Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2
In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadeni...
Saved in:
Published in | Nano research Vol. 8; no. 8; pp. 2562 - 2572 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs. |
---|---|
AbstractList | In situ
strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS
2
) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (Γ-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E’ mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS
2
grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs. In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs. |
Author | Yanlong Wang Chunxiao Cong Weihuang Yang Jingzhi Shang Namphung Peimyoo Yu Chen Junyong Kang Jianpu Wang Wei Huang Ting Yu |
AuthorAffiliation | Nanyang Technological University-Nanjing Tech Center of Research and Development, Nanjing Tech University, Nanjing 211816, China Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, China Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University ot Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210046, China |
Author_xml | – sequence: 1 givenname: Yanlong surname: Wang fullname: Wang, Yanlong organization: Nanyang Technological University-Nanjing Tech Center of Research and Development, Nanjing Tech University, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 2 givenname: Chunxiao surname: Cong fullname: Cong, Chunxiao organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 3 givenname: Weihuang surname: Yang fullname: Yang, Weihuang organization: Nanyang Technological University-Nanjing Tech Center of Research and Development, Nanjing Tech University, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 4 givenname: Jingzhi surname: Shang fullname: Shang, Jingzhi organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 5 givenname: Namphung surname: Peimyoo fullname: Peimyoo, Namphung organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 6 givenname: Yu surname: Chen fullname: Chen, Yu organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 7 givenname: Junyong surname: Kang fullname: Kang, Junyong organization: Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University – sequence: 8 givenname: Jianpu surname: Wang fullname: Wang, Jianpu organization: Nanyang Technological University-Nanjing Tech Center of Research and Development, Nanjing Tech University, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) – sequence: 9 givenname: Wei surname: Huang fullname: Huang, Wei email: wei-huang@njupt.edu.cn organization: Nanyang Technological University-Nanjing Tech Center of Research and Development, Nanjing Tech University, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications – sequence: 10 givenname: Ting surname: Yu fullname: Yu, Ting email: yuting@ntu.edu.sg organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University |
BookMark | eNp9kU1PAyEQhompiW31B3jbeEeBBRaOpvEraeKhGr0RCmyl2bIVtof-e9lt9eChc2FmMg8z884EjEIbHADXGN1ihKq7hAmpKESYQVRxAvkZGGMpBUTZRr8-JvQCTFJaI8QJpmIMPhdd1D5AH-zOOFtYH53p-nBwiqUOdqW3Ra4KyXe-DUXOFNuvNg9QbFq7a_SQ9X0U2kbvXSw-FuQSnNe6Se7q-E7B--PD2-wZzl-fXmb3c2hKgTsosXGOG12RUpbSOmzMUjBmmcWEC8tcralk1BJpOWacGYNqXTnBhKu5q1A5BdXhXxPblKKrlfHdMFK_WKMwUr1A6iCQygKpXiDFM4n_kdvoNzruTzLkwKRcG1YuqnW7iyEveBK6OTbKqq2-M_fXiXMu84EoLX8A9neHIw |
CitedBy_id | crossref_primary_10_1038_s41524_022_00715_9 crossref_primary_10_1039_D1NR01483H crossref_primary_10_1063_5_0189689 crossref_primary_10_1021_acs_jpclett_4c01607 crossref_primary_10_1103_PhysRevB_92_235408 crossref_primary_10_1007_s12648_021_02026_z crossref_primary_10_1007_s11664_024_11515_w crossref_primary_10_1039_D3NR04594C crossref_primary_10_1021_acs_nanolett_7b02624 crossref_primary_10_1021_acs_chemmater_0c03146 crossref_primary_10_1007_s12274_017_1941_4 crossref_primary_10_1016_j_solidstatesciences_2021_106634 crossref_primary_10_1038_s41699_022_00345_1 crossref_primary_10_1126_sciadv_aav4028 crossref_primary_10_1016_j_commatsci_2022_111611 crossref_primary_10_1186_s11671_019_3238_x crossref_primary_10_1016_j_physb_2022_414568 crossref_primary_10_1039_D3NR06118C crossref_primary_10_1016_j_jallcom_2020_154364 crossref_primary_10_1063_1_5042598 crossref_primary_10_1002_aenm_202003841 crossref_primary_10_1007_s40843_024_2948_9 crossref_primary_10_1038_s41566_019_0581_5 crossref_primary_10_1021_acsnano_4c15397 crossref_primary_10_1016_j_colsurfa_2021_126796 crossref_primary_10_1016_j_susc_2023_122251 crossref_primary_10_1039_C9NR03611C crossref_primary_10_1364_OE_26_015972 crossref_primary_10_1038_srep19159 crossref_primary_10_1021_acsnano_7b09029 crossref_primary_10_1063_1_5037559 crossref_primary_10_1021_acs_nanolett_7b02513 crossref_primary_10_1038_s41377_018_0115_9 crossref_primary_10_1088_2053_1591_ab485a crossref_primary_10_1002_pssr_201900355 crossref_primary_10_1007_s11664_024_11322_3 crossref_primary_10_1021_acsami_8b12707 crossref_primary_10_1063_5_0037852 crossref_primary_10_1016_j_apcatb_2022_121447 crossref_primary_10_12677_MS_2020_105051 crossref_primary_10_1038_srep43037 crossref_primary_10_1088_2053_1583_ac54ef crossref_primary_10_1039_D0RA07288E crossref_primary_10_1016_j_cplett_2021_138689 crossref_primary_10_1021_acs_jpcc_2c06933 crossref_primary_10_1126_science_aao5360 crossref_primary_10_1186_s11671_021_03523_0 crossref_primary_10_1039_D3TC03332E crossref_primary_10_3390_nano9040578 crossref_primary_10_1038_s41377_024_01477_3 crossref_primary_10_1063_1_5122262 crossref_primary_10_1016_j_apsusc_2021_150226 crossref_primary_10_1007_s40843_023_2616_x crossref_primary_10_1016_j_commatsci_2020_109797 crossref_primary_10_1088_1361_6641_ad2ec6 crossref_primary_10_1039_C8NR04391D crossref_primary_10_1063_1_4958986 crossref_primary_10_1002_smll_201700098 crossref_primary_10_1021_acsami_6b15239 crossref_primary_10_1103_PhysRevB_108_085432 crossref_primary_10_1021_acs_chemmater_8b01672 crossref_primary_10_1021_acsphotonics_8b00249 crossref_primary_10_12677_APP_2023_135027 crossref_primary_10_1007_s00339_020_04184_z crossref_primary_10_1002_adma_201700308 crossref_primary_10_1007_s12274_020_3193_y crossref_primary_10_1016_j_surfin_2022_101727 crossref_primary_10_1002_adom_201900978 crossref_primary_10_1016_j_jphotochem_2018_06_001 crossref_primary_10_1021_acs_jpcc_2c01382 crossref_primary_10_1016_j_nanoen_2021_105790 crossref_primary_10_1039_C8CY01779D crossref_primary_10_1088_1361_6641_aa7472 crossref_primary_10_1016_j_chemphys_2018_12_004 crossref_primary_10_1149_2_0071611jss crossref_primary_10_1016_j_mee_2019_111152 crossref_primary_10_1016_j_apsusc_2020_147479 crossref_primary_10_1088_1361_6633_ac45f9 crossref_primary_10_1021_acsami_1c13096 crossref_primary_10_1038_s41565_019_0520_0 crossref_primary_10_1021_acs_chemmater_0c01441 crossref_primary_10_1063_5_0096686 crossref_primary_10_1016_j_apsusc_2020_146398 crossref_primary_10_3367_UFNr_2021_05_038984 crossref_primary_10_1088_1361_6528_ac3a39 crossref_primary_10_1002_aelm_202000688 crossref_primary_10_1002_ppsc_202200031 crossref_primary_10_1103_PhysRevMaterials_2_064003 crossref_primary_10_1002_cnma_201600346 crossref_primary_10_1088_2053_1583_ada2fb crossref_primary_10_1002_admi_201800688 crossref_primary_10_1098_rsos_241560 crossref_primary_10_1021_acs_nanolett_0c02619 crossref_primary_10_2139_ssrn_4153213 crossref_primary_10_1007_s10853_021_06750_z crossref_primary_10_1016_j_commatsci_2018_05_020 crossref_primary_10_1038_srep30320 crossref_primary_10_1016_j_heliyon_2024_e24427 crossref_primary_10_1103_PhysRevB_109_115124 crossref_primary_10_1103_PhysRevLett_122_155901 crossref_primary_10_1039_D2RA02108K crossref_primary_10_1103_PhysRevB_98_245403 crossref_primary_10_1002_adfm_202203602 crossref_primary_10_1016_j_cap_2016_03_023 crossref_primary_10_1016_j_carbon_2020_04_022 crossref_primary_10_1134_S1063776118110134 crossref_primary_10_1021_acs_jpcc_0c04813 crossref_primary_10_1117_1_JPE_7_014001 crossref_primary_10_1002_adfm_201908089 crossref_primary_10_1016_j_cap_2022_02_004 crossref_primary_10_1039_C6NR02690G crossref_primary_10_1063_1_4985299 crossref_primary_10_1002_ijch_202100115 crossref_primary_10_1039_C6RA20623A crossref_primary_10_1002_smll_201703727 crossref_primary_10_1103_PhysRevB_96_205416 crossref_primary_10_1016_j_mssp_2024_108698 crossref_primary_10_1016_j_apsusc_2019_144574 crossref_primary_10_1002_adma_202107362 crossref_primary_10_1088_2053_1583_acc4d8 crossref_primary_10_1016_j_jcis_2021_12_131 crossref_primary_10_1088_2053_1583_ac351d crossref_primary_10_1002_advs_202001645 crossref_primary_10_1088_1674_1056_ac272f crossref_primary_10_1007_s40042_023_00908_5 crossref_primary_10_1063_5_0097638 crossref_primary_10_1021_acs_nanolett_7b04868 crossref_primary_10_1002_adom_202001954 crossref_primary_10_1002_smll_202412832 crossref_primary_10_1038_srep21536 crossref_primary_10_1021_acsanm_2c03264 crossref_primary_10_1021_acsanm_4c01612 crossref_primary_10_1021_acs_chemmater_7b00453 crossref_primary_10_1002_smll_202410773 crossref_primary_10_1021_acsami_1c09176 crossref_primary_10_1038_s41377_021_00520_x crossref_primary_10_1039_D0NR04557H crossref_primary_10_1007_s12274_017_1619_y crossref_primary_10_1088_2053_1583_aa89fc crossref_primary_10_1142_S021798492050089X crossref_primary_10_1002_adma_202200946 crossref_primary_10_1038_s41598_020_69946_4 crossref_primary_10_1002_adom_201801373 crossref_primary_10_1016_j_mssp_2019_104865 crossref_primary_10_1126_sciadv_aau8763 crossref_primary_10_1021_acs_jpcc_6b01838 crossref_primary_10_1063_5_0001795 crossref_primary_10_1021_acsnano_8b04265 crossref_primary_10_1103_PhysRevApplied_13_034065 crossref_primary_10_1021_acsanm_4c02284 crossref_primary_10_1021_acsnano_8b03055 crossref_primary_10_1039_C9NR09057F crossref_primary_10_1038_s41598_019_39970_0 crossref_primary_10_1002_adma_202100601 crossref_primary_10_1088_1361_6528_ac1d07 crossref_primary_10_1021_acsnano_3c10721 crossref_primary_10_1039_C7RA09668B crossref_primary_10_1063_1_4966218 crossref_primary_10_1063_5_0166460 crossref_primary_10_1088_2053_1583_aaa6eb crossref_primary_10_1063_1_5027020 crossref_primary_10_1002_adom_201901226 crossref_primary_10_1088_1361_6528_aabbd7 crossref_primary_10_1021_acs_nanolett_4c03321 crossref_primary_10_1038_s41598_024_66065_2 crossref_primary_10_1021_acs_jpcc_4c00516 crossref_primary_10_1021_acsnano_0c06901 crossref_primary_10_1002_adom_201700767 crossref_primary_10_1038_s41699_024_00479_4 crossref_primary_10_1088_1361_6528_aca33a crossref_primary_10_1002_adom_201701296 crossref_primary_10_1021_acs_jpcc_4c00511 crossref_primary_10_1021_acsnano_0c01337 crossref_primary_10_1103_PhysRevMaterials_3_074009 crossref_primary_10_1021_acsenergylett_9b00120 crossref_primary_10_3390_nano14171437 crossref_primary_10_1016_j_mtnano_2020_100092 crossref_primary_10_1039_C8CS00332G crossref_primary_10_1002_inf2_12177 crossref_primary_10_1007_s12274_021_3779_z crossref_primary_10_1557_jmr_2017_402 crossref_primary_10_1007_s12274_017_1792_z crossref_primary_10_1021_acsami_7b09744 crossref_primary_10_1039_D2MH00721E crossref_primary_10_1021_acs_jpclett_4c00924 crossref_primary_10_1039_C8CP04731F crossref_primary_10_1088_2053_1583_3_2_021011 crossref_primary_10_3389_fphy_2022_842789 crossref_primary_10_1103_PhysRevB_109_245412 crossref_primary_10_1007_s13204_021_01702_0 crossref_primary_10_1103_PhysRevB_110_045425 crossref_primary_10_1103_PhysRevB_97_241414 crossref_primary_10_1142_S0217984924503755 crossref_primary_10_1007_s12274_018_2148_z crossref_primary_10_1016_j_mtnano_2021_100131 crossref_primary_10_1021_acs_nanolett_3c03115 crossref_primary_10_1364_OE_26_028672 crossref_primary_10_1088_1674_1056_28_8_087201 crossref_primary_10_1103_PhysRevLett_129_067402 crossref_primary_10_1364_AO_58_004014 crossref_primary_10_1103_PhysRevB_100_235438 crossref_primary_10_1021_acsnano_0c08668 crossref_primary_10_1016_j_ssc_2015_11_017 crossref_primary_10_1039_C9RA08634J crossref_primary_10_1016_j_cossms_2021_100900 crossref_primary_10_1063_5_0063622 crossref_primary_10_1063_5_0049446 crossref_primary_10_1088_1361_6463_ac0f1f crossref_primary_10_1002_adom_202302900 crossref_primary_10_1039_C8NR01823E crossref_primary_10_1016_j_physe_2023_115812 crossref_primary_10_1021_acsnano_4c04506 crossref_primary_10_1007_s10853_020_04500_1 crossref_primary_10_1021_acs_chemmater_9b05124 crossref_primary_10_1038_srep33091 crossref_primary_10_1088_2053_1583_ad9dfc crossref_primary_10_1021_acs_nanolett_3c03123 crossref_primary_10_1007_s11664_021_09015_2 crossref_primary_10_1021_acs_jpcc_1c09603 crossref_primary_10_1021_acsnano_2c01665 crossref_primary_10_1002_inf2_12072 crossref_primary_10_3390_nano13202740 crossref_primary_10_1016_j_apsusc_2019_04_168 crossref_primary_10_1088_2053_1583_aaba9a crossref_primary_10_1007_s12274_022_4668_9 crossref_primary_10_1016_j_compositesb_2022_110378 crossref_primary_10_1002_pssr_202300289 crossref_primary_10_1021_acsnano_1c06587 crossref_primary_10_1116_1_5074153 crossref_primary_10_1557_s43578_021_00460_7 crossref_primary_10_1021_acsnano_0c09983 crossref_primary_10_1002_adma_202209788 crossref_primary_10_1021_acs_nanolett_3c01756 crossref_primary_10_1103_PhysRevResearch_2_012024 crossref_primary_10_1002_adom_202000441 crossref_primary_10_1007_s12274_016_1224_5 crossref_primary_10_1021_acsnano_2c03294 crossref_primary_10_1039_C8NH00306H crossref_primary_10_1103_PhysRevB_103_014442 crossref_primary_10_1007_s10854_021_05655_6 crossref_primary_10_1021_acs_nanolett_2c00436 crossref_primary_10_1002_advs_202102128 crossref_primary_10_1039_C8MH01009A crossref_primary_10_1039_D3CP04356H crossref_primary_10_1007_s10854_023_11849_x crossref_primary_10_1088_2053_1583_ab01eb crossref_primary_10_1088_1361_6528_ab0bc1 crossref_primary_10_1002_adom_202401728 crossref_primary_10_1038_s41377_020_00421_5 crossref_primary_10_1002_pssa_202300302 crossref_primary_10_1063_5_0145945 crossref_primary_10_1016_j_apsusc_2019_03_033 crossref_primary_10_1039_D0CP03968C crossref_primary_10_1088_2053_1583_ababf1 crossref_primary_10_1103_PhysRevB_100_205304 crossref_primary_10_1021_acs_nanolett_3c03706 crossref_primary_10_1103_PhysRevB_104_205432 crossref_primary_10_1039_C8CP02802H crossref_primary_10_2139_ssrn_4198114 crossref_primary_10_1007_s10853_020_05117_0 crossref_primary_10_1088_2053_1583_abc2a7 crossref_primary_10_1002_adom_202000694 crossref_primary_10_1016_j_jallcom_2019_01_129 crossref_primary_10_1016_j_apmt_2021_101234 crossref_primary_10_1557_jmr_2015_397 crossref_primary_10_1063_5_0014005 crossref_primary_10_1038_s41598_017_11647_6 crossref_primary_10_1038_s41699_017_0013_7 crossref_primary_10_1007_s12274_022_4487_z crossref_primary_10_1038_s41377_024_01380_x crossref_primary_10_1155_2017_2565703 crossref_primary_10_1007_s12274_015_0895_7 crossref_primary_10_1021_acs_chemmater_0c04799 crossref_primary_10_1002_smll_201805147 crossref_primary_10_1002_smll_201503044 crossref_primary_10_1039_D0CP03248D crossref_primary_10_1002_advs_201802092 crossref_primary_10_1016_j_apsusc_2023_158541 crossref_primary_10_1016_j_vacuum_2021_110757 crossref_primary_10_1088_1742_6596_2015_1_012058 crossref_primary_10_1002_cplu_202300579 crossref_primary_10_1007_s12274_021_3769_1 crossref_primary_10_1016_j_solener_2025_113334 crossref_primary_10_1021_acs_nanolett_6b02615 crossref_primary_10_1007_s40820_020_00439_9 crossref_primary_10_1039_C7CP00012J crossref_primary_10_1007_s12274_020_2859_9 crossref_primary_10_3390_ma16103701 crossref_primary_10_1088_0256_307X_37_8_087801 crossref_primary_10_1039_C6CP06621F crossref_primary_10_1021_acs_nanolett_3c01774 crossref_primary_10_1002_admi_201901307 crossref_primary_10_1021_acs_jpcc_8b05475 crossref_primary_10_1021_acsnano_6b08028 crossref_primary_10_1063_5_0151716 crossref_primary_10_1016_j_mee_2019_111202 crossref_primary_10_1002_smll_201804733 crossref_primary_10_1088_2053_1583_ab8caa crossref_primary_10_1002_admi_202000835 crossref_primary_10_1063_5_0054657 crossref_primary_10_1002_adma_202101875 crossref_primary_10_1021_acs_jpclett_1c03571 crossref_primary_10_1002_sstr_202100149 crossref_primary_10_1103_PhysRevB_92_195402 crossref_primary_10_1088_1361_6528_ab646e crossref_primary_10_1021_acsphotonics_2c01861 crossref_primary_10_1016_j_jcat_2019_08_019 crossref_primary_10_1002_adfm_201603064 crossref_primary_10_1007_s12274_020_2918_2 crossref_primary_10_1021_acs_nanolett_4c02616 crossref_primary_10_1039_C8TC00620B crossref_primary_10_1039_D3NR01687K crossref_primary_10_1002_inf2_12310 crossref_primary_10_1088_2053_1591_ac9bd0 crossref_primary_10_1021_acsanm_0c02235 crossref_primary_10_1103_PhysRevB_97_195454 crossref_primary_10_1021_acsnano_0c10478 crossref_primary_10_1039_C9CY00439D crossref_primary_10_1063_5_0143759 crossref_primary_10_3390_ma16072591 crossref_primary_10_1039_C8MH01072B crossref_primary_10_3367_UFNe_2021_05_038984 crossref_primary_10_1007_s40820_024_01611_1 crossref_primary_10_1039_C8CP04418J crossref_primary_10_1002_lpor_202401319 crossref_primary_10_1021_acsnano_8b01263 crossref_primary_10_1088_1361_6528_ab2feb crossref_primary_10_1021_acsami_2c01726 crossref_primary_10_1002_adma_202203250 crossref_primary_10_1021_acsnano_2c12759 crossref_primary_10_1016_j_isci_2021_103563 crossref_primary_10_1007_s11467_023_1355_6 crossref_primary_10_1016_j_actamat_2022_118299 crossref_primary_10_1002_adma_202301280 crossref_primary_10_1016_j_comptc_2020_112851 crossref_primary_10_1103_PhysRevB_99_235401 |
Cites_doi | 10.1021/nn203879f 10.1021/nn301320r 10.1021/nl3026357 10.1103/PhysRevB.87.081307 10.1103/PhysRevB.80.045401 10.1103/PhysRevB.85.161403 10.1038/nmat3505 10.1002/smll.201202919 10.1063/1.4819337 10.1021/nn4046002 10.1021/nl1032827 10.1016/0022-3697(82)90037-3 10.1080/00018736900101307 10.1016/0927-0256(96)00008-0 10.1021/nl902623y 10.1021/nn200010m 10.1063/1.3673907 10.1038/nnano.2012.224 10.1007/s12274-011-0183-0 10.1021/nn1024175 10.1002/smll.201202876 10.1103/PhysRevB.87.035423 10.1038/nmat3633 10.1103/PhysRevB.79.115402 10.1021/nl500171v 10.1021/nn1003937 10.1021/nn800459e 10.1021/nn500228r 10.1103/PhysRevB.87.155304 10.1126/science.1235547 10.1021/nl4013166 10.1103/PhysRevLett.97.187401 10.1002/adfm.201300760 10.1021/nn3025173 10.1088/0022-3719/5/7/007 10.1002/adom.201300428 10.1021/jp806045u 10.1038/nnano.2012.96 10.1039/c2cp42181j 10.1038/ncomms2498 10.1021/nl4014748 10.1021/nn504196n 10.1143/JPSJ.21.1936 10.1103/PhysRevB.42.11218 10.1103/PhysRevB.88.045318 10.1103/PhysRevB.59.1758 10.1021/nn305275h 10.1038/nnano.2013.151 10.1103/PhysRevB.88.245447 10.1021/nn203472f 10.1103/PhysRevB.79.205433 10.1103/PhysRevB.88.121301 10.1103/PhysRevB.88.245403 10.1021/nl903868w 10.1103/PhysRevB.54.11169 10.1016/j.physb.2013.03.029 10.1103/PhysRevLett.105.136805 10.1073/pnas.0811754106 10.1103/PhysRevB.84.075415 10.1103/PhysRevB.7.3859 10.1002/andp.201400098 10.1038/srep01755 |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1007/s12274-015-0762-6 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2 |
EISSN | 1998-0000 |
EndPage | 2572 |
ExternalDocumentID | 10_1007_s12274_015_0762_6 666900044 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 92L 95- 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBYP ACCUX ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACVWB ACWMK ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CQIGP CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 ~WA AACDK AAJBT AASML AAYZH ABAKF ABQSL ACPIV ADMLS AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS FRJ H13 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP |
ID | FETCH-LOGICAL-c381t-91cee6ca723939de1ccb855d5d1268d5efa4954d29d61565cc0fa7e858ef6e703 |
IEDL.DBID | U2A |
ISSN | 1998-0124 |
IngestDate | Tue Jul 01 01:46:45 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Fri Feb 21 02:35:32 EST 2025 Wed Feb 14 10:23:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | strain trion indirect transition crystallographic orientation monolayer WS light-emission tuning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-91cee6ca723939de1ccb855d5d1268d5efa4954d29d61565cc0fa7e858ef6e703 |
Notes | 11-5974/O4 monolayer WS2,strain,light-emission tuning,indirect transition,trion,crystallographic orientation In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs. |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1007_s12274_015_0762_6 crossref_primary_10_1007_s12274_015_0762_6 springer_journals_10_1007_s12274_015_0762_6 chongqing_primary_666900044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-01 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationTitleAlternate | Nano Research |
PublicationYear | 2015 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Li, Miyazaki, Song, Kuramochi, Nakaharai, Tsukagoshi (CR44) 2012; 6 Zhao, Ghorannevis, Chu, Toh, Kloc, Tan, Eda (CR7) 2012; 7 Britnell, Ribeiro, Eckmann, Jalil, Belle, Mishchenko, Kim, Gorbachev, Georgiou, Morozov (CR39) 2013; 340 Shi, Dong, Chen, Wang, Li (CR49) 2009; 79 Mitioglu, Plochocka, Jadczak, Escoffier, Rikken, Kulyuk, Maude (CR31) 2013; 88 Jo, Ubrig, Berger, Kuzmenko, Morpurgo (CR40) 2014; 14 Kumar, Ahluwalia (CR29) 2013; 419 Lu, Wu, Guo, Zeng (CR28) 2012; 14 Wang, Cong, Qiu, Yu (CR20) 2013; 9 Mak, He, Shan, Heinz (CR8) 2012; 7 Li, Lu, Wang, Yin, Cong, He, Wang, Ding, Yu, Zhang (CR48) 2013; 9 Bromley, Yoffe, Murray (CR1) 2001; 5 Peimyoo, Shang, Cong, Shen, Wu, Yeow, Yu (CR11) 2013; 7 Kresse, Joubert (CR63) 1999; 59 He, Poole, Mak, Shan (CR22) 2013; 13 Cooper, Lee, Marianetti, Wei, Hone, Kysar (CR19) 2013; 87 Kou, Tang, Guo, Chen (CR16) 2011; 5 Mak, He, Lee, Lee, Hone, Heinz, Shan (CR32) 2013; 12 Huang, Yu, Wei (CR17) 2011; 84 Cong, Yu, Saito, Dresselhaus, Dresselhaus (CR47) 2011; 5 Shinada, Sugano (CR54) 1966; 21 Kresse, Furthmüller (CR62) 1996; 54 Shi, Pan, Zhang, Yakobson (CR41) 2013; 87 Pereira, Castro Neto, Peres (CR18) 2009; 80 Mak, Lee, Hone, Shan, Heinz (CR5) 2010; 105 Berkelbach, Hybertsen, Reichman (CR56) 2013; 88 Lucovsky, White, Benda, Revelli (CR2) 1973; 7 Lanzillo, Birdwell, Amani, Crowne, Shah, Najmaei, Liu, Ajayan, Lou, Dubey (CR58) 2013; 103 Huang, Yan, Chen, Song, Heinz, Hone (CR14) 2009; 106 Rice, Young, Zan, Bangert, Wolverson, Georgiou, Jalil, Novoselov (CR21) 2013; 87 Conley, Wang, Ziegler, Haglund, Pantelides, Bolotin (CR23) 2013; 13 Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth (CR43) 2006; 97 Jones, Yu, Ghimire, Wu, Aivazian, Ross, Zhao, Yan, Mandrus, Xiao (CR9) 2013; 8 Mohiuddin, Lombardo, Nair, Bonetti, Savini, Jalil, Bonini, Basko, Galiotis, Marzari (CR15) 2009; 79 Chakraborty, Bera, Muthu, Bhowmick, Waghmare, Sood (CR50) 2012; 85 Hsu, Zhao, Li, Chen, Chiu, Chang, Chou, Chang (CR36) 2014; 8 Zhang, Cheng, Gan, Schwingenschlögl (CR25) 2013; 88 Cong, Shang, Wu, Cao, Peimyoo, Qiu, Sun, Yu (CR33) 2014; 2 Scalise, Houssa, Pourtois, Afanas’ev, Stesmans (CR27) 2011; 5 CR55 Fortin, Sears (CR4) 1982; 43 CR51 Najmaei, Liu, Ajayan, Lou (CR57) 2012; 100 Splendiani, Sun, Zhang, Li, Kim, Chim, Galli, Wang (CR6) 2010; 10 Georgiou, Jalil, Belle, Britnell, Gorbachev, Morozov, Kim, Gholinia, Haigh, Makarovsky (CR38) 2013; 8 Li, Zhu, Cai, Borysiak, Han, Chen, Piner, Colombo, Ruoff (CR60) 2009; 9 Kresse, Furthmüller (CR61) 1996; 6 Lee, Yan, Brus, Heinz, Hone, Ryu (CR42) 2010; 4 Peimyoo, Yang, Shang, Shen, Wang, Yu (CR52) 2014; 8 Ross, Wu, Yu, Ghimire, Jones, Aivazian, Yan, Mandrus, Xiao, Yao (CR30) 2013; 4 Peimyoo, Shang, Yang, Wang, Cong, Yu (CR59) 2014 Lui, Li, Chen, Klimov, Brus, Heinz (CR45) 2010; 11 Wilson, Yoffe (CR3) 1969; 18 Perea-López, Elías, Berkdemir, Castro-Beltran, Gutiérrez, Feng, Lv, Hayashi, López-Urías, Ghosh (CR37) 2013; 23 Ni, Yu, Lu, Wang, Feng, Shen (CR13) 2008; 2 Cong, Yu, Sato, Shang, Saito, Dresselhaus, Dresselhaus (CR46) 2011; 5 Gutierrez, Perea-Lopez, Elias, Berkdemir, Wang, Lv, Lopez-Urias, Crespi, Terrones, Terrones (CR34) 2013; 13 vander Zande, Huang, Chenet, Berkelbach, You, Lee, Heinz, Reichman, Muller, Hone (CR35) 2013; 12 Yu, Ni, Du, You, Wang, Shen (CR12) 2008; 112 Rudin, Reinecke, Segall (CR53) 1990; 42 Zhu, Wang, Liu, Marie, Qiao, Zhang, Wu, Fan, Tan, Amand (CR24) 2013; 88 Bertolazzi, Brivio, Kis (CR10) 2011; 5 Johari, Shenoy (CR26) 2012; 6 A. C. Ferrari (762_CR43) 2006; 97 Y. L. Wang (762_CR20) 2013; 9 H. Li (762_CR48) 2013; 9 S. Rudin (762_CR53) 1990; 42 M. Shinada (762_CR54) 1966; 21 G. Kresse (762_CR61) 1996; 6 B. Huang (762_CR17) 2011; 84 H. L. Shi (762_CR41) 2013; 87 C. Rice (762_CR21) 2013; 87 G. Kresse (762_CR63) 1999; 59 H. J. Conley (762_CR23) 2013; 13 X. S. Li (762_CR60) 2009; 9 J. A. Wilson (762_CR3) 1969; 18 K. F. Mak (762_CR32) 2013; 12 Z. H. Ni (762_CR13) 2008; 2 R. C. Cooper (762_CR19) 2013; 87 B. Chakraborty (762_CR50) 2012; 85 N. Peimyoo (762_CR52) 2014; 8 S. Jo (762_CR40) 2014; 14 C. H. Lui (762_CR45) 2010; 11 T. M. G. Mohiuddin (762_CR15) 2009; 79 S. Najmaei (762_CR57) 2012; 100 W. J. Zhao (762_CR7) 2012; 7 L. Z. Kou (762_CR16) 2011; 5 J. S. Ross (762_CR30) 2013; 4 M. Y. Huang (762_CR14) 2009; 106 V. M. Pereira (762_CR18) 2009; 80 C. X. Cong (762_CR33) 2014; 2 T. Georgiou (762_CR38) 2013; 8 G. Lucovsky (762_CR2) 1973; 7 A. M. Zande vander (762_CR35) 2013; 12 N. A. Lanzillo (762_CR58) 2013; 103 H. R. Gutierrez (762_CR34) 2013; 13 N. Peimyoo (762_CR59) 2014 N. Perea-López (762_CR37) 2013; 23 C. R. Zhu (762_CR24) 2013; 88 W. T. Hsu (762_CR36) 2014; 8 T. Yu (762_CR12) 2008; 112 762_CR55 L. Britnell (762_CR39) 2013; 340 C. Lee (762_CR42) 2010; 4 G. Kresse (762_CR62) 1996; 54 762_CR51 E. Fortin (762_CR4) 1982; 43 A. Kumar (762_CR29) 2013; 419 A. Splendiani (762_CR6) 2010; 10 A. M. Jones (762_CR9) 2013; 8 T. C. Berkelbach (762_CR56) 2013; 88 K. L. He (762_CR22) 2013; 13 R. A. Bromley (762_CR1) 2001; 5 K. F. Mak (762_CR5) 2010; 105 S. Bertolazzi (762_CR10) 2011; 5 S. L. Li (762_CR44) 2012; 6 P. Johari (762_CR26) 2012; 6 E. Scalise (762_CR27) 2011; 5 Q. Y. Zhang (762_CR25) 2013; 88 P. Lu (762_CR28) 2012; 14 Y. M. Shi (762_CR49) 2009; 79 C. X. Cong (762_CR46) 2011; 5 A. A. Mitioglu (762_CR31) 2013; 88 K. F. Mak (762_CR8) 2012; 7 N. Peimyoo (762_CR11) 2013; 7 C. Cong (762_CR47) 2011; 5 |
References_xml | – volume: 5 start-page: 9703 year: 2011 end-page: 9709 ident: CR10 article-title: Stretching and breaking of ultrathin MoS publication-title: ACS Nano doi: 10.1021/nn203879f – volume: 6 start-page: 5449 year: 2012 end-page: 5456 ident: CR26 article-title: Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains publication-title: ACS Nano doi: 10.1021/nn301320r – volume: 13 start-page: 3447 year: 2013 end-page: 3454 ident: CR34 article-title: Extraordinary room-temperature photoluminescence in triangular WS monolayers publication-title: Nano Lett. doi: 10.1021/nl3026357 – volume: 87 start-page: 081307 year: 2013 ident: CR21 article-title: Raman-scattering measurements and first-principles calculations of straininduced phonon shifts in monolayer MoS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.081307 – ident: CR51 – volume: 80 start-page: 045401 year: 2009 ident: CR18 article-title: Tightbinding approach to uniaxial strain in graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.045401 – volume: 85 start-page: 161403 year: 2012 ident: CR50 article-title: ymmetry-dependent phonon renormalization in monolayer MoS transistor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.161403 – volume: 12 start-page: 207 year: 2013 end-page: 211 ident: CR32 article-title: Tightly bound trions in monolayer MoS publication-title: Nat. Mater. doi: 10.1038/nmat3505 – volume: 9 start-page: 1974 year: 2013 end-page: 1981 ident: CR48 article-title: Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe , TaS , and TaSe publication-title: Small doi: 10.1002/smll.201202919 – volume: 103 start-page: 093102 year: 2013 ident: CR58 article-title: Temperature-dependent phonon shifts in monolayer MoS publication-title: Appl. Phys. Lett. doi: 10.1063/1.4819337 – volume: 7 start-page: 10985 year: 2013 end-page: 10994 ident: CR11 article-title: Nonblinking, intense twodimensional light emitter: Monolayer WS triangles publication-title: ACS Nano. doi: 10.1021/nn4046002 – volume: 11 start-page: 164 year: 2010 end-page: 169 ident: CR45 article-title: Imaging stacking order in few-layer graphene publication-title: Nano Lett. doi: 10.1021/nl1032827 – volume: 43 start-page: 881 year: 1982 end-page: 884 ident: CR4 article-title: Photovoltaic effect and optical absorption in MoS publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(82)90037-3 – volume: 18 start-page: 193 year: 1969 end-page: 335 ident: CR3 article-title: The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties publication-title: Adv. Phys. doi: 10.1080/00018736900101307 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR61 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 9 start-page: 4359 year: 2009 end-page: 4363 ident: CR60 article-title: Transfer of large-area graphene films for high-performance transparent conductive electrodes publication-title: Nano Lett. doi: 10.1021/nl902623y – volume: 5 start-page: 1600 year: 2011 end-page: 1605 ident: CR47 article-title: Second-order overtone and combination Raman modes of graphene layers in the range of 690–2150 cm publication-title: ACS Nano doi: 10.1021/nn200010m – volume: 100 start-page: 013106 year: 2012 ident: CR57 article-title: Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS ) of varying thicknesses publication-title: Appl. Phys. Lett. doi: 10.1063/1.3673907 – volume: 8 start-page: 100 year: 2013 end-page: 103 ident: CR38 article-title: Vertical field-effect transistor based on graphene–WS heterostructures for flexible and transparent electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.224 – volume: 5 start-page: 43 year: 2011 end-page: 48 ident: CR27 article-title: Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS publication-title: Nano Res. doi: 10.1007/s12274-011-0183-0 – volume: 5 start-page: 1012 year: 2011 end-page: 1017 ident: CR16 article-title: Tunable magnetism in strained graphene with topological line defect publication-title: ACS Nano doi: 10.1021/nn1024175 – volume: 9 start-page: 2857 year: 2013 end-page: 2861 ident: CR20 article-title: Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS under uniaxial strain publication-title: Small doi: 10.1002/smll.201202876 – volume: 87 start-page: 035423 year: 2013 ident: CR19 article-title: Nonlinear elastic behavior of two-dimensional molybdenum disulfide publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.035423 – volume: 12 start-page: 554 year: 2013 end-page: 561 ident: CR35 article-title: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide publication-title: Nat. Mater. doi: 10.1038/nmat3633 – volume: 79 start-page: 115402 year: 2009 ident: CR49 article-title: Effective doping of single-layer graphene from underlying SiO substrates publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.115402 – volume: 14 start-page: 2019 year: 2014 end-page: 2025 ident: CR40 article-title: Mono- and bilayer WS light-emitting transistors publication-title: Nano Lett. doi: 10.1021/nl500171v – volume: 4 start-page: 2695 year: 2010 end-page: 2700 ident: CR42 article-title: Anomalous lattice vibrations of single- and few-layer MoS publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 2 start-page: 2301 year: 2008 end-page: 2305 ident: CR13 article-title: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening publication-title: ACS Nano doi: 10.1021/nn800459e – volume: 8 start-page: 2951 year: 2014 end-page: 2958 ident: CR36 article-title: Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers publication-title: ACS Nano doi: 10.1021/nn500228r – volume: 87 start-page: 155304 year: 2013 ident: CR41 article-title: Quasiparticle band structures and optical properties of strained monolayer MoS and WS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.155304 – volume: 340 start-page: 1311 year: 2013 end-page: 1314 ident: CR39 article-title: Strong light-matter interactions in heterostructures of atomically thin films publication-title: Science doi: 10.1126/science.1235547 – volume: 13 start-page: 2931 year: 2013 end-page: 2936 ident: CR22 article-title: Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS publication-title: Nano Lett. doi: 10.1021/nl4013166 – volume: 97 start-page: 187401 year: 2006 ident: CR43 article-title: Raman spectrum of graphene and graphene layers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 23 start-page: 5511 year: 2013 end-page: 5517 ident: CR37 article-title: Photosensor device based on few-layered WS films publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300760 – volume: 6 start-page: 7381 year: 2012 end-page: 7388 ident: CR44 article-title: Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates publication-title: ACS Nano doi: 10.1021/nn3025173 – volume: 5 start-page: 759 year: 2001 end-page: 778 ident: CR1 article-title: The band structures of some transition metal dichalcogenides. III. Group VIA: Trigonal prism materials publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/5/7/007 – volume: 2 start-page: 131 year: 2014 end-page: 136 ident: CR33 article-title: Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS monolayer from chemical vapor deposition publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300428 – volume: 112 start-page: 12602 year: 2008 end-page: 12605 ident: CR12 article-title: Raman mapping investigation of graphene on transparent flexible substrate: The strain effect publication-title: J. Phys. Chem. C doi: 10.1021/jp806045u – volume: 7 start-page: 494 year: 2012 end-page: 498 ident: CR8 article-title: Control of valley polarization in monolayer MoS by optical helicity publication-title: Nat. Nano. doi: 10.1038/nnano.2012.96 – volume: 14 start-page: 13035 year: 2012 end-page: 13040 ident: CR28 article-title: Strain-dependent electronic and magnetic properties of MoS monolayer, bilayer, nanoribbons and nanotubes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42181j – volume: 4 start-page: 1474 year: 2013 ident: CR30 article-title: Electrical control of neutral and charged excitons in a monolayer semiconductor publication-title: Nat. Commun. doi: 10.1038/ncomms2498 – volume: 13 start-page: 3626 year: 2013 end-page: 3630 ident: CR23 article-title: Bandgap engineering of strained monolayer and bilayer MoS publication-title: Nano Lett. doi: 10.1021/nl4014748 – volume: 8 start-page: 11320 year: 2014 end-page: 11329 ident: CR52 article-title: Chemically driven tunable light emission of charged and neutral excitons in monolayer WS publication-title: ACS Nano doi: 10.1021/nn504196n – volume: 21 start-page: 1936 year: 1966 end-page: 1946 ident: CR54 article-title: Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.21.1936 – volume: 42 start-page: 11218 year: 1990 end-page: 11231 ident: CR53 article-title: Temperature-dependent exciton linewidths in semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.42.11218 – volume: 88 start-page: 045318 year: 2013 ident: CR56 article-title: Theory of neutral and charged excitons in monolayer transition metal dichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.045318 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR63 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 7 start-page: 791 year: 2012 end-page: 797 ident: CR7 article-title: Evolution of electronic structure in atomically thin sheets of WS and WSe publication-title: ACS Nano doi: 10.1021/nn305275h – volume: 8 start-page: 634 year: 2013 end-page: 638 ident: CR9 article-title: Optical generation of excitonic valley coherence in monolayer WSe publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.151 – volume: 88 start-page: 245447 year: 2013 ident: CR25 article-title: Giant valley drifts in uniaxially strained monolayer MoS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.245447 – volume: 5 start-page: 8760 year: 2011 end-page: 8768 ident: CR46 article-title: aman characterization of ABA- and ABC-stacked trilayer graphene publication-title: ACS Nano doi: 10.1021/nn203472f – volume: 79 start-page: 205433 year: 2009 ident: CR15 article-title: Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.205433 – volume: 88 start-page: 121301 year: 2013 ident: CR24 article-title: Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.121301 – volume: 88 start-page: 245403 year: 2013 ident: CR31 article-title: Optical manipulation of the exciton charge state in single-layer tungsten disulfide publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.245403 – volume: 10 start-page: 1271 year: 2010 end-page: 1275 ident: CR6 article-title: Emerging photoluminescence in monolayer MoS publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR62 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 419 start-page: 66 year: 2013 end-page: 75 ident: CR29 article-title: Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X = S, Se, Te) publication-title: Physica B doi: 10.1016/j.physb.2013.03.029 – year: 2014 ident: CR59 article-title: Thermal conductivity determination of suspended mono- and bilayer WS by Raman spectroscopy publication-title: Nano Res. – ident: CR55 – volume: 105 start-page: 136805 year: 2010 ident: CR5 article-title: Atomically thin MoS : A new direct-gap semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 106 start-page: 7304 year: 2009 end-page: 7308 ident: CR14 article-title: Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0811754106 – volume: 84 start-page: 075415 year: 2011 ident: CR17 article-title: Strain control of magnetism in graphene decorated by transition-metal atoms publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075415 – volume: 7 start-page: 3859 year: 1973 end-page: 3870 ident: CR2 article-title: Infrared-reflectance spectra of layered group-IV and group-VI transition-metal dichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.7.3859 – volume: 9 start-page: 2857 year: 2013 ident: 762_CR20 publication-title: Small doi: 10.1002/smll.201202876 – volume: 8 start-page: 100 year: 2013 ident: 762_CR38 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.224 – volume: 13 start-page: 3447 year: 2013 ident: 762_CR34 publication-title: Nano Lett. doi: 10.1021/nl3026357 – volume: 5 start-page: 9703 year: 2011 ident: 762_CR10 publication-title: ACS Nano doi: 10.1021/nn203879f – volume: 18 start-page: 193 year: 1969 ident: 762_CR3 publication-title: Adv. Phys. doi: 10.1080/00018736900101307 – volume: 13 start-page: 3626 year: 2013 ident: 762_CR23 publication-title: Nano Lett. doi: 10.1021/nl4014748 – volume: 5 start-page: 1600 year: 2011 ident: 762_CR47 publication-title: ACS Nano doi: 10.1021/nn200010m – volume: 54 start-page: 11169 year: 1996 ident: 762_CR62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 8 start-page: 2951 year: 2014 ident: 762_CR36 publication-title: ACS Nano doi: 10.1021/nn500228r – volume: 97 start-page: 187401 year: 2006 ident: 762_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 84 start-page: 075415 year: 2011 ident: 762_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075415 – volume: 5 start-page: 43 year: 2011 ident: 762_CR27 publication-title: Nano Res. doi: 10.1007/s12274-011-0183-0 – volume: 105 start-page: 136805 year: 2010 ident: 762_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 21 start-page: 1936 year: 1966 ident: 762_CR54 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.21.1936 – volume: 7 start-page: 10985 year: 2013 ident: 762_CR11 publication-title: ACS Nano. doi: 10.1021/nn4046002 – volume: 7 start-page: 494 year: 2012 ident: 762_CR8 publication-title: Nat. Nano. doi: 10.1038/nnano.2012.96 – volume: 8 start-page: 634 year: 2013 ident: 762_CR9 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.151 – volume: 12 start-page: 554 year: 2013 ident: 762_CR35 publication-title: Nat. Mater. doi: 10.1038/nmat3633 – ident: 762_CR55 doi: 10.1002/andp.201400098 – volume: 79 start-page: 205433 year: 2009 ident: 762_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.205433 – ident: 762_CR51 doi: 10.1038/srep01755 – volume: 87 start-page: 035423 year: 2013 ident: 762_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.035423 – volume: 112 start-page: 12602 year: 2008 ident: 762_CR12 publication-title: J. Phys. Chem. C doi: 10.1021/jp806045u – volume: 4 start-page: 1474 year: 2013 ident: 762_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms2498 – volume: 14 start-page: 2019 year: 2014 ident: 762_CR40 publication-title: Nano Lett. doi: 10.1021/nl500171v – volume: 6 start-page: 7381 year: 2012 ident: 762_CR44 publication-title: ACS Nano doi: 10.1021/nn3025173 – volume: 100 start-page: 013106 year: 2012 ident: 762_CR57 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3673907 – volume: 14 start-page: 13035 year: 2012 ident: 762_CR28 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42181j – volume: 6 start-page: 15 year: 1996 ident: 762_CR61 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 23 start-page: 5511 year: 2013 ident: 762_CR37 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300760 – volume: 7 start-page: 3859 year: 1973 ident: 762_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.7.3859 – volume: 7 start-page: 791 year: 2012 ident: 762_CR7 publication-title: ACS Nano doi: 10.1021/nn305275h – volume-title: Nano Res. year: 2014 ident: 762_CR59 – volume: 12 start-page: 207 year: 2013 ident: 762_CR32 publication-title: Nat. Mater. doi: 10.1038/nmat3505 – volume: 4 start-page: 2695 year: 2010 ident: 762_CR42 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 103 start-page: 093102 year: 2013 ident: 762_CR58 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4819337 – volume: 43 start-page: 881 year: 1982 ident: 762_CR4 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(82)90037-3 – volume: 2 start-page: 2301 year: 2008 ident: 762_CR13 publication-title: ACS Nano doi: 10.1021/nn800459e – volume: 13 start-page: 2931 year: 2013 ident: 762_CR22 publication-title: Nano Lett. doi: 10.1021/nl4013166 – volume: 6 start-page: 5449 year: 2012 ident: 762_CR26 publication-title: ACS Nano doi: 10.1021/nn301320r – volume: 88 start-page: 045318 year: 2013 ident: 762_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.045318 – volume: 88 start-page: 121301 year: 2013 ident: 762_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.121301 – volume: 419 start-page: 66 year: 2013 ident: 762_CR29 publication-title: Physica B doi: 10.1016/j.physb.2013.03.029 – volume: 79 start-page: 115402 year: 2009 ident: 762_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.115402 – volume: 87 start-page: 081307 year: 2013 ident: 762_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.081307 – volume: 42 start-page: 11218 year: 1990 ident: 762_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.42.11218 – volume: 9 start-page: 4359 year: 2009 ident: 762_CR60 publication-title: Nano Lett. doi: 10.1021/nl902623y – volume: 85 start-page: 161403 year: 2012 ident: 762_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.161403 – volume: 59 start-page: 1758 year: 1999 ident: 762_CR63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 80 start-page: 045401 year: 2009 ident: 762_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.045401 – volume: 5 start-page: 8760 year: 2011 ident: 762_CR46 publication-title: ACS Nano doi: 10.1021/nn203472f – volume: 88 start-page: 245447 year: 2013 ident: 762_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.245447 – volume: 87 start-page: 155304 year: 2013 ident: 762_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.155304 – volume: 11 start-page: 164 year: 2010 ident: 762_CR45 publication-title: Nano Lett. doi: 10.1021/nl1032827 – volume: 9 start-page: 1974 year: 2013 ident: 762_CR48 publication-title: Small doi: 10.1002/smll.201202919 – volume: 88 start-page: 245403 year: 2013 ident: 762_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.245403 – volume: 10 start-page: 1271 year: 2010 ident: 762_CR6 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 8 start-page: 11320 year: 2014 ident: 762_CR52 publication-title: ACS Nano doi: 10.1021/nn504196n – volume: 340 start-page: 1311 year: 2013 ident: 762_CR39 publication-title: Science doi: 10.1126/science.1235547 – volume: 2 start-page: 131 year: 2014 ident: 762_CR33 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300428 – volume: 5 start-page: 759 year: 2001 ident: 762_CR1 publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/5/7/007 – volume: 106 start-page: 7304 year: 2009 ident: 762_CR14 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0811754106 – volume: 5 start-page: 1012 year: 2011 ident: 762_CR16 publication-title: ACS Nano doi: 10.1021/nn1024175 |
SSID | ssj0062148 |
Score | 2.5863538 |
Snippet | In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice... In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice... |
SourceID | crossref springer chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2562 |
SubjectTerms | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Materials Science Nanotechnology Research Article WS2 偏振拉曼光谱 光调制 单层 应变诱导 电子能带结构 直接带隙 间接跃迁 |
Title | Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2 |
URI | http://lib.cqvip.com/qk/71233X/201508/666900044.html https://link.springer.com/article/10.1007/s12274-015-0762-6 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5Bu8CA-BWlUHlgAkVKrdhJxgr1RyCxlIrCYjm2U5AgLTTsvANvyJNwdpKWSoDE5kQXW_H5_PnTne8ATn2DmBRTq4FIewE31JM0lmh4EZp5qJivXbbPaz4YBZdjNi7vcc-raPfKJel26uVlN4oMCqkv85B7U4-vQ50hdbdxXCPaqbZfTtuuZFZxdwzRq3Jl_tSFTajwMM0mLzjcKjCtekUd2PS2Yas8JZJOodYdWDPZLmx-yx24B_dDV93BQ06N2tGkwKbP9w_rhLZNkshMT-SM5BaOXGQWwTfEBqNj83mqy8pd5NE-Zchx8fhNbod0H0a97s3FwCsLJXgKATfHDQuhjisZ2nxmsTZtpZKIMc10m_JIM5NK5EGBprHGAwxnSvmpDE3EIpNygzZ_ADUc2RwC8dNUUxSIA5UGiUxlikKctXWIv6Ika0BzMWNiViTEEEiBYucaboBfzaFQZY5xOxlPYpkd2apAoAqEVYHgDThbfFL194fweaUYUdra_Hfpo39JN2GDupVhl80x1PLXN3OCB448acF61Ou3oN7p3111W265fQEgVtDT |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHIAD4inGeOTACVSpjZq0PU6IacDYZZuYuERpHgMJusHKnf_AP-SX4KTtxiRA4pZWbqLGdj5bjm2ETn0NmJQQy4FYeSHTxBMkEaB4Mah5JKmvXLXPLmsPwushHZZ53NPqtnsVknQn9TzZjYAHBa4v9cD3Jh5bRitgC8RWlAekWR2_jASuZVaROwboVYUyf5rCFlR4GGejF1huEZgWo6IObFqbaKO0EnGzYOsWWtLZNlr_VjtwB933XHcHD3xq4I7CBTZ9vn_YILQd4lRkaiQmOLdw5G5mYXiD7WV0GD6PVdm5Cz_apwx8XDC_8V2P7KJB67J_0fbKRgmeBMDN4cACqGNSRLaeWaJ0IGUaU6qoCgiLFdVGgB8UKpIoMGAYldI3ItIxjbVhGnR-D9VgZb2PsG-MIkCQhNKEqTDCABGjgYrgV6SgddSY7RifFAUxOLhAiQsN15Ff7SGXZY1xuxlPfF4d2bKAAwu4ZQFndXQ2-6Sa7w_i84oxvNS16e_UB_-iPkGr7f5th3euujcNtEaclFgROkS1_PVNH4HxkafHTti-AKp60Uw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB_MQ5P_Lgk1JsQ5O2j0Md84MhzOHwJaT5mIJ209V3_wf_Q_8SL2m7OVDBt7RcE5q7y91xud8hdOhrsEkJsRyIlRcyTTxBEgGKF4OaR5L6yqF9dli7F172ab_sczqubrtXKcmipsGiNGX5yUiZk2nhG4FoCsJg6kEcTjw2jxZCWwwMAt0jzeooZiRw7bOKOjKwZFVa86cpLLjCwzAbvMDSs0ZqNkPqDE9rFa2UHiNuFixeQ3M6W0fL33AEN9B913V68CC-Bk4pXNipz_cPm5C2Q5yKTA3ECOfWNLlbWhjeYHsxHYbPQ1V28cKP9imDeBdccXzXJZuo1zq_PW17ZdMET4LxzeHwArPHpIgstlmidCBlGlOqqAoIixXVRkBMFCqSKHBmGJXSNyLSMY21YRr0fwvVYGW9jbBvjCJAkITShKkwwgARo4GK4FekoHXUmOwYHxXgGBzCocSlievIr_aQyxJv3G7GE58iJVsWcGABtyzgrI6OJp9U8_1BfFwxhpd6N_6deudf1Ado8easxa8vOlcNtESckFgJ2kW1_PVN74Efkqf7Tta-ALvF1X8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-induced+direct%E2%80%93indirect+bandgap+transition+and+phonon+modulation+in+monolayer+WS2&rft.jtitle=Nano+research&rft.au=Wang%2C+Yanlong&rft.au=Cong%2C+Chunxiao&rft.au=Yang%2C+Weihuang&rft.au=Shang%2C+Jingzhi&rft.date=2015-08-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=8&rft.issue=8&rft.spage=2562&rft.epage=2572&rft_id=info:doi/10.1007%2Fs12274-015-0762-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_015_0762_6 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg |