Internally controlled RNA sequencing comparisons using nucleoside recoding chemistry
Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating...
Saved in:
Published in | Nucleic acids research Vol. 50; no. 19; p. e110 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
28.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present Transcript Regulation Identified by Labeling with Nucleoside Analogues in Cell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s4U) and 6-thioguanosine (s6G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5. TILAC is broadly applicable to uncover differences between samples leading to improved biological insights. |
---|---|
AbstractList | Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present Transcript Regulation Identified by Labeling with Nucleoside Analogues in Cell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s4U) and 6-thioguanosine (s6G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5. TILAC is broadly applicable to uncover differences between samples leading to improved biological insights.Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present Transcript Regulation Identified by Labeling with Nucleoside Analogues in Cell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s4U) and 6-thioguanosine (s6G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5. TILAC is broadly applicable to uncover differences between samples leading to improved biological insights. Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present Transcript Regulation Identified by Labeling with Nucleoside Analogues in Cell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s4U) and 6-thioguanosine (s6G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5. TILAC is broadly applicable to uncover differences between samples leading to improved biological insights. Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present T ranscript Regulation I dentified by L abeling with Nucleoside A nalogues in C ell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s 4 U) and 6-thioguanosine (s 6 G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5 . TILAC is broadly applicable to uncover differences between samples leading to improved biological insights. |
Author | Niederer, Rachel O Kiefer, Lea Vock, Isaac W Courvan, Meaghan C S Gilbert, Wendy V Simon, Matthew D |
Author_xml | – sequence: 1 givenname: Meaghan C S surname: Courvan fullname: Courvan, Meaghan C S – sequence: 2 givenname: Rachel O surname: Niederer fullname: Niederer, Rachel O – sequence: 3 givenname: Isaac W surname: Vock fullname: Vock, Isaac W – sequence: 4 givenname: Lea surname: Kiefer fullname: Kiefer, Lea – sequence: 5 givenname: Wendy V surname: Gilbert fullname: Gilbert, Wendy V – sequence: 6 givenname: Matthew D orcidid: 0000-0001-7423-5265 surname: Simon fullname: Simon, Matthew D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36018791$$D View this record in MEDLINE/PubMed |
BookMark | eNptUU1LAzEQDaJoq568yx4FWZ1sstnsRZDiR0EURM8hm03baJrUZFfovze1VVQ8Dcy8eW_evCHadt5phI4wnGGoybmT4Xz6KhWryRYaYMKKnNas2EYDIFDmGCjfQ8MYXwAwxSXdRXuEAeZVjQfoaew6HZy0dpkp77rgrdVt9nh_mUX91munjJumyXwhg4nexayPq47rldU-mlZnQSvffqJmem5iF5YHaGcibdSHm7qPnq-vnka3-d3DzXh0eZcrwnGX14wDB9aAUooVk4YUqmob2pKCVhVVwFRZ8-QQWEkmJaaay6osKt40uGSUlGQfXax5F30z163S6X5pxSKYuQxL4aURvyfOzMTUv4uaEV4DTgQnG4Lgk9nYiWRAaWul076PoqigYpgBXWkd_9T6Fvl6ZQLgNUAFH2PQE6FMJzuzeqo0VmAQq7hEikts4ko7p392vmj_Q38APL2ZpQ |
CitedBy_id | crossref_primary_10_3390_molecules28041517 crossref_primary_10_1016_j_celrep_2024_114452 |
Cites_doi | 10.1073/pnas.0506580102 10.1038/nmeth.3317 10.1093/bioinformatics/btp053 10.1093/bib/bbs017 10.1111/j.2517-6161.1995.tb02031.x 10.1083/jcb.201806183 10.1016/j.tibs.2020.05.002 10.1261/rna.062877.117 10.1261/rna.7151404 10.1002/anie.201707465 10.1038/s41594-020-0390-z 10.1016/j.celrep.2014.05.002 10.1038/nmeth.4582 10.1016/j.cell.2010.03.009 10.1093/bioinformatics/btp616 10.1093/bioinformatics/btx100 10.1038/nmeth.4435 10.1073/pnas.0635171100 10.1016/j.cell.2012.08.033 10.1074/jbc.M412882200 10.1016/j.cell.2012.08.026 10.1146/annurev-biodatasci-072018-021255 10.1371/journal.pone.0052249 10.1074/jbc.M102306200 10.1261/rna.053959.115 10.1038/nbt.2931 10.7554/eLife.10921 10.1186/s13059-016-0881-8 10.1074/mcp.M200025-MCP200 10.1016/j.molcel.2018.12.006 10.1016/j.molcel.2013.01.030 10.15252/embr.201642195 10.18637/jss.v076.i01 10.14806/ej.17.1.200 10.1016/0092-8674(82)90315-4 10.1016/j.cell.2015.12.038 10.1074/mcp.M400021-MCP200 10.1093/bioinformatics/bts635 10.1002/advs.201900997 10.7554/eLife.03971 10.1002/anie.201916272 10.1021/pr050134h 10.1186/s13059-014-0550-8 10.1016/j.ajhg.2017.09.014 10.1021/jacs.8b08554 10.1101/gad.284430.116 10.1016/j.molcel.2015.07.023 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022 |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkac693 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | e110 |
ExternalDocumentID | PMC9638901 36018791 10_1093_nar_gkac693 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: DP2 HD083992 – fundername: NIGMS NIH HHS grantid: T32 GM007223 – fundername: NIGMS NIH HHS grantid: K99 GM135533 – fundername: NIGMS NIH HHS grantid: R01 GM137117 – fundername: NIGMS NIH HHS grantid: R01 GM132358 – fundername: ; grantid: T32GM007223 – fundername: ; grantid: K99 GM135533; T32 GM67543-19; R01 GM132358; DP2 HD083992-01; R01 GM137117 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM CGR CUY CVF ECM EIF M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c381t-9680806b0ccc62fb32c7db4d324774c06c5980930653f514e8a75278bb1564353 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:39:46 EDT 2025 Fri Jul 11 05:23:59 EDT 2025 Thu Apr 03 07:03:43 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Tue Jul 01 02:59:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-9680806b0ccc62fb32c7db4d324774c06c5980930653f514e8a75278bb1564353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7423-5265 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkac693 |
PMID | 36018791 |
PQID | 2707616045 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9638901 proquest_miscellaneous_2707616045 pubmed_primary_36018791 crossref_citationtrail_10_1093_nar_gkac693 crossref_primary_10_1093_nar_gkac693 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-28 |
PublicationDateYYYYMMDD | 2022-10-28 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Kim (2022110710184740600_B26) 2015; 12 Martin (2022110710184740600_B25) 2011; 17 Jain (2022110710184740600_B48) 2016; 164 Dobin (2022110710184740600_B28) 2013; 29 Kiefer (2022110710184740600_B22) 2018; 140 Machyna (2022110710184740600_B30) 2020; 27 Chen (2022110710184740600_B20) 2020; 7 Wilbertz (2022110710184740600_B46) 2019; 73 Ong (2022110710184740600_B16) 2002; 1 Benjamini (2022110710184740600_B33) 1995; 57 Love (2022110710184740600_B5) 2014; 15 Amanchy (2022110710184740600_B14) 2005; 4 Everley (2022110710184740600_B15) 2004; 3 Herzog (2022110710184740600_B19) 2017; 14 Mili (2022110710184740600_B3) 2004; 10 Kronja (2022110710184740600_B23) 2014; 7 Duffy (2022110710184740600_B37) 2015; 59 Nie (2022110710184740600_B10) 2012; 151 Conesa (2022110710184740600_B1) 2016; 17 Riley (2022110710184740600_B4) 2013; 49 Mi (2022110710184740600_B34) 2020; 49 Duarte (2022110710184740600_B40) 2016; 30 Schurch (2022110710184740600_B7) 2016; 22 Carpenter (2022110710184740600_B31) 2017; 76 Risso (2022110710184740600_B11) 2014; 32 Berge (2022110710184740600_B6) 2019; 2 O’Brien (2022110710184740600_B39) 1993; 13 Chao (2022110710184740600_B9) 2001; 276 Subramanian (2022110710184740600_B35) 2005; 102 Lessel (2022110710184740600_B49) 2017; 101 Robinson (2022110710184740600_B8) 2010; 26 Riml (2022110710184740600_B17) 2017; 56 Arava (2022110710184740600_B42) 2003; 100 Risso (2022110710184740600_B12) 2014; 11 Thorvaldsdóttir (2022110710184740600_B29) 2013; 14 Danecek (2022110710184740600_B27) 2017; 33 Khong (2022110710184740600_B47) 2018; 217 Gasser (2022110710184740600_B18) 2020; 59 Lin (2022110710184740600_B2) 2012; 151 Schofield (2022110710184740600_B21) 2018; 15 Floor (2022110710184740600_B41) 2016; 5 Didomenico (2022110710184740600_B38) 1982; 31 Hafner (2022110710184740600_B36) 2010; 141 Lugowski (2022110710184740600_B13) 2018; 24 McCarthy (2022110710184740600_B32) 2009; 25 McEwen (2022110710184740600_B44) 2005; 280 Zebrucka (2022110710184740600_B43) 2016; 17 Tauber (2022110710184740600_B50) 2020; 45 Xu (2022110710184740600_B24) 2012; 7 Andreev (2022110710184740600_B45) 2015; 4 |
References_xml | – volume: 102 start-page: 15545 year: 2005 ident: 2022110710184740600_B35 article-title: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506580102 – volume: 12 start-page: 357 year: 2015 ident: 2022110710184740600_B26 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods doi: 10.1038/nmeth.3317 – volume: 25 start-page: 765 year: 2009 ident: 2022110710184740600_B32 article-title: Testing significance relative to a fold-change threshold is a TREAT publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp053 – volume: 14 start-page: 178 year: 2013 ident: 2022110710184740600_B29 article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration publication-title: Briefings Bioinformatics doi: 10.1093/bib/bbs017 – volume: 57 start-page: 289 year: 1995 ident: 2022110710184740600_B33 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 217 start-page: 4124 year: 2018 ident: 2022110710184740600_B47 article-title: mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction publication-title: J. Cell Biol. doi: 10.1083/jcb.201806183 – volume: 45 start-page: 764 year: 2020 ident: 2022110710184740600_B50 article-title: Mechanisms and regulation of RNA condensation in RNP granule formation publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2020.05.002 – volume: 24 start-page: 623 year: 2018 ident: 2022110710184740600_B13 article-title: DRUID: a pipeline for transcriptome-wide measurements of mRNA stability publication-title: RNA doi: 10.1261/rna.062877.117 – volume: 10 start-page: 1692 year: 2004 ident: 2022110710184740600_B3 article-title: Evidence for reassociation of RNA-binding proteins after cell lysis: Implications for the interpretation of immunoprecipitation analyses publication-title: RNA doi: 10.1261/rna.7151404 – volume: 56 start-page: 13479 year: 2017 ident: 2022110710184740600_B17 article-title: Osmium-mediated transformation of 4-thiouridine to cytidine as key to study RNA dynamics by sequencing publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707465 – volume: 27 start-page: 297 year: 2020 ident: 2022110710184740600_B30 article-title: Enhanced nucleotide chemistry and toehold nanotechnology reveals lncRNA spreading on chromatin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0390-z – volume: 13 start-page: 3456 year: 1993 ident: 2022110710184740600_B39 article-title: Changes in drosophila transcription after an instantaneous heat shock publication-title: Mol. Cell. Biol. – volume: 7 start-page: 1495 year: 2014 ident: 2022110710184740600_B23 article-title: Widespread changes in the posttranscriptional landscape at the drosophila oocyte-to-embryo transition publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.002 – volume: 15 start-page: 221 year: 2018 ident: 2022110710184740600_B21 article-title: TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding publication-title: Nat. Methods doi: 10.1038/nmeth.4582 – volume: 141 start-page: 129 year: 2010 ident: 2022110710184740600_B36 article-title: Transcriptome-wide identification of RNA-binding protein and MicroRNA target sites by PAR-CLIP publication-title: Cell doi: 10.1016/j.cell.2010.03.009 – volume: 26 start-page: 139 year: 2010 ident: 2022110710184740600_B8 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 33 start-page: 2037 year: 2017 ident: 2022110710184740600_B27 article-title: BCFtools/csq: haplotype-aware variant consequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx100 – volume: 14 start-page: 1198 year: 2017 ident: 2022110710184740600_B19 article-title: Thiol-linked alkylation of RNA to assess expression dynamics publication-title: Nat. Methods doi: 10.1038/nmeth.4435 – volume: 100 start-page: 3889 year: 2003 ident: 2022110710184740600_B42 article-title: Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0635171100 – volume: 151 start-page: 68 year: 2012 ident: 2022110710184740600_B10 article-title: c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2012.08.033 – volume: 280 start-page: 16925 year: 2005 ident: 2022110710184740600_B44 article-title: Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure publication-title: J. Biol. Chem. doi: 10.1074/jbc.M412882200 – volume: 151 start-page: 56 year: 2012 ident: 2022110710184740600_B2 article-title: Transcriptional amplification in tumor cells with elevated c-Myc publication-title: Cell doi: 10.1016/j.cell.2012.08.026 – volume: 2 start-page: 139 year: 2019 ident: 2022110710184740600_B6 article-title: RNA sequencing data: hitchhiker's guide to expression analysis publication-title: Ann. Rev. Biomed. Data Sci. doi: 10.1146/annurev-biodatasci-072018-021255 – volume: 7 start-page: e52249-6 year: 2012 ident: 2022110710184740600_B24 article-title: FastUniq: a fast de novo duplicates removal tool for paired short reads publication-title: PLoS One doi: 10.1371/journal.pone.0052249 – volume: 276 start-page: 31793 year: 2001 ident: 2022110710184740600_B9 article-title: Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M102306200 – volume: 22 start-page: 839 year: 2016 ident: 2022110710184740600_B7 article-title: How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? publication-title: RNA doi: 10.1261/rna.053959.115 – volume: 32 start-page: 896 year: 2014 ident: 2022110710184740600_B11 article-title: Normalization of RNA-seq data using factor analysis of control genes or samples publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2931 – volume: 5 start-page: e10921 year: 2016 ident: 2022110710184740600_B41 article-title: Tunable protein synthesis by transcript isoforms in human cells publication-title: Elife doi: 10.7554/eLife.10921 – volume: 17 start-page: 13 year: 2016 ident: 2022110710184740600_B1 article-title: A survey of best practices for RNA-seq data analysis publication-title: Genome Biol. doi: 10.1186/s13059-016-0881-8 – volume: 11 start-page: 169 year: 2014 ident: 2022110710184740600_B12 article-title: The Role of spike-in standards in the normalization of RNA-seq publication-title: Stat. Anal. Next Gener. Seq. Data – volume: 49 start-page: D377 year: 2020 ident: 2022110710184740600_B34 article-title: PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API publication-title: Nucleic Acids Res. – volume: 1 start-page: 376 year: 2002 ident: 2022110710184740600_B16 article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M200025-MCP200 – volume: 73 start-page: 946 year: 2019 ident: 2022110710184740600_B46 article-title: Single-molecule imaging of mRNA localization and regulation during the integrated stress response publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.12.006 – volume: 49 start-page: 601 year: 2013 ident: 2022110710184740600_B4 article-title: The “observer effect” in genome-wide surveys of protein-RNA interactions publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.030 – volume: 17 start-page: 1374 year: 2016 ident: 2022110710184740600_B43 article-title: The integrated stress response publication-title: EMBO Rep. doi: 10.15252/embr.201642195 – volume: 76 start-page: 1 year: 2017 ident: 2022110710184740600_B31 article-title: Stan: a probabilistic programming language publication-title: J. Stat. Soft. doi: 10.18637/jss.v076.i01 – volume: 17 start-page: 10 year: 2011 ident: 2022110710184740600_B25 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet. J. doi: 10.14806/ej.17.1.200 – volume: 31 start-page: 593 year: 1982 ident: 2022110710184740600_B38 article-title: The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels publication-title: Cell doi: 10.1016/0092-8674(82)90315-4 – volume: 164 start-page: 487 year: 2016 ident: 2022110710184740600_B48 article-title: ATPase-modulated stress granules contain a diverse proteome and substructure publication-title: Cell doi: 10.1016/j.cell.2015.12.038 – volume: 3 start-page: 729 year: 2004 ident: 2022110710184740600_B15 article-title: Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research* publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M400021-MCP200 – volume: 29 start-page: 15 year: 2013 ident: 2022110710184740600_B28 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 7 start-page: 1900997 year: 2020 ident: 2022110710184740600_B20 article-title: Acrylonitrile-mediated nascent RNA sequencing for transcriptome-wide profiling of cellular RNA dynamics publication-title: Adv. Sci. doi: 10.1002/advs.201900997 – volume: 4 start-page: e03971 year: 2015 ident: 2022110710184740600_B45 article-title: Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression publication-title: Elife doi: 10.7554/eLife.03971 – volume: 59 start-page: 6881 year: 2020 ident: 2022110710184740600_B18 article-title: Thioguanosine conversion enables mRNA-lifetime evaluation by rna sequencing using double metabolic labeling (TUC-seq DUAL) publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916272 – volume: 4 start-page: 1661 year: 2005 ident: 2022110710184740600_B14 article-title: Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC) publication-title: J. Proteom Res. doi: 10.1021/pr050134h – volume: 15 start-page: 550 year: 2014 ident: 2022110710184740600_B5 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 101 start-page: 716 year: 2017 ident: 2022110710184740600_B49 article-title: De novo missense mutations in DHX30 impair global translation and cause a neurodevelopmental disorder publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2017.09.014 – volume: 140 start-page: 14567 year: 2018 ident: 2022110710184740600_B22 article-title: Expanding the nucleoside recoding toolkit: revealing RNA population dynamics with 6-thioguanosine publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08554 – volume: 30 start-page: 1731 year: 2016 ident: 2022110710184740600_B40 article-title: Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation publication-title: Genes Dev. doi: 10.1101/gad.284430.116 – volume: 59 start-page: 858 year: 2015 ident: 2022110710184740600_B37 article-title: Tracking distinct RNA populations using efficient and reversible covalent chemistry publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.07.023 |
SSID | ssj0014154 |
Score | 2.4220886 |
Snippet | Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e110 |
SubjectTerms | Methods Online Nucleosides RNA - chemistry RNA, Messenger - metabolism Sequence Analysis, RNA Thiouridine - chemistry |
Title | Internally controlled RNA sequencing comparisons using nucleoside recoding chemistry |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36018791 https://www.proquest.com/docview/2707616045 https://pubmed.ncbi.nlm.nih.gov/PMC9638901 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqIcFeEGzAysdkpIkHqmyZ3cTJY1VtGqAWhDq0t8h23K0iS6e1fRh_Dn8pd7bz0W1CsJcoTdxYyf1yuTvf_Y6QvUhywQ-5DKRIZNCPkjyQZioDrZhgTOTgVGCB82gcn5z2P59FZ53O71bW0mqp9vWve-tKHiJVOAZyxSrZ_5BsfVE4APsgX9iChGH7TzL24byiuKlSzguwH7-PBz2fIe0ran2nwUVvZSMDJXIYz7FPZw_9YVvWoqvGb21rdYwDkdBVz3JcXmhFvmxlx-raLyONjDy_AE3RiqSOZ0hT4TsrI2t00ftanfvhlfCnhZS6V0d5vsyQ9dZGCoxshyPAkwU97su7_1Lm2NJq3FKfOnrNfeO0ri3dStfVsuOjreCXtpSsOfSZsGbt552PgSPKKjFR_fj8p9Sx68XYAsbVpUUGj7E1oesadot9-9toiCoqxRLBRwxcEdSlIjyqV6rAAHIUZf62fA0ozH0AMx_4eTfJ42qSdQPojldzOzm3Ze1MnpGn3k2hA4e556Rjyi2yPSjlcn55Qz9QmzhsV2S2yJNhhZ1tMmkgSRtIUoAkbSBJW5CkFpK0gSStIElrSL4gp8dHk-FJ4Bt3BBoMwGWQYj-XMFah1jpmU8WZFrnq52C8g7ehw1hHaQJPCHmRp2Cxm0SKiIlEKaQu4hF_STbKeWl2COUStImKhJYpGJMsUgnLQymjJOagXJjqko_V08y0Z7XH5ipF5rIreAZSyLwUumSvHnzlyFzuH_a-EksG94kraLI089UiYwLDfjG4QV3yyompvlAl3y4RawKsByCR-_qZcnZhCd09wl4_-J9vyGbzLr4lG8vrlXkHxvJS7Vq07tpQ0x-8t8fU |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internally+controlled+RNA+sequencing+comparisons+using+nucleoside+recoding+chemistry&rft.jtitle=Nucleic+acids+research&rft.au=Courvan%2C+Meaghan+C+S&rft.au=Niederer%2C+Rachel+O&rft.au=Vock%2C+Isaac+W&rft.au=Kiefer%2C+Lea&rft.date=2022-10-28&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=50&rft.issue=19&rft.spage=e110&rft.epage=e110&rft_id=info:doi/10.1093%2Fnar%2Fgkac693&rft_id=info%3Apmid%2F36018791&rft.externalDocID=PMC9638901 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |