Internally controlled RNA sequencing comparisons using nucleoside recoding chemistry

Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 50; no. 19; p. e110
Main Authors Courvan, Meaghan C S, Niederer, Rachel O, Vock, Isaac W, Kiefer, Lea, Gilbert, Wendy V, Simon, Matthew D
Format Journal Article
LanguageEnglish
Published England Oxford University Press 28.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present Transcript Regulation Identified by Labeling with Nucleoside Analogues in Cell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s4U) and 6-thioguanosine (s6G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5. TILAC is broadly applicable to uncover differences between samples leading to improved biological insights.
AbstractList Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present Transcript Regulation Identified by Labeling with Nucleoside Analogues in Cell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s4U) and 6-thioguanosine (s6G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5. TILAC is broadly applicable to uncover differences between samples leading to improved biological insights.Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present Transcript Regulation Identified by Labeling with Nucleoside Analogues in Cell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s4U) and 6-thioguanosine (s6G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5. TILAC is broadly applicable to uncover differences between samples leading to improved biological insights.
Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present Transcript Regulation Identified by Labeling with Nucleoside Analogues in Cell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s4U) and 6-thioguanosine (s6G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5. TILAC is broadly applicable to uncover differences between samples leading to improved biological insights.
Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present T ranscript Regulation I dentified by L abeling with Nucleoside A nalogues in C ell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s 4 U) and 6-thioguanosine (s 6 G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5 . TILAC is broadly applicable to uncover differences between samples leading to improved biological insights.
Author Niederer, Rachel O
Kiefer, Lea
Vock, Isaac W
Courvan, Meaghan C S
Gilbert, Wendy V
Simon, Matthew D
Author_xml – sequence: 1
  givenname: Meaghan C S
  surname: Courvan
  fullname: Courvan, Meaghan C S
– sequence: 2
  givenname: Rachel O
  surname: Niederer
  fullname: Niederer, Rachel O
– sequence: 3
  givenname: Isaac W
  surname: Vock
  fullname: Vock, Isaac W
– sequence: 4
  givenname: Lea
  surname: Kiefer
  fullname: Kiefer, Lea
– sequence: 5
  givenname: Wendy V
  surname: Gilbert
  fullname: Gilbert, Wendy V
– sequence: 6
  givenname: Matthew D
  orcidid: 0000-0001-7423-5265
  surname: Simon
  fullname: Simon, Matthew D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36018791$$D View this record in MEDLINE/PubMed
BookMark eNptUU1LAzEQDaJoq568yx4FWZ1sstnsRZDiR0EURM8hm03baJrUZFfovze1VVQ8Dcy8eW_evCHadt5phI4wnGGoybmT4Xz6KhWryRYaYMKKnNas2EYDIFDmGCjfQ8MYXwAwxSXdRXuEAeZVjQfoaew6HZy0dpkp77rgrdVt9nh_mUX91munjJumyXwhg4nexayPq47rldU-mlZnQSvffqJmem5iF5YHaGcibdSHm7qPnq-vnka3-d3DzXh0eZcrwnGX14wDB9aAUooVk4YUqmob2pKCVhVVwFRZ8-QQWEkmJaaay6osKt40uGSUlGQfXax5F30z163S6X5pxSKYuQxL4aURvyfOzMTUv4uaEV4DTgQnG4Lgk9nYiWRAaWul076PoqigYpgBXWkd_9T6Fvl6ZQLgNUAFH2PQE6FMJzuzeqo0VmAQq7hEikts4ko7p392vmj_Q38APL2ZpQ
CitedBy_id crossref_primary_10_3390_molecules28041517
crossref_primary_10_1016_j_celrep_2024_114452
Cites_doi 10.1073/pnas.0506580102
10.1038/nmeth.3317
10.1093/bioinformatics/btp053
10.1093/bib/bbs017
10.1111/j.2517-6161.1995.tb02031.x
10.1083/jcb.201806183
10.1016/j.tibs.2020.05.002
10.1261/rna.062877.117
10.1261/rna.7151404
10.1002/anie.201707465
10.1038/s41594-020-0390-z
10.1016/j.celrep.2014.05.002
10.1038/nmeth.4582
10.1016/j.cell.2010.03.009
10.1093/bioinformatics/btp616
10.1093/bioinformatics/btx100
10.1038/nmeth.4435
10.1073/pnas.0635171100
10.1016/j.cell.2012.08.033
10.1074/jbc.M412882200
10.1016/j.cell.2012.08.026
10.1146/annurev-biodatasci-072018-021255
10.1371/journal.pone.0052249
10.1074/jbc.M102306200
10.1261/rna.053959.115
10.1038/nbt.2931
10.7554/eLife.10921
10.1186/s13059-016-0881-8
10.1074/mcp.M200025-MCP200
10.1016/j.molcel.2018.12.006
10.1016/j.molcel.2013.01.030
10.15252/embr.201642195
10.18637/jss.v076.i01
10.14806/ej.17.1.200
10.1016/0092-8674(82)90315-4
10.1016/j.cell.2015.12.038
10.1074/mcp.M400021-MCP200
10.1093/bioinformatics/bts635
10.1002/advs.201900997
10.7554/eLife.03971
10.1002/anie.201916272
10.1021/pr050134h
10.1186/s13059-014-0550-8
10.1016/j.ajhg.2017.09.014
10.1021/jacs.8b08554
10.1101/gad.284430.116
10.1016/j.molcel.2015.07.023
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkac693
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e110
ExternalDocumentID PMC9638901
36018791
10_1093_nar_gkac693
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: DP2 HD083992
– fundername: NIGMS NIH HHS
  grantid: T32 GM007223
– fundername: NIGMS NIH HHS
  grantid: K99 GM135533
– fundername: NIGMS NIH HHS
  grantid: R01 GM137117
– fundername: NIGMS NIH HHS
  grantid: R01 GM132358
– fundername: ;
  grantid: T32GM007223
– fundername: ;
  grantid: K99 GM135533; T32 GM67543-19; R01 GM132358; DP2 HD083992-01; R01 GM137117
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c381t-9680806b0ccc62fb32c7db4d324774c06c5980930653f514e8a75278bb1564353
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:39:46 EDT 2025
Fri Jul 11 05:23:59 EDT 2025
Thu Apr 03 07:03:43 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Tue Jul 01 02:59:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-9680806b0ccc62fb32c7db4d324774c06c5980930653f514e8a75278bb1564353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7423-5265
OpenAccessLink http://dx.doi.org/10.1093/nar/gkac693
PMID 36018791
PQID 2707616045
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9638901
proquest_miscellaneous_2707616045
pubmed_primary_36018791
crossref_citationtrail_10_1093_nar_gkac693
crossref_primary_10_1093_nar_gkac693
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-28
PublicationDateYYYYMMDD 2022-10-28
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kim (2022110710184740600_B26) 2015; 12
Martin (2022110710184740600_B25) 2011; 17
Jain (2022110710184740600_B48) 2016; 164
Dobin (2022110710184740600_B28) 2013; 29
Kiefer (2022110710184740600_B22) 2018; 140
Machyna (2022110710184740600_B30) 2020; 27
Chen (2022110710184740600_B20) 2020; 7
Wilbertz (2022110710184740600_B46) 2019; 73
Ong (2022110710184740600_B16) 2002; 1
Benjamini (2022110710184740600_B33) 1995; 57
Love (2022110710184740600_B5) 2014; 15
Amanchy (2022110710184740600_B14) 2005; 4
Everley (2022110710184740600_B15) 2004; 3
Herzog (2022110710184740600_B19) 2017; 14
Mili (2022110710184740600_B3) 2004; 10
Kronja (2022110710184740600_B23) 2014; 7
Duffy (2022110710184740600_B37) 2015; 59
Nie (2022110710184740600_B10) 2012; 151
Conesa (2022110710184740600_B1) 2016; 17
Riley (2022110710184740600_B4) 2013; 49
Mi (2022110710184740600_B34) 2020; 49
Duarte (2022110710184740600_B40) 2016; 30
Schurch (2022110710184740600_B7) 2016; 22
Carpenter (2022110710184740600_B31) 2017; 76
Risso (2022110710184740600_B11) 2014; 32
Berge (2022110710184740600_B6) 2019; 2
O’Brien (2022110710184740600_B39) 1993; 13
Chao (2022110710184740600_B9) 2001; 276
Subramanian (2022110710184740600_B35) 2005; 102
Lessel (2022110710184740600_B49) 2017; 101
Robinson (2022110710184740600_B8) 2010; 26
Riml (2022110710184740600_B17) 2017; 56
Arava (2022110710184740600_B42) 2003; 100
Risso (2022110710184740600_B12) 2014; 11
Thorvaldsdóttir (2022110710184740600_B29) 2013; 14
Danecek (2022110710184740600_B27) 2017; 33
Khong (2022110710184740600_B47) 2018; 217
Gasser (2022110710184740600_B18) 2020; 59
Lin (2022110710184740600_B2) 2012; 151
Schofield (2022110710184740600_B21) 2018; 15
Floor (2022110710184740600_B41) 2016; 5
Didomenico (2022110710184740600_B38) 1982; 31
Hafner (2022110710184740600_B36) 2010; 141
Lugowski (2022110710184740600_B13) 2018; 24
McCarthy (2022110710184740600_B32) 2009; 25
McEwen (2022110710184740600_B44) 2005; 280
Zebrucka (2022110710184740600_B43) 2016; 17
Tauber (2022110710184740600_B50) 2020; 45
Xu (2022110710184740600_B24) 2012; 7
Andreev (2022110710184740600_B45) 2015; 4
References_xml – volume: 102
  start-page: 15545
  year: 2005
  ident: 2022110710184740600_B35
  article-title: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0506580102
– volume: 12
  start-page: 357
  year: 2015
  ident: 2022110710184740600_B26
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3317
– volume: 25
  start-page: 765
  year: 2009
  ident: 2022110710184740600_B32
  article-title: Testing significance relative to a fold-change threshold is a TREAT
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp053
– volume: 14
  start-page: 178
  year: 2013
  ident: 2022110710184740600_B29
  article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
  publication-title: Briefings Bioinformatics
  doi: 10.1093/bib/bbs017
– volume: 57
  start-page: 289
  year: 1995
  ident: 2022110710184740600_B33
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 217
  start-page: 4124
  year: 2018
  ident: 2022110710184740600_B47
  article-title: mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201806183
– volume: 45
  start-page: 764
  year: 2020
  ident: 2022110710184740600_B50
  article-title: Mechanisms and regulation of RNA condensation in RNP granule formation
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2020.05.002
– volume: 24
  start-page: 623
  year: 2018
  ident: 2022110710184740600_B13
  article-title: DRUID: a pipeline for transcriptome-wide measurements of mRNA stability
  publication-title: RNA
  doi: 10.1261/rna.062877.117
– volume: 10
  start-page: 1692
  year: 2004
  ident: 2022110710184740600_B3
  article-title: Evidence for reassociation of RNA-binding proteins after cell lysis: Implications for the interpretation of immunoprecipitation analyses
  publication-title: RNA
  doi: 10.1261/rna.7151404
– volume: 56
  start-page: 13479
  year: 2017
  ident: 2022110710184740600_B17
  article-title: Osmium-mediated transformation of 4-thiouridine to cytidine as key to study RNA dynamics by sequencing
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707465
– volume: 27
  start-page: 297
  year: 2020
  ident: 2022110710184740600_B30
  article-title: Enhanced nucleotide chemistry and toehold nanotechnology reveals lncRNA spreading on chromatin
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0390-z
– volume: 13
  start-page: 3456
  year: 1993
  ident: 2022110710184740600_B39
  article-title: Changes in drosophila transcription after an instantaneous heat shock
  publication-title: Mol. Cell. Biol.
– volume: 7
  start-page: 1495
  year: 2014
  ident: 2022110710184740600_B23
  article-title: Widespread changes in the posttranscriptional landscape at the drosophila oocyte-to-embryo transition
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.002
– volume: 15
  start-page: 221
  year: 2018
  ident: 2022110710184740600_B21
  article-title: TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4582
– volume: 141
  start-page: 129
  year: 2010
  ident: 2022110710184740600_B36
  article-title: Transcriptome-wide identification of RNA-binding protein and MicroRNA target sites by PAR-CLIP
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.009
– volume: 26
  start-page: 139
  year: 2010
  ident: 2022110710184740600_B8
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 33
  start-page: 2037
  year: 2017
  ident: 2022110710184740600_B27
  article-title: BCFtools/csq: haplotype-aware variant consequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx100
– volume: 14
  start-page: 1198
  year: 2017
  ident: 2022110710184740600_B19
  article-title: Thiol-linked alkylation of RNA to assess expression dynamics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4435
– volume: 100
  start-page: 3889
  year: 2003
  ident: 2022110710184740600_B42
  article-title: Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.0635171100
– volume: 151
  start-page: 68
  year: 2012
  ident: 2022110710184740600_B10
  article-title: c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.033
– volume: 280
  start-page: 16925
  year: 2005
  ident: 2022110710184740600_B44
  article-title: Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M412882200
– volume: 151
  start-page: 56
  year: 2012
  ident: 2022110710184740600_B2
  article-title: Transcriptional amplification in tumor cells with elevated c-Myc
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.026
– volume: 2
  start-page: 139
  year: 2019
  ident: 2022110710184740600_B6
  article-title: RNA sequencing data: hitchhiker's guide to expression analysis
  publication-title: Ann. Rev. Biomed. Data Sci.
  doi: 10.1146/annurev-biodatasci-072018-021255
– volume: 7
  start-page: e52249-6
  year: 2012
  ident: 2022110710184740600_B24
  article-title: FastUniq: a fast de novo duplicates removal tool for paired short reads
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0052249
– volume: 276
  start-page: 31793
  year: 2001
  ident: 2022110710184740600_B9
  article-title: Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M102306200
– volume: 22
  start-page: 839
  year: 2016
  ident: 2022110710184740600_B7
  article-title: How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?
  publication-title: RNA
  doi: 10.1261/rna.053959.115
– volume: 32
  start-page: 896
  year: 2014
  ident: 2022110710184740600_B11
  article-title: Normalization of RNA-seq data using factor analysis of control genes or samples
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2931
– volume: 5
  start-page: e10921
  year: 2016
  ident: 2022110710184740600_B41
  article-title: Tunable protein synthesis by transcript isoforms in human cells
  publication-title: Elife
  doi: 10.7554/eLife.10921
– volume: 17
  start-page: 13
  year: 2016
  ident: 2022110710184740600_B1
  article-title: A survey of best practices for RNA-seq data analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0881-8
– volume: 11
  start-page: 169
  year: 2014
  ident: 2022110710184740600_B12
  article-title: The Role of spike-in standards in the normalization of RNA-seq
  publication-title: Stat. Anal. Next Gener. Seq. Data
– volume: 49
  start-page: D377
  year: 2020
  ident: 2022110710184740600_B34
  article-title: PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API
  publication-title: Nucleic Acids Res.
– volume: 1
  start-page: 376
  year: 2002
  ident: 2022110710184740600_B16
  article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M200025-MCP200
– volume: 73
  start-page: 946
  year: 2019
  ident: 2022110710184740600_B46
  article-title: Single-molecule imaging of mRNA localization and regulation during the integrated stress response
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.12.006
– volume: 49
  start-page: 601
  year: 2013
  ident: 2022110710184740600_B4
  article-title: The “observer effect” in genome-wide surveys of protein-RNA interactions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.01.030
– volume: 17
  start-page: 1374
  year: 2016
  ident: 2022110710184740600_B43
  article-title: The integrated stress response
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201642195
– volume: 76
  start-page: 1
  year: 2017
  ident: 2022110710184740600_B31
  article-title: Stan: a probabilistic programming language
  publication-title: J. Stat. Soft.
  doi: 10.18637/jss.v076.i01
– volume: 17
  start-page: 10
  year: 2011
  ident: 2022110710184740600_B25
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet. J.
  doi: 10.14806/ej.17.1.200
– volume: 31
  start-page: 593
  year: 1982
  ident: 2022110710184740600_B38
  article-title: The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels
  publication-title: Cell
  doi: 10.1016/0092-8674(82)90315-4
– volume: 164
  start-page: 487
  year: 2016
  ident: 2022110710184740600_B48
  article-title: ATPase-modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.038
– volume: 3
  start-page: 729
  year: 2004
  ident: 2022110710184740600_B15
  article-title: Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research*
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M400021-MCP200
– volume: 29
  start-page: 15
  year: 2013
  ident: 2022110710184740600_B28
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 7
  start-page: 1900997
  year: 2020
  ident: 2022110710184740600_B20
  article-title: Acrylonitrile-mediated nascent RNA sequencing for transcriptome-wide profiling of cellular RNA dynamics
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900997
– volume: 4
  start-page: e03971
  year: 2015
  ident: 2022110710184740600_B45
  article-title: Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression
  publication-title: Elife
  doi: 10.7554/eLife.03971
– volume: 59
  start-page: 6881
  year: 2020
  ident: 2022110710184740600_B18
  article-title: Thioguanosine conversion enables mRNA-lifetime evaluation by rna sequencing using double metabolic labeling (TUC-seq DUAL)
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916272
– volume: 4
  start-page: 1661
  year: 2005
  ident: 2022110710184740600_B14
  article-title: Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC)
  publication-title: J. Proteom Res.
  doi: 10.1021/pr050134h
– volume: 15
  start-page: 550
  year: 2014
  ident: 2022110710184740600_B5
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 101
  start-page: 716
  year: 2017
  ident: 2022110710184740600_B49
  article-title: De novo missense mutations in DHX30 impair global translation and cause a neurodevelopmental disorder
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.09.014
– volume: 140
  start-page: 14567
  year: 2018
  ident: 2022110710184740600_B22
  article-title: Expanding the nucleoside recoding toolkit: revealing RNA population dynamics with 6-thioguanosine
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08554
– volume: 30
  start-page: 1731
  year: 2016
  ident: 2022110710184740600_B40
  article-title: Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation
  publication-title: Genes Dev.
  doi: 10.1101/gad.284430.116
– volume: 59
  start-page: 858
  year: 2015
  ident: 2022110710184740600_B37
  article-title: Tracking distinct RNA populations using efficient and reversible covalent chemistry
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.023
SSID ssj0014154
Score 2.4220886
Snippet Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e110
SubjectTerms Methods Online
Nucleosides
RNA - chemistry
RNA, Messenger - metabolism
Sequence Analysis, RNA
Thiouridine - chemistry
Title Internally controlled RNA sequencing comparisons using nucleoside recoding chemistry
URI https://www.ncbi.nlm.nih.gov/pubmed/36018791
https://www.proquest.com/docview/2707616045
https://pubmed.ncbi.nlm.nih.gov/PMC9638901
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqIcFeEGzAysdkpIkHqmyZ3cTJY1VtGqAWhDq0t8h23K0iS6e1fRh_Dn8pd7bz0W1CsJcoTdxYyf1yuTvf_Y6QvUhywQ-5DKRIZNCPkjyQZioDrZhgTOTgVGCB82gcn5z2P59FZ53O71bW0mqp9vWve-tKHiJVOAZyxSrZ_5BsfVE4APsgX9iChGH7TzL24byiuKlSzguwH7-PBz2fIe0ran2nwUVvZSMDJXIYz7FPZw_9YVvWoqvGb21rdYwDkdBVz3JcXmhFvmxlx-raLyONjDy_AE3RiqSOZ0hT4TsrI2t00ftanfvhlfCnhZS6V0d5vsyQ9dZGCoxshyPAkwU97su7_1Lm2NJq3FKfOnrNfeO0ri3dStfVsuOjreCXtpSsOfSZsGbt552PgSPKKjFR_fj8p9Sx68XYAsbVpUUGj7E1oesadot9-9toiCoqxRLBRwxcEdSlIjyqV6rAAHIUZf62fA0ozH0AMx_4eTfJ42qSdQPojldzOzm3Ze1MnpGn3k2hA4e556Rjyi2yPSjlcn55Qz9QmzhsV2S2yJNhhZ1tMmkgSRtIUoAkbSBJW5CkFpK0gSStIElrSL4gp8dHk-FJ4Bt3BBoMwGWQYj-XMFah1jpmU8WZFrnq52C8g7ehw1hHaQJPCHmRp2Cxm0SKiIlEKaQu4hF_STbKeWl2COUStImKhJYpGJMsUgnLQymjJOagXJjqko_V08y0Z7XH5ipF5rIreAZSyLwUumSvHnzlyFzuH_a-EksG94kraLI089UiYwLDfjG4QV3yyompvlAl3y4RawKsByCR-_qZcnZhCd09wl4_-J9vyGbzLr4lG8vrlXkHxvJS7Vq07tpQ0x-8t8fU
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internally+controlled+RNA+sequencing+comparisons+using+nucleoside+recoding+chemistry&rft.jtitle=Nucleic+acids+research&rft.au=Courvan%2C+Meaghan+C+S&rft.au=Niederer%2C+Rachel+O&rft.au=Vock%2C+Isaac+W&rft.au=Kiefer%2C+Lea&rft.date=2022-10-28&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=50&rft.issue=19&rft.spage=e110&rft.epage=e110&rft_id=info:doi/10.1093%2Fnar%2Fgkac693&rft_id=info%3Apmid%2F36018791&rft.externalDocID=PMC9638901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon