A critical comparison between XRD and FIB residual stress measurement techniques in thin films
Residual stress has a significant effect on the performance of thin films, in terms of adhesion, hardness, wear and fatigue resistance. Thus, when assessing innovative coatings or new deposition technologies, it is important to perform residual stress evaluation by means of a suitable and reliable t...
Saved in:
Published in | Thin solid films Vol. 572; pp. 224 - 231 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0040-6090 1879-2731 |
DOI | 10.1016/j.tsf.2014.09.053 |
Cover
Loading…
Abstract | Residual stress has a significant effect on the performance of thin films, in terms of adhesion, hardness, wear and fatigue resistance. Thus, when assessing innovative coatings or new deposition technologies, it is important to perform residual stress evaluation by means of a suitable and reliable technique.
X-ray diffraction (XRD) is one of the commonly used techniques, because it is non-destructive, surface sensitive and phase selective. However, it is subject to certain limitations: X-ray diffraction allows stress evaluation (i.e. its indirect deduction from the measured diffraction profile) only in case of crystalline materials, and the results may be subject to aberrations in the presence of texture or stress gradients often occurring in thin films.
Recently, a new class of methods for residual stress evaluation has been proposed, based on incremental focused ion beam (fib) milling, combined with high-resolution in situ scanning electron microscopy (SEM) imaging and full field strain analysis by digital image correlation (DIC).
The aim of the present paper is to explore in some detail the significance of the stress values obtained for the same coating by X-ray diffraction and focused ion beam milling, and to demonstrate that the analysis of residual stress depth gradients is possible by using FIB-DIC techniques. Finally, a comparative assessment of the weaknesses and strengths of the two techniques will be carried out. For this purpose, a chromium nitride highly textured thin film sample was chosen. The residual stress state evaluation by the two methods was carried out for the coating deposited by the cathodic arc evaporation (CAE-PVD) technique.
Although many significant differences were identified between the X-ray diffraction and focused ion beam milling methods, careful consideration of the gauge volumes and weighting demonstrated that satisfactory agreement was obtained. The analysis highlighted the importance of the issues related to (a) probe-to-sample interaction volume (gauge volume), (b) film texture, and (c) the elastic anisotropy. All these factors must be taken into account in order to enable valid comparisons to be drawn.
•Residual stresses in CrN thin film have been evaluated by XRD and FIB-DIC techniques.•Residual stress–depth profiles were extracted from incremental FIB milling data.•The effects of film texture and different sampling volume were taken into account.•The good agreement between the two techniques was proved.•The weaknesses and strengths of the two techniques were discussed. |
---|---|
AbstractList | Residual stress has a significant effect on the performance of thin films, in terms of adhesion, hardness, wear and fatigue resistance. Thus, when assessing innovative coatings or new deposition technologies, it is important to perform residual stress evaluation by means of a suitable and reliable technique. X-ray diffraction (XRD) is one of the commonly used techniques, because it is non-destructive, surface sensitive and phase selective. However, it is subject to certain limitations: X-ray diffraction allows stress evaluation (i.e. its indirect deduction from the measured diffraction profile) only in case of crystalline materials, and the results may be subject to aberrations in the presence of texture or stress gradients often occurring in thin films. Recently, a new class of methods for residual stress evaluation has been proposed, based on incremental focused ion beam (fib) milling, combined with high-resolution in situ scanning electron microscopy (SEM) imaging and full field strain analysis by digital image correlation (DIC). The aim of the present paper is to explore in some detail the significance of the stress values obtained for the same coating by X-ray diffraction and focused ion beam milling, and to demonstrate that the analysis of residual stress depth gradients is possible by using FIB-DIC techniques. Finally, a comparative assessment of the weaknesses and strengths of the two techniques will be carried out. For this purpose, a chromium nitride highly textured thin film sample was chosen. The residual stress state evaluation by the two methods was carried out for the coating deposited by the cathodic arc evaporation (CAE-PVD) technique. Although many significant differences were identified between the X-ray diffraction and focused ion beam milling methods, careful consideration of the gauge volumes and weighting demonstrated that satisfactory agreement was obtained. The analysis highlighted the importance of the issues related to (a) probe-to-sample interaction volume (gauge volume), (b) film texture, and (c) the elastic anisotropy. All these factors must be taken into account in order to enable valid comparisons to be drawn. Residual stress has a significant effect on the performance of thin films, in terms of adhesion, hardness, wear and fatigue resistance. Thus, when assessing innovative coatings or new deposition technologies, it is important to perform residual stress evaluation by means of a suitable and reliable technique. X-ray diffraction (XRD) is one of the commonly used techniques, because it is non-destructive, surface sensitive and phase selective. However, it is subject to certain limitations: X-ray diffraction allows stress evaluation (i.e. its indirect deduction from the measured diffraction profile) only in case of crystalline materials, and the results may be subject to aberrations in the presence of texture or stress gradients often occurring in thin films. Recently, a new class of methods for residual stress evaluation has been proposed, based on incremental focused ion beam (fib) milling, combined with high-resolution in situ scanning electron microscopy (SEM) imaging and full field strain analysis by digital image correlation (DIC). The aim of the present paper is to explore in some detail the significance of the stress values obtained for the same coating by X-ray diffraction and focused ion beam milling, and to demonstrate that the analysis of residual stress depth gradients is possible by using FIB-DIC techniques. Finally, a comparative assessment of the weaknesses and strengths of the two techniques will be carried out. For this purpose, a chromium nitride highly textured thin film sample was chosen. The residual stress state evaluation by the two methods was carried out for the coating deposited by the cathodic arc evaporation (CAE-PVD) technique. Although many significant differences were identified between the X-ray diffraction and focused ion beam milling methods, careful consideration of the gauge volumes and weighting demonstrated that satisfactory agreement was obtained. The analysis highlighted the importance of the issues related to (a) probe-to-sample interaction volume (gauge volume), (b) film texture, and (c) the elastic anisotropy. All these factors must be taken into account in order to enable valid comparisons to be drawn. •Residual stresses in CrN thin film have been evaluated by XRD and FIB-DIC techniques.•Residual stress–depth profiles were extracted from incremental FIB milling data.•The effects of film texture and different sampling volume were taken into account.•The good agreement between the two techniques was proved.•The weaknesses and strengths of the two techniques were discussed. |
Author | Depero, L.E. Korsunsky, A.M. Brisotto, M. Sebastiani, M. Bemporad, E. Gelfi, M. Lunt, A.J.G. |
Author_xml | – sequence: 1 givenname: E. orcidid: 0000-0001-6282-1929 surname: Bemporad fullname: Bemporad, E. organization: Engineering Department, University “Roma Tre”, Via della Vasca Navale 79, 00146 Rome, Italy – sequence: 2 givenname: M. surname: Brisotto fullname: Brisotto, M. organization: Mechanical and Industrial Engineering Department, University of Brescia, Via Branze 38, 25123 Brescia, Italy – sequence: 3 givenname: L.E. surname: Depero fullname: Depero, L.E. organization: Mechanical and Industrial Engineering Department, University of Brescia, Via Branze 38, 25123 Brescia, Italy – sequence: 4 givenname: M. surname: Gelfi fullname: Gelfi, M. email: marcello.gelfi@unibs.it organization: Mechanical and Industrial Engineering Department, University of Brescia, Via Branze 38, 25123 Brescia, Italy – sequence: 5 givenname: A.M. surname: Korsunsky fullname: Korsunsky, A.M. organization: Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom – sequence: 6 givenname: A.J.G. surname: Lunt fullname: Lunt, A.J.G. organization: Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom – sequence: 7 givenname: M. surname: Sebastiani fullname: Sebastiani, M. organization: Engineering Department, University “Roma Tre”, Via della Vasca Navale 79, 00146 Rome, Italy |
BookMark | eNp9kE1rGzEQhkVxoE7SH9Cbjr3sZma1X6In101SQyBQEsipQpZGRGZX60pySv591jinHnKZmcP7DDPPOVuEKRBjXxFKBGyvdmVOrqwA6xJkCY34xJbYd7KoOoELtgSooWhBwmd2ntIOALCqxJL9WXETffZGD9xM415Hn6bAt5T_EQX-9Psn18Hym80PHil5e5hzKc9j4iPpdIg0Usg8k3kO_u-BEveB5-e5OD-M6ZKdOT0k-vLeL9jjzfXD-ldxd3-7Wa_uCiN6zEXfbLHSpu6paqzWztaddf0WhZDSyrrqmqYl6Vpw20YSCodgQQtqpRECexAX7Ntp7z5OxyuyGn0yNAw60HRICtsWoMcOujnanaImTilFcsr4rLOfQo7aDwpBHY2qnZqNqqNRBVLNRmcS_yP30Y86vn7IfD8xNH__4imqZDwFQ9ZHMlnZyX9AvwHRSJD- |
CitedBy_id | crossref_primary_10_3390_coatings11010034 crossref_primary_10_3390_nano8110896 crossref_primary_10_2139_ssrn_4104078 crossref_primary_10_3390_ma13061291 crossref_primary_10_1016_j_mtcomm_2023_105900 crossref_primary_10_1177_10812865221096776 crossref_primary_10_1021_acsomega_1c04814 crossref_primary_10_1016_j_scriptamat_2021_113949 crossref_primary_10_1007_s11340_017_0299_6 crossref_primary_10_1016_j_actamat_2015_10_044 crossref_primary_10_1016_j_ijmecsci_2019_01_011 crossref_primary_10_1016_j_ultramic_2022_113464 crossref_primary_10_1088_2053_1591_ab52cd crossref_primary_10_1002_adem_202201502 crossref_primary_10_1016_j_cja_2019_10_010 crossref_primary_10_1016_j_jcsr_2020_106346 crossref_primary_10_3390_ma16186303 crossref_primary_10_3390_min12020205 crossref_primary_10_3390_coatings13010124 crossref_primary_10_1016_j_ceramint_2025_02_285 crossref_primary_10_1016_j_mee_2018_09_007 crossref_primary_10_1016_j_ceramint_2017_12_037 crossref_primary_10_1016_j_jallcom_2025_178744 crossref_primary_10_1016_j_measurement_2024_116623 crossref_primary_10_1016_j_jmps_2016_03_013 crossref_primary_10_1016_j_cma_2017_03_005 crossref_primary_10_1515_mt_2022_0370 crossref_primary_10_1002_adem_202401095 crossref_primary_10_1016_j_surfcoat_2015_10_049 crossref_primary_10_1007_s11340_022_00877_z crossref_primary_10_1016_j_enmf_2024_09_002 crossref_primary_10_1016_j_ijmecsci_2021_106773 crossref_primary_10_1016_j_jmatprotec_2024_118382 crossref_primary_10_1016_j_engfracmech_2016_04_034 crossref_primary_10_1016_j_dental_2019_08_098 crossref_primary_10_1016_j_jallcom_2025_179174 crossref_primary_10_1016_j_ijmecsci_2024_109744 crossref_primary_10_1002_adem_202201209 crossref_primary_10_1016_j_matdes_2016_09_058 crossref_primary_10_1088_2053_1591_ad9240 crossref_primary_10_1016_j_ijmecsci_2024_109109 crossref_primary_10_1116_1_5011790 crossref_primary_10_1186_s40494_020_00414_y crossref_primary_10_1007_s11340_023_01026_w crossref_primary_10_1177_0309324715590957 crossref_primary_10_1002_sdtp_15639 crossref_primary_10_1007_s11665_024_09274_0 crossref_primary_10_1007_s10409_017_0697_0 crossref_primary_10_1080_02670836_2020_1753933 crossref_primary_10_1177_0309324715596700 crossref_primary_10_1016_j_colsurfa_2022_129073 crossref_primary_10_1088_2515_7647_ac1ceb crossref_primary_10_2320_matertrans_MT_MF2022016 crossref_primary_10_1007_s12008_023_01346_0 crossref_primary_10_1088_1742_2140_aaaa8a |
Cites_doi | 10.1016/j.surfcoat.2012.08.095 10.1557/JMR.1992.1564 10.1107/S0021889804029516 10.1016/0040-6090(94)06373-7 10.1088/0268-1242/18/11/315 10.1016/j.surfcoat.2010.09.033 10.1016/j.actamat.2003.09.041 10.1115/1.3226059 10.1016/j.actamat.2011.12.035 10.1088/0960-1317/16/2/009 10.1063/1.3624583 10.1166/jnn.2011.3499 10.1016/j.matlet.2009.06.020 10.1016/S0013-7944(03)00018-3 10.1063/1.2363818 10.1016/j.msea.2011.07.001 10.1016/j.actamat.2013.07.009 10.1115/1.2744416 10.1063/1.3527116 10.1016/S0040-6090(03)00946-5 10.1016/j.surfcoat.2012.08.094 10.1063/1.2386939 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.tsf.2014.09.053 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2731 |
EndPage | 231 |
ExternalDocumentID | 10_1016_j_tsf_2014_09_053 S0040609014009390 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TWZ WH7 ZMT ~G- 29Q 6TJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- RIG SEW SMS SPG SSH VOH WUQ 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c381t-85b12ac48e25daafd47df8b13399d9427556e9f60fb59e13f10d0a3e69c331803 |
IEDL.DBID | .~1 |
ISSN | 0040-6090 |
IngestDate | Thu Jul 10 18:48:06 EDT 2025 Tue Jul 01 00:50:51 EDT 2025 Thu Apr 24 22:56:02 EDT 2025 Fri Feb 23 02:14:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | X-ray diffraction Focused ion beam milling Numerical calculation Digital image correlation Residual stress CrN |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-85b12ac48e25daafd47df8b13399d9427556e9f60fb59e13f10d0a3e69c331803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6282-1929 |
PQID | 1660081707 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1660081707 crossref_citationtrail_10_1016_j_tsf_2014_09_053 crossref_primary_10_1016_j_tsf_2014_09_053 elsevier_sciencedirect_doi_10_1016_j_tsf_2014_09_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Thin solid films |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Martinshitz (bb0110) September 2008 Winiarski, Gholinia, Tian, Yokoyama, Liaw, Withers (bb0075) 2012; 60 Sebastiani, Eberl, Bemporad, Pharr (bb0065) 2011; 528 Kang, Yao, He, Evans (bb0055) 2003; 443 Krottenthaler, Schmid, Schaufler, Durst, Göken (bb0070) 2013; 215 Horsfall, dos Santos, Soare, Wright, O'Neill, Bul, Walton, Gundlach, Stevenson (bb0015) 2003; 18 Korsunsky, Sebastiani, Bemporad (bb0050) 2009; 63 Sebastiani, Piccoli, Bemporad (bb0080) 2013; 215 Oliver, Pharr (bb0085) 1992; 7 Janssen, Tichelaar, Visser (bb0115) 2006; 100 Daniel, Keckes, Matko, Burghammer, Mitterer (bb0005) 2013; 61 Sabaté, Vogel, Gollhardt, Keller, Cané, Grácia, Morante, Michel (bb0030) 2006; 16–2 Schajer (bb0095) 2007; 129 Zhou, Bailey, Sooryakumar, King, Xu, Mays, Ege, Bielefeld (bb0020) 2011; 110–4 Atrash, Sherman (bb0025) 2006; 100–10 Schajer (bb0090) 1988; 110 Sebastiani, Bemporad, Carassiti (bb0010) 2011; 11 Sebastiani, Bemporad, Melone, Rizzi, Korsunsky (bb0035) 2010 Attar, Johannesson (bb0100) 1995; 258 Welzel, Ligot, Lamparter, Vermeulen, Mittemeijer (bb0045) 2005; 38 Cullity (bb0040) 1978 Gelfi, Bontempi, Roberti, Depero (bb0105) 2004; 52–3 Korsunsky, James, Daymond (bb0120) 2004; 71 Korsunsky, Sebastiani, Bemporad (bb0060) 2010; 205 Kang (10.1016/j.tsf.2014.09.053_bb0055) 2003; 443 Gelfi (10.1016/j.tsf.2014.09.053_bb0105) 2004; 52–3 Sebastiani (10.1016/j.tsf.2014.09.053_bb0010) 2011; 11 Sabaté (10.1016/j.tsf.2014.09.053_bb0030) 2006; 16–2 Winiarski (10.1016/j.tsf.2014.09.053_bb0075) 2012; 60 Korsunsky (10.1016/j.tsf.2014.09.053_bb0120) 2004; 71 Atrash (10.1016/j.tsf.2014.09.053_bb0025) 2006; 100–10 Sebastiani (10.1016/j.tsf.2014.09.053_bb0035) 2010 Krottenthaler (10.1016/j.tsf.2014.09.053_bb0070) 2013; 215 Daniel (10.1016/j.tsf.2014.09.053_bb0005) 2013; 61 Attar (10.1016/j.tsf.2014.09.053_bb0100) 1995; 258 Welzel (10.1016/j.tsf.2014.09.053_bb0045) 2005; 38 Korsunsky (10.1016/j.tsf.2014.09.053_bb0060) 2010; 205 Sebastiani (10.1016/j.tsf.2014.09.053_bb0080) 2013; 215 Schajer (10.1016/j.tsf.2014.09.053_bb0090) 1988; 110 Cullity (10.1016/j.tsf.2014.09.053_bb0040) 1978 Oliver (10.1016/j.tsf.2014.09.053_bb0085) 1992; 7 Sebastiani (10.1016/j.tsf.2014.09.053_bb0065) 2011; 528 Horsfall (10.1016/j.tsf.2014.09.053_bb0015) 2003; 18 Zhou (10.1016/j.tsf.2014.09.053_bb0020) 2011; 110–4 Janssen (10.1016/j.tsf.2014.09.053_bb0115) 2006; 100 Martinshitz (10.1016/j.tsf.2014.09.053_bb0110) 2008 Korsunsky (10.1016/j.tsf.2014.09.053_bb0050) 2009; 63 Schajer (10.1016/j.tsf.2014.09.053_bb0095) 2007; 129 |
References_xml | – volume: 110–4 start-page: 043520 year: 2011 ident: bb0020 article-title: Elastic properties of porous low-k dielectric nano-films publication-title: J. Appl. Phys. – volume: 528 start-page: 7901 year: 2011 ident: bb0065 article-title: Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method publication-title: Mater. Sci. Eng. A – volume: 100–10 start-page: 103510 year: 2006 ident: bb0025 article-title: Analysis of the residual stresses, the biaxial modulus, and the interfacial fracture energy of low-k dielectric thin films publication-title: J. Appl. Phys. – volume: 52–3 start-page: 583 year: 2004 ident: bb0105 article-title: X-ray diffraction Debye Ring Analysis for STress measurement (DRAST): a new method to evaluate residual stresses publication-title: Acta Mater. – year: September 2008 ident: bb0110 article-title: Mechanical elastic constants of thin films determineted by X-ray diffraction publication-title: Ph.D Thesis, Dissertation – volume: 61 start-page: 6255 year: 2013 ident: bb0005 article-title: Origins of microstructure and stress gradients in nanocrystalline thin films: the role of growth parameters and self-organization publication-title: Acta Mater. – volume: 11 start-page: 8864 year: 2011 ident: bb0010 article-title: On the influence of residual stress on nano-mechanical characterization of thin coatings publication-title: J. Nanosci. Nanotechnol. – volume: 215 start-page: 247 year: 2013 ident: bb0070 article-title: A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation publication-title: Surf. Coat. Technol. – volume: 205 start-page: 2393 year: 2010 ident: bb0060 article-title: Residual stress evaluation at the micrometer scale: analysis of thin coatings by FIB milling and digital image correlation publication-title: Surf. Coat. Technol. – volume: 60 start-page: 2337 year: 2012 ident: bb0075 article-title: Submicron-scale depth profiling of residual stress in amorphous materials by incremental focused ion beam slotting publication-title: Acta Mater. – volume: 7 start-page: 1564 year: 1992 ident: bb0085 article-title: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. – volume: 71 start-page: 805 year: 2004 ident: bb0120 article-title: Intergranular stresses in polycrystalline fatigue: diffraction measurement and self-consistent modelling publication-title: Eng. Fract. Mech. – volume: 38 start-page: 1 year: 2005 ident: bb0045 article-title: Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction publication-title: J. Appl. Crystallogr. – volume: 16–2 start-page: 254 year: 2006 ident: bb0030 article-title: Measurement of residual stress by slot milling with focused ion-beam equipment publication-title: J. Micromech. Microeng. – volume: 63 start-page: 1961 year: 2009 ident: bb0050 article-title: Focused ion beam ring drilling for residual stress evaluation publication-title: Mater. Lett. – volume: 110 start-page: 338 year: 1988 ident: bb0090 article-title: Measurement of non-uniform residual-stresses using the hole-drilling method publication-title: J. Eng. Mater. Technol. – volume: 18 start-page: 992 year: 2003 ident: bb0015 article-title: Direct measurement of residual stress in sub-micron interconnects publication-title: Semicond. Sci. Technol. – volume: 129 start-page: 440 year: 2007 ident: bb0095 article-title: Hole-drilling profiling with smoothing residual stress automated publication-title: J. Eng. Mater. Technol. ASME – volume: 100 start-page: 093512 year: 2006 ident: bb0115 article-title: Stress gradients in CrN coatings publication-title: J. Appl. Phys. – start-page: 120 year: 2010 ident: bb0035 article-title: A new methodology for in-situ residual stress measurement in MEMS structures publication-title: AIP Conference Proceedings, 1300 – year: 1978 ident: bb0040 article-title: Elements of X-ray Diffraction – volume: 215 start-page: 407 year: 2013 ident: bb0080 article-title: Effect of micro-droplets on the local residual stress field in CAE-PVD thin coatings publication-title: Surf. Coat. Technol. – volume: 258 start-page: 205 year: 1995 ident: bb0100 article-title: Adhesion and X-ray elastic constant evaluation of CrN coating publication-title: Thin Solid Films – volume: 443 start-page: 71 year: 2003 ident: bb0055 article-title: A method for in situ measurement of the residual stress in thin films by using the focused ion beam publication-title: Thin Solid Films – volume: 215 start-page: 247 year: 2013 ident: 10.1016/j.tsf.2014.09.053_bb0070 article-title: A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.08.095 – volume: 7 start-page: 1564 year: 1992 ident: 10.1016/j.tsf.2014.09.053_bb0085 article-title: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 38 start-page: 1 year: 2005 ident: 10.1016/j.tsf.2014.09.053_bb0045 article-title: Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889804029516 – volume: 258 start-page: 205 year: 1995 ident: 10.1016/j.tsf.2014.09.053_bb0100 article-title: Adhesion and X-ray elastic constant evaluation of CrN coating publication-title: Thin Solid Films doi: 10.1016/0040-6090(94)06373-7 – volume: 18 start-page: 992 year: 2003 ident: 10.1016/j.tsf.2014.09.053_bb0015 article-title: Direct measurement of residual stress in sub-micron interconnects publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/18/11/315 – volume: 205 start-page: 2393 year: 2010 ident: 10.1016/j.tsf.2014.09.053_bb0060 article-title: Residual stress evaluation at the micrometer scale: analysis of thin coatings by FIB milling and digital image correlation publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.09.033 – volume: 52–3 start-page: 583 year: 2004 ident: 10.1016/j.tsf.2014.09.053_bb0105 article-title: X-ray diffraction Debye Ring Analysis for STress measurement (DRAST): a new method to evaluate residual stresses publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.09.041 – volume: 110 start-page: 338 year: 1988 ident: 10.1016/j.tsf.2014.09.053_bb0090 article-title: Measurement of non-uniform residual-stresses using the hole-drilling method publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3226059 – volume: 60 start-page: 2337 year: 2012 ident: 10.1016/j.tsf.2014.09.053_bb0075 article-title: Submicron-scale depth profiling of residual stress in amorphous materials by incremental focused ion beam slotting publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.12.035 – volume: 16–2 start-page: 254 year: 2006 ident: 10.1016/j.tsf.2014.09.053_bb0030 article-title: Measurement of residual stress by slot milling with focused ion-beam equipment publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/2/009 – volume: 110–4 start-page: 043520 year: 2011 ident: 10.1016/j.tsf.2014.09.053_bb0020 article-title: Elastic properties of porous low-k dielectric nano-films publication-title: J. Appl. Phys. doi: 10.1063/1.3624583 – volume: 11 start-page: 8864 year: 2011 ident: 10.1016/j.tsf.2014.09.053_bb0010 article-title: On the influence of residual stress on nano-mechanical characterization of thin coatings publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2011.3499 – volume: 63 start-page: 1961 year: 2009 ident: 10.1016/j.tsf.2014.09.053_bb0050 article-title: Focused ion beam ring drilling for residual stress evaluation publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.06.020 – volume: 71 start-page: 805 year: 2004 ident: 10.1016/j.tsf.2014.09.053_bb0120 article-title: Intergranular stresses in polycrystalline fatigue: diffraction measurement and self-consistent modelling publication-title: Eng. Fract. Mech. doi: 10.1016/S0013-7944(03)00018-3 – volume: 100 start-page: 093512 year: 2006 ident: 10.1016/j.tsf.2014.09.053_bb0115 article-title: Stress gradients in CrN coatings publication-title: J. Appl. Phys. doi: 10.1063/1.2363818 – volume: 528 start-page: 7901 year: 2011 ident: 10.1016/j.tsf.2014.09.053_bb0065 article-title: Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.07.001 – volume: 61 start-page: 6255 year: 2013 ident: 10.1016/j.tsf.2014.09.053_bb0005 article-title: Origins of microstructure and stress gradients in nanocrystalline thin films: the role of growth parameters and self-organization publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.07.009 – year: 2008 ident: 10.1016/j.tsf.2014.09.053_bb0110 article-title: Mechanical elastic constants of thin films determineted by X-ray diffraction – volume: 129 start-page: 440 year: 2007 ident: 10.1016/j.tsf.2014.09.053_bb0095 article-title: Hole-drilling profiling with smoothing residual stress automated publication-title: J. Eng. Mater. Technol. ASME doi: 10.1115/1.2744416 – start-page: 120 year: 2010 ident: 10.1016/j.tsf.2014.09.053_bb0035 article-title: A new methodology for in-situ residual stress measurement in MEMS structures doi: 10.1063/1.3527116 – volume: 443 start-page: 71 year: 2003 ident: 10.1016/j.tsf.2014.09.053_bb0055 article-title: A method for in situ measurement of the residual stress in thin films by using the focused ion beam publication-title: Thin Solid Films doi: 10.1016/S0040-6090(03)00946-5 – volume: 215 start-page: 407 year: 2013 ident: 10.1016/j.tsf.2014.09.053_bb0080 article-title: Effect of micro-droplets on the local residual stress field in CAE-PVD thin coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.08.094 – volume: 100–10 start-page: 103510 year: 2006 ident: 10.1016/j.tsf.2014.09.053_bb0025 article-title: Analysis of the residual stresses, the biaxial modulus, and the interfacial fracture energy of low-k dielectric thin films publication-title: J. Appl. Phys. doi: 10.1063/1.2386939 – year: 1978 ident: 10.1016/j.tsf.2014.09.053_bb0040 |
SSID | ssj0001223 |
Score | 2.3066041 |
Snippet | Residual stress has a significant effect on the performance of thin films, in terms of adhesion, hardness, wear and fatigue resistance. Thus, when assessing... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 224 |
SubjectTerms | Coatings CrN Diffraction Digital image correlation Focused ion beam milling Ion beams Numerical calculation Residual stress Stresses Surface layer Texture Thin films X-ray diffraction X-rays |
Title | A critical comparison between XRD and FIB residual stress measurement techniques in thin films |
URI | https://dx.doi.org/10.1016/j.tsf.2014.09.053 https://www.proquest.com/docview/1660081707 |
Volume | 572 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEfQgOhXnx4jgSahL2vQjxzkdm8MdhsOdDGmTYGXrhu2u_u0m_dhUcAcvLS1JW16S9_L6fu_3ALimjrSx4sTS_qy0CMWhRb3QMUTIwrWl0BbYRHSfhl5vTB4n7qQGOlUujIFVlrq_0Om5ti7vtEppthZxbHJ8tTFCJgxo3HJq_HZCfDPLbz_XMA9s2yvknGldRTZzjFeW5iyeBdWp6_xlm35p6dz0dA_AfrlnhO3isw5BTSZ1sPeNSbAOdnIkZ5Qegdc2jMryBTBaFRmEJR4LTkb3kCcCdvt3UHvaeSoWLBJG4Gz9vxCuuF1TGCcwe9MHFU9n6TEYdx-eOz2rLKJgRdoYZ1bghtjmEQmk7QrOlSC-UEGoXVNKBSW277qepMpDKnSpxI7CSCDuSI9Gjl7vyDkBW8k8kacAqiCQOJB60QpJBKGhInqUuY0jTvQLcAOgSnwsKhnGTaGLKaugZO9MS5wZiTNEmZZ4A9ysuiwKeo1NjUk1JuzHHGFa_W_qdlWNH9NrxwREeCLny5RhzzNbIh_5Z_979DnYNVcFvOUCbGUfS3mpNylZ2MxnYRNst_uD3tCcB6OXwReWkucZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6hIsRyQMDuijdG2hNSRJzYaXwsj6rl0QMCqae1nNgWRTQgEv4_48QJy0pw4JJDEifRjD3jyXzzDcAfEZuIWsUCjGdNwATNApFksSNC1jwyGj2wy-heT5LRHbuY8ukCnLa1MA5W6W1_Y9Nra-3PHHtpHj_PZq7GF51R6NKALiwXGLcvOnYq3oPFwfhyNOkMMo2iDjznBrTJzRrmVZU1kWfDdsrjz9zTf4a69j7DNVj120YyaL5sHRZMsQEr_5AJbsBSDebMy5_wd0By38GA5F2fQeIhWWR6c0ZUoclwfEIw2K6rsUhTM0Lm778MSUfvWpJZQap7PNjZ47z8BXfD89vTUeD7KAQ5-uMqSHlGI5Wz1ERcK2U162ubZhidCqEFi_qcJ0bYJLQZF4bGloY6VLFJRB7jkg_j39ArngqzCcSmqaGpwXWrDdNMZJaholVEc8XwBXQLwlZ8Mvck467XxaNs0WQPEiUuncRlKCRKfAuOuiHPDcPGVzezVifywzSR6AG-GnbY6k_i8nE5EVWYp9dS0iRxu6J-2N_-3qMPYHl0e30lr8aTyx344a40aJdd6FUvr2YP9yxVtu_n5BtJ--gn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+comparison+between+XRD+and+FIB+residual+stress+measurement+techniques+in+thin+films&rft.jtitle=Thin+solid+films&rft.au=Bemporad%2C+E.&rft.au=Brisotto%2C+M.&rft.au=Depero%2C+L.E.&rft.au=Gelfi%2C+M.&rft.date=2014-12-01&rft.pub=Elsevier+B.V&rft.issn=0040-6090&rft.eissn=1879-2731&rft.volume=572&rft.spage=224&rft.epage=231&rft_id=info:doi/10.1016%2Fj.tsf.2014.09.053&rft.externalDocID=S0040609014009390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6090&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6090&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6090&client=summon |