Deep mutational scanning of SARS-CoV-2 Omicron BA.2.86 and epistatic emergence of the KP.3 variant
Abstract Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated...
Saved in:
Published in | Virus evolution Vol. 10; no. 1; p. veae067 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
UK
Oxford University Press
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants. |
---|---|
AbstractList | Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants. Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants. Abstract Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants. |
Author | Taylor, Ashley L Starr, Tyler N |
Author_xml | – sequence: 1 givenname: Ashley L surname: Taylor fullname: Taylor, Ashley L – sequence: 2 givenname: Tyler N orcidid: 0000-0001-6713-6904 surname: Starr fullname: Starr, Tyler N email: tyler.starr@biochem.utah.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39310091$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtLxDAQhYMoXvfFHyABEUTomjSbNn1c1ysuKK76WrLpVCNtUpN2wX9vyq4iIsLADMN3Bs6ZHbRurAGE9ikZUpKx0wWEkkCSdA1tx4SnEeVpuv5j3kID798IIZSzdETZJtpiGaOEZHQbzc8BGlx3rWy1NbLCXkljtHnBtsSz8cMsmtjnKMZ3tVbOGnw2HsZDkWBpCgyN9r1OYajBvYBR0KvaV8C390OGF9Jpado9tFHKysNg1XfR0-XF4-Q6mt5d3UzG00gxQdtIiJKXCS-ViFUcVkKS-ahgIi2IYopBmWVFaErFwQbwrEiBzZkoGCkIGWWc7aLj5d3G2fcOfJvX2iuoKmnAdj4PlkUwLngc0MNf6JvtXLDfU4lIMi7injpYUd28hiJvnK6l-8i_0gvAyRII0XjvoPxGKMn77-QLyFffCTD5BSu9TL11Uld_S46WEts1_53-BKnonFY |
CitedBy_id | crossref_primary_10_1016_j_cell_2024_09_026 crossref_primary_10_1016_S1473_3099_24_00738_2 crossref_primary_10_1038_s41586_024_08315_x crossref_primary_10_1056_NEJMc2410203 crossref_primary_10_1038_s41421_024_00752_2 crossref_primary_10_1111_imr_13431 |
Cites_doi | 10.1126/science.abd3255 10.1038/s41467-021-21767-3 10.1016/S1473-3099(23)00573-X 10.1186/s12864-016-2533-5 10.1002/pro.2897 10.1371/journal.ppat.1011901 10.1016/j.chom.2020.11.007 10.1371/journal.ppat.1010248 10.1016/j.chom.2024.01.001 10.1016/j.xcrm.2024.101553 10.1016/j.xcrm.2021.100255 10.1038/s41467-022-34506-z 10.1016/j.cell.2022.08.024 10.1126/science.abo7896 10.1016/S1473-3099(23)00744-2 10.1101/2024.07.16.603835 10.1006/jmbi.1999.3130 10.1038/nprot.2007.15 10.1038/s41586-021-04385-3 10.1371/journal.ppat.1011545 10.1126/scitranslmed.abk3445 10.1016/S1473-3099(24)00415-8 10.1126/sciadv.add7221 10.3389/fimmu.2021.710263 10.1038/nmeth.3027 10.1101/2024.04.19.590276 10.7554/eLife.23156 10.1038/s41564-021-00954-4 10.1126/science.abf9302 10.1038/s41586-022-04464-z 10.1016/j.celrep.2021.109627 10.1038/s41586-024-07636-1 10.1021/bi9722397 10.1038/s41586-023-06750-w 10.1038/s41579-022-00841-7 10.1038/s41467-023-43703-3 10.1128/AEM.02427-06 10.21105/joss.01915 10.1371/journal.ppat.1011868 10.1038/s41586-022-05644-7 10.1038/s41559-023-02123-8 10.1093/ve/veac021 10.1371/journal.ppat.1010951 10.1016/j.cell.2020.08.012 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press. 2024 The Author(s) 2024. Published by Oxford University Press. The Author(s) 2024. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. 2024 – notice: The Author(s) 2024. Published by Oxford University Press. – notice: The Author(s) 2024. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1093/ve/veae067 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2057-1577 |
ExternalDocumentID | 39310091 10_1093_ve_veae067 10.1093/ve/veae067 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 5VS AAFWJ AAMVS AAOGV AAPPN AAPXW AAVAP ABEJV ABPTD ABQLI ABXVV ACGFS ADBBV AENZO AFPKN AFULF ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS AVWKF BAYMD BCNDV BTTYL CIDKT EBS ECGQY EJD GROUPED_DOAJ H13 HYE IAO IHR IHW INH INR ISR ITC KQ8 KSI ML0 M~E O9- OAWHX OJQWA OK1 PEELM ROX RPM RXO TOX AAYXX ABGNP CITATION 7X7 8FI 8FJ ABUWG AFKRA BENPR CCPQU FYUFA HMCUK NPM PIMPY UKHRP 3V. 7XB 8FK AZQEC COVID DWQXO K9. PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c381t-88f5f65fc82c2c388a0b4d387d0c3c3ef99dc3ecc2537e59d7e3b38d30d004953 |
IEDL.DBID | 7X7 |
ISSN | 2057-1577 |
IngestDate | Fri Jul 11 10:31:45 EDT 2025 Mon Jun 30 12:21:28 EDT 2025 Thu Apr 03 07:07:11 EDT 2025 Tue Jul 01 01:25:21 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Fri Jan 24 07:51:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | SARS-CoV-2 Omicron epistasis deep mutational scanning |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-88f5f65fc82c2c388a0b4d387d0c3c3ef99dc3ecc2537e59d7e3b38d30d004953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6713-6904 |
OpenAccessLink | https://www.proquest.com/docview/3168695822?pq-origsite=%requestingapplication% |
PMID | 39310091 |
PQID | 3168695822 |
PQPubID | 7089184 |
ParticipantIDs | proquest_miscellaneous_3108393852 proquest_journals_3168695822 pubmed_primary_39310091 crossref_primary_10_1093_ve_veae067 crossref_citationtrail_10_1093_ve_veae067 oup_primary_10_1093_ve_veae067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | UK |
PublicationPlace_xml | – name: UK – name: England – name: Oxford |
PublicationTitle | Virus evolution |
PublicationTitleAlternate | Virus Evol |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Adams (2024092015574122900_R1) 2016; 5 Delignette-Muller (2024092015574122900_R7) 2015; 64 Peterman (2024092015574122900_R27) 2016; 17 Jian (2024092015574122900_R15) 2023; 19 Maher (2024092015574122900_R24) 2022; 14 Cao (2024092015574122900_R2) 2023; 614 Greaney (2024092015574122900_R14) 2021; 29 Liu (2024092015574122900_R22) 2024; 5 Zhang (2024092015574122900_R45) 2021; 12 Gietz (2024092015574122900_R11) 2007; 2 Francino-Urdaniz (2024092015574122900_R10) 2021; 36 Starr (2024092015574122900_R33) 2022; 18 Tamura (2024092015574122900_R37) 2024; 32 Carabelli (2024092015574122900_R4) 2023; 21 Jian (2024092015574122900_R16) 2024 Dadonaite (2024092015574122900_R6) 2024; 631 Greaney (2024092015574122900_R13) 2022; 18 Starr (2024092015574122900_R29) 2021; 371 Kaku (2024092015574122900_R18) 2024; 24 Moulana (2024092015574122900_R25) 2022; 13 Shusta (2024092015574122900_R28) 1999; 292 Starr (2024092015574122900_R30) 2021; 2 Wentz (2024092015574122900_R41) 2007; 73 Zahradník (2024092015574122900_R44) 2021; 6 Ellis (2024092015574122900_R8) 2021; 12 Ma (2024092015574122900_R23) 2023; 7 Starr (2024092015574122900_R35) 2022; 603 Khan (2024092015574122900_R19) 2023; 14 Taft (2024092015574122900_R36) 2022; 185 Crawford (2024092015574122900_R5) 2019; 4 Taylor (2024092015574122900_R38) 2023; 19 Yang (2024092015574122900_R43) 2024; 24 Kaku (2024092015574122900_R17) 2024 Wang (2024092015574122900_R40) 2023; 624 Toelzer (2024092015574122900_R39) 2020; 370 Greaney (2024092015574122900_R12) 2022; 8 Kowalski (2024092015574122900_R20) 1998; 37 Starr (2024092015574122900_R34) 2016; 25 Cao (2024092015574122900_R3) 2022; 602 Yang (2024092015574122900_R42) 2023; 23 Kugathasan (2024092015574122900_R21) 2023; 19 Fowler (2024092015574122900_R9) 2014; 11 Ouyang (2024092015574122900_R26) 2022; 8 Starr (2024092015574122900_R32) 2020; 182 Starr (2024092015574122900_R31) 2022; 377 |
References_xml | – volume: 370 start-page: 725 year: 2020 ident: 2024092015574122900_R39 article-title: Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein publication-title: Science doi: 10.1126/science.abd3255 – volume: 12 year: 2021 ident: 2024092015574122900_R45 article-title: Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2 evolution publication-title: Nat Commun doi: 10.1038/s41467-021-21767-3 – volume: 23 start-page: e457 year: 2023 ident: 2024092015574122900_R42 article-title: Antigenicity and infectivity characterisation of SARS-CoV-2 BA.2.86 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(23)00573-X – volume: 17 year: 2016 ident: 2024092015574122900_R27 article-title: Sort-seq under the hood: implications of design choices on large-scale characterization of sequence-function relations publication-title: BMC Genomics doi: 10.1186/s12864-016-2533-5 – volume: 25 start-page: 1204 year: 2016 ident: 2024092015574122900_R34 article-title: Epistasis in protein evolution publication-title: Protein Sci doi: 10.1002/pro.2897 – volume: 19 year: 2023 ident: 2024092015574122900_R38 article-title: Deep mutational scans of XBB.1.5 and BQ.1.1 reveal ongoing epistatic drift during SARS-CoV-2 evolution publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1011901 – volume: 29 start-page: 44 year: 2021 ident: 2024092015574122900_R14 article-title: Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.007 – volume: 18 year: 2022 ident: 2024092015574122900_R13 article-title: A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1010248 – volume: 32 start-page: 170 year: 2024 ident: 2024092015574122900_R37 article-title: Virological characteristics of the SARS-CoV-2 BA.2.86 variant publication-title: Cell Host Microbe doi: 10.1016/j.chom.2024.01.001 – volume: 5 year: 2024 ident: 2024092015574122900_R22 article-title: A structure-function analysis shows SARS-CoV-2 BA.2.86 balances antibody escape and ACE2 affinity publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2024.101553 – volume: 2 year: 2021 ident: 2024092015574122900_R30 article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2021.100255 – volume: 13 year: 2022 ident: 2024092015574122900_R25 article-title: Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1ʹ publication-title: Nat Commun doi: 10.1038/s41467-022-34506-z – volume: 185 start-page: 4008 year: 2022 ident: 2024092015574122900_R36 article-title: Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain publication-title: Cell doi: 10.1016/j.cell.2022.08.024 – volume: 377 start-page: 420 year: 2022 ident: 2024092015574122900_R31 article-title: Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution publication-title: Science doi: 10.1126/science.abo7896 – volume: 64 start-page: 1 year: 2015 ident: 2024092015574122900_R7 article-title: fitdistrplus: an R Package for fitting distributions publication-title: J Stat Softw Articles – volume: 24 start-page: e70 year: 2024 ident: 2024092015574122900_R43 article-title: Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(23)00744-2 – year: 2024 ident: 2024092015574122900_R17 article-title: Virological characteristics of the SARS-CoV-2 KP.3.1.1 variant publication-title: bioRxiv doi: 10.1101/2024.07.16.603835 – volume: 292 start-page: 949 year: 1999 ident: 2024092015574122900_R28 article-title: Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3130 – volume: 2 start-page: 38 year: 2007 ident: 2024092015574122900_R11 article-title: Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method publication-title: Nat Protoc doi: 10.1038/nprot.2007.15 – volume: 602 start-page: 657 year: 2022 ident: 2024092015574122900_R3 article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies publication-title: Nature doi: 10.1038/s41586-021-04385-3 – volume: 19 year: 2023 ident: 2024092015574122900_R21 article-title: Deep mutagenesis scanning using whole trimeric SARS-CoV-2 spike highlights the importance of NTD-RBD interactions in determining spike phenotype publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1011545 – volume: 14 year: 2022 ident: 2024092015574122900_R24 article-title: Predicting the mutational drivers of future SARS-CoV-2 variants of concern publication-title: Sci Trans Med doi: 10.1126/scitranslmed.abk3445 – volume: 24 start-page: e482 year: 2024 ident: 2024092015574122900_R18 article-title: Virological characteristics of the SARS-CoV-2 KP.3, LB.1, and KP.2.3 variants publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(24)00415-8 – volume: 8 year: 2022 ident: 2024092015574122900_R26 article-title: Probing the biophysical constraints of SARS-CoV-2 spike N-terminal domain using deep mutational scanning publication-title: Sci Adv doi: 10.1126/sciadv.add7221 – volume: 12 year: 2021 ident: 2024092015574122900_R8 article-title: Stabilization of the SARS-CoV-2 spike receptor-binding domain using deep mutational scanning and structure-based design publication-title: Front Immunol doi: 10.3389/fimmu.2021.710263 – volume: 11 start-page: 801 year: 2014 ident: 2024092015574122900_R9 article-title: Deep mutational scanning: a new style of protein science publication-title: Nat Methods doi: 10.1038/nmeth.3027 – year: 2024 ident: 2024092015574122900_R16 article-title: Evolving antibody response to SARS-CoV-2 antigenic shift from XBB to JN.1 publication-title: bioRxiv doi: 10.1101/2024.04.19.590276 – volume: 5 year: 2016 ident: 2024092015574122900_R1 article-title: Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves publication-title: eLife doi: 10.7554/eLife.23156 – volume: 6 start-page: 1188 year: 2021 ident: 2024092015574122900_R44 article-title: SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution publication-title: Nat Microbiol doi: 10.1038/s41564-021-00954-4 – volume: 371 start-page: 850 year: 2021 ident: 2024092015574122900_R29 article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19ʹ publication-title: Science doi: 10.1126/science.abf9302 – volume: 603 start-page: 913 year: 2022 ident: 2024092015574122900_R35 article-title: ACE2 binding is an ancestral and evolvable trait of sarbecoviruses publication-title: Nature doi: 10.1038/s41586-022-04464-z – volume: 36 year: 2021 ident: 2024092015574122900_R10 article-title: One-shot identification of SARS-CoV-2 S RBD escape mutants using yeast screening publication-title: Cell Rep doi: 10.1016/j.celrep.2021.109627 – volume: 631 start-page: 617 year: 2024 ident: 2024092015574122900_R6 article-title: Spike deep mutational scanning helps predict success of SARS-CoV-2 clades publication-title: Nature doi: 10.1038/s41586-024-07636-1 – volume: 37 start-page: 1264 year: 1998 ident: 2024092015574122900_R20 article-title: Secretion efficiency in Saccharomyces cerevisiae of bovine pancreatic trypsin inhibitor mutants lacking disulfide bonds is correlated with thermodynamic stability publication-title: Biochemistry doi: 10.1021/bi9722397 – volume: 624 start-page: 639 year: 2023 ident: 2024092015574122900_R40 article-title: Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike publication-title: Nature doi: 10.1038/s41586-023-06750-w – volume: 21 start-page: 162 year: 2023 ident: 2024092015574122900_R4 article-title: SARS-CoV-2 variant biology: immune escape, transmission and fitness publication-title: Nat Rev Microbiol doi: 10.1038/s41579-022-00841-7 – volume: 14 year: 2023 ident: 2024092015574122900_R19 article-title: Evolution and neutralization escape of the SARS-CoV-2 BA.2.86 subvariant publication-title: Nat Commun doi: 10.1038/s41467-023-43703-3 – volume: 73 start-page: 1189 year: 2007 ident: 2024092015574122900_R41 article-title: A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02427-06 – volume: 4 year: 2019 ident: 2024092015574122900_R5 article-title: alignparse: A Python package for parsing complex features from high-throughput long-read sequencing publication-title: J Open Source Softw doi: 10.21105/joss.01915 – volume: 19 year: 2023 ident: 2024092015574122900_R15 article-title: Convergent evolution of SARS-CoV-2 XBB lineages on receptor-binding domain 455-456 synergistically enhances antibody evasion and ACE2 binding publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1011868 – volume: 614 start-page: 521 year: 2023 ident: 2024092015574122900_R2 article-title: Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution publication-title: Nature doi: 10.1038/s41586-022-05644-7 – volume: 7 start-page: 1457 year: 2023 ident: 2024092015574122900_R23 article-title: Immune evasion and ACE2 binding affinity contribute to SARS-CoV-2 evolution publication-title: Nat Ecol Evol doi: 10.1038/s41559-023-02123-8 – volume: 8 year: 2022 ident: 2024092015574122900_R12 article-title: An antibody-escape estimator for mutations to the SARS-CoV-2 receptor-binding domain publication-title: Virus Evol doi: 10.1093/ve/veac021 – volume: 18 year: 2022 ident: 2024092015574122900_R33 article-title: Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1010951 – volume: 182 start-page: 1295 year: 2020 ident: 2024092015574122900_R32 article-title: Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 Binding publication-title: Cell doi: 10.1016/j.cell.2020.08.012 |
SSID | ssj0001537413 |
Score | 2.3437817 |
Snippet | Abstract
Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational... Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | veae067 |
SubjectTerms | Mutation Severe acute respiratory syndrome coronavirus 2 |
Title | Deep mutational scanning of SARS-CoV-2 Omicron BA.2.86 and epistatic emergence of the KP.3 variant |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39310091 https://www.proquest.com/docview/3168695822 https://www.proquest.com/docview/3108393852 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5eEHwR707niOiLD5lb0rTJk2xeEMUL3thbya1Prp1uE_z3nrTZhihCaSE9TeHkcr5zkpwPoSPrtKAqkgSwhSJRrCzREUyGVCexio10ivvzzrd38dVLdN3jvRBwG4ZtlZM5sZyobWF8jPzEEyzFkoM9Ox28E88a5VdXA4XGPFr0qct8r056ySzGwhkYTDbJSirZyaeDS7lWSSs_s0M_zrb9gpilqblcRSsBI-JO1ahraM7l62ipYo382kD63LkB7o9HIY6Hh6YiHsJFhp86j0_krHglFN_3_Wa7HHc7TdoUMVa5xW7g8SLUi104d-n8V4AC8c1Dk-FPcJ1B15vo5fLi-eyKBKoEYsDkjogQGc9ivx-LGgpFQrV0ZJlIbMsww1wmpYWHMRRU4ri0iWOaCcta1vsInG2hhbzI3Q7CQnCdUOXJa1Sk2lrFmZUZTGzUCgPeUg0dTxSXmpBH3NNZvKXVejaDMZgGJdfQ4VR2UGXP-FOqAfr_V6A-aZo0DLFhOusQNXQwfQ2Dw694qNwVYy8DCFMywUFmu2rS6W-gvA0As737f-V7aJkCjqmiLnW0MPoYu33AISPdKDtbAy12L-4eHhulNw_35_veN8OX37s |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRQguqLzTlmIEHDg43dj7sA8IhZYqJW1B9KHcFr_2RHdTkrTqn-pvZCa7mwiBequ00kresVfyjGc-P8YfwDsfrBIm1hyxheFxajy3MTpDYbPUpE4Hk1C-8-FROjiNv46S0QrctLkwdKyy9YlzR-0rR2vk20SwlOoE49mn8QUn1ijaXW0pNGqzGIbrK5yyTT7u76J-3wux9-VkZ8AbVgHuMDpNuVJFUqR0dEk4gUXKRDb2UmU-ctLJUGjt8eWcSGQWEu2zIK1UXkae4DSxRKDLv4eBN6LJXjbKlms6WAODQnsLqpbblwEfE6I5jf0y7v2VS_cPpJ2Htr01eNRgUtavjegxrITyCdyvWSqvn4LdDWHMzmfTZt2QTVxNdMSqgh33fxzzneqMC_btnA73lexzvyu6KmWm9CyMCZ9iuyw0eZ6BaiHqZMPvXckucaqOun0Gp3fSic9htazK8BKYUonNhCGyHBObnjVp4XWBjlR45XB21oEPbcflrrm3nOgzfuX1_rnEMZ83ndyBtwvZcX1bx3-ltrD_bxXYbFWTN0N6ki8NsANvFp9xMNIOiylDNSMZRLRaqgRlXtQqXfwGy3sIaHvrtzf-Gh4MTg4P8oP9o-EGPBSIoeoVn01Ynf6ehVeIgaZ2a254DH7etaX_ARHGGUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+mutational+scanning+of+SARS-CoV-2+Omicron+BA.2.86+and+epistatic+emergence+of+the+KP.3+variant&rft.jtitle=Virus+evolution&rft.au=Taylor%2C+Ashley+L&rft.au=Starr%2C+Tyler+N&rft.date=2024&rft.pub=Oxford+University+Press&rft.eissn=2057-1577&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1093%2Fve%2Fveae067&rft.externalDocID=10.1093%2Fve%2Fveae067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-1577&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-1577&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-1577&client=summon |