Deep mutational scanning of SARS-CoV-2 Omicron BA.2.86 and epistatic emergence of the KP.3 variant

Abstract Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated...

Full description

Saved in:
Bibliographic Details
Published inVirus evolution Vol. 10; no. 1; p. veae067
Main Authors Taylor, Ashley L, Starr, Tyler N
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.
AbstractList Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.
Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.
Abstract Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.
Author Taylor, Ashley L
Starr, Tyler N
Author_xml – sequence: 1
  givenname: Ashley L
  surname: Taylor
  fullname: Taylor, Ashley L
– sequence: 2
  givenname: Tyler N
  orcidid: 0000-0001-6713-6904
  surname: Starr
  fullname: Starr, Tyler N
  email: tyler.starr@biochem.utah.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39310091$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtLxDAQhYMoXvfFHyABEUTomjSbNn1c1ysuKK76WrLpVCNtUpN2wX9vyq4iIsLADMN3Bs6ZHbRurAGE9ikZUpKx0wWEkkCSdA1tx4SnEeVpuv5j3kID798IIZSzdETZJtpiGaOEZHQbzc8BGlx3rWy1NbLCXkljtHnBtsSz8cMsmtjnKMZ3tVbOGnw2HsZDkWBpCgyN9r1OYajBvYBR0KvaV8C390OGF9Jpado9tFHKysNg1XfR0-XF4-Q6mt5d3UzG00gxQdtIiJKXCS-ViFUcVkKS-ahgIi2IYopBmWVFaErFwQbwrEiBzZkoGCkIGWWc7aLj5d3G2fcOfJvX2iuoKmnAdj4PlkUwLngc0MNf6JvtXLDfU4lIMi7injpYUd28hiJvnK6l-8i_0gvAyRII0XjvoPxGKMn77-QLyFffCTD5BSu9TL11Uld_S46WEts1_53-BKnonFY
CitedBy_id crossref_primary_10_1016_j_cell_2024_09_026
crossref_primary_10_1016_S1473_3099_24_00738_2
crossref_primary_10_1038_s41586_024_08315_x
crossref_primary_10_1056_NEJMc2410203
crossref_primary_10_1038_s41421_024_00752_2
crossref_primary_10_1111_imr_13431
Cites_doi 10.1126/science.abd3255
10.1038/s41467-021-21767-3
10.1016/S1473-3099(23)00573-X
10.1186/s12864-016-2533-5
10.1002/pro.2897
10.1371/journal.ppat.1011901
10.1016/j.chom.2020.11.007
10.1371/journal.ppat.1010248
10.1016/j.chom.2024.01.001
10.1016/j.xcrm.2024.101553
10.1016/j.xcrm.2021.100255
10.1038/s41467-022-34506-z
10.1016/j.cell.2022.08.024
10.1126/science.abo7896
10.1016/S1473-3099(23)00744-2
10.1101/2024.07.16.603835
10.1006/jmbi.1999.3130
10.1038/nprot.2007.15
10.1038/s41586-021-04385-3
10.1371/journal.ppat.1011545
10.1126/scitranslmed.abk3445
10.1016/S1473-3099(24)00415-8
10.1126/sciadv.add7221
10.3389/fimmu.2021.710263
10.1038/nmeth.3027
10.1101/2024.04.19.590276
10.7554/eLife.23156
10.1038/s41564-021-00954-4
10.1126/science.abf9302
10.1038/s41586-022-04464-z
10.1016/j.celrep.2021.109627
10.1038/s41586-024-07636-1
10.1021/bi9722397
10.1038/s41586-023-06750-w
10.1038/s41579-022-00841-7
10.1038/s41467-023-43703-3
10.1128/AEM.02427-06
10.21105/joss.01915
10.1371/journal.ppat.1011868
10.1038/s41586-022-05644-7
10.1038/s41559-023-02123-8
10.1093/ve/veac021
10.1371/journal.ppat.1010951
10.1016/j.cell.2020.08.012
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
The Author(s) 2024. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
– notice: The Author(s) 2024. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1093/ve/veae067
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2057-1577
ExternalDocumentID 39310091
10_1093_ve_veae067
10.1093/ve/veae067
Genre Journal Article
GroupedDBID 0R~
53G
5VS
AAFWJ
AAMVS
AAOGV
AAPPN
AAPXW
AAVAP
ABEJV
ABPTD
ABQLI
ABXVV
ACGFS
ADBBV
AENZO
AFPKN
AFULF
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
AVWKF
BAYMD
BCNDV
BTTYL
CIDKT
EBS
ECGQY
EJD
GROUPED_DOAJ
H13
HYE
IAO
IHR
IHW
INH
INR
ISR
ITC
KQ8
KSI
ML0
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
ROX
RPM
RXO
TOX
AAYXX
ABGNP
CITATION
7X7
8FI
8FJ
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
HMCUK
NPM
PIMPY
UKHRP
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c381t-88f5f65fc82c2c388a0b4d387d0c3c3ef99dc3ecc2537e59d7e3b38d30d004953
IEDL.DBID 7X7
ISSN 2057-1577
IngestDate Fri Jul 11 10:31:45 EDT 2025
Mon Jun 30 12:21:28 EDT 2025
Thu Apr 03 07:07:11 EDT 2025
Tue Jul 01 01:25:21 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
Fri Jan 24 07:51:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SARS-CoV-2
Omicron
epistasis
deep mutational scanning
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-88f5f65fc82c2c388a0b4d387d0c3c3ef99dc3ecc2537e59d7e3b38d30d004953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6713-6904
OpenAccessLink https://www.proquest.com/docview/3168695822?pq-origsite=%requestingapplication%
PMID 39310091
PQID 3168695822
PQPubID 7089184
ParticipantIDs proquest_miscellaneous_3108393852
proquest_journals_3168695822
pubmed_primary_39310091
crossref_primary_10_1093_ve_veae067
crossref_citationtrail_10_1093_ve_veae067
oup_primary_10_1093_ve_veae067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
– name: Oxford
PublicationTitle Virus evolution
PublicationTitleAlternate Virus Evol
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Adams (2024092015574122900_R1) 2016; 5
Delignette-Muller (2024092015574122900_R7) 2015; 64
Peterman (2024092015574122900_R27) 2016; 17
Jian (2024092015574122900_R15) 2023; 19
Maher (2024092015574122900_R24) 2022; 14
Cao (2024092015574122900_R2) 2023; 614
Greaney (2024092015574122900_R14) 2021; 29
Liu (2024092015574122900_R22) 2024; 5
Zhang (2024092015574122900_R45) 2021; 12
Gietz (2024092015574122900_R11) 2007; 2
Francino-Urdaniz (2024092015574122900_R10) 2021; 36
Starr (2024092015574122900_R33) 2022; 18
Tamura (2024092015574122900_R37) 2024; 32
Carabelli (2024092015574122900_R4) 2023; 21
Jian (2024092015574122900_R16) 2024
Dadonaite (2024092015574122900_R6) 2024; 631
Greaney (2024092015574122900_R13) 2022; 18
Starr (2024092015574122900_R29) 2021; 371
Kaku (2024092015574122900_R18) 2024; 24
Moulana (2024092015574122900_R25) 2022; 13
Shusta (2024092015574122900_R28) 1999; 292
Starr (2024092015574122900_R30) 2021; 2
Wentz (2024092015574122900_R41) 2007; 73
Zahradník (2024092015574122900_R44) 2021; 6
Ellis (2024092015574122900_R8) 2021; 12
Ma (2024092015574122900_R23) 2023; 7
Starr (2024092015574122900_R35) 2022; 603
Khan (2024092015574122900_R19) 2023; 14
Taft (2024092015574122900_R36) 2022; 185
Crawford (2024092015574122900_R5) 2019; 4
Taylor (2024092015574122900_R38) 2023; 19
Yang (2024092015574122900_R43) 2024; 24
Kaku (2024092015574122900_R17) 2024
Wang (2024092015574122900_R40) 2023; 624
Toelzer (2024092015574122900_R39) 2020; 370
Greaney (2024092015574122900_R12) 2022; 8
Kowalski (2024092015574122900_R20) 1998; 37
Starr (2024092015574122900_R34) 2016; 25
Cao (2024092015574122900_R3) 2022; 602
Yang (2024092015574122900_R42) 2023; 23
Kugathasan (2024092015574122900_R21) 2023; 19
Fowler (2024092015574122900_R9) 2014; 11
Ouyang (2024092015574122900_R26) 2022; 8
Starr (2024092015574122900_R32) 2020; 182
Starr (2024092015574122900_R31) 2022; 377
References_xml – volume: 370
  start-page: 725
  year: 2020
  ident: 2024092015574122900_R39
  article-title: Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein
  publication-title: Science
  doi: 10.1126/science.abd3255
– volume: 12
  year: 2021
  ident: 2024092015574122900_R45
  article-title: Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2 evolution
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21767-3
– volume: 23
  start-page: e457
  year: 2023
  ident: 2024092015574122900_R42
  article-title: Antigenicity and infectivity characterisation of SARS-CoV-2 BA.2.86
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(23)00573-X
– volume: 17
  year: 2016
  ident: 2024092015574122900_R27
  article-title: Sort-seq under the hood: implications of design choices on large-scale characterization of sequence-function relations
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-2533-5
– volume: 25
  start-page: 1204
  year: 2016
  ident: 2024092015574122900_R34
  article-title: Epistasis in protein evolution
  publication-title: Protein Sci
  doi: 10.1002/pro.2897
– volume: 19
  year: 2023
  ident: 2024092015574122900_R38
  article-title: Deep mutational scans of XBB.1.5 and BQ.1.1 reveal ongoing epistatic drift during SARS-CoV-2 evolution
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1011901
– volume: 29
  start-page: 44
  year: 2021
  ident: 2024092015574122900_R14
  article-title: Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.007
– volume: 18
  year: 2022
  ident: 2024092015574122900_R13
  article-title: A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1010248
– volume: 32
  start-page: 170
  year: 2024
  ident: 2024092015574122900_R37
  article-title: Virological characteristics of the SARS-CoV-2 BA.2.86 variant
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2024.01.001
– volume: 5
  year: 2024
  ident: 2024092015574122900_R22
  article-title: A structure-function analysis shows SARS-CoV-2 BA.2.86 balances antibody escape and ACE2 affinity
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2024.101553
– volume: 2
  year: 2021
  ident: 2024092015574122900_R30
  article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2021.100255
– volume: 13
  year: 2022
  ident: 2024092015574122900_R25
  article-title: Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1ʹ
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34506-z
– volume: 185
  start-page: 4008
  year: 2022
  ident: 2024092015574122900_R36
  article-title: Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain
  publication-title: Cell
  doi: 10.1016/j.cell.2022.08.024
– volume: 377
  start-page: 420
  year: 2022
  ident: 2024092015574122900_R31
  article-title: Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution
  publication-title: Science
  doi: 10.1126/science.abo7896
– volume: 64
  start-page: 1
  year: 2015
  ident: 2024092015574122900_R7
  article-title: fitdistrplus: an R Package for fitting distributions
  publication-title: J Stat Softw Articles
– volume: 24
  start-page: e70
  year: 2024
  ident: 2024092015574122900_R43
  article-title: Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(23)00744-2
– year: 2024
  ident: 2024092015574122900_R17
  article-title: Virological characteristics of the SARS-CoV-2 KP.3.1.1 variant
  publication-title: bioRxiv
  doi: 10.1101/2024.07.16.603835
– volume: 292
  start-page: 949
  year: 1999
  ident: 2024092015574122900_R28
  article-title: Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3130
– volume: 2
  start-page: 38
  year: 2007
  ident: 2024092015574122900_R11
  article-title: Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.15
– volume: 602
  start-page: 657
  year: 2022
  ident: 2024092015574122900_R3
  article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies
  publication-title: Nature
  doi: 10.1038/s41586-021-04385-3
– volume: 19
  year: 2023
  ident: 2024092015574122900_R21
  article-title: Deep mutagenesis scanning using whole trimeric SARS-CoV-2 spike highlights the importance of NTD-RBD interactions in determining spike phenotype
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1011545
– volume: 14
  year: 2022
  ident: 2024092015574122900_R24
  article-title: Predicting the mutational drivers of future SARS-CoV-2 variants of concern
  publication-title: Sci Trans Med
  doi: 10.1126/scitranslmed.abk3445
– volume: 24
  start-page: e482
  year: 2024
  ident: 2024092015574122900_R18
  article-title: Virological characteristics of the SARS-CoV-2 KP.3, LB.1, and KP.2.3 variants
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(24)00415-8
– volume: 8
  year: 2022
  ident: 2024092015574122900_R26
  article-title: Probing the biophysical constraints of SARS-CoV-2 spike N-terminal domain using deep mutational scanning
  publication-title: Sci Adv
  doi: 10.1126/sciadv.add7221
– volume: 12
  year: 2021
  ident: 2024092015574122900_R8
  article-title: Stabilization of the SARS-CoV-2 spike receptor-binding domain using deep mutational scanning and structure-based design
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.710263
– volume: 11
  start-page: 801
  year: 2014
  ident: 2024092015574122900_R9
  article-title: Deep mutational scanning: a new style of protein science
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3027
– year: 2024
  ident: 2024092015574122900_R16
  article-title: Evolving antibody response to SARS-CoV-2 antigenic shift from XBB to JN.1
  publication-title: bioRxiv
  doi: 10.1101/2024.04.19.590276
– volume: 5
  year: 2016
  ident: 2024092015574122900_R1
  article-title: Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves
  publication-title: eLife
  doi: 10.7554/eLife.23156
– volume: 6
  start-page: 1188
  year: 2021
  ident: 2024092015574122900_R44
  article-title: SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-021-00954-4
– volume: 371
  start-page: 850
  year: 2021
  ident: 2024092015574122900_R29
  article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19ʹ
  publication-title: Science
  doi: 10.1126/science.abf9302
– volume: 603
  start-page: 913
  year: 2022
  ident: 2024092015574122900_R35
  article-title: ACE2 binding is an ancestral and evolvable trait of sarbecoviruses
  publication-title: Nature
  doi: 10.1038/s41586-022-04464-z
– volume: 36
  year: 2021
  ident: 2024092015574122900_R10
  article-title: One-shot identification of SARS-CoV-2 S RBD escape mutants using yeast screening
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.109627
– volume: 631
  start-page: 617
  year: 2024
  ident: 2024092015574122900_R6
  article-title: Spike deep mutational scanning helps predict success of SARS-CoV-2 clades
  publication-title: Nature
  doi: 10.1038/s41586-024-07636-1
– volume: 37
  start-page: 1264
  year: 1998
  ident: 2024092015574122900_R20
  article-title: Secretion efficiency in Saccharomyces cerevisiae of bovine pancreatic trypsin inhibitor mutants lacking disulfide bonds is correlated with thermodynamic stability
  publication-title: Biochemistry
  doi: 10.1021/bi9722397
– volume: 624
  start-page: 639
  year: 2023
  ident: 2024092015574122900_R40
  article-title: Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike
  publication-title: Nature
  doi: 10.1038/s41586-023-06750-w
– volume: 21
  start-page: 162
  year: 2023
  ident: 2024092015574122900_R4
  article-title: SARS-CoV-2 variant biology: immune escape, transmission and fitness
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-022-00841-7
– volume: 14
  year: 2023
  ident: 2024092015574122900_R19
  article-title: Evolution and neutralization escape of the SARS-CoV-2 BA.2.86 subvariant
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-43703-3
– volume: 73
  start-page: 1189
  year: 2007
  ident: 2024092015574122900_R41
  article-title: A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02427-06
– volume: 4
  year: 2019
  ident: 2024092015574122900_R5
  article-title: alignparse: A Python package for parsing complex features from high-throughput long-read sequencing
  publication-title: J Open Source Softw
  doi: 10.21105/joss.01915
– volume: 19
  year: 2023
  ident: 2024092015574122900_R15
  article-title: Convergent evolution of SARS-CoV-2 XBB lineages on receptor-binding domain 455-456 synergistically enhances antibody evasion and ACE2 binding
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1011868
– volume: 614
  start-page: 521
  year: 2023
  ident: 2024092015574122900_R2
  article-title: Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution
  publication-title: Nature
  doi: 10.1038/s41586-022-05644-7
– volume: 7
  start-page: 1457
  year: 2023
  ident: 2024092015574122900_R23
  article-title: Immune evasion and ACE2 binding affinity contribute to SARS-CoV-2 evolution
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-023-02123-8
– volume: 8
  year: 2022
  ident: 2024092015574122900_R12
  article-title: An antibody-escape estimator for mutations to the SARS-CoV-2 receptor-binding domain
  publication-title: Virus Evol
  doi: 10.1093/ve/veac021
– volume: 18
  year: 2022
  ident: 2024092015574122900_R33
  article-title: Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1010951
– volume: 182
  start-page: 1295
  year: 2020
  ident: 2024092015574122900_R32
  article-title: Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 Binding
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.012
SSID ssj0001537413
Score 2.3437817
Snippet Abstract Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational...
Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage veae067
SubjectTerms Mutation
Severe acute respiratory syndrome coronavirus 2
Title Deep mutational scanning of SARS-CoV-2 Omicron BA.2.86 and epistatic emergence of the KP.3 variant
URI https://www.ncbi.nlm.nih.gov/pubmed/39310091
https://www.proquest.com/docview/3168695822
https://www.proquest.com/docview/3108393852
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5eEHwR707niOiLD5lb0rTJk2xeEMUL3thbya1Prp1uE_z3nrTZhihCaSE9TeHkcr5zkpwPoSPrtKAqkgSwhSJRrCzREUyGVCexio10ivvzzrd38dVLdN3jvRBwG4ZtlZM5sZyobWF8jPzEEyzFkoM9Ox28E88a5VdXA4XGPFr0qct8r056ySzGwhkYTDbJSirZyaeDS7lWSSs_s0M_zrb9gpilqblcRSsBI-JO1ahraM7l62ipYo382kD63LkB7o9HIY6Hh6YiHsJFhp86j0_krHglFN_3_Wa7HHc7TdoUMVa5xW7g8SLUi104d-n8V4AC8c1Dk-FPcJ1B15vo5fLi-eyKBKoEYsDkjogQGc9ivx-LGgpFQrV0ZJlIbMsww1wmpYWHMRRU4ri0iWOaCcta1vsInG2hhbzI3Q7CQnCdUOXJa1Sk2lrFmZUZTGzUCgPeUg0dTxSXmpBH3NNZvKXVejaDMZgGJdfQ4VR2UGXP-FOqAfr_V6A-aZo0DLFhOusQNXQwfQ2Dw694qNwVYy8DCFMywUFmu2rS6W-gvA0As737f-V7aJkCjqmiLnW0MPoYu33AISPdKDtbAy12L-4eHhulNw_35_veN8OX37s
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRQguqLzTlmIEHDg43dj7sA8IhZYqJW1B9KHcFr_2RHdTkrTqn-pvZCa7mwiBequ00kresVfyjGc-P8YfwDsfrBIm1hyxheFxajy3MTpDYbPUpE4Hk1C-8-FROjiNv46S0QrctLkwdKyy9YlzR-0rR2vk20SwlOoE49mn8QUn1ijaXW0pNGqzGIbrK5yyTT7u76J-3wux9-VkZ8AbVgHuMDpNuVJFUqR0dEk4gUXKRDb2UmU-ctLJUGjt8eWcSGQWEu2zIK1UXkae4DSxRKDLv4eBN6LJXjbKlms6WAODQnsLqpbblwEfE6I5jf0y7v2VS_cPpJ2Htr01eNRgUtavjegxrITyCdyvWSqvn4LdDWHMzmfTZt2QTVxNdMSqgh33fxzzneqMC_btnA73lexzvyu6KmWm9CyMCZ9iuyw0eZ6BaiHqZMPvXckucaqOun0Gp3fSic9htazK8BKYUonNhCGyHBObnjVp4XWBjlR45XB21oEPbcflrrm3nOgzfuX1_rnEMZ83ndyBtwvZcX1bx3-ltrD_bxXYbFWTN0N6ki8NsANvFp9xMNIOiylDNSMZRLRaqgRlXtQqXfwGy3sIaHvrtzf-Gh4MTg4P8oP9o-EGPBSIoeoVn01Ynf6ehVeIgaZ2a254DH7etaX_ARHGGUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+mutational+scanning+of+SARS-CoV-2+Omicron+BA.2.86+and+epistatic+emergence+of+the+KP.3+variant&rft.jtitle=Virus+evolution&rft.au=Taylor%2C+Ashley+L&rft.au=Starr%2C+Tyler+N&rft.date=2024&rft.pub=Oxford+University+Press&rft.eissn=2057-1577&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1093%2Fve%2Fveae067&rft.externalDocID=10.1093%2Fve%2Fveae067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-1577&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-1577&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-1577&client=summon