: 10.1016/j.automatica.2012.12.002_br000055 article-title: Exact characterization of invariant ellipsoids for linear systems with saturating actuators publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.981738 – year: 2001 ident: 10.1016/j.automatica.2012.12.002_br000050 – volume: 50 start-page: 781 issue: 6 year: 2005 ident: 10.1016/j.automatica.2012.12.002_br000065 article-title: Absolute stability analysis of discrete-time systems with composite quadratic Lyapunov functions publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2005.849201 – ident: 10.1016/j.automatica.2012.12.002_br000005 doi: 10.1109/CDC.2005.1583157 – volume: 51 start-page: 661 issue: 4 year: 2006 ident: 10.1016/j.automatica.2012.12.002_br000030 article-title: Conjugate convex Lyapunov functions for dual linear differential inclusions publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2006.872764 – volume: 45 start-page: 2258 issue: 10 year: 2009 ident: 10.1016/j.automatica.2012.12.002_br000025 article-title: Control under quantization, saturation and delay: an LMI approach publication-title: Automatica doi: 10.1016/j.automatica.2009.05.020 – volume: 48 start-page: 440 issue: 3 year: 2003 ident: 10.1016/j.automatica.2012.12.002_br000060 article-title: Composite quadratic Lyapunov functions for constrained control systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2003.809149 – year: 1996 ident: 10.1016/j.automatica.2012.12.002_br000090 – volume: 37 start-page: 575 issue: 8 year: 2006 ident: 10.1016/j.automatica.2012.12.002_br000010 article-title: Estimation of the domain of attraction for saturated discrete-time systems publication-title: International Journal of Systems Science doi: 10.1080/00207720600784684 – volume: 49 start-page: 1846 issue: 10 year: 2004 ident: 10.1016/j.automatica.2012.12.002_br000015 article-title: Computing output feedback controllers to enlarge the domain of attraction in polynomial systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2004.835589 |
SSID | ssj0004182 |
Score | 2.3111212 |
Snippet | Ellipsoids, as level sets of quadratic Lyapunov functions, and the convex hull of ellipsoids, as a level set of a certain composite quadratic Lyapunov... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 821 |
SubjectTerms | Actuator saturation Applied sciences Attraction Composite Lyapunov function Computer science; control theory; systems Control system analysis Control theory. Systems Domain of attraction Ellipsoids Exact sciences and technology Feedback Hulls Hulls (structures) Law Linear systems Lyapunov functions Set invariance System theory |
Title | Improvements to the linear differential inclusion approach to stability analysis of linear systems with saturated linear feedback |
URI | https://dx.doi.org/10.1016/j.automatica.2012.12.002 https://www.proquest.com/docview/1323259218 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BatwwEBUhuaSUkqQp3TZdFOjVjdfWSjY9hZCwbWlOCeQmpLEE2y72EnsPvRT6552RpaQhPQQCPtkebDSjeaPR6A1jH3NllTIFZHOEu0wYIbM6L11W-mpuLYCV4VDY90u5uBZfb-Y3W-wsnYWhssro-0efHrx1vHMSR_NkvVzSGV8yqBoRKpCKkB8WQpGVf_p9X-YhZtXIGB4YN-sqVvOMNV5mM3SBGZUYiGZFSAzGBMt_IOrl2vQ4cH7sePHIeQdEuthjr2IoyU_Hv91nW649YC_-IRh8zf6MOYOQAuz50HEM9zgFluaWp9YoOMVXfNnCakOJM55IxultjBxD7ewvbiJ3Ce98kh85oHtOmVzeEz8ohq1NeuoRFa2Bn4fs-uL86myRxaYLGSB4D5mpLORemSa3qK9ZCdYgYNEGDRTQiKJAF2GMy6UX0tQVgJSiKZRXvi6hyl35hm23XeveMt6AkCCB1mxWuFoYm7tGOW8x6qxxbTxhKo2zhshITo0xVjqVnv3Q9xrSpCGNF2powmZ3kuuRleMJMp-TKvUDC9MIHk-Qnj7Q_t1nC0Xtu6WcsONkDhpnKG27mNZ1m17jer_ERSbGUu-e9Qvv2W4RenFQAdwR2x5uN-4DRkSDnQaTn7Kd0y_fFpd_AaTeEG8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7C5tCWUvok20eqQq8mXlsr2fQUQsOmSfaUQG5CGkuw7WIvsffQY_55RrKUNLSHQMEn24ONRppvNJr5BuBrLo2UusBsTnCXcc1FVuelzUpXzY1BNCIUhZ0vxeKS_7iaX-3AUaqF8WmV0faPNj1Y63jnII7mwWa18jW-fkLVhFCBVITs8K5np5pPYPfw5HSxvC-PnFUjaXgg3ayrmNAzpnnp7dAFclRPQjQrQmwwxlj-gVLPN7qnsXNj04u_7HcApeOX8CJ6k-xw_OFXsGPb1_DsD47BN3Azhg1CFLBnQ8fI42Pet9TXLHVHoVW-ZqsW11sfO2OJZ9y_Tc5jSJ_9zXSkL2GdS_IjDXTPfDCX9Z4ilDzXJj11BIxG46-3cHn8_eJokcW-CxkSfg-ZrgzmTuomN6SyWYlGE2b5MxossOFFQVZCa5sLx4WuK0QheFNIJ11dYpXb8h1M2q61e8Aa5AIF-m2b4bbm2uS2kdYZcjxr2h5PQaZxVhhJyX1vjLVK2Wc_1b2GlNeQoos0NIXZneRmJOZ4hMy3pEr1YJIpwo9HSO8_0P7dZwvpO3gLMYUvaTooWqT-5EW3ttv2irb8Je0zyZ16_1-_8BmeLC7Oz9TZyfL0AzwtQmsOnw_3ESbD9dZ-IgdpMPtxAdwC4BsTIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvements+to+the+linear+differential+inclusion+approach+to+stability+analysis+of+linear+systems+with+saturated+linear+feedback&rft.jtitle=Automatica+%28Oxford%29&rft.au=Li%2C+Yuanlong&rft.au=Lin%2C+Zongli&rft.date=2013-03-01&rft.issn=0005-1098&rft.volume=49&rft.issue=3&rft.spage=821&rft.epage=828&rft_id=info:doi/10.1016%2Fj.automatica.2012.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2012_12_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |