Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2

In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadeni...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 8; no. 8; pp. 2562 - 2572
Main Authors Wang, Yanlong, Cong, Chunxiao, Yang, Weihuang, Shang, Jingzhi, Peimyoo, Namphung, Chen, Yu, Kang, Junyong, Wang, Jianpu, Huang, Wei, Yu, Ting
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.
AbstractList In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS 2 ) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (Γ-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E’ mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS 2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.
In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.
Author Yanlong Wang Chunxiao Cong Weihuang Yang Jingzhi Shang Namphung Peimyoo Yu Chen Junyong Kang Jianpu Wang Wei Huang Ting Yu
AuthorAffiliation Nanyang Technological University-Nanjing Tech Center of Research and Development, Nanjing Tech University, Nanjing 211816, China Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, China Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University ot Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210046, China
Author_xml – sequence: 1
  givenname: Yanlong
  surname: Wang
  fullname: Wang, Yanlong
  organization: Nanyang Technological University-Nanjing Tech Center of Research and Development, Nanjing Tech University, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 2
  givenname: Chunxiao
  surname: Cong
  fullname: Cong, Chunxiao
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 3
  givenname: Weihuang
  surname: Yang
  fullname: Yang, Weihuang
  organization: Nanyang Technological University-Nanjing Tech Center of Research and Development, Nanjing Tech University, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 4
  givenname: Jingzhi
  surname: Shang
  fullname: Shang, Jingzhi
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 5
  givenname: Namphung
  surname: Peimyoo
  fullname: Peimyoo, Namphung
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 6
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 7
  givenname: Junyong
  surname: Kang
  fullname: Kang, Junyong
  organization: Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University
– sequence: 8
  givenname: Jianpu
  surname: Wang
  fullname: Wang, Jianpu
  organization: Nanyang Technological University-Nanjing Tech Center of Research and Development, Nanjing Tech University, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech)
– sequence: 9
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  email: wei-huang@njupt.edu.cn
  organization: Nanyang Technological University-Nanjing Tech Center of Research and Development, Nanjing Tech University, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications
– sequence: 10
  givenname: Ting
  surname: Yu
  fullname: Yu, Ting
  email: yuting@ntu.edu.sg
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University
BookMark eNp9kU1PAyEQhompiW31B3jbeEeBBRaOpvEraeKhGr0RCmyl2bIVtof-e9lt9eChc2FmMg8z884EjEIbHADXGN1ihKq7hAmpKESYQVRxAvkZGGMpBUTZRr8-JvQCTFJaI8QJpmIMPhdd1D5AH-zOOFtYH53p-nBwiqUOdqW3Ra4KyXe-DUXOFNuvNg9QbFq7a_SQ9X0U2kbvXSw-FuQSnNe6Se7q-E7B--PD2-wZzl-fXmb3c2hKgTsosXGOG12RUpbSOmzMUjBmmcWEC8tcralk1BJpOWacGYNqXTnBhKu5q1A5BdXhXxPblKKrlfHdMFK_WKMwUr1A6iCQygKpXiDFM4n_kdvoNzruTzLkwKRcG1YuqnW7iyEveBK6OTbKqq2-M_fXiXMu84EoLX8A9neHIw
CitedBy_id crossref_primary_10_1038_s41524_022_00715_9
crossref_primary_10_1039_D1NR01483H
crossref_primary_10_1063_5_0189689
crossref_primary_10_1021_acs_jpclett_4c01607
crossref_primary_10_1103_PhysRevB_92_235408
crossref_primary_10_1007_s12648_021_02026_z
crossref_primary_10_1007_s11664_024_11515_w
crossref_primary_10_1039_D3NR04594C
crossref_primary_10_1021_acs_nanolett_7b02624
crossref_primary_10_1021_acs_chemmater_0c03146
crossref_primary_10_1007_s12274_017_1941_4
crossref_primary_10_1016_j_solidstatesciences_2021_106634
crossref_primary_10_1038_s41699_022_00345_1
crossref_primary_10_1126_sciadv_aav4028
crossref_primary_10_1016_j_commatsci_2022_111611
crossref_primary_10_1186_s11671_019_3238_x
crossref_primary_10_1016_j_physb_2022_414568
crossref_primary_10_1039_D3NR06118C
crossref_primary_10_1016_j_jallcom_2020_154364
crossref_primary_10_1063_1_5042598
crossref_primary_10_1002_aenm_202003841
crossref_primary_10_1007_s40843_024_2948_9
crossref_primary_10_1038_s41566_019_0581_5
crossref_primary_10_1021_acsnano_4c15397
crossref_primary_10_1016_j_colsurfa_2021_126796
crossref_primary_10_1016_j_susc_2023_122251
crossref_primary_10_1039_C9NR03611C
crossref_primary_10_1364_OE_26_015972
crossref_primary_10_1038_srep19159
crossref_primary_10_1021_acsnano_7b09029
crossref_primary_10_1063_1_5037559
crossref_primary_10_1021_acs_nanolett_7b02513
crossref_primary_10_1038_s41377_018_0115_9
crossref_primary_10_1088_2053_1591_ab485a
crossref_primary_10_1002_pssr_201900355
crossref_primary_10_1007_s11664_024_11322_3
crossref_primary_10_1021_acsami_8b12707
crossref_primary_10_1063_5_0037852
crossref_primary_10_1016_j_apcatb_2022_121447
crossref_primary_10_12677_MS_2020_105051
crossref_primary_10_1038_srep43037
crossref_primary_10_1088_2053_1583_ac54ef
crossref_primary_10_1039_D0RA07288E
crossref_primary_10_1016_j_cplett_2021_138689
crossref_primary_10_1021_acs_jpcc_2c06933
crossref_primary_10_1126_science_aao5360
crossref_primary_10_1186_s11671_021_03523_0
crossref_primary_10_1039_D3TC03332E
crossref_primary_10_3390_nano9040578
crossref_primary_10_1038_s41377_024_01477_3
crossref_primary_10_1063_1_5122262
crossref_primary_10_1016_j_apsusc_2021_150226
crossref_primary_10_1007_s40843_023_2616_x
crossref_primary_10_1016_j_commatsci_2020_109797
crossref_primary_10_1088_1361_6641_ad2ec6
crossref_primary_10_1039_C8NR04391D
crossref_primary_10_1063_1_4958986
crossref_primary_10_1002_smll_201700098
crossref_primary_10_1021_acsami_6b15239
crossref_primary_10_1103_PhysRevB_108_085432
crossref_primary_10_1021_acs_chemmater_8b01672
crossref_primary_10_1021_acsphotonics_8b00249
crossref_primary_10_12677_APP_2023_135027
crossref_primary_10_1007_s00339_020_04184_z
crossref_primary_10_1002_adma_201700308
crossref_primary_10_1007_s12274_020_3193_y
crossref_primary_10_1016_j_surfin_2022_101727
crossref_primary_10_1002_adom_201900978
crossref_primary_10_1016_j_jphotochem_2018_06_001
crossref_primary_10_1021_acs_jpcc_2c01382
crossref_primary_10_1016_j_nanoen_2021_105790
crossref_primary_10_1039_C8CY01779D
crossref_primary_10_1088_1361_6641_aa7472
crossref_primary_10_1016_j_chemphys_2018_12_004
crossref_primary_10_1149_2_0071611jss
crossref_primary_10_1016_j_mee_2019_111152
crossref_primary_10_1016_j_apsusc_2020_147479
crossref_primary_10_1088_1361_6633_ac45f9
crossref_primary_10_1021_acsami_1c13096
crossref_primary_10_1038_s41565_019_0520_0
crossref_primary_10_1021_acs_chemmater_0c01441
crossref_primary_10_1063_5_0096686
crossref_primary_10_1016_j_apsusc_2020_146398
crossref_primary_10_3367_UFNr_2021_05_038984
crossref_primary_10_1088_1361_6528_ac3a39
crossref_primary_10_1002_aelm_202000688
crossref_primary_10_1002_ppsc_202200031
crossref_primary_10_1103_PhysRevMaterials_2_064003
crossref_primary_10_1002_cnma_201600346
crossref_primary_10_1088_2053_1583_ada2fb
crossref_primary_10_1002_admi_201800688
crossref_primary_10_1098_rsos_241560
crossref_primary_10_1021_acs_nanolett_0c02619
crossref_primary_10_2139_ssrn_4153213
crossref_primary_10_1007_s10853_021_06750_z
crossref_primary_10_1016_j_commatsci_2018_05_020
crossref_primary_10_1038_srep30320
crossref_primary_10_1016_j_heliyon_2024_e24427
crossref_primary_10_1103_PhysRevB_109_115124
crossref_primary_10_1103_PhysRevLett_122_155901
crossref_primary_10_1039_D2RA02108K
crossref_primary_10_1103_PhysRevB_98_245403
crossref_primary_10_1002_adfm_202203602
crossref_primary_10_1016_j_cap_2016_03_023
crossref_primary_10_1016_j_carbon_2020_04_022
crossref_primary_10_1134_S1063776118110134
crossref_primary_10_1021_acs_jpcc_0c04813
crossref_primary_10_1117_1_JPE_7_014001
crossref_primary_10_1002_adfm_201908089
crossref_primary_10_1016_j_cap_2022_02_004
crossref_primary_10_1039_C6NR02690G
crossref_primary_10_1063_1_4985299
crossref_primary_10_1002_ijch_202100115
crossref_primary_10_1039_C6RA20623A
crossref_primary_10_1002_smll_201703727
crossref_primary_10_1103_PhysRevB_96_205416
crossref_primary_10_1016_j_mssp_2024_108698
crossref_primary_10_1016_j_apsusc_2019_144574
crossref_primary_10_1002_adma_202107362
crossref_primary_10_1088_2053_1583_acc4d8
crossref_primary_10_1016_j_jcis_2021_12_131
crossref_primary_10_1088_2053_1583_ac351d
crossref_primary_10_1002_advs_202001645
crossref_primary_10_1088_1674_1056_ac272f
crossref_primary_10_1007_s40042_023_00908_5
crossref_primary_10_1063_5_0097638
crossref_primary_10_1021_acs_nanolett_7b04868
crossref_primary_10_1002_adom_202001954
crossref_primary_10_1002_smll_202412832
crossref_primary_10_1038_srep21536
crossref_primary_10_1021_acsanm_2c03264
crossref_primary_10_1021_acsanm_4c01612
crossref_primary_10_1021_acs_chemmater_7b00453
crossref_primary_10_1002_smll_202410773
crossref_primary_10_1021_acsami_1c09176
crossref_primary_10_1038_s41377_021_00520_x
crossref_primary_10_1039_D0NR04557H
crossref_primary_10_1007_s12274_017_1619_y
crossref_primary_10_1088_2053_1583_aa89fc
crossref_primary_10_1142_S021798492050089X
crossref_primary_10_1002_adma_202200946
crossref_primary_10_1038_s41598_020_69946_4
crossref_primary_10_1002_adom_201801373
crossref_primary_10_1016_j_mssp_2019_104865
crossref_primary_10_1126_sciadv_aau8763
crossref_primary_10_1021_acs_jpcc_6b01838
crossref_primary_10_1063_5_0001795
crossref_primary_10_1021_acsnano_8b04265
crossref_primary_10_1103_PhysRevApplied_13_034065
crossref_primary_10_1021_acsanm_4c02284
crossref_primary_10_1021_acsnano_8b03055
crossref_primary_10_1039_C9NR09057F
crossref_primary_10_1038_s41598_019_39970_0
crossref_primary_10_1002_adma_202100601
crossref_primary_10_1088_1361_6528_ac1d07
crossref_primary_10_1021_acsnano_3c10721
crossref_primary_10_1039_C7RA09668B
crossref_primary_10_1063_1_4966218
crossref_primary_10_1063_5_0166460
crossref_primary_10_1088_2053_1583_aaa6eb
crossref_primary_10_1063_1_5027020
crossref_primary_10_1002_adom_201901226
crossref_primary_10_1088_1361_6528_aabbd7
crossref_primary_10_1021_acs_nanolett_4c03321
crossref_primary_10_1038_s41598_024_66065_2
crossref_primary_10_1021_acs_jpcc_4c00516
crossref_primary_10_1021_acsnano_0c06901
crossref_primary_10_1002_adom_201700767
crossref_primary_10_1038_s41699_024_00479_4
crossref_primary_10_1088_1361_6528_aca33a
crossref_primary_10_1002_adom_201701296
crossref_primary_10_1021_acs_jpcc_4c00511
crossref_primary_10_1021_acsnano_0c01337
crossref_primary_10_1103_PhysRevMaterials_3_074009
crossref_primary_10_1021_acsenergylett_9b00120
crossref_primary_10_3390_nano14171437
crossref_primary_10_1016_j_mtnano_2020_100092
crossref_primary_10_1039_C8CS00332G
crossref_primary_10_1002_inf2_12177
crossref_primary_10_1007_s12274_021_3779_z
crossref_primary_10_1557_jmr_2017_402
crossref_primary_10_1007_s12274_017_1792_z
crossref_primary_10_1021_acsami_7b09744
crossref_primary_10_1039_D2MH00721E
crossref_primary_10_1021_acs_jpclett_4c00924
crossref_primary_10_1039_C8CP04731F
crossref_primary_10_1088_2053_1583_3_2_021011
crossref_primary_10_3389_fphy_2022_842789
crossref_primary_10_1103_PhysRevB_109_245412
crossref_primary_10_1007_s13204_021_01702_0
crossref_primary_10_1103_PhysRevB_110_045425
crossref_primary_10_1103_PhysRevB_97_241414
crossref_primary_10_1142_S0217984924503755
crossref_primary_10_1007_s12274_018_2148_z
crossref_primary_10_1016_j_mtnano_2021_100131
crossref_primary_10_1021_acs_nanolett_3c03115
crossref_primary_10_1364_OE_26_028672
crossref_primary_10_1088_1674_1056_28_8_087201
crossref_primary_10_1103_PhysRevLett_129_067402
crossref_primary_10_1364_AO_58_004014
crossref_primary_10_1103_PhysRevB_100_235438
crossref_primary_10_1021_acsnano_0c08668
crossref_primary_10_1016_j_ssc_2015_11_017
crossref_primary_10_1039_C9RA08634J
crossref_primary_10_1016_j_cossms_2021_100900
crossref_primary_10_1063_5_0063622
crossref_primary_10_1063_5_0049446
crossref_primary_10_1088_1361_6463_ac0f1f
crossref_primary_10_1002_adom_202302900
crossref_primary_10_1039_C8NR01823E
crossref_primary_10_1016_j_physe_2023_115812
crossref_primary_10_1021_acsnano_4c04506
crossref_primary_10_1007_s10853_020_04500_1
crossref_primary_10_1021_acs_chemmater_9b05124
crossref_primary_10_1038_srep33091
crossref_primary_10_1088_2053_1583_ad9dfc
crossref_primary_10_1021_acs_nanolett_3c03123
crossref_primary_10_1007_s11664_021_09015_2
crossref_primary_10_1021_acs_jpcc_1c09603
crossref_primary_10_1021_acsnano_2c01665
crossref_primary_10_1002_inf2_12072
crossref_primary_10_3390_nano13202740
crossref_primary_10_1016_j_apsusc_2019_04_168
crossref_primary_10_1088_2053_1583_aaba9a
crossref_primary_10_1007_s12274_022_4668_9
crossref_primary_10_1016_j_compositesb_2022_110378
crossref_primary_10_1002_pssr_202300289
crossref_primary_10_1021_acsnano_1c06587
crossref_primary_10_1116_1_5074153
crossref_primary_10_1557_s43578_021_00460_7
crossref_primary_10_1021_acsnano_0c09983
crossref_primary_10_1002_adma_202209788
crossref_primary_10_1021_acs_nanolett_3c01756
crossref_primary_10_1103_PhysRevResearch_2_012024
crossref_primary_10_1002_adom_202000441
crossref_primary_10_1007_s12274_016_1224_5
crossref_primary_10_1021_acsnano_2c03294
crossref_primary_10_1039_C8NH00306H
crossref_primary_10_1103_PhysRevB_103_014442
crossref_primary_10_1007_s10854_021_05655_6
crossref_primary_10_1021_acs_nanolett_2c00436
crossref_primary_10_1002_advs_202102128
crossref_primary_10_1039_C8MH01009A
crossref_primary_10_1039_D3CP04356H
crossref_primary_10_1007_s10854_023_11849_x
crossref_primary_10_1088_2053_1583_ab01eb
crossref_primary_10_1088_1361_6528_ab0bc1
crossref_primary_10_1002_adom_202401728
crossref_primary_10_1038_s41377_020_00421_5
crossref_primary_10_1002_pssa_202300302
crossref_primary_10_1063_5_0145945
crossref_primary_10_1016_j_apsusc_2019_03_033
crossref_primary_10_1039_D0CP03968C
crossref_primary_10_1088_2053_1583_ababf1
crossref_primary_10_1103_PhysRevB_100_205304
crossref_primary_10_1021_acs_nanolett_3c03706
crossref_primary_10_1103_PhysRevB_104_205432
crossref_primary_10_1039_C8CP02802H
crossref_primary_10_2139_ssrn_4198114
crossref_primary_10_1007_s10853_020_05117_0
crossref_primary_10_1088_2053_1583_abc2a7
crossref_primary_10_1002_adom_202000694
crossref_primary_10_1016_j_jallcom_2019_01_129
crossref_primary_10_1016_j_apmt_2021_101234
crossref_primary_10_1557_jmr_2015_397
crossref_primary_10_1063_5_0014005
crossref_primary_10_1038_s41598_017_11647_6
crossref_primary_10_1038_s41699_017_0013_7
crossref_primary_10_1007_s12274_022_4487_z
crossref_primary_10_1038_s41377_024_01380_x
crossref_primary_10_1155_2017_2565703
crossref_primary_10_1007_s12274_015_0895_7
crossref_primary_10_1021_acs_chemmater_0c04799
crossref_primary_10_1002_smll_201805147
crossref_primary_10_1002_smll_201503044
crossref_primary_10_1039_D0CP03248D
crossref_primary_10_1002_advs_201802092
crossref_primary_10_1016_j_apsusc_2023_158541
crossref_primary_10_1016_j_vacuum_2021_110757
crossref_primary_10_1088_1742_6596_2015_1_012058
crossref_primary_10_1002_cplu_202300579
crossref_primary_10_1007_s12274_021_3769_1
crossref_primary_10_1016_j_solener_2025_113334
crossref_primary_10_1021_acs_nanolett_6b02615
crossref_primary_10_1007_s40820_020_00439_9
crossref_primary_10_1039_C7CP00012J
crossref_primary_10_1007_s12274_020_2859_9
crossref_primary_10_3390_ma16103701
crossref_primary_10_1088_0256_307X_37_8_087801
crossref_primary_10_1039_C6CP06621F
crossref_primary_10_1021_acs_nanolett_3c01774
crossref_primary_10_1002_admi_201901307
crossref_primary_10_1021_acs_jpcc_8b05475
crossref_primary_10_1021_acsnano_6b08028
crossref_primary_10_1063_5_0151716
crossref_primary_10_1016_j_mee_2019_111202
crossref_primary_10_1002_smll_201804733
crossref_primary_10_1088_2053_1583_ab8caa
crossref_primary_10_1002_admi_202000835
crossref_primary_10_1063_5_0054657
crossref_primary_10_1002_adma_202101875
crossref_primary_10_1021_acs_jpclett_1c03571
crossref_primary_10_1002_sstr_202100149
crossref_primary_10_1103_PhysRevB_92_195402
crossref_primary_10_1088_1361_6528_ab646e
crossref_primary_10_1021_acsphotonics_2c01861
crossref_primary_10_1016_j_jcat_2019_08_019
crossref_primary_10_1002_adfm_201603064
crossref_primary_10_1007_s12274_020_2918_2
crossref_primary_10_1021_acs_nanolett_4c02616
crossref_primary_10_1039_C8TC00620B
crossref_primary_10_1039_D3NR01687K
crossref_primary_10_1002_inf2_12310
crossref_primary_10_1088_2053_1591_ac9bd0
crossref_primary_10_1021_acsanm_0c02235
crossref_primary_10_1103_PhysRevB_97_195454
crossref_primary_10_1021_acsnano_0c10478
crossref_primary_10_1039_C9CY00439D
crossref_primary_10_1063_5_0143759
crossref_primary_10_3390_ma16072591
crossref_primary_10_1039_C8MH01072B
crossref_primary_10_3367_UFNe_2021_05_038984
crossref_primary_10_1007_s40820_024_01611_1
crossref_primary_10_1039_C8CP04418J
crossref_primary_10_1002_lpor_202401319
crossref_primary_10_1021_acsnano_8b01263
crossref_primary_10_1088_1361_6528_ab2feb
crossref_primary_10_1021_acsami_2c01726
crossref_primary_10_1002_adma_202203250
crossref_primary_10_1021_acsnano_2c12759
crossref_primary_10_1016_j_isci_2021_103563
crossref_primary_10_1007_s11467_023_1355_6
crossref_primary_10_1016_j_actamat_2022_118299
crossref_primary_10_1002_adma_202301280
crossref_primary_10_1016_j_comptc_2020_112851
crossref_primary_10_1103_PhysRevB_99_235401
Cites_doi 10.1021/nn203879f
10.1021/nn301320r
10.1021/nl3026357
10.1103/PhysRevB.87.081307
10.1103/PhysRevB.80.045401
10.1103/PhysRevB.85.161403
10.1038/nmat3505
10.1002/smll.201202919
10.1063/1.4819337
10.1021/nn4046002
10.1021/nl1032827
10.1016/0022-3697(82)90037-3
10.1080/00018736900101307
10.1016/0927-0256(96)00008-0
10.1021/nl902623y
10.1021/nn200010m
10.1063/1.3673907
10.1038/nnano.2012.224
10.1007/s12274-011-0183-0
10.1021/nn1024175
10.1002/smll.201202876
10.1103/PhysRevB.87.035423
10.1038/nmat3633
10.1103/PhysRevB.79.115402
10.1021/nl500171v
10.1021/nn1003937
10.1021/nn800459e
10.1021/nn500228r
10.1103/PhysRevB.87.155304
10.1126/science.1235547
10.1021/nl4013166
10.1103/PhysRevLett.97.187401
10.1002/adfm.201300760
10.1021/nn3025173
10.1088/0022-3719/5/7/007
10.1002/adom.201300428
10.1021/jp806045u
10.1038/nnano.2012.96
10.1039/c2cp42181j
10.1038/ncomms2498
10.1021/nl4014748
10.1021/nn504196n
10.1143/JPSJ.21.1936
10.1103/PhysRevB.42.11218
10.1103/PhysRevB.88.045318
10.1103/PhysRevB.59.1758
10.1021/nn305275h
10.1038/nnano.2013.151
10.1103/PhysRevB.88.245447
10.1021/nn203472f
10.1103/PhysRevB.79.205433
10.1103/PhysRevB.88.121301
10.1103/PhysRevB.88.245403
10.1021/nl903868w
10.1103/PhysRevB.54.11169
10.1016/j.physb.2013.03.029
10.1103/PhysRevLett.105.136805
10.1073/pnas.0811754106
10.1103/PhysRevB.84.075415
10.1103/PhysRevB.7.3859
10.1002/andp.201400098
10.1038/srep01755
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1007/s12274-015-0762-6
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2
EISSN 1998-0000
EndPage 2572
ExternalDocumentID 10_1007_s12274_015_0762_6
666900044
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
92L
95-
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBYP
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CQIGP
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACPIV
ADMLS
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
FRJ
H13
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
ID FETCH-LOGICAL-c381t-91cee6ca723939de1ccb855d5d1268d5efa4954d29d61565cc0fa7e858ef6e703
IEDL.DBID U2A
ISSN 1998-0124
IngestDate Tue Jul 01 01:46:45 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Fri Feb 21 02:35:32 EST 2025
Wed Feb 14 10:23:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords strain
trion
indirect transition
crystallographic orientation
monolayer WS
light-emission tuning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-91cee6ca723939de1ccb855d5d1268d5efa4954d29d61565cc0fa7e858ef6e703
Notes 11-5974/O4
monolayer WS2,strain,light-emission tuning,indirect transition,trion,crystallographic orientation
In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.
PageCount 11
ParticipantIDs crossref_citationtrail_10_1007_s12274_015_0762_6
crossref_primary_10_1007_s12274_015_0762_6
springer_journals_10_1007_s12274_015_0762_6
chongqing_primary_666900044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationTitleAlternate Nano Research
PublicationYear 2015
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Li, Miyazaki, Song, Kuramochi, Nakaharai, Tsukagoshi (CR44) 2012; 6
Zhao, Ghorannevis, Chu, Toh, Kloc, Tan, Eda (CR7) 2012; 7
Britnell, Ribeiro, Eckmann, Jalil, Belle, Mishchenko, Kim, Gorbachev, Georgiou, Morozov (CR39) 2013; 340
Shi, Dong, Chen, Wang, Li (CR49) 2009; 79
Mitioglu, Plochocka, Jadczak, Escoffier, Rikken, Kulyuk, Maude (CR31) 2013; 88
Jo, Ubrig, Berger, Kuzmenko, Morpurgo (CR40) 2014; 14
Kumar, Ahluwalia (CR29) 2013; 419
Lu, Wu, Guo, Zeng (CR28) 2012; 14
Wang, Cong, Qiu, Yu (CR20) 2013; 9
Mak, He, Shan, Heinz (CR8) 2012; 7
Li, Lu, Wang, Yin, Cong, He, Wang, Ding, Yu, Zhang (CR48) 2013; 9
Bromley, Yoffe, Murray (CR1) 2001; 5
Peimyoo, Shang, Cong, Shen, Wu, Yeow, Yu (CR11) 2013; 7
Kresse, Joubert (CR63) 1999; 59
He, Poole, Mak, Shan (CR22) 2013; 13
Cooper, Lee, Marianetti, Wei, Hone, Kysar (CR19) 2013; 87
Kou, Tang, Guo, Chen (CR16) 2011; 5
Mak, He, Lee, Lee, Hone, Heinz, Shan (CR32) 2013; 12
Huang, Yu, Wei (CR17) 2011; 84
Cong, Yu, Saito, Dresselhaus, Dresselhaus (CR47) 2011; 5
Shinada, Sugano (CR54) 1966; 21
Kresse, Furthmüller (CR62) 1996; 54
Shi, Pan, Zhang, Yakobson (CR41) 2013; 87
Pereira, Castro Neto, Peres (CR18) 2009; 80
Mak, Lee, Hone, Shan, Heinz (CR5) 2010; 105
Berkelbach, Hybertsen, Reichman (CR56) 2013; 88
Lucovsky, White, Benda, Revelli (CR2) 1973; 7
Lanzillo, Birdwell, Amani, Crowne, Shah, Najmaei, Liu, Ajayan, Lou, Dubey (CR58) 2013; 103
Huang, Yan, Chen, Song, Heinz, Hone (CR14) 2009; 106
Rice, Young, Zan, Bangert, Wolverson, Georgiou, Jalil, Novoselov (CR21) 2013; 87
Conley, Wang, Ziegler, Haglund, Pantelides, Bolotin (CR23) 2013; 13
Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth (CR43) 2006; 97
Jones, Yu, Ghimire, Wu, Aivazian, Ross, Zhao, Yan, Mandrus, Xiao (CR9) 2013; 8
Mohiuddin, Lombardo, Nair, Bonetti, Savini, Jalil, Bonini, Basko, Galiotis, Marzari (CR15) 2009; 79
Chakraborty, Bera, Muthu, Bhowmick, Waghmare, Sood (CR50) 2012; 85
Hsu, Zhao, Li, Chen, Chiu, Chang, Chou, Chang (CR36) 2014; 8
Zhang, Cheng, Gan, Schwingenschlögl (CR25) 2013; 88
Cong, Shang, Wu, Cao, Peimyoo, Qiu, Sun, Yu (CR33) 2014; 2
Scalise, Houssa, Pourtois, Afanas’ev, Stesmans (CR27) 2011; 5
CR55
Fortin, Sears (CR4) 1982; 43
CR51
Najmaei, Liu, Ajayan, Lou (CR57) 2012; 100
Splendiani, Sun, Zhang, Li, Kim, Chim, Galli, Wang (CR6) 2010; 10
Georgiou, Jalil, Belle, Britnell, Gorbachev, Morozov, Kim, Gholinia, Haigh, Makarovsky (CR38) 2013; 8
Li, Zhu, Cai, Borysiak, Han, Chen, Piner, Colombo, Ruoff (CR60) 2009; 9
Kresse, Furthmüller (CR61) 1996; 6
Lee, Yan, Brus, Heinz, Hone, Ryu (CR42) 2010; 4
Peimyoo, Yang, Shang, Shen, Wang, Yu (CR52) 2014; 8
Ross, Wu, Yu, Ghimire, Jones, Aivazian, Yan, Mandrus, Xiao, Yao (CR30) 2013; 4
Peimyoo, Shang, Yang, Wang, Cong, Yu (CR59) 2014
Lui, Li, Chen, Klimov, Brus, Heinz (CR45) 2010; 11
Wilson, Yoffe (CR3) 1969; 18
Perea-López, Elías, Berkdemir, Castro-Beltran, Gutiérrez, Feng, Lv, Hayashi, López-Urías, Ghosh (CR37) 2013; 23
Ni, Yu, Lu, Wang, Feng, Shen (CR13) 2008; 2
Cong, Yu, Sato, Shang, Saito, Dresselhaus, Dresselhaus (CR46) 2011; 5
Gutierrez, Perea-Lopez, Elias, Berkdemir, Wang, Lv, Lopez-Urias, Crespi, Terrones, Terrones (CR34) 2013; 13
vander Zande, Huang, Chenet, Berkelbach, You, Lee, Heinz, Reichman, Muller, Hone (CR35) 2013; 12
Yu, Ni, Du, You, Wang, Shen (CR12) 2008; 112
Rudin, Reinecke, Segall (CR53) 1990; 42
Zhu, Wang, Liu, Marie, Qiao, Zhang, Wu, Fan, Tan, Amand (CR24) 2013; 88
Bertolazzi, Brivio, Kis (CR10) 2011; 5
Johari, Shenoy (CR26) 2012; 6
A. C. Ferrari (762_CR43) 2006; 97
Y. L. Wang (762_CR20) 2013; 9
H. Li (762_CR48) 2013; 9
S. Rudin (762_CR53) 1990; 42
M. Shinada (762_CR54) 1966; 21
G. Kresse (762_CR61) 1996; 6
B. Huang (762_CR17) 2011; 84
H. L. Shi (762_CR41) 2013; 87
C. Rice (762_CR21) 2013; 87
G. Kresse (762_CR63) 1999; 59
H. J. Conley (762_CR23) 2013; 13
X. S. Li (762_CR60) 2009; 9
J. A. Wilson (762_CR3) 1969; 18
K. F. Mak (762_CR32) 2013; 12
Z. H. Ni (762_CR13) 2008; 2
R. C. Cooper (762_CR19) 2013; 87
B. Chakraborty (762_CR50) 2012; 85
N. Peimyoo (762_CR52) 2014; 8
S. Jo (762_CR40) 2014; 14
C. H. Lui (762_CR45) 2010; 11
T. M. G. Mohiuddin (762_CR15) 2009; 79
S. Najmaei (762_CR57) 2012; 100
W. J. Zhao (762_CR7) 2012; 7
L. Z. Kou (762_CR16) 2011; 5
J. S. Ross (762_CR30) 2013; 4
M. Y. Huang (762_CR14) 2009; 106
V. M. Pereira (762_CR18) 2009; 80
C. X. Cong (762_CR33) 2014; 2
T. Georgiou (762_CR38) 2013; 8
G. Lucovsky (762_CR2) 1973; 7
A. M. Zande vander (762_CR35) 2013; 12
N. A. Lanzillo (762_CR58) 2013; 103
H. R. Gutierrez (762_CR34) 2013; 13
N. Peimyoo (762_CR59) 2014
N. Perea-López (762_CR37) 2013; 23
C. R. Zhu (762_CR24) 2013; 88
W. T. Hsu (762_CR36) 2014; 8
T. Yu (762_CR12) 2008; 112
762_CR55
L. Britnell (762_CR39) 2013; 340
C. Lee (762_CR42) 2010; 4
G. Kresse (762_CR62) 1996; 54
762_CR51
E. Fortin (762_CR4) 1982; 43
A. Kumar (762_CR29) 2013; 419
A. Splendiani (762_CR6) 2010; 10
A. M. Jones (762_CR9) 2013; 8
T. C. Berkelbach (762_CR56) 2013; 88
K. L. He (762_CR22) 2013; 13
R. A. Bromley (762_CR1) 2001; 5
K. F. Mak (762_CR5) 2010; 105
S. Bertolazzi (762_CR10) 2011; 5
S. L. Li (762_CR44) 2012; 6
P. Johari (762_CR26) 2012; 6
E. Scalise (762_CR27) 2011; 5
Q. Y. Zhang (762_CR25) 2013; 88
P. Lu (762_CR28) 2012; 14
Y. M. Shi (762_CR49) 2009; 79
C. X. Cong (762_CR46) 2011; 5
A. A. Mitioglu (762_CR31) 2013; 88
K. F. Mak (762_CR8) 2012; 7
N. Peimyoo (762_CR11) 2013; 7
C. Cong (762_CR47) 2011; 5
References_xml – volume: 5
  start-page: 9703
  year: 2011
  end-page: 9709
  ident: CR10
  article-title: Stretching and breaking of ultrathin MoS
  publication-title: ACS Nano
  doi: 10.1021/nn203879f
– volume: 6
  start-page: 5449
  year: 2012
  end-page: 5456
  ident: CR26
  article-title: Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains
  publication-title: ACS Nano
  doi: 10.1021/nn301320r
– volume: 13
  start-page: 3447
  year: 2013
  end-page: 3454
  ident: CR34
  article-title: Extraordinary room-temperature photoluminescence in triangular WS monolayers
  publication-title: Nano Lett.
  doi: 10.1021/nl3026357
– volume: 87
  start-page: 081307
  year: 2013
  ident: CR21
  article-title: Raman-scattering measurements and first-principles calculations of straininduced phonon shifts in monolayer MoS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.081307
– ident: CR51
– volume: 80
  start-page: 045401
  year: 2009
  ident: CR18
  article-title: Tightbinding approach to uniaxial strain in graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.045401
– volume: 85
  start-page: 161403
  year: 2012
  ident: CR50
  article-title: ymmetry-dependent phonon renormalization in monolayer MoS transistor
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.161403
– volume: 12
  start-page: 207
  year: 2013
  end-page: 211
  ident: CR32
  article-title: Tightly bound trions in monolayer MoS
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3505
– volume: 9
  start-page: 1974
  year: 2013
  end-page: 1981
  ident: CR48
  article-title: Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe , TaS , and TaSe
  publication-title: Small
  doi: 10.1002/smll.201202919
– volume: 103
  start-page: 093102
  year: 2013
  ident: CR58
  article-title: Temperature-dependent phonon shifts in monolayer MoS
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4819337
– volume: 7
  start-page: 10985
  year: 2013
  end-page: 10994
  ident: CR11
  article-title: Nonblinking, intense twodimensional light emitter: Monolayer WS triangles
  publication-title: ACS Nano.
  doi: 10.1021/nn4046002
– volume: 11
  start-page: 164
  year: 2010
  end-page: 169
  ident: CR45
  article-title: Imaging stacking order in few-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl1032827
– volume: 43
  start-page: 881
  year: 1982
  end-page: 884
  ident: CR4
  article-title: Photovoltaic effect and optical absorption in MoS
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(82)90037-3
– volume: 18
  start-page: 193
  year: 1969
  end-page: 335
  ident: CR3
  article-title: The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties
  publication-title: Adv. Phys.
  doi: 10.1080/00018736900101307
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR61
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 9
  start-page: 4359
  year: 2009
  end-page: 4363
  ident: CR60
  article-title: Transfer of large-area graphene films for high-performance transparent conductive electrodes
  publication-title: Nano Lett.
  doi: 10.1021/nl902623y
– volume: 5
  start-page: 1600
  year: 2011
  end-page: 1605
  ident: CR47
  article-title: Second-order overtone and combination Raman modes of graphene layers in the range of 690–2150 cm
  publication-title: ACS Nano
  doi: 10.1021/nn200010m
– volume: 100
  start-page: 013106
  year: 2012
  ident: CR57
  article-title: Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS ) of varying thicknesses
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3673907
– volume: 8
  start-page: 100
  year: 2013
  end-page: 103
  ident: CR38
  article-title: Vertical field-effect transistor based on graphene–WS heterostructures for flexible and transparent electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.224
– volume: 5
  start-page: 43
  year: 2011
  end-page: 48
  ident: CR27
  article-title: Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0183-0
– volume: 5
  start-page: 1012
  year: 2011
  end-page: 1017
  ident: CR16
  article-title: Tunable magnetism in strained graphene with topological line defect
  publication-title: ACS Nano
  doi: 10.1021/nn1024175
– volume: 9
  start-page: 2857
  year: 2013
  end-page: 2861
  ident: CR20
  article-title: Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS under uniaxial strain
  publication-title: Small
  doi: 10.1002/smll.201202876
– volume: 87
  start-page: 035423
  year: 2013
  ident: CR19
  article-title: Nonlinear elastic behavior of two-dimensional molybdenum disulfide
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.035423
– volume: 12
  start-page: 554
  year: 2013
  end-page: 561
  ident: CR35
  article-title: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3633
– volume: 79
  start-page: 115402
  year: 2009
  ident: CR49
  article-title: Effective doping of single-layer graphene from underlying SiO substrates
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.115402
– volume: 14
  start-page: 2019
  year: 2014
  end-page: 2025
  ident: CR40
  article-title: Mono- and bilayer WS light-emitting transistors
  publication-title: Nano Lett.
  doi: 10.1021/nl500171v
– volume: 4
  start-page: 2695
  year: 2010
  end-page: 2700
  ident: CR42
  article-title: Anomalous lattice vibrations of single- and few-layer MoS
  publication-title: ACS Nano
  doi: 10.1021/nn1003937
– volume: 2
  start-page: 2301
  year: 2008
  end-page: 2305
  ident: CR13
  article-title: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening
  publication-title: ACS Nano
  doi: 10.1021/nn800459e
– volume: 8
  start-page: 2951
  year: 2014
  end-page: 2958
  ident: CR36
  article-title: Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers
  publication-title: ACS Nano
  doi: 10.1021/nn500228r
– volume: 87
  start-page: 155304
  year: 2013
  ident: CR41
  article-title: Quasiparticle band structures and optical properties of strained monolayer MoS and WS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.155304
– volume: 340
  start-page: 1311
  year: 2013
  end-page: 1314
  ident: CR39
  article-title: Strong light-matter interactions in heterostructures of atomically thin films
  publication-title: Science
  doi: 10.1126/science.1235547
– volume: 13
  start-page: 2931
  year: 2013
  end-page: 2936
  ident: CR22
  article-title: Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl4013166
– volume: 97
  start-page: 187401
  year: 2006
  ident: CR43
  article-title: Raman spectrum of graphene and graphene layers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 23
  start-page: 5511
  year: 2013
  end-page: 5517
  ident: CR37
  article-title: Photosensor device based on few-layered WS films
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300760
– volume: 6
  start-page: 7381
  year: 2012
  end-page: 7388
  ident: CR44
  article-title: Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates
  publication-title: ACS Nano
  doi: 10.1021/nn3025173
– volume: 5
  start-page: 759
  year: 2001
  end-page: 778
  ident: CR1
  article-title: The band structures of some transition metal dichalcogenides. III. Group VIA: Trigonal prism materials
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/5/7/007
– volume: 2
  start-page: 131
  year: 2014
  end-page: 136
  ident: CR33
  article-title: Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS monolayer from chemical vapor deposition
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300428
– volume: 112
  start-page: 12602
  year: 2008
  end-page: 12605
  ident: CR12
  article-title: Raman mapping investigation of graphene on transparent flexible substrate: The strain effect
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806045u
– volume: 7
  start-page: 494
  year: 2012
  end-page: 498
  ident: CR8
  article-title: Control of valley polarization in monolayer MoS by optical helicity
  publication-title: Nat. Nano.
  doi: 10.1038/nnano.2012.96
– volume: 14
  start-page: 13035
  year: 2012
  end-page: 13040
  ident: CR28
  article-title: Strain-dependent electronic and magnetic properties of MoS monolayer, bilayer, nanoribbons and nanotubes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42181j
– volume: 4
  start-page: 1474
  year: 2013
  ident: CR30
  article-title: Electrical control of neutral and charged excitons in a monolayer semiconductor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2498
– volume: 13
  start-page: 3626
  year: 2013
  end-page: 3630
  ident: CR23
  article-title: Bandgap engineering of strained monolayer and bilayer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl4014748
– volume: 8
  start-page: 11320
  year: 2014
  end-page: 11329
  ident: CR52
  article-title: Chemically driven tunable light emission of charged and neutral excitons in monolayer WS
  publication-title: ACS Nano
  doi: 10.1021/nn504196n
– volume: 21
  start-page: 1936
  year: 1966
  end-page: 1946
  ident: CR54
  article-title: Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.21.1936
– volume: 42
  start-page: 11218
  year: 1990
  end-page: 11231
  ident: CR53
  article-title: Temperature-dependent exciton linewidths in semiconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.42.11218
– volume: 88
  start-page: 045318
  year: 2013
  ident: CR56
  article-title: Theory of neutral and charged excitons in monolayer transition metal dichalcogenides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.045318
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR63
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 7
  start-page: 791
  year: 2012
  end-page: 797
  ident: CR7
  article-title: Evolution of electronic structure in atomically thin sheets of WS and WSe
  publication-title: ACS Nano
  doi: 10.1021/nn305275h
– volume: 8
  start-page: 634
  year: 2013
  end-page: 638
  ident: CR9
  article-title: Optical generation of excitonic valley coherence in monolayer WSe
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.151
– volume: 88
  start-page: 245447
  year: 2013
  ident: CR25
  article-title: Giant valley drifts in uniaxially strained monolayer MoS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.245447
– volume: 5
  start-page: 8760
  year: 2011
  end-page: 8768
  ident: CR46
  article-title: aman characterization of ABA- and ABC-stacked trilayer graphene
  publication-title: ACS Nano
  doi: 10.1021/nn203472f
– volume: 79
  start-page: 205433
  year: 2009
  ident: CR15
  article-title: Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.205433
– volume: 88
  start-page: 121301
  year: 2013
  ident: CR24
  article-title: Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.121301
– volume: 88
  start-page: 245403
  year: 2013
  ident: CR31
  article-title: Optical manipulation of the exciton charge state in single-layer tungsten disulfide
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.245403
– volume: 10
  start-page: 1271
  year: 2010
  end-page: 1275
  ident: CR6
  article-title: Emerging photoluminescence in monolayer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR62
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 419
  start-page: 66
  year: 2013
  end-page: 75
  ident: CR29
  article-title: Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X = S, Se, Te)
  publication-title: Physica B
  doi: 10.1016/j.physb.2013.03.029
– year: 2014
  ident: CR59
  article-title: Thermal conductivity determination of suspended mono- and bilayer WS by Raman spectroscopy
  publication-title: Nano Res.
– ident: CR55
– volume: 105
  start-page: 136805
  year: 2010
  ident: CR5
  article-title: Atomically thin MoS : A new direct-gap semiconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 106
  start-page: 7304
  year: 2009
  end-page: 7308
  ident: CR14
  article-title: Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0811754106
– volume: 84
  start-page: 075415
  year: 2011
  ident: CR17
  article-title: Strain control of magnetism in graphene decorated by transition-metal atoms
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075415
– volume: 7
  start-page: 3859
  year: 1973
  end-page: 3870
  ident: CR2
  article-title: Infrared-reflectance spectra of layered group-IV and group-VI transition-metal dichalcogenides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.7.3859
– volume: 9
  start-page: 2857
  year: 2013
  ident: 762_CR20
  publication-title: Small
  doi: 10.1002/smll.201202876
– volume: 8
  start-page: 100
  year: 2013
  ident: 762_CR38
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.224
– volume: 13
  start-page: 3447
  year: 2013
  ident: 762_CR34
  publication-title: Nano Lett.
  doi: 10.1021/nl3026357
– volume: 5
  start-page: 9703
  year: 2011
  ident: 762_CR10
  publication-title: ACS Nano
  doi: 10.1021/nn203879f
– volume: 18
  start-page: 193
  year: 1969
  ident: 762_CR3
  publication-title: Adv. Phys.
  doi: 10.1080/00018736900101307
– volume: 13
  start-page: 3626
  year: 2013
  ident: 762_CR23
  publication-title: Nano Lett.
  doi: 10.1021/nl4014748
– volume: 5
  start-page: 1600
  year: 2011
  ident: 762_CR47
  publication-title: ACS Nano
  doi: 10.1021/nn200010m
– volume: 54
  start-page: 11169
  year: 1996
  ident: 762_CR62
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 8
  start-page: 2951
  year: 2014
  ident: 762_CR36
  publication-title: ACS Nano
  doi: 10.1021/nn500228r
– volume: 97
  start-page: 187401
  year: 2006
  ident: 762_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 84
  start-page: 075415
  year: 2011
  ident: 762_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075415
– volume: 5
  start-page: 43
  year: 2011
  ident: 762_CR27
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0183-0
– volume: 105
  start-page: 136805
  year: 2010
  ident: 762_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 21
  start-page: 1936
  year: 1966
  ident: 762_CR54
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.21.1936
– volume: 7
  start-page: 10985
  year: 2013
  ident: 762_CR11
  publication-title: ACS Nano.
  doi: 10.1021/nn4046002
– volume: 7
  start-page: 494
  year: 2012
  ident: 762_CR8
  publication-title: Nat. Nano.
  doi: 10.1038/nnano.2012.96
– volume: 8
  start-page: 634
  year: 2013
  ident: 762_CR9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.151
– volume: 12
  start-page: 554
  year: 2013
  ident: 762_CR35
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3633
– ident: 762_CR55
  doi: 10.1002/andp.201400098
– volume: 79
  start-page: 205433
  year: 2009
  ident: 762_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.205433
– ident: 762_CR51
  doi: 10.1038/srep01755
– volume: 87
  start-page: 035423
  year: 2013
  ident: 762_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.035423
– volume: 112
  start-page: 12602
  year: 2008
  ident: 762_CR12
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806045u
– volume: 4
  start-page: 1474
  year: 2013
  ident: 762_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2498
– volume: 14
  start-page: 2019
  year: 2014
  ident: 762_CR40
  publication-title: Nano Lett.
  doi: 10.1021/nl500171v
– volume: 6
  start-page: 7381
  year: 2012
  ident: 762_CR44
  publication-title: ACS Nano
  doi: 10.1021/nn3025173
– volume: 100
  start-page: 013106
  year: 2012
  ident: 762_CR57
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3673907
– volume: 14
  start-page: 13035
  year: 2012
  ident: 762_CR28
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42181j
– volume: 6
  start-page: 15
  year: 1996
  ident: 762_CR61
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 23
  start-page: 5511
  year: 2013
  ident: 762_CR37
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300760
– volume: 7
  start-page: 3859
  year: 1973
  ident: 762_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.7.3859
– volume: 7
  start-page: 791
  year: 2012
  ident: 762_CR7
  publication-title: ACS Nano
  doi: 10.1021/nn305275h
– volume-title: Nano Res.
  year: 2014
  ident: 762_CR59
– volume: 12
  start-page: 207
  year: 2013
  ident: 762_CR32
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3505
– volume: 4
  start-page: 2695
  year: 2010
  ident: 762_CR42
  publication-title: ACS Nano
  doi: 10.1021/nn1003937
– volume: 103
  start-page: 093102
  year: 2013
  ident: 762_CR58
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4819337
– volume: 43
  start-page: 881
  year: 1982
  ident: 762_CR4
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(82)90037-3
– volume: 2
  start-page: 2301
  year: 2008
  ident: 762_CR13
  publication-title: ACS Nano
  doi: 10.1021/nn800459e
– volume: 13
  start-page: 2931
  year: 2013
  ident: 762_CR22
  publication-title: Nano Lett.
  doi: 10.1021/nl4013166
– volume: 6
  start-page: 5449
  year: 2012
  ident: 762_CR26
  publication-title: ACS Nano
  doi: 10.1021/nn301320r
– volume: 88
  start-page: 045318
  year: 2013
  ident: 762_CR56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.045318
– volume: 88
  start-page: 121301
  year: 2013
  ident: 762_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.121301
– volume: 419
  start-page: 66
  year: 2013
  ident: 762_CR29
  publication-title: Physica B
  doi: 10.1016/j.physb.2013.03.029
– volume: 79
  start-page: 115402
  year: 2009
  ident: 762_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.115402
– volume: 87
  start-page: 081307
  year: 2013
  ident: 762_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.081307
– volume: 42
  start-page: 11218
  year: 1990
  ident: 762_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.42.11218
– volume: 9
  start-page: 4359
  year: 2009
  ident: 762_CR60
  publication-title: Nano Lett.
  doi: 10.1021/nl902623y
– volume: 85
  start-page: 161403
  year: 2012
  ident: 762_CR50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.161403
– volume: 59
  start-page: 1758
  year: 1999
  ident: 762_CR63
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 80
  start-page: 045401
  year: 2009
  ident: 762_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.045401
– volume: 5
  start-page: 8760
  year: 2011
  ident: 762_CR46
  publication-title: ACS Nano
  doi: 10.1021/nn203472f
– volume: 88
  start-page: 245447
  year: 2013
  ident: 762_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.245447
– volume: 87
  start-page: 155304
  year: 2013
  ident: 762_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.155304
– volume: 11
  start-page: 164
  year: 2010
  ident: 762_CR45
  publication-title: Nano Lett.
  doi: 10.1021/nl1032827
– volume: 9
  start-page: 1974
  year: 2013
  ident: 762_CR48
  publication-title: Small
  doi: 10.1002/smll.201202919
– volume: 88
  start-page: 245403
  year: 2013
  ident: 762_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.245403
– volume: 10
  start-page: 1271
  year: 2010
  ident: 762_CR6
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 8
  start-page: 11320
  year: 2014
  ident: 762_CR52
  publication-title: ACS Nano
  doi: 10.1021/nn504196n
– volume: 340
  start-page: 1311
  year: 2013
  ident: 762_CR39
  publication-title: Science
  doi: 10.1126/science.1235547
– volume: 2
  start-page: 131
  year: 2014
  ident: 762_CR33
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300428
– volume: 5
  start-page: 759
  year: 2001
  ident: 762_CR1
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/5/7/007
– volume: 106
  start-page: 7304
  year: 2009
  ident: 762_CR14
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0811754106
– volume: 5
  start-page: 1012
  year: 2011
  ident: 762_CR16
  publication-title: ACS Nano
  doi: 10.1021/nn1024175
SSID ssj0062148
Score 2.5863538
Snippet In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice...
In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice...
SourceID crossref
springer
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 2562
SubjectTerms Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Materials Science
Nanotechnology
Research Article
WS2
偏振拉曼光谱
光调制
单层
应变诱导
电子能带结构
直接带隙
间接跃迁
Title Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2
URI http://lib.cqvip.com/qk/71233X/201508/666900044.html
https://link.springer.com/article/10.1007/s12274-015-0762-6
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5Bu8CA-BWlUHlgAkVKrdhJxgr1RyCxlIrCYjm2U5AgLTTsvANvyJNwdpKWSoDE5kQXW_H5_PnTne8ATn2DmBRTq4FIewE31JM0lmh4EZp5qJivXbbPaz4YBZdjNi7vcc-raPfKJel26uVlN4oMCqkv85B7U4-vQ50hdbdxXCPaqbZfTtuuZFZxdwzRq3Jl_tSFTajwMM0mLzjcKjCtekUd2PS2Yas8JZJOodYdWDPZLmx-yx24B_dDV93BQ06N2tGkwKbP9w_rhLZNkshMT-SM5BaOXGQWwTfEBqNj83mqy8pd5NE-Zchx8fhNbod0H0a97s3FwCsLJXgKATfHDQuhjisZ2nxmsTZtpZKIMc10m_JIM5NK5EGBprHGAwxnSvmpDE3EIpNygzZ_ADUc2RwC8dNUUxSIA5UGiUxlikKctXWIv6Ika0BzMWNiViTEEEiBYucaboBfzaFQZY5xOxlPYpkd2apAoAqEVYHgDThbfFL194fweaUYUdra_Hfpo39JN2GDupVhl80x1PLXN3OCB448acF61Ou3oN7p3111W265fQEgVtDT
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHIAD4inGeOTACVSpjZq0PU6IacDYZZuYuERpHgMJusHKnf_AP-SX4KTtxiRA4pZWbqLGdj5bjm2ETn0NmJQQy4FYeSHTxBMkEaB4Mah5JKmvXLXPLmsPwushHZZ53NPqtnsVknQn9TzZjYAHBa4v9cD3Jh5bRitgC8RWlAekWR2_jASuZVaROwboVYUyf5rCFlR4GGejF1huEZgWo6IObFqbaKO0EnGzYOsWWtLZNlr_VjtwB933XHcHD3xq4I7CBTZ9vn_YILQd4lRkaiQmOLdw5G5mYXiD7WV0GD6PVdm5Cz_apwx8XDC_8V2P7KJB67J_0fbKRgmeBMDN4cACqGNSRLaeWaJ0IGUaU6qoCgiLFdVGgB8UKpIoMGAYldI3ItIxjbVhGnR-D9VgZb2PsG-MIkCQhNKEqTDCABGjgYrgV6SgddSY7RifFAUxOLhAiQsN15Ff7SGXZY1xuxlPfF4d2bKAAwu4ZQFndXQ2-6Sa7w_i84oxvNS16e_UB_-iPkGr7f5th3euujcNtEaclFgROkS1_PVNH4HxkafHTti-AKp60Uw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB_MQ5P_Lgk1JsQ5O2j0Md84MhzOHwJaT5mIJ209V3_wf_Q_8SL2m7OVDBt7RcE5q7y91xud8hdOhrsEkJsRyIlRcyTTxBEgGKF4OaR5L6yqF9dli7F172ab_sczqubrtXKcmipsGiNGX5yUiZk2nhG4FoCsJg6kEcTjw2jxZCWwwMAt0jzeooZiRw7bOKOjKwZFVa86cpLLjCwzAbvMDSs0ZqNkPqDE9rFa2UHiNuFixeQ3M6W0fL33AEN9B913V68CC-Bk4pXNipz_cPm5C2Q5yKTA3ECOfWNLlbWhjeYHsxHYbPQ1V28cKP9imDeBdccXzXJZuo1zq_PW17ZdMET4LxzeHwArPHpIgstlmidCBlGlOqqAoIixXVRkBMFCqSKHBmGJXSNyLSMY21YRr0fwvVYGW9jbBvjCJAkITShKkwwgARo4GK4FekoHXUmOwYHxXgGBzCocSlievIr_aQyxJv3G7GE58iJVsWcGABtyzgrI6OJp9U8_1BfFwxhpd6N_6deudf1Ado8easxa8vOlcNtESckFgJ2kW1_PVN74Efkqf7Tta-ALvF1X8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-induced+direct%E2%80%93indirect+bandgap+transition+and+phonon+modulation+in+monolayer+WS2&rft.jtitle=Nano+research&rft.au=Wang%2C+Yanlong&rft.au=Cong%2C+Chunxiao&rft.au=Yang%2C+Weihuang&rft.au=Shang%2C+Jingzhi&rft.date=2015-08-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=8&rft.issue=8&rft.spage=2562&rft.epage=2572&rft_id=info:doi/10.1007%2Fs12274-015-0762-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_015_0762_6
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg