Merging machine learning and patient preference: a novel tool for risk prediction of percutaneous coronary interventions
Predicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing risk mitigation strategies, and enhancing shared decision-making. This study aimed to employ machine learning models using pre-procedural varia...
Saved in:
Published in | European heart journal Vol. 45; no. 8; pp. 601 - 609 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing risk mitigation strategies, and enhancing shared decision-making. This study aimed to employ machine learning models using pre-procedural variables to accurately predict common post-PCI complications.
A group of 66 adults underwent a semiquantitative survey assessing a preferred list of outcomes and model display. The machine learning cohort included 107 793 patients undergoing PCI procedures performed at 48 hospitals in Michigan between 1 April 2018 and 31 December 2021 in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) registry separated into training and validation cohorts. External validation was conducted in the Cardiac Care Outcomes Assessment Program database of 56 583 procedures in 33 hospitals in Washington.
Overall rate of in-hospital mortality was 1.85% (n = 1999), acute kidney injury 2.51% (n = 2519), new-onset dialysis 0.44% (n = 462), stroke 0.41% (n = 447), major bleeding 0.89% (n = 942), and transfusion 2.41% (n = 2592). The model demonstrated robust discrimination and calibration for mortality {area under the receiver-operating characteristic curve [AUC]: 0.930 [95% confidence interval (CI) 0.920-0.940]}, acute kidney injury [AUC: 0.893 (95% CI 0.883-0.903)], dialysis [AUC: 0.951 (95% CI 0.939-0.964)], stroke [AUC: 0.751 (95%CI 0.714-0.787)], transfusion [AUC: 0.917 (95% CI 0.907-0.925)], and major bleeding [AUC: 0.887 (95% CI 0.870-0.905)]. Similar discrimination was noted in the external validation population. Survey subjects preferred a comprehensive list of individually reported post-procedure outcomes.
Using common pre-procedural risk factors, the BMC2 machine learning models accurately predict post-PCI outcomes. Utilizing patient feedback, the BMC2 models employ a patient-centred tool to clearly display risks to patients and providers (https://shiny.bmc2.org/pci-prediction/). Enhanced risk prediction prior to PCI could help inform treatment selection and shared decision-making discussions. |
---|---|
AbstractList | Predicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing risk mitigation strategies, and enhancing shared decision-making. This study aimed to employ machine learning models using pre-procedural variables to accurately predict common post-PCI complications.BACKGROUND AND AIMSPredicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing risk mitigation strategies, and enhancing shared decision-making. This study aimed to employ machine learning models using pre-procedural variables to accurately predict common post-PCI complications.A group of 66 adults underwent a semiquantitative survey assessing a preferred list of outcomes and model display. The machine learning cohort included 107 793 patients undergoing PCI procedures performed at 48 hospitals in Michigan between 1 April 2018 and 31 December 2021 in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) registry separated into training and validation cohorts. External validation was conducted in the Cardiac Care Outcomes Assessment Program database of 56 583 procedures in 33 hospitals in Washington.METHODSA group of 66 adults underwent a semiquantitative survey assessing a preferred list of outcomes and model display. The machine learning cohort included 107 793 patients undergoing PCI procedures performed at 48 hospitals in Michigan between 1 April 2018 and 31 December 2021 in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) registry separated into training and validation cohorts. External validation was conducted in the Cardiac Care Outcomes Assessment Program database of 56 583 procedures in 33 hospitals in Washington.Overall rate of in-hospital mortality was 1.85% (n = 1999), acute kidney injury 2.51% (n = 2519), new-onset dialysis 0.44% (n = 462), stroke 0.41% (n = 447), major bleeding 0.89% (n = 942), and transfusion 2.41% (n = 2592). The model demonstrated robust discrimination and calibration for mortality {area under the receiver-operating characteristic curve [AUC]: 0.930 [95% confidence interval (CI) 0.920-0.940]}, acute kidney injury [AUC: 0.893 (95% CI 0.883-0.903)], dialysis [AUC: 0.951 (95% CI 0.939-0.964)], stroke [AUC: 0.751 (95%CI 0.714-0.787)], transfusion [AUC: 0.917 (95% CI 0.907-0.925)], and major bleeding [AUC: 0.887 (95% CI 0.870-0.905)]. Similar discrimination was noted in the external validation population. Survey subjects preferred a comprehensive list of individually reported post-procedure outcomes.RESULTSOverall rate of in-hospital mortality was 1.85% (n = 1999), acute kidney injury 2.51% (n = 2519), new-onset dialysis 0.44% (n = 462), stroke 0.41% (n = 447), major bleeding 0.89% (n = 942), and transfusion 2.41% (n = 2592). The model demonstrated robust discrimination and calibration for mortality {area under the receiver-operating characteristic curve [AUC]: 0.930 [95% confidence interval (CI) 0.920-0.940]}, acute kidney injury [AUC: 0.893 (95% CI 0.883-0.903)], dialysis [AUC: 0.951 (95% CI 0.939-0.964)], stroke [AUC: 0.751 (95%CI 0.714-0.787)], transfusion [AUC: 0.917 (95% CI 0.907-0.925)], and major bleeding [AUC: 0.887 (95% CI 0.870-0.905)]. Similar discrimination was noted in the external validation population. Survey subjects preferred a comprehensive list of individually reported post-procedure outcomes.Using common pre-procedural risk factors, the BMC2 machine learning models accurately predict post-PCI outcomes. Utilizing patient feedback, the BMC2 models employ a patient-centred tool to clearly display risks to patients and providers (https://shiny.bmc2.org/pci-prediction/). Enhanced risk prediction prior to PCI could help inform treatment selection and shared decision-making discussions.CONCLUSIONSUsing common pre-procedural risk factors, the BMC2 machine learning models accurately predict post-PCI outcomes. Utilizing patient feedback, the BMC2 models employ a patient-centred tool to clearly display risks to patients and providers (https://shiny.bmc2.org/pci-prediction/). Enhanced risk prediction prior to PCI could help inform treatment selection and shared decision-making discussions. Predicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing risk mitigation strategies, and enhancing shared decision-making. This study aimed to employ machine learning models using pre-procedural variables to accurately predict common post-PCI complications. A group of 66 adults underwent a semiquantitative survey assessing a preferred list of outcomes and model display. The machine learning cohort included 107 793 patients undergoing PCI procedures performed at 48 hospitals in Michigan between 1 April 2018 and 31 December 2021 in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) registry separated into training and validation cohorts. External validation was conducted in the Cardiac Care Outcomes Assessment Program database of 56 583 procedures in 33 hospitals in Washington. Overall rate of in-hospital mortality was 1.85% (n = 1999), acute kidney injury 2.51% (n = 2519), new-onset dialysis 0.44% (n = 462), stroke 0.41% (n = 447), major bleeding 0.89% (n = 942), and transfusion 2.41% (n = 2592). The model demonstrated robust discrimination and calibration for mortality {area under the receiver-operating characteristic curve [AUC]: 0.930 [95% confidence interval (CI) 0.920-0.940]}, acute kidney injury [AUC: 0.893 (95% CI 0.883-0.903)], dialysis [AUC: 0.951 (95% CI 0.939-0.964)], stroke [AUC: 0.751 (95%CI 0.714-0.787)], transfusion [AUC: 0.917 (95% CI 0.907-0.925)], and major bleeding [AUC: 0.887 (95% CI 0.870-0.905)]. Similar discrimination was noted in the external validation population. Survey subjects preferred a comprehensive list of individually reported post-procedure outcomes. Using common pre-procedural risk factors, the BMC2 machine learning models accurately predict post-PCI outcomes. Utilizing patient feedback, the BMC2 models employ a patient-centred tool to clearly display risks to patients and providers (https://shiny.bmc2.org/pci-prediction/). Enhanced risk prediction prior to PCI could help inform treatment selection and shared decision-making discussions. |
Author | Painter, Ian Seth, Milan Hira, Ravi S Sukul, Devraj Gurm, Hitinder S Hamilton, David E Albright, Jeremy Maynard, Charles |
Author_xml | – sequence: 1 givenname: David E orcidid: 0000-0001-7626-2494 surname: Hamilton fullname: Hamilton, David E – sequence: 2 givenname: Jeremy surname: Albright fullname: Albright, Jeremy – sequence: 3 givenname: Milan orcidid: 0000-0002-3472-1872 surname: Seth fullname: Seth, Milan – sequence: 4 givenname: Ian surname: Painter fullname: Painter, Ian – sequence: 5 givenname: Charles surname: Maynard fullname: Maynard, Charles – sequence: 6 givenname: Ravi S surname: Hira fullname: Hira, Ravi S – sequence: 7 givenname: Devraj orcidid: 0000-0003-4709-3390 surname: Sukul fullname: Sukul, Devraj – sequence: 8 givenname: Hitinder S orcidid: 0000-0002-1646-0218 surname: Gurm fullname: Gurm, Hitinder S |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38233027$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFP3DAUhC0Egl3gB_RS-dhLih0nTtJbhShUouICErfo2XlmTbN2ajur9t_jaLcceujpSU_fjEYza3LsvENCPnD2mbNOXOEcNgghvV7hBoZWyCOy4nVZFp2s6mOyYryrCynb5zOyjvGVMdZKLk_JmWhLIVjZrMjvHxherHuhW9Ab65CO2dAtD3ADnSBZdIlOAQ0GdBq_UKDO73CkyfuRGh9osPHnQgxWJ-sd9YZOGPScwKGfI9U-eAfhD7UuYdhlv0zFC3JiYIx4ebjn5OnbzeP1XXH_cPv9-ut9oUXLUwHMoG4aEFoabcqmVgi8rHgnu0YNWnVoNLSVUlBLiUwpyZkogXXaZKhV4px82vtOwf-aMaZ-a6PGcdyn68uOy4rJqmUZ_XhAZ7XFoZ-C3ebc_d-2MsD3gA4-xtzJO8JZvyzSvy_SHxbJmuYfjbYJlgpSADv-R_kGj_6Z0Q |
CitedBy_id | crossref_primary_10_1093_eurheartj_ehad847 crossref_primary_10_1007_s11255_024_04257_5 crossref_primary_10_1053_j_jvca_2025_01_022 crossref_primary_10_1093_eurheartj_ehae097 crossref_primary_10_1016_j_jscai_2025_102562 crossref_primary_10_1093_ehjdh_ztaf001 crossref_primary_10_1111_bjc_12508 crossref_primary_10_12968_bjca_2024_0016 |
Cites_doi | 10.1056/NEJMra1805256 10.1002/ccd.22151 10.1001/jama.2010.708 10.1016/j.jacc.2009.09.076 10.1016/j.jcin.2013.03.020 10.1161/CIRCOUTCOMES.120.006556 10.1136/bmj.h1302 10.1161/CIRCULATIONAHA.108.828541 10.21037/jtd.2019.04.69 10.1161/CIRCINTERVENTIONS.119.008702 10.1111/j.1540-8183.2002.tb01071.x 10.1161/CIRCINTERVENTIONS.121.010863 10.1001/jamainternmed.2015.1657 10.1161/JAHA.114.001380 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 10.1161/JAHA.118.008551 10.1177/0272989X21996342 10.1016/j.eswa.2017.04.003 10.1016/j.jacc.2003.11.033 10.1016/S0140-6736(21)02326-6 10.1161/CIRCINTERVENTIONS.121.011540 10.1016/j.jacc.2021.04.067 10.2307/2531595 10.1177/0272989X211014163 10.1001/jamanetworkopen.2019.6835 10.1016/j.jcin.2013.02.015 10.1371/journal.pmed.1002703 10.1002/ccd.27819 10.1001/jamainternmed.2014.3328 10.1161/CIRCOUTCOMES.108.791863 10.1016/j.jcin.2013.04.016 10.1161/JAHA.118.011160 10.1093/eurheartj/ehad476 10.1161/01.CIR.0000020678.16325.E0 10.1371/journal.pone.0096385 10.2147/PPA.S188268 10.1093/eurheartj/ehac369 10.1038/s41598-022-10346-1 10.1093/eurheartj/ehy394 10.1136/jech.2004.029454 10.1016/j.ahj.2014.11.008 10.1161/CIRCINTERVENTIONS.108.846741 10.1016/j.jacc.2013.03.026 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/eurheartj/ehad836 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-9645 |
EndPage | 609 |
ExternalDocumentID | 38233027 10_1093_eurheartj_ehad836 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 .XZ .ZR 08P 0R~ 18M 1TH 29G 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAFWJ AAJKP AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAVAP AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABNHQ ABNKS ABOCM ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABZBJ ACGFO ACGFS ACPRK ACUFI ACUTO ACYHN ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCGUY BCRHZ BEYMZ BHONS BTRTY BVRKM C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD D~K E3Z EBS EE~ EMOBN ENERS F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN L7B M-Z M41 MHKGH ML0 N9A NGC NOMLY NOYVH NU- O9- OAUYM OAWHX OB3 OCZFY ODMLO OGROG OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX RUSNO RW1 RXO SEL TCURE TEORI TJX W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 CGR CUY CVF ECM EIF M49 NPM 7X8 |
ID | FETCH-LOGICAL-c381t-a0fec77a3c6fcf275bea12419697bdcb9efca84bba566e0bb61032a09cf4198b3 |
ISSN | 0195-668X 1522-9645 |
IngestDate | Fri Jul 11 01:29:42 EDT 2025 Thu Apr 03 07:02:37 EDT 2025 Tue Jul 01 04:36:09 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Risk prediction Percutaneous coronary intervention Machine learning |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-a0fec77a3c6fcf275bea12419697bdcb9efca84bba566e0bb61032a09cf4198b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3472-1872 0000-0002-1646-0218 0000-0003-4709-3390 0000-0001-7626-2494 |
OpenAccessLink | https://academic.oup.com/eurheartj/advance-article-pdf/doi/10.1093/eurheartj/ehad836/56150974/ehad836.pdf |
PMID | 38233027 |
PQID | 2916406480 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2916406480 pubmed_primary_38233027 crossref_primary_10_1093_eurheartj_ehad836 crossref_citationtrail_10_1093_eurheartj_ehad836 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-21 2024-Feb-21 20240221 |
PublicationDateYYYYMMDD | 2024-02-21 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | European heart journal |
PublicationTitleAlternate | Eur Heart J |
PublicationYear | 2024 |
References | Mehran (2024022119322591700_ehad836-B12) 2021; 398 Doll (2024022119322591700_ehad836-B21) 2021; 14 Gurm (2024022119322591700_ehad836-B31) 2019; 93 Neumann (2024022119322591700_ehad836-B1) 2019; 40 Brier (2024022119322591700_ehad836-B35) 1950; 78 Ni (2024022119322591700_ehad836-B24) 2019; 11 Trevena (2024022119322591700_ehad836-B45) 2021; 41 Mortazavi (2024022119322591700_ehad836-B16) 2019; 2 Niimi (2024022119322591700_ehad836-B25) 2022; 12 Stevens (2024022119322591700_ehad836-B33) 2020; 13 Marso (2024022119322591700_ehad836-B6) 2010; 303 Huang (2024022119322591700_ehad836-B11) 2018; 15 Magliano (2024022119322591700_ehad836-B40) 2018; 13 Zhang (2024022119322591700_ehad836-B30) 2017; 82 Gurm (2024022119322591700_ehad836-B4) 2013; 61 Dukkipati (2024022119322591700_ehad836-B41) 2004; 43 Mehran (2024022119322591700_ehad836-B27) 2004; 44 Hannan (2024022119322591700_ehad836-B23) 2013; 6 Fuchs (2024022119322591700_ehad836-B42) 2002; 106 Brennan (2024022119322591700_ehad836-B19) 2013; 6 Mehran (2024022119322591700_ehad836-B14) 2010; 55 Merlo (2024022119322591700_ehad836-B36) 2006; 60 Moscucci (2024022119322591700_ehad836-B32) 2002; 15 Ortega-Paz (2024022119322591700_ehad836-B7) 2022; 43 Castro-Dominguez (2024022119322591700_ehad836-B20) 2021; 78 Mehran (2024022119322591700_ehad836-B3) 2019; 380 Amin (2024022119322591700_ehad836-B39) 2018; 7 Rao (2024022119322591700_ehad836-B17) 2013; 6 Byrne (2024022119322591700_ehad836-B2) 2023; 44 Gluckman (2024022119322591700_ehad836-B10) 2020; 13 Subherwal (2024022119322591700_ehad836-B18) 2009; 119 Spertus (2024022119322591700_ehad836-B38) 2015; 350 Gurm (2024022119322591700_ehad836-B5) 2014; 9 DeLong (2024022119322591700_ehad836-B34) 1988; 44 Witteman (2024022119322591700_ehad836-B37) 2021; 41 Rothberg (2024022119322591700_ehad836-B9) 2015; 175 Spertus (2024022119322591700_ehad836-B44) 2015; 169 Singh (2024022119322591700_ehad836-B26) 2022; 15 Arnold (2024022119322591700_ehad836-B43) 2008; 1 Hamburger (2024022119322591700_ehad836-B22) 2009; 74 Goff (2024022119322591700_ehad836-B8) 2014; 174 Tsai (2024022119322591700_ehad836-B13) 2014; 3 Mehta (2024022119322591700_ehad836-B15) 2009; 2 Al’Aref (2024022119322591700_ehad836-B28) 2019; 8 Chen (2024022119322591700_ehad836-B29) |
References_xml | – volume: 380 start-page: 2146 year: 2019 ident: 2024022119322591700_ehad836-B3 article-title: Contrast-associated acute kidney injury publication-title: N Engl J Med doi: 10.1056/NEJMra1805256 – volume: 74 start-page: 377 year: 2009 ident: 2024022119322591700_ehad836-B22 article-title: Percutaneous coronary intervention and 30-day mortality: the British Columbia PCI risk score publication-title: Catheter Cardiovasc Interv doi: 10.1002/ccd.22151 – volume: 303 start-page: 2156 year: 2010 ident: 2024022119322591700_ehad836-B6 article-title: Association between use of bleeding avoidance strategies and risk of periprocedural bleeding among patients undergoing percutaneous coronary intervention publication-title: JAMA doi: 10.1001/jama.2010.708 – volume: 55 start-page: 2556 year: 2010 ident: 2024022119322591700_ehad836-B14 article-title: A risk score to predict bleeding in patients with acute coronary syndromes publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2009.09.076 – volume: 6 start-page: 790 year: 2013 ident: 2024022119322591700_ehad836-B19 article-title: Enhanced mortality risk prediction with a focus on high-risk percutaneous coronary intervention: results from 1,208,137 procedures in the NCDR (National Cardiovascular Data Registry) publication-title: JACC Cardiovasc Interv doi: 10.1016/j.jcin.2013.03.020 – volume: 13 start-page: e006556 year: 2020 ident: 2024022119322591700_ehad836-B33 article-title: Recommendations for reporting machine learning analyses in clinical research publication-title: Circ Cardiovasc Qual Outcomes doi: 10.1161/CIRCOUTCOMES.120.006556 – volume: 350 start-page: h1302 year: 2015 ident: 2024022119322591700_ehad836-B38 article-title: Precision medicine to improve use of bleeding avoidance strategies and reduce bleeding in patients undergoing percutaneous coronary intervention: prospective cohort study before and after implementation of personalized bleeding risks publication-title: BMJ doi: 10.1136/bmj.h1302 – volume: 119 start-page: 1873 year: 2009 ident: 2024022119322591700_ehad836-B18 article-title: Baseline risk of major bleeding in non-ST-segment elevation myocardial infarction: the CRUSADE bleeding score publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.828541 – volume: 11 start-page: 1597 year: 2019 ident: 2024022119322591700_ehad836-B24 article-title: Simple pre-procedure risk stratification tool for contrast-induced nephropathy publication-title: J Thorac Dis doi: 10.21037/jtd.2019.04.69 – volume: 13 start-page: e008702 year: 2020 ident: 2024022119322591700_ehad836-B10 article-title: Differential use and impact of bleeding avoidance strategies on percutaneous coronary intervention-related bleeding stratified by predicted risk publication-title: Circ Cardiovasc Interv doi: 10.1161/CIRCINTERVENTIONS.119.008702 – volume: 15 start-page: 381 year: 2002 ident: 2024022119322591700_ehad836-B32 article-title: The Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) collaborative quality improvement initiative in percutaneous coronary interventions publication-title: J Interv Cardiol doi: 10.1111/j.1540-8183.2002.tb01071.x – volume: 14 start-page: e010863 year: 2021 ident: 2024022119322591700_ehad836-B21 article-title: Contemporary clinical and coronary anatomic risk model for 30-day mortality after percutaneous coronary intervention publication-title: Circ Cardiovasc Interv doi: 10.1161/CIRCINTERVENTIONS.121.010863 – volume: 175 start-page: 1199 year: 2015 ident: 2024022119322591700_ehad836-B9 article-title: Informed decision making for percutaneous coronary intervention for stable coronary disease publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2015.1657 – volume: 3 start-page: e001380 year: 2014 ident: 2024022119322591700_ehad836-B13 article-title: Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath-PCI Registry publication-title: J Am Heart Assoc doi: 10.1161/JAHA.114.001380 – volume: 78 start-page: 1 year: 1950 ident: 2024022119322591700_ehad836-B35 article-title: Verification of forecasts expressed in terms of probability publication-title: Mon Weather Rev doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 – volume: 7 start-page: e008551 year: 2018 ident: 2024022119322591700_ehad836-B39 article-title: Reversing the “risk-treatment paradox” of bleeding in patients undergoing percutaneous coronary intervention: risk-concordant use of bleeding avoidance strategies is associated with reduced bleeding and lower costs publication-title: J Am Heart Assoc doi: 10.1161/JAHA.118.008551 – volume: 41 start-page: 834 year: 2021 ident: 2024022119322591700_ehad836-B45 article-title: Current challenges when using numbers in patient decision aids: advanced concepts publication-title: Med Decis Making doi: 10.1177/0272989X21996342 – volume: 82 start-page: 128 year: 2017 ident: 2024022119322591700_ehad836-B30 article-title: An up-to-date comparison of state-of-the-art classification algorithms publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.003 – volume: 43 start-page: 1161 year: 2004 ident: 2024022119322591700_ehad836-B41 article-title: Characteristics of cerebrovascular accidents after percutaneous coronary interventions publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2003.11.033 – ident: 2024022119322591700_ehad836-B29 – volume: 398 start-page: 1974 year: 2021 ident: 2024022119322591700_ehad836-B12 article-title: A contemporary simple risk score for prediction of contrast-associated acute kidney injury after percutaneous coronary intervention: derivation and validation from an observational registry publication-title: Lancet doi: 10.1016/S0140-6736(21)02326-6 – volume: 15 start-page: e011540 year: 2022 ident: 2024022119322591700_ehad836-B26 article-title: Multimorbidity and mortality models to predict complications following percutaneous coronary interventions publication-title: Circ Cardiovasc Interv doi: 10.1161/CIRCINTERVENTIONS.121.011540 – volume: 78 start-page: 216 year: 2021 ident: 2024022119322591700_ehad836-B20 article-title: Predicting in-hospital mortality in patients undergoing percutaneous coronary intervention publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2021.04.067 – volume: 44 start-page: 837 year: 1988 ident: 2024022119322591700_ehad836-B34 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 41 start-page: 736 year: 2021 ident: 2024022119322591700_ehad836-B37 article-title: Systematic development of patient decision aids: an update from the IPDAS collaboration publication-title: Med Decis Making doi: 10.1177/0272989X211014163 – volume: 44 start-page: 1393 year: 2004 ident: 2024022119322591700_ehad836-B27 article-title: A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation publication-title: J Am Coll Cardiol – volume: 2 start-page: e196835 year: 2019 ident: 2024022119322591700_ehad836-B16 article-title: Comparison of machine learning methods with national cardiovascular data registry models for prediction of risk of bleeding after percutaneous coronary intervention publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.6835 – volume: 6 start-page: 614 year: 2013 ident: 2024022119322591700_ehad836-B23 article-title: The New York State risk score for predicting in-hospital/30-day mortality following percutaneous coronary intervention publication-title: JACC Cardiovasc Interv doi: 10.1016/j.jcin.2013.02.015 – volume: 15 start-page: e1002703 year: 2018 ident: 2024022119322591700_ehad836-B11 article-title: Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: a retrospective cohort study publication-title: PLoS Med doi: 10.1371/journal.pmed.1002703 – volume: 93 start-page: 222 year: 2019 ident: 2024022119322591700_ehad836-B31 article-title: Contemporary use of and outcomes associated with ultra-low contrast volume in patients undergoing percutaneous coronary interventions publication-title: Catheter Cardiovasc Interv doi: 10.1002/ccd.27819 – volume: 174 start-page: 1614 year: 2014 ident: 2024022119322591700_ehad836-B8 article-title: How cardiologists present the benefits of percutaneous coronary interventions to patients with stable angina: a qualitative analysis publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2014.3328 – volume: 1 start-page: 21 year: 2008 ident: 2024022119322591700_ehad836-B43 article-title: Converting the informed consent from a perfunctory process to an evidence-based foundation for patient decision making publication-title: Circ Cardiovasc Qual Outcomes doi: 10.1161/CIRCOUTCOMES.108.791863 – volume: 6 start-page: 897 year: 2013 ident: 2024022119322591700_ehad836-B17 article-title: An updated bleeding model to predict the risk of post-procedure bleeding among patients undergoing percutaneous coronary intervention: a report using an expanded bleeding definition from the National Cardiovascular Data Registry CathPCI Registry publication-title: JACC Cardiovasc Interv doi: 10.1016/j.jcin.2013.04.016 – volume: 8 start-page: e011160 year: 2019 ident: 2024022119322591700_ehad836-B28 article-title: Determinants of in-hospital mortality after percutaneous coronary intervention: a machine learning approach publication-title: J Am Heart Assoc doi: 10.1161/JAHA.118.011160 – volume: 44 start-page: 4310 year: 2023 ident: 2024022119322591700_ehad836-B2 article-title: 2022 joint ESC/EACTS review of the 2018 guideline recommendations on the revascularization of left main coronary artery disease in patients at low surgical risk and anatomy suitable for PCI or CABG publication-title: Eur Heart J doi: 10.1093/eurheartj/ehad476 – volume: 106 start-page: 86 year: 2002 ident: 2024022119322591700_ehad836-B42 article-title: Stroke complicating percutaneous coronary interventions: incidence, predictors, and prognostic implications publication-title: Circulation doi: 10.1161/01.CIR.0000020678.16325.E0 – volume: 9 start-page: e96385 year: 2014 ident: 2024022119322591700_ehad836-B5 article-title: A random forest based risk model for reliable and accurate prediction of receipt of transfusion in patients undergoing percutaneous coronary intervention publication-title: PLoS One doi: 10.1371/journal.pone.0096385 – volume: 13 start-page: 29 year: 2018 ident: 2024022119322591700_ehad836-B40 article-title: Patients’ preferences for coronary revascularization: a systematic review publication-title: Patient Prefer Adherence doi: 10.2147/PPA.S188268 – volume: 43 start-page: 3115 year: 2022 ident: 2024022119322591700_ehad836-B7 article-title: Optimal antiplatelet therapy in patients at high bleeding risk undergoing complex percutaneous coronary intervention publication-title: Eur Heart J doi: 10.1093/eurheartj/ehac369 – volume: 12 start-page: 6262 year: 2022 ident: 2024022119322591700_ehad836-B25 article-title: Machine learning models for prediction of adverse events after percutaneous coronary intervention publication-title: Sci Rep doi: 10.1038/s41598-022-10346-1 – volume: 40 start-page: 87 year: 2019 ident: 2024022119322591700_ehad836-B1 article-title: 2018 ESC/EACTS guidelines on myocardial revascularization publication-title: Eur Heart J doi: 10.1093/eurheartj/ehy394 – volume: 60 start-page: 290 year: 2006 ident: 2024022119322591700_ehad836-B36 article-title: A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena publication-title: J Epidemiol Community Health doi: 10.1136/jech.2004.029454 – volume: 169 start-page: 234 year: 2015 ident: 2024022119322591700_ehad836-B44 article-title: Improving the process of informed consent for percutaneous coronary intervention: patient outcomes from the Patient Risk Information Services Manager (ePRISM) study publication-title: Am Heart J doi: 10.1016/j.ahj.2014.11.008 – volume: 2 start-page: 222 year: 2009 ident: 2024022119322591700_ehad836-B15 article-title: Bleeding in patients undergoing percutaneous coronary intervention: the development of a clinical risk algorithm from the National Cardiovascular Data Registry publication-title: Circ Cardiovasc Interv doi: 10.1161/CIRCINTERVENTIONS.108.846741 – volume: 61 start-page: 2242 year: 2013 ident: 2024022119322591700_ehad836-B4 article-title: A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2013.03.026 |
SSID | ssj0008616 |
Score | 2.5133672 |
Snippet | Predicting personalized risk for adverse events following percutaneous coronary intervention (PCI) remains critical in weighing treatment options, employing... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 601 |
SubjectTerms | Acute Kidney Injury - etiology Hemorrhage - etiology Humans Machine Learning Patient Preference Percutaneous Coronary Intervention - methods Renal Dialysis Risk Assessment - methods Risk Factors Stroke - etiology Treatment Outcome |
Title | Merging machine learning and patient preference: a novel tool for risk prediction of percutaneous coronary interventions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38233027 https://www.proquest.com/docview/2916406480 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJk17QcC4dDBkpD2BwrI4dRzepgk2TSpCYpP6FtnOsSjq2qqkE-KRX87xLcnEhsZeotRxHTff15Nz7HMhZD_NFQPNdcINMjivBUsEICBKSW7KVJYjaQOcx5_56UV-NhlNBoPfPa-ldaPe6183xpXcB1VsQ1xtlOx_INsOig14jvjiERHG450wHsPK1Ri6dB6REEtA-KjDkDHVZgEIMX0-sHm-uIIZqpwLF7nofcuxTz3VUXlcwkqvUWkE6x6rbYoD61o37XlH_rhxQd8Wx27e9Wful8ansXK1c6DvYh-OZqpdGzjDKXbBFV_BL_eMp7OOvV-km4KTaqE1LFdkuQv_9uyBIGLR_C25TyIZZXD45LkmegKV-6WOvwS9T4IF65X7ad_t-TeJTOP93vhYl5cOe7vbaXdou7de64sYLz0gmxmaGrYKxsmkcxMS_JDH3fCSHbR3PAj32yZbcYTrqs0t9orTW84fkYfB4KBHnj2PyQDmT8jWOLhU7JCfgUQ0kIhGElEkEQ0koh2JPlBJHYWopRBFClFLIdpRiC4M7VOIRgrRaxR6Si4-fTw_Pk1COY5Eo1rXJDI1oItCMs2NNlkxUiBRO7T5lQpVa1WC0VLk-C9HEwFSpbhN1ijTUhvsJBR7Rjbmizm8IJSPgNUmL5lI67xWBXZiXBwaqYxQMhNDksYnWemQq96WTJlV3meCVS0OVcBhSN62X1n6RC3_6vwmwlOhOLV7ZP6JVBmaS6jj5iIdkucet3a4iPPurVdeku2O86_IRrNawx4qrY167Vj1B3gcpBU |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Merging+machine+learning+and+patient+preference%3A+a+novel+tool+for+risk+prediction+of+percutaneous+coronary+interventions&rft.jtitle=European+heart+journal&rft.au=Hamilton%2C+David+E&rft.au=Albright%2C+Jeremy&rft.au=Seth%2C+Milan&rft.au=Painter%2C+Ian&rft.date=2024-02-21&rft.eissn=1522-9645&rft.volume=45&rft.issue=8&rft.spage=601&rft_id=info:doi/10.1093%2Feurheartj%2Fehad836&rft_id=info%3Apmid%2F38233027&rft.externalDocID=38233027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-668X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-668X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-668X&client=summon |