Merging machine learning and patient preference: a novel tool for risk prediction of percutaneous coronary interventions

Predicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing risk mitigation strategies, and enhancing shared decision-making. This study aimed to employ machine learning models using pre-procedural varia...

Full description

Saved in:
Bibliographic Details
Published inEuropean heart journal Vol. 45; no. 8; pp. 601 - 609
Main Authors Hamilton, David E, Albright, Jeremy, Seth, Milan, Painter, Ian, Maynard, Charles, Hira, Ravi S, Sukul, Devraj, Gurm, Hitinder S
Format Journal Article
LanguageEnglish
Published England 21.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing risk mitigation strategies, and enhancing shared decision-making. This study aimed to employ machine learning models using pre-procedural variables to accurately predict common post-PCI complications. A group of 66 adults underwent a semiquantitative survey assessing a preferred list of outcomes and model display. The machine learning cohort included 107 793 patients undergoing PCI procedures performed at 48 hospitals in Michigan between 1 April 2018 and 31 December 2021 in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) registry separated into training and validation cohorts. External validation was conducted in the Cardiac Care Outcomes Assessment Program database of 56 583 procedures in 33 hospitals in Washington. Overall rate of in-hospital mortality was 1.85% (n = 1999), acute kidney injury 2.51% (n = 2519), new-onset dialysis 0.44% (n = 462), stroke 0.41% (n = 447), major bleeding 0.89% (n = 942), and transfusion 2.41% (n = 2592). The model demonstrated robust discrimination and calibration for mortality {area under the receiver-operating characteristic curve [AUC]: 0.930 [95% confidence interval (CI) 0.920-0.940]}, acute kidney injury [AUC: 0.893 (95% CI 0.883-0.903)], dialysis [AUC: 0.951 (95% CI 0.939-0.964)], stroke [AUC: 0.751 (95%CI 0.714-0.787)], transfusion [AUC: 0.917 (95% CI 0.907-0.925)], and major bleeding [AUC: 0.887 (95% CI 0.870-0.905)]. Similar discrimination was noted in the external validation population. Survey subjects preferred a comprehensive list of individually reported post-procedure outcomes. Using common pre-procedural risk factors, the BMC2 machine learning models accurately predict post-PCI outcomes. Utilizing patient feedback, the BMC2 models employ a patient-centred tool to clearly display risks to patients and providers (https://shiny.bmc2.org/pci-prediction/). Enhanced risk prediction prior to PCI could help inform treatment selection and shared decision-making discussions.
AbstractList Predicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing risk mitigation strategies, and enhancing shared decision-making. This study aimed to employ machine learning models using pre-procedural variables to accurately predict common post-PCI complications.BACKGROUND AND AIMSPredicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing risk mitigation strategies, and enhancing shared decision-making. This study aimed to employ machine learning models using pre-procedural variables to accurately predict common post-PCI complications.A group of 66 adults underwent a semiquantitative survey assessing a preferred list of outcomes and model display. The machine learning cohort included 107 793 patients undergoing PCI procedures performed at 48 hospitals in Michigan between 1 April 2018 and 31 December 2021 in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) registry separated into training and validation cohorts. External validation was conducted in the Cardiac Care Outcomes Assessment Program database of 56 583 procedures in 33 hospitals in Washington.METHODSA group of 66 adults underwent a semiquantitative survey assessing a preferred list of outcomes and model display. The machine learning cohort included 107 793 patients undergoing PCI procedures performed at 48 hospitals in Michigan between 1 April 2018 and 31 December 2021 in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) registry separated into training and validation cohorts. External validation was conducted in the Cardiac Care Outcomes Assessment Program database of 56 583 procedures in 33 hospitals in Washington.Overall rate of in-hospital mortality was 1.85% (n = 1999), acute kidney injury 2.51% (n = 2519), new-onset dialysis 0.44% (n = 462), stroke 0.41% (n = 447), major bleeding 0.89% (n = 942), and transfusion 2.41% (n = 2592). The model demonstrated robust discrimination and calibration for mortality {area under the receiver-operating characteristic curve [AUC]: 0.930 [95% confidence interval (CI) 0.920-0.940]}, acute kidney injury [AUC: 0.893 (95% CI 0.883-0.903)], dialysis [AUC: 0.951 (95% CI 0.939-0.964)], stroke [AUC: 0.751 (95%CI 0.714-0.787)], transfusion [AUC: 0.917 (95% CI 0.907-0.925)], and major bleeding [AUC: 0.887 (95% CI 0.870-0.905)]. Similar discrimination was noted in the external validation population. Survey subjects preferred a comprehensive list of individually reported post-procedure outcomes.RESULTSOverall rate of in-hospital mortality was 1.85% (n = 1999), acute kidney injury 2.51% (n = 2519), new-onset dialysis 0.44% (n = 462), stroke 0.41% (n = 447), major bleeding 0.89% (n = 942), and transfusion 2.41% (n = 2592). The model demonstrated robust discrimination and calibration for mortality {area under the receiver-operating characteristic curve [AUC]: 0.930 [95% confidence interval (CI) 0.920-0.940]}, acute kidney injury [AUC: 0.893 (95% CI 0.883-0.903)], dialysis [AUC: 0.951 (95% CI 0.939-0.964)], stroke [AUC: 0.751 (95%CI 0.714-0.787)], transfusion [AUC: 0.917 (95% CI 0.907-0.925)], and major bleeding [AUC: 0.887 (95% CI 0.870-0.905)]. Similar discrimination was noted in the external validation population. Survey subjects preferred a comprehensive list of individually reported post-procedure outcomes.Using common pre-procedural risk factors, the BMC2 machine learning models accurately predict post-PCI outcomes. Utilizing patient feedback, the BMC2 models employ a patient-centred tool to clearly display risks to patients and providers (https://shiny.bmc2.org/pci-prediction/). Enhanced risk prediction prior to PCI could help inform treatment selection and shared decision-making discussions.CONCLUSIONSUsing common pre-procedural risk factors, the BMC2 machine learning models accurately predict post-PCI outcomes. Utilizing patient feedback, the BMC2 models employ a patient-centred tool to clearly display risks to patients and providers (https://shiny.bmc2.org/pci-prediction/). Enhanced risk prediction prior to PCI could help inform treatment selection and shared decision-making discussions.
Predicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing risk mitigation strategies, and enhancing shared decision-making. This study aimed to employ machine learning models using pre-procedural variables to accurately predict common post-PCI complications. A group of 66 adults underwent a semiquantitative survey assessing a preferred list of outcomes and model display. The machine learning cohort included 107 793 patients undergoing PCI procedures performed at 48 hospitals in Michigan between 1 April 2018 and 31 December 2021 in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) registry separated into training and validation cohorts. External validation was conducted in the Cardiac Care Outcomes Assessment Program database of 56 583 procedures in 33 hospitals in Washington. Overall rate of in-hospital mortality was 1.85% (n = 1999), acute kidney injury 2.51% (n = 2519), new-onset dialysis 0.44% (n = 462), stroke 0.41% (n = 447), major bleeding 0.89% (n = 942), and transfusion 2.41% (n = 2592). The model demonstrated robust discrimination and calibration for mortality {area under the receiver-operating characteristic curve [AUC]: 0.930 [95% confidence interval (CI) 0.920-0.940]}, acute kidney injury [AUC: 0.893 (95% CI 0.883-0.903)], dialysis [AUC: 0.951 (95% CI 0.939-0.964)], stroke [AUC: 0.751 (95%CI 0.714-0.787)], transfusion [AUC: 0.917 (95% CI 0.907-0.925)], and major bleeding [AUC: 0.887 (95% CI 0.870-0.905)]. Similar discrimination was noted in the external validation population. Survey subjects preferred a comprehensive list of individually reported post-procedure outcomes. Using common pre-procedural risk factors, the BMC2 machine learning models accurately predict post-PCI outcomes. Utilizing patient feedback, the BMC2 models employ a patient-centred tool to clearly display risks to patients and providers (https://shiny.bmc2.org/pci-prediction/). Enhanced risk prediction prior to PCI could help inform treatment selection and shared decision-making discussions.
Author Painter, Ian
Seth, Milan
Hira, Ravi S
Sukul, Devraj
Gurm, Hitinder S
Hamilton, David E
Albright, Jeremy
Maynard, Charles
Author_xml – sequence: 1
  givenname: David E
  orcidid: 0000-0001-7626-2494
  surname: Hamilton
  fullname: Hamilton, David E
– sequence: 2
  givenname: Jeremy
  surname: Albright
  fullname: Albright, Jeremy
– sequence: 3
  givenname: Milan
  orcidid: 0000-0002-3472-1872
  surname: Seth
  fullname: Seth, Milan
– sequence: 4
  givenname: Ian
  surname: Painter
  fullname: Painter, Ian
– sequence: 5
  givenname: Charles
  surname: Maynard
  fullname: Maynard, Charles
– sequence: 6
  givenname: Ravi S
  surname: Hira
  fullname: Hira, Ravi S
– sequence: 7
  givenname: Devraj
  orcidid: 0000-0003-4709-3390
  surname: Sukul
  fullname: Sukul, Devraj
– sequence: 8
  givenname: Hitinder S
  orcidid: 0000-0002-1646-0218
  surname: Gurm
  fullname: Gurm, Hitinder S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38233027$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAUhC0Egl3gB_RS-dhLih0nTtJbhShUouICErfo2XlmTbN2ajur9t_jaLcceujpSU_fjEYza3LsvENCPnD2mbNOXOEcNgghvV7hBoZWyCOy4nVZFp2s6mOyYryrCynb5zOyjvGVMdZKLk_JmWhLIVjZrMjvHxherHuhW9Ab65CO2dAtD3ADnSBZdIlOAQ0GdBq_UKDO73CkyfuRGh9osPHnQgxWJ-sd9YZOGPScwKGfI9U-eAfhD7UuYdhlv0zFC3JiYIx4ebjn5OnbzeP1XXH_cPv9-ut9oUXLUwHMoG4aEFoabcqmVgi8rHgnu0YNWnVoNLSVUlBLiUwpyZkogXXaZKhV4px82vtOwf-aMaZ-a6PGcdyn68uOy4rJqmUZ_XhAZ7XFoZ-C3ebc_d-2MsD3gA4-xtzJO8JZvyzSvy_SHxbJmuYfjbYJlgpSADv-R_kGj_6Z0Q
CitedBy_id crossref_primary_10_1093_eurheartj_ehad847
crossref_primary_10_1007_s11255_024_04257_5
crossref_primary_10_1053_j_jvca_2025_01_022
crossref_primary_10_1093_eurheartj_ehae097
crossref_primary_10_1016_j_jscai_2025_102562
crossref_primary_10_1093_ehjdh_ztaf001
crossref_primary_10_1111_bjc_12508
crossref_primary_10_12968_bjca_2024_0016
Cites_doi 10.1056/NEJMra1805256
10.1002/ccd.22151
10.1001/jama.2010.708
10.1016/j.jacc.2009.09.076
10.1016/j.jcin.2013.03.020
10.1161/CIRCOUTCOMES.120.006556
10.1136/bmj.h1302
10.1161/CIRCULATIONAHA.108.828541
10.21037/jtd.2019.04.69
10.1161/CIRCINTERVENTIONS.119.008702
10.1111/j.1540-8183.2002.tb01071.x
10.1161/CIRCINTERVENTIONS.121.010863
10.1001/jamainternmed.2015.1657
10.1161/JAHA.114.001380
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1161/JAHA.118.008551
10.1177/0272989X21996342
10.1016/j.eswa.2017.04.003
10.1016/j.jacc.2003.11.033
10.1016/S0140-6736(21)02326-6
10.1161/CIRCINTERVENTIONS.121.011540
10.1016/j.jacc.2021.04.067
10.2307/2531595
10.1177/0272989X211014163
10.1001/jamanetworkopen.2019.6835
10.1016/j.jcin.2013.02.015
10.1371/journal.pmed.1002703
10.1002/ccd.27819
10.1001/jamainternmed.2014.3328
10.1161/CIRCOUTCOMES.108.791863
10.1016/j.jcin.2013.04.016
10.1161/JAHA.118.011160
10.1093/eurheartj/ehad476
10.1161/01.CIR.0000020678.16325.E0
10.1371/journal.pone.0096385
10.2147/PPA.S188268
10.1093/eurheartj/ehac369
10.1038/s41598-022-10346-1
10.1093/eurheartj/ehy394
10.1136/jech.2004.029454
10.1016/j.ahj.2014.11.008
10.1161/CIRCINTERVENTIONS.108.846741
10.1016/j.jacc.2013.03.026
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/eurheartj/ehad836
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-9645
EndPage 609
ExternalDocumentID 38233027
10_1093_eurheartj_ehad836
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
.XZ
.ZR
08P
0R~
18M
1TH
29G
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAFWJ
AAJKP
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABOCM
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCGUY
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
D~K
E3Z
EBS
EE~
EMOBN
ENERS
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
L7B
M-Z
M41
MHKGH
ML0
N9A
NGC
NOMLY
NOYVH
NU-
O9-
OAUYM
OAWHX
OB3
OCZFY
ODMLO
OGROG
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
RUSNO
RW1
RXO
SEL
TCURE
TEORI
TJX
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
ID FETCH-LOGICAL-c381t-a0fec77a3c6fcf275bea12419697bdcb9efca84bba566e0bb61032a09cf4198b3
ISSN 0195-668X
1522-9645
IngestDate Fri Jul 11 01:29:42 EDT 2025
Thu Apr 03 07:02:37 EDT 2025
Tue Jul 01 04:36:09 EDT 2025
Thu Apr 24 23:01:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Risk prediction
Percutaneous coronary intervention
Machine learning
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-a0fec77a3c6fcf275bea12419697bdcb9efca84bba566e0bb61032a09cf4198b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3472-1872
0000-0002-1646-0218
0000-0003-4709-3390
0000-0001-7626-2494
OpenAccessLink https://academic.oup.com/eurheartj/advance-article-pdf/doi/10.1093/eurheartj/ehad836/56150974/ehad836.pdf
PMID 38233027
PQID 2916406480
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2916406480
pubmed_primary_38233027
crossref_primary_10_1093_eurheartj_ehad836
crossref_citationtrail_10_1093_eurheartj_ehad836
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-21
2024-Feb-21
20240221
PublicationDateYYYYMMDD 2024-02-21
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle European heart journal
PublicationTitleAlternate Eur Heart J
PublicationYear 2024
References Mehran (2024022119322591700_ehad836-B12) 2021; 398
Doll (2024022119322591700_ehad836-B21) 2021; 14
Gurm (2024022119322591700_ehad836-B31) 2019; 93
Neumann (2024022119322591700_ehad836-B1) 2019; 40
Brier (2024022119322591700_ehad836-B35) 1950; 78
Ni (2024022119322591700_ehad836-B24) 2019; 11
Trevena (2024022119322591700_ehad836-B45) 2021; 41
Mortazavi (2024022119322591700_ehad836-B16) 2019; 2
Niimi (2024022119322591700_ehad836-B25) 2022; 12
Stevens (2024022119322591700_ehad836-B33) 2020; 13
Marso (2024022119322591700_ehad836-B6) 2010; 303
Huang (2024022119322591700_ehad836-B11) 2018; 15
Magliano (2024022119322591700_ehad836-B40) 2018; 13
Zhang (2024022119322591700_ehad836-B30) 2017; 82
Gurm (2024022119322591700_ehad836-B4) 2013; 61
Dukkipati (2024022119322591700_ehad836-B41) 2004; 43
Mehran (2024022119322591700_ehad836-B27) 2004; 44
Hannan (2024022119322591700_ehad836-B23) 2013; 6
Fuchs (2024022119322591700_ehad836-B42) 2002; 106
Brennan (2024022119322591700_ehad836-B19) 2013; 6
Mehran (2024022119322591700_ehad836-B14) 2010; 55
Merlo (2024022119322591700_ehad836-B36) 2006; 60
Moscucci (2024022119322591700_ehad836-B32) 2002; 15
Ortega-Paz (2024022119322591700_ehad836-B7) 2022; 43
Castro-Dominguez (2024022119322591700_ehad836-B20) 2021; 78
Mehran (2024022119322591700_ehad836-B3) 2019; 380
Amin (2024022119322591700_ehad836-B39) 2018; 7
Rao (2024022119322591700_ehad836-B17) 2013; 6
Byrne (2024022119322591700_ehad836-B2) 2023; 44
Gluckman (2024022119322591700_ehad836-B10) 2020; 13
Subherwal (2024022119322591700_ehad836-B18) 2009; 119
Spertus (2024022119322591700_ehad836-B38) 2015; 350
Gurm (2024022119322591700_ehad836-B5) 2014; 9
DeLong (2024022119322591700_ehad836-B34) 1988; 44
Witteman (2024022119322591700_ehad836-B37) 2021; 41
Rothberg (2024022119322591700_ehad836-B9) 2015; 175
Spertus (2024022119322591700_ehad836-B44) 2015; 169
Singh (2024022119322591700_ehad836-B26) 2022; 15
Arnold (2024022119322591700_ehad836-B43) 2008; 1
Hamburger (2024022119322591700_ehad836-B22) 2009; 74
Goff (2024022119322591700_ehad836-B8) 2014; 174
Tsai (2024022119322591700_ehad836-B13) 2014; 3
Mehta (2024022119322591700_ehad836-B15) 2009; 2
Al’Aref (2024022119322591700_ehad836-B28) 2019; 8
Chen (2024022119322591700_ehad836-B29)
References_xml – volume: 380
  start-page: 2146
  year: 2019
  ident: 2024022119322591700_ehad836-B3
  article-title: Contrast-associated acute kidney injury
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1805256
– volume: 74
  start-page: 377
  year: 2009
  ident: 2024022119322591700_ehad836-B22
  article-title: Percutaneous coronary intervention and 30-day mortality: the British Columbia PCI risk score
  publication-title: Catheter Cardiovasc Interv
  doi: 10.1002/ccd.22151
– volume: 303
  start-page: 2156
  year: 2010
  ident: 2024022119322591700_ehad836-B6
  article-title: Association between use of bleeding avoidance strategies and risk of periprocedural bleeding among patients undergoing percutaneous coronary intervention
  publication-title: JAMA
  doi: 10.1001/jama.2010.708
– volume: 55
  start-page: 2556
  year: 2010
  ident: 2024022119322591700_ehad836-B14
  article-title: A risk score to predict bleeding in patients with acute coronary syndromes
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2009.09.076
– volume: 6
  start-page: 790
  year: 2013
  ident: 2024022119322591700_ehad836-B19
  article-title: Enhanced mortality risk prediction with a focus on high-risk percutaneous coronary intervention: results from 1,208,137 procedures in the NCDR (National Cardiovascular Data Registry)
  publication-title: JACC Cardiovasc Interv
  doi: 10.1016/j.jcin.2013.03.020
– volume: 13
  start-page: e006556
  year: 2020
  ident: 2024022119322591700_ehad836-B33
  article-title: Recommendations for reporting machine learning analyses in clinical research
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.120.006556
– volume: 350
  start-page: h1302
  year: 2015
  ident: 2024022119322591700_ehad836-B38
  article-title: Precision medicine to improve use of bleeding avoidance strategies and reduce bleeding in patients undergoing percutaneous coronary intervention: prospective cohort study before and after implementation of personalized bleeding risks
  publication-title: BMJ
  doi: 10.1136/bmj.h1302
– volume: 119
  start-page: 1873
  year: 2009
  ident: 2024022119322591700_ehad836-B18
  article-title: Baseline risk of major bleeding in non-ST-segment elevation myocardial infarction: the CRUSADE bleeding score
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.828541
– volume: 11
  start-page: 1597
  year: 2019
  ident: 2024022119322591700_ehad836-B24
  article-title: Simple pre-procedure risk stratification tool for contrast-induced nephropathy
  publication-title: J Thorac Dis
  doi: 10.21037/jtd.2019.04.69
– volume: 13
  start-page: e008702
  year: 2020
  ident: 2024022119322591700_ehad836-B10
  article-title: Differential use and impact of bleeding avoidance strategies on percutaneous coronary intervention-related bleeding stratified by predicted risk
  publication-title: Circ Cardiovasc Interv
  doi: 10.1161/CIRCINTERVENTIONS.119.008702
– volume: 15
  start-page: 381
  year: 2002
  ident: 2024022119322591700_ehad836-B32
  article-title: The Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) collaborative quality improvement initiative in percutaneous coronary interventions
  publication-title: J Interv Cardiol
  doi: 10.1111/j.1540-8183.2002.tb01071.x
– volume: 14
  start-page: e010863
  year: 2021
  ident: 2024022119322591700_ehad836-B21
  article-title: Contemporary clinical and coronary anatomic risk model for 30-day mortality after percutaneous coronary intervention
  publication-title: Circ Cardiovasc Interv
  doi: 10.1161/CIRCINTERVENTIONS.121.010863
– volume: 175
  start-page: 1199
  year: 2015
  ident: 2024022119322591700_ehad836-B9
  article-title: Informed decision making for percutaneous coronary intervention for stable coronary disease
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2015.1657
– volume: 3
  start-page: e001380
  year: 2014
  ident: 2024022119322591700_ehad836-B13
  article-title: Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath-PCI Registry
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.114.001380
– volume: 78
  start-page: 1
  year: 1950
  ident: 2024022119322591700_ehad836-B35
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– volume: 7
  start-page: e008551
  year: 2018
  ident: 2024022119322591700_ehad836-B39
  article-title: Reversing the “risk-treatment paradox” of bleeding in patients undergoing percutaneous coronary intervention: risk-concordant use of bleeding avoidance strategies is associated with reduced bleeding and lower costs
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.118.008551
– volume: 41
  start-page: 834
  year: 2021
  ident: 2024022119322591700_ehad836-B45
  article-title: Current challenges when using numbers in patient decision aids: advanced concepts
  publication-title: Med Decis Making
  doi: 10.1177/0272989X21996342
– volume: 82
  start-page: 128
  year: 2017
  ident: 2024022119322591700_ehad836-B30
  article-title: An up-to-date comparison of state-of-the-art classification algorithms
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.003
– volume: 43
  start-page: 1161
  year: 2004
  ident: 2024022119322591700_ehad836-B41
  article-title: Characteristics of cerebrovascular accidents after percutaneous coronary interventions
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2003.11.033
– ident: 2024022119322591700_ehad836-B29
– volume: 398
  start-page: 1974
  year: 2021
  ident: 2024022119322591700_ehad836-B12
  article-title: A contemporary simple risk score for prediction of contrast-associated acute kidney injury after percutaneous coronary intervention: derivation and validation from an observational registry
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)02326-6
– volume: 15
  start-page: e011540
  year: 2022
  ident: 2024022119322591700_ehad836-B26
  article-title: Multimorbidity and mortality models to predict complications following percutaneous coronary interventions
  publication-title: Circ Cardiovasc Interv
  doi: 10.1161/CIRCINTERVENTIONS.121.011540
– volume: 78
  start-page: 216
  year: 2021
  ident: 2024022119322591700_ehad836-B20
  article-title: Predicting in-hospital mortality in patients undergoing percutaneous coronary intervention
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2021.04.067
– volume: 44
  start-page: 837
  year: 1988
  ident: 2024022119322591700_ehad836-B34
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 41
  start-page: 736
  year: 2021
  ident: 2024022119322591700_ehad836-B37
  article-title: Systematic development of patient decision aids: an update from the IPDAS collaboration
  publication-title: Med Decis Making
  doi: 10.1177/0272989X211014163
– volume: 44
  start-page: 1393
  year: 2004
  ident: 2024022119322591700_ehad836-B27
  article-title: A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation
  publication-title: J Am Coll Cardiol
– volume: 2
  start-page: e196835
  year: 2019
  ident: 2024022119322591700_ehad836-B16
  article-title: Comparison of machine learning methods with national cardiovascular data registry models for prediction of risk of bleeding after percutaneous coronary intervention
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.6835
– volume: 6
  start-page: 614
  year: 2013
  ident: 2024022119322591700_ehad836-B23
  article-title: The New York State risk score for predicting in-hospital/30-day mortality following percutaneous coronary intervention
  publication-title: JACC Cardiovasc Interv
  doi: 10.1016/j.jcin.2013.02.015
– volume: 15
  start-page: e1002703
  year: 2018
  ident: 2024022119322591700_ehad836-B11
  article-title: Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: a retrospective cohort study
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002703
– volume: 93
  start-page: 222
  year: 2019
  ident: 2024022119322591700_ehad836-B31
  article-title: Contemporary use of and outcomes associated with ultra-low contrast volume in patients undergoing percutaneous coronary interventions
  publication-title: Catheter Cardiovasc Interv
  doi: 10.1002/ccd.27819
– volume: 174
  start-page: 1614
  year: 2014
  ident: 2024022119322591700_ehad836-B8
  article-title: How cardiologists present the benefits of percutaneous coronary interventions to patients with stable angina: a qualitative analysis
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2014.3328
– volume: 1
  start-page: 21
  year: 2008
  ident: 2024022119322591700_ehad836-B43
  article-title: Converting the informed consent from a perfunctory process to an evidence-based foundation for patient decision making
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.108.791863
– volume: 6
  start-page: 897
  year: 2013
  ident: 2024022119322591700_ehad836-B17
  article-title: An updated bleeding model to predict the risk of post-procedure bleeding among patients undergoing percutaneous coronary intervention: a report using an expanded bleeding definition from the National Cardiovascular Data Registry CathPCI Registry
  publication-title: JACC Cardiovasc Interv
  doi: 10.1016/j.jcin.2013.04.016
– volume: 8
  start-page: e011160
  year: 2019
  ident: 2024022119322591700_ehad836-B28
  article-title: Determinants of in-hospital mortality after percutaneous coronary intervention: a machine learning approach
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.118.011160
– volume: 44
  start-page: 4310
  year: 2023
  ident: 2024022119322591700_ehad836-B2
  article-title: 2022 joint ESC/EACTS review of the 2018 guideline recommendations on the revascularization of left main coronary artery disease in patients at low surgical risk and anatomy suitable for PCI or CABG
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehad476
– volume: 106
  start-page: 86
  year: 2002
  ident: 2024022119322591700_ehad836-B42
  article-title: Stroke complicating percutaneous coronary interventions: incidence, predictors, and prognostic implications
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000020678.16325.E0
– volume: 9
  start-page: e96385
  year: 2014
  ident: 2024022119322591700_ehad836-B5
  article-title: A random forest based risk model for reliable and accurate prediction of receipt of transfusion in patients undergoing percutaneous coronary intervention
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096385
– volume: 13
  start-page: 29
  year: 2018
  ident: 2024022119322591700_ehad836-B40
  article-title: Patients’ preferences for coronary revascularization: a systematic review
  publication-title: Patient Prefer Adherence
  doi: 10.2147/PPA.S188268
– volume: 43
  start-page: 3115
  year: 2022
  ident: 2024022119322591700_ehad836-B7
  article-title: Optimal antiplatelet therapy in patients at high bleeding risk undergoing complex percutaneous coronary intervention
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehac369
– volume: 12
  start-page: 6262
  year: 2022
  ident: 2024022119322591700_ehad836-B25
  article-title: Machine learning models for prediction of adverse events after percutaneous coronary intervention
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-10346-1
– volume: 40
  start-page: 87
  year: 2019
  ident: 2024022119322591700_ehad836-B1
  article-title: 2018 ESC/EACTS guidelines on myocardial revascularization
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehy394
– volume: 60
  start-page: 290
  year: 2006
  ident: 2024022119322591700_ehad836-B36
  article-title: A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena
  publication-title: J Epidemiol Community Health
  doi: 10.1136/jech.2004.029454
– volume: 169
  start-page: 234
  year: 2015
  ident: 2024022119322591700_ehad836-B44
  article-title: Improving the process of informed consent for percutaneous coronary intervention: patient outcomes from the Patient Risk Information Services Manager (ePRISM) study
  publication-title: Am Heart J
  doi: 10.1016/j.ahj.2014.11.008
– volume: 2
  start-page: 222
  year: 2009
  ident: 2024022119322591700_ehad836-B15
  article-title: Bleeding in patients undergoing percutaneous coronary intervention: the development of a clinical risk algorithm from the National Cardiovascular Data Registry
  publication-title: Circ Cardiovasc Interv
  doi: 10.1161/CIRCINTERVENTIONS.108.846741
– volume: 61
  start-page: 2242
  year: 2013
  ident: 2024022119322591700_ehad836-B4
  article-title: A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2013.03.026
SSID ssj0008616
Score 2.5133672
Snippet Predicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 601
SubjectTerms Acute Kidney Injury - etiology
Hemorrhage - etiology
Humans
Machine Learning
Patient Preference
Percutaneous Coronary Intervention - methods
Renal Dialysis
Risk Assessment - methods
Risk Factors
Stroke - etiology
Treatment Outcome
Title Merging machine learning and patient preference: a novel tool for risk prediction of percutaneous coronary interventions
URI https://www.ncbi.nlm.nih.gov/pubmed/38233027
https://www.proquest.com/docview/2916406480
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJk17QcC4dDBkpD2BwrI4dRzepgk2TSpCYpP6FtnOsSjq2qqkE-KRX87xLcnEhsZeotRxHTff15Nz7HMhZD_NFQPNdcINMjivBUsEICBKSW7KVJYjaQOcx5_56UV-NhlNBoPfPa-ldaPe6183xpXcB1VsQ1xtlOx_INsOig14jvjiERHG450wHsPK1Ri6dB6REEtA-KjDkDHVZgEIMX0-sHm-uIIZqpwLF7nofcuxTz3VUXlcwkqvUWkE6x6rbYoD61o37XlH_rhxQd8Wx27e9Wful8ansXK1c6DvYh-OZqpdGzjDKXbBFV_BL_eMp7OOvV-km4KTaqE1LFdkuQv_9uyBIGLR_C25TyIZZXD45LkmegKV-6WOvwS9T4IF65X7ad_t-TeJTOP93vhYl5cOe7vbaXdou7de64sYLz0gmxmaGrYKxsmkcxMS_JDH3fCSHbR3PAj32yZbcYTrqs0t9orTW84fkYfB4KBHnj2PyQDmT8jWOLhU7JCfgUQ0kIhGElEkEQ0koh2JPlBJHYWopRBFClFLIdpRiC4M7VOIRgrRaxR6Si4-fTw_Pk1COY5Eo1rXJDI1oItCMs2NNlkxUiBRO7T5lQpVa1WC0VLk-C9HEwFSpbhN1ijTUhvsJBR7Rjbmizm8IJSPgNUmL5lI67xWBXZiXBwaqYxQMhNDksYnWemQq96WTJlV3meCVS0OVcBhSN62X1n6RC3_6vwmwlOhOLV7ZP6JVBmaS6jj5iIdkucet3a4iPPurVdeku2O86_IRrNawx4qrY167Vj1B3gcpBU
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Merging+machine+learning+and+patient+preference%3A+a+novel+tool+for+risk+prediction+of+percutaneous+coronary+interventions&rft.jtitle=European+heart+journal&rft.au=Hamilton%2C+David+E&rft.au=Albright%2C+Jeremy&rft.au=Seth%2C+Milan&rft.au=Painter%2C+Ian&rft.date=2024-02-21&rft.eissn=1522-9645&rft.volume=45&rft.issue=8&rft.spage=601&rft_id=info:doi/10.1093%2Feurheartj%2Fehad836&rft_id=info%3Apmid%2F38233027&rft.externalDocID=38233027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-668X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-668X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-668X&client=summon