A critical comparison between XRD and FIB residual stress measurement techniques in thin films

Residual stress has a significant effect on the performance of thin films, in terms of adhesion, hardness, wear and fatigue resistance. Thus, when assessing innovative coatings or new deposition technologies, it is important to perform residual stress evaluation by means of a suitable and reliable t...

Full description

Saved in:
Bibliographic Details
Published inThin solid films Vol. 572; pp. 224 - 231
Main Authors Bemporad, E., Brisotto, M., Depero, L.E., Gelfi, M., Korsunsky, A.M., Lunt, A.J.G., Sebastiani, M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2014
Subjects
Online AccessGet full text
ISSN0040-6090
1879-2731
DOI10.1016/j.tsf.2014.09.053

Cover

Loading…
Abstract Residual stress has a significant effect on the performance of thin films, in terms of adhesion, hardness, wear and fatigue resistance. Thus, when assessing innovative coatings or new deposition technologies, it is important to perform residual stress evaluation by means of a suitable and reliable technique. X-ray diffraction (XRD) is one of the commonly used techniques, because it is non-destructive, surface sensitive and phase selective. However, it is subject to certain limitations: X-ray diffraction allows stress evaluation (i.e. its indirect deduction from the measured diffraction profile) only in case of crystalline materials, and the results may be subject to aberrations in the presence of texture or stress gradients often occurring in thin films. Recently, a new class of methods for residual stress evaluation has been proposed, based on incremental focused ion beam (fib) milling, combined with high-resolution in situ scanning electron microscopy (SEM) imaging and full field strain analysis by digital image correlation (DIC). The aim of the present paper is to explore in some detail the significance of the stress values obtained for the same coating by X-ray diffraction and focused ion beam milling, and to demonstrate that the analysis of residual stress depth gradients is possible by using FIB-DIC techniques. Finally, a comparative assessment of the weaknesses and strengths of the two techniques will be carried out. For this purpose, a chromium nitride highly textured thin film sample was chosen. The residual stress state evaluation by the two methods was carried out for the coating deposited by the cathodic arc evaporation (CAE-PVD) technique. Although many significant differences were identified between the X-ray diffraction and focused ion beam milling methods, careful consideration of the gauge volumes and weighting demonstrated that satisfactory agreement was obtained. The analysis highlighted the importance of the issues related to (a) probe-to-sample interaction volume (gauge volume), (b) film texture, and (c) the elastic anisotropy. All these factors must be taken into account in order to enable valid comparisons to be drawn. •Residual stresses in CrN thin film have been evaluated by XRD and FIB-DIC techniques.•Residual stress–depth profiles were extracted from incremental FIB milling data.•The effects of film texture and different sampling volume were taken into account.•The good agreement between the two techniques was proved.•The weaknesses and strengths of the two techniques were discussed.
AbstractList Residual stress has a significant effect on the performance of thin films, in terms of adhesion, hardness, wear and fatigue resistance. Thus, when assessing innovative coatings or new deposition technologies, it is important to perform residual stress evaluation by means of a suitable and reliable technique. X-ray diffraction (XRD) is one of the commonly used techniques, because it is non-destructive, surface sensitive and phase selective. However, it is subject to certain limitations: X-ray diffraction allows stress evaluation (i.e. its indirect deduction from the measured diffraction profile) only in case of crystalline materials, and the results may be subject to aberrations in the presence of texture or stress gradients often occurring in thin films. Recently, a new class of methods for residual stress evaluation has been proposed, based on incremental focused ion beam (fib) milling, combined with high-resolution in situ scanning electron microscopy (SEM) imaging and full field strain analysis by digital image correlation (DIC). The aim of the present paper is to explore in some detail the significance of the stress values obtained for the same coating by X-ray diffraction and focused ion beam milling, and to demonstrate that the analysis of residual stress depth gradients is possible by using FIB-DIC techniques. Finally, a comparative assessment of the weaknesses and strengths of the two techniques will be carried out. For this purpose, a chromium nitride highly textured thin film sample was chosen. The residual stress state evaluation by the two methods was carried out for the coating deposited by the cathodic arc evaporation (CAE-PVD) technique. Although many significant differences were identified between the X-ray diffraction and focused ion beam milling methods, careful consideration of the gauge volumes and weighting demonstrated that satisfactory agreement was obtained. The analysis highlighted the importance of the issues related to (a) probe-to-sample interaction volume (gauge volume), (b) film texture, and (c) the elastic anisotropy. All these factors must be taken into account in order to enable valid comparisons to be drawn.
Residual stress has a significant effect on the performance of thin films, in terms of adhesion, hardness, wear and fatigue resistance. Thus, when assessing innovative coatings or new deposition technologies, it is important to perform residual stress evaluation by means of a suitable and reliable technique. X-ray diffraction (XRD) is one of the commonly used techniques, because it is non-destructive, surface sensitive and phase selective. However, it is subject to certain limitations: X-ray diffraction allows stress evaluation (i.e. its indirect deduction from the measured diffraction profile) only in case of crystalline materials, and the results may be subject to aberrations in the presence of texture or stress gradients often occurring in thin films. Recently, a new class of methods for residual stress evaluation has been proposed, based on incremental focused ion beam (fib) milling, combined with high-resolution in situ scanning electron microscopy (SEM) imaging and full field strain analysis by digital image correlation (DIC). The aim of the present paper is to explore in some detail the significance of the stress values obtained for the same coating by X-ray diffraction and focused ion beam milling, and to demonstrate that the analysis of residual stress depth gradients is possible by using FIB-DIC techniques. Finally, a comparative assessment of the weaknesses and strengths of the two techniques will be carried out. For this purpose, a chromium nitride highly textured thin film sample was chosen. The residual stress state evaluation by the two methods was carried out for the coating deposited by the cathodic arc evaporation (CAE-PVD) technique. Although many significant differences were identified between the X-ray diffraction and focused ion beam milling methods, careful consideration of the gauge volumes and weighting demonstrated that satisfactory agreement was obtained. The analysis highlighted the importance of the issues related to (a) probe-to-sample interaction volume (gauge volume), (b) film texture, and (c) the elastic anisotropy. All these factors must be taken into account in order to enable valid comparisons to be drawn. •Residual stresses in CrN thin film have been evaluated by XRD and FIB-DIC techniques.•Residual stress–depth profiles were extracted from incremental FIB milling data.•The effects of film texture and different sampling volume were taken into account.•The good agreement between the two techniques was proved.•The weaknesses and strengths of the two techniques were discussed.
Author Depero, L.E.
Korsunsky, A.M.
Brisotto, M.
Sebastiani, M.
Bemporad, E.
Gelfi, M.
Lunt, A.J.G.
Author_xml – sequence: 1
  givenname: E.
  orcidid: 0000-0001-6282-1929
  surname: Bemporad
  fullname: Bemporad, E.
  organization: Engineering Department, University “Roma Tre”, Via della Vasca Navale 79, 00146 Rome, Italy
– sequence: 2
  givenname: M.
  surname: Brisotto
  fullname: Brisotto, M.
  organization: Mechanical and Industrial Engineering Department, University of Brescia, Via Branze 38, 25123 Brescia, Italy
– sequence: 3
  givenname: L.E.
  surname: Depero
  fullname: Depero, L.E.
  organization: Mechanical and Industrial Engineering Department, University of Brescia, Via Branze 38, 25123 Brescia, Italy
– sequence: 4
  givenname: M.
  surname: Gelfi
  fullname: Gelfi, M.
  email: marcello.gelfi@unibs.it
  organization: Mechanical and Industrial Engineering Department, University of Brescia, Via Branze 38, 25123 Brescia, Italy
– sequence: 5
  givenname: A.M.
  surname: Korsunsky
  fullname: Korsunsky, A.M.
  organization: Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
– sequence: 6
  givenname: A.J.G.
  surname: Lunt
  fullname: Lunt, A.J.G.
  organization: Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
– sequence: 7
  givenname: M.
  surname: Sebastiani
  fullname: Sebastiani, M.
  organization: Engineering Department, University “Roma Tre”, Via della Vasca Navale 79, 00146 Rome, Italy
BookMark eNp9kE1rGzEQhkVxoE7SH9Cbjr3sZma1X6In101SQyBQEsipQpZGRGZX60pySv591jinHnKZmcP7DDPPOVuEKRBjXxFKBGyvdmVOrqwA6xJkCY34xJbYd7KoOoELtgSooWhBwmd2ntIOALCqxJL9WXETffZGD9xM415Hn6bAt5T_EQX-9Psn18Hym80PHil5e5hzKc9j4iPpdIg0Usg8k3kO_u-BEveB5-e5OD-M6ZKdOT0k-vLeL9jjzfXD-ldxd3-7Wa_uCiN6zEXfbLHSpu6paqzWztaddf0WhZDSyrrqmqYl6Vpw20YSCodgQQtqpRECexAX7Ntp7z5OxyuyGn0yNAw60HRICtsWoMcOujnanaImTilFcsr4rLOfQo7aDwpBHY2qnZqNqqNRBVLNRmcS_yP30Y86vn7IfD8xNH__4imqZDwFQ9ZHMlnZyX9AvwHRSJD-
CitedBy_id crossref_primary_10_3390_coatings11010034
crossref_primary_10_3390_nano8110896
crossref_primary_10_2139_ssrn_4104078
crossref_primary_10_3390_ma13061291
crossref_primary_10_1016_j_mtcomm_2023_105900
crossref_primary_10_1177_10812865221096776
crossref_primary_10_1021_acsomega_1c04814
crossref_primary_10_1016_j_scriptamat_2021_113949
crossref_primary_10_1007_s11340_017_0299_6
crossref_primary_10_1016_j_actamat_2015_10_044
crossref_primary_10_1016_j_ijmecsci_2019_01_011
crossref_primary_10_1016_j_ultramic_2022_113464
crossref_primary_10_1088_2053_1591_ab52cd
crossref_primary_10_1002_adem_202201502
crossref_primary_10_1016_j_cja_2019_10_010
crossref_primary_10_1016_j_jcsr_2020_106346
crossref_primary_10_3390_ma16186303
crossref_primary_10_3390_min12020205
crossref_primary_10_3390_coatings13010124
crossref_primary_10_1016_j_ceramint_2025_02_285
crossref_primary_10_1016_j_mee_2018_09_007
crossref_primary_10_1016_j_ceramint_2017_12_037
crossref_primary_10_1016_j_jallcom_2025_178744
crossref_primary_10_1016_j_measurement_2024_116623
crossref_primary_10_1016_j_jmps_2016_03_013
crossref_primary_10_1016_j_cma_2017_03_005
crossref_primary_10_1515_mt_2022_0370
crossref_primary_10_1002_adem_202401095
crossref_primary_10_1016_j_surfcoat_2015_10_049
crossref_primary_10_1007_s11340_022_00877_z
crossref_primary_10_1016_j_enmf_2024_09_002
crossref_primary_10_1016_j_ijmecsci_2021_106773
crossref_primary_10_1016_j_jmatprotec_2024_118382
crossref_primary_10_1016_j_engfracmech_2016_04_034
crossref_primary_10_1016_j_dental_2019_08_098
crossref_primary_10_1016_j_jallcom_2025_179174
crossref_primary_10_1016_j_ijmecsci_2024_109744
crossref_primary_10_1002_adem_202201209
crossref_primary_10_1016_j_matdes_2016_09_058
crossref_primary_10_1088_2053_1591_ad9240
crossref_primary_10_1016_j_ijmecsci_2024_109109
crossref_primary_10_1116_1_5011790
crossref_primary_10_1186_s40494_020_00414_y
crossref_primary_10_1007_s11340_023_01026_w
crossref_primary_10_1177_0309324715590957
crossref_primary_10_1002_sdtp_15639
crossref_primary_10_1007_s11665_024_09274_0
crossref_primary_10_1007_s10409_017_0697_0
crossref_primary_10_1080_02670836_2020_1753933
crossref_primary_10_1177_0309324715596700
crossref_primary_10_1016_j_colsurfa_2022_129073
crossref_primary_10_1088_2515_7647_ac1ceb
crossref_primary_10_2320_matertrans_MT_MF2022016
crossref_primary_10_1007_s12008_023_01346_0
crossref_primary_10_1088_1742_2140_aaaa8a
Cites_doi 10.1016/j.surfcoat.2012.08.095
10.1557/JMR.1992.1564
10.1107/S0021889804029516
10.1016/0040-6090(94)06373-7
10.1088/0268-1242/18/11/315
10.1016/j.surfcoat.2010.09.033
10.1016/j.actamat.2003.09.041
10.1115/1.3226059
10.1016/j.actamat.2011.12.035
10.1088/0960-1317/16/2/009
10.1063/1.3624583
10.1166/jnn.2011.3499
10.1016/j.matlet.2009.06.020
10.1016/S0013-7944(03)00018-3
10.1063/1.2363818
10.1016/j.msea.2011.07.001
10.1016/j.actamat.2013.07.009
10.1115/1.2744416
10.1063/1.3527116
10.1016/S0040-6090(03)00946-5
10.1016/j.surfcoat.2012.08.094
10.1063/1.2386939
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.tsf.2014.09.053
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2731
EndPage 231
ExternalDocumentID 10_1016_j_tsf_2014_09_053
S0040609014009390
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TWZ
WH7
ZMT
~G-
29Q
6TJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
VOH
WUQ
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c381t-85b12ac48e25daafd47df8b13399d9427556e9f60fb59e13f10d0a3e69c331803
IEDL.DBID .~1
ISSN 0040-6090
IngestDate Thu Jul 10 18:48:06 EDT 2025
Tue Jul 01 00:50:51 EDT 2025
Thu Apr 24 22:56:02 EDT 2025
Fri Feb 23 02:14:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords X-ray diffraction
Focused ion beam milling
Numerical calculation
Digital image correlation
Residual stress
CrN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-85b12ac48e25daafd47df8b13399d9427556e9f60fb59e13f10d0a3e69c331803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6282-1929
PQID 1660081707
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1660081707
crossref_citationtrail_10_1016_j_tsf_2014_09_053
crossref_primary_10_1016_j_tsf_2014_09_053
elsevier_sciencedirect_doi_10_1016_j_tsf_2014_09_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Thin solid films
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Martinshitz (bb0110) September 2008
Winiarski, Gholinia, Tian, Yokoyama, Liaw, Withers (bb0075) 2012; 60
Sebastiani, Eberl, Bemporad, Pharr (bb0065) 2011; 528
Kang, Yao, He, Evans (bb0055) 2003; 443
Krottenthaler, Schmid, Schaufler, Durst, Göken (bb0070) 2013; 215
Horsfall, dos Santos, Soare, Wright, O'Neill, Bul, Walton, Gundlach, Stevenson (bb0015) 2003; 18
Korsunsky, Sebastiani, Bemporad (bb0050) 2009; 63
Sebastiani, Piccoli, Bemporad (bb0080) 2013; 215
Oliver, Pharr (bb0085) 1992; 7
Janssen, Tichelaar, Visser (bb0115) 2006; 100
Daniel, Keckes, Matko, Burghammer, Mitterer (bb0005) 2013; 61
Sabaté, Vogel, Gollhardt, Keller, Cané, Grácia, Morante, Michel (bb0030) 2006; 16–2
Schajer (bb0095) 2007; 129
Zhou, Bailey, Sooryakumar, King, Xu, Mays, Ege, Bielefeld (bb0020) 2011; 110–4
Atrash, Sherman (bb0025) 2006; 100–10
Schajer (bb0090) 1988; 110
Sebastiani, Bemporad, Carassiti (bb0010) 2011; 11
Sebastiani, Bemporad, Melone, Rizzi, Korsunsky (bb0035) 2010
Attar, Johannesson (bb0100) 1995; 258
Welzel, Ligot, Lamparter, Vermeulen, Mittemeijer (bb0045) 2005; 38
Cullity (bb0040) 1978
Gelfi, Bontempi, Roberti, Depero (bb0105) 2004; 52–3
Korsunsky, James, Daymond (bb0120) 2004; 71
Korsunsky, Sebastiani, Bemporad (bb0060) 2010; 205
Kang (10.1016/j.tsf.2014.09.053_bb0055) 2003; 443
Gelfi (10.1016/j.tsf.2014.09.053_bb0105) 2004; 52–3
Sebastiani (10.1016/j.tsf.2014.09.053_bb0010) 2011; 11
Sabaté (10.1016/j.tsf.2014.09.053_bb0030) 2006; 16–2
Winiarski (10.1016/j.tsf.2014.09.053_bb0075) 2012; 60
Korsunsky (10.1016/j.tsf.2014.09.053_bb0120) 2004; 71
Atrash (10.1016/j.tsf.2014.09.053_bb0025) 2006; 100–10
Sebastiani (10.1016/j.tsf.2014.09.053_bb0035) 2010
Krottenthaler (10.1016/j.tsf.2014.09.053_bb0070) 2013; 215
Daniel (10.1016/j.tsf.2014.09.053_bb0005) 2013; 61
Attar (10.1016/j.tsf.2014.09.053_bb0100) 1995; 258
Welzel (10.1016/j.tsf.2014.09.053_bb0045) 2005; 38
Korsunsky (10.1016/j.tsf.2014.09.053_bb0060) 2010; 205
Sebastiani (10.1016/j.tsf.2014.09.053_bb0080) 2013; 215
Schajer (10.1016/j.tsf.2014.09.053_bb0090) 1988; 110
Cullity (10.1016/j.tsf.2014.09.053_bb0040) 1978
Oliver (10.1016/j.tsf.2014.09.053_bb0085) 1992; 7
Sebastiani (10.1016/j.tsf.2014.09.053_bb0065) 2011; 528
Horsfall (10.1016/j.tsf.2014.09.053_bb0015) 2003; 18
Zhou (10.1016/j.tsf.2014.09.053_bb0020) 2011; 110–4
Janssen (10.1016/j.tsf.2014.09.053_bb0115) 2006; 100
Martinshitz (10.1016/j.tsf.2014.09.053_bb0110) 2008
Korsunsky (10.1016/j.tsf.2014.09.053_bb0050) 2009; 63
Schajer (10.1016/j.tsf.2014.09.053_bb0095) 2007; 129
References_xml – volume: 110–4
  start-page: 043520
  year: 2011
  ident: bb0020
  article-title: Elastic properties of porous low-k dielectric nano-films
  publication-title: J. Appl. Phys.
– volume: 528
  start-page: 7901
  year: 2011
  ident: bb0065
  article-title: Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method
  publication-title: Mater. Sci. Eng. A
– volume: 100–10
  start-page: 103510
  year: 2006
  ident: bb0025
  article-title: Analysis of the residual stresses, the biaxial modulus, and the interfacial fracture energy of low-k dielectric thin films
  publication-title: J. Appl. Phys.
– volume: 52–3
  start-page: 583
  year: 2004
  ident: bb0105
  article-title: X-ray diffraction Debye Ring Analysis for STress measurement (DRAST): a new method to evaluate residual stresses
  publication-title: Acta Mater.
– year: September 2008
  ident: bb0110
  article-title: Mechanical elastic constants of thin films determineted by X-ray diffraction
  publication-title: Ph.D Thesis, Dissertation
– volume: 61
  start-page: 6255
  year: 2013
  ident: bb0005
  article-title: Origins of microstructure and stress gradients in nanocrystalline thin films: the role of growth parameters and self-organization
  publication-title: Acta Mater.
– volume: 11
  start-page: 8864
  year: 2011
  ident: bb0010
  article-title: On the influence of residual stress on nano-mechanical characterization of thin coatings
  publication-title: J. Nanosci. Nanotechnol.
– volume: 215
  start-page: 247
  year: 2013
  ident: bb0070
  article-title: A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation
  publication-title: Surf. Coat. Technol.
– volume: 205
  start-page: 2393
  year: 2010
  ident: bb0060
  article-title: Residual stress evaluation at the micrometer scale: analysis of thin coatings by FIB milling and digital image correlation
  publication-title: Surf. Coat. Technol.
– volume: 60
  start-page: 2337
  year: 2012
  ident: bb0075
  article-title: Submicron-scale depth profiling of residual stress in amorphous materials by incremental focused ion beam slotting
  publication-title: Acta Mater.
– volume: 7
  start-page: 1564
  year: 1992
  ident: bb0085
  article-title: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res.
– volume: 71
  start-page: 805
  year: 2004
  ident: bb0120
  article-title: Intergranular stresses in polycrystalline fatigue: diffraction measurement and self-consistent modelling
  publication-title: Eng. Fract. Mech.
– volume: 38
  start-page: 1
  year: 2005
  ident: bb0045
  article-title: Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction
  publication-title: J. Appl. Crystallogr.
– volume: 16–2
  start-page: 254
  year: 2006
  ident: bb0030
  article-title: Measurement of residual stress by slot milling with focused ion-beam equipment
  publication-title: J. Micromech. Microeng.
– volume: 63
  start-page: 1961
  year: 2009
  ident: bb0050
  article-title: Focused ion beam ring drilling for residual stress evaluation
  publication-title: Mater. Lett.
– volume: 110
  start-page: 338
  year: 1988
  ident: bb0090
  article-title: Measurement of non-uniform residual-stresses using the hole-drilling method
  publication-title: J. Eng. Mater. Technol.
– volume: 18
  start-page: 992
  year: 2003
  ident: bb0015
  article-title: Direct measurement of residual stress in sub-micron interconnects
  publication-title: Semicond. Sci. Technol.
– volume: 129
  start-page: 440
  year: 2007
  ident: bb0095
  article-title: Hole-drilling profiling with smoothing residual stress automated
  publication-title: J. Eng. Mater. Technol. ASME
– volume: 100
  start-page: 093512
  year: 2006
  ident: bb0115
  article-title: Stress gradients in CrN coatings
  publication-title: J. Appl. Phys.
– start-page: 120
  year: 2010
  ident: bb0035
  article-title: A new methodology for in-situ residual stress measurement in MEMS structures
  publication-title: AIP Conference Proceedings, 1300
– year: 1978
  ident: bb0040
  article-title: Elements of X-ray Diffraction
– volume: 215
  start-page: 407
  year: 2013
  ident: bb0080
  article-title: Effect of micro-droplets on the local residual stress field in CAE-PVD thin coatings
  publication-title: Surf. Coat. Technol.
– volume: 258
  start-page: 205
  year: 1995
  ident: bb0100
  article-title: Adhesion and X-ray elastic constant evaluation of CrN coating
  publication-title: Thin Solid Films
– volume: 443
  start-page: 71
  year: 2003
  ident: bb0055
  article-title: A method for in situ measurement of the residual stress in thin films by using the focused ion beam
  publication-title: Thin Solid Films
– volume: 215
  start-page: 247
  year: 2013
  ident: 10.1016/j.tsf.2014.09.053_bb0070
  article-title: A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2012.08.095
– volume: 7
  start-page: 1564
  year: 1992
  ident: 10.1016/j.tsf.2014.09.053_bb0085
  article-title: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.1564
– volume: 38
  start-page: 1
  year: 2005
  ident: 10.1016/j.tsf.2014.09.053_bb0045
  article-title: Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889804029516
– volume: 258
  start-page: 205
  year: 1995
  ident: 10.1016/j.tsf.2014.09.053_bb0100
  article-title: Adhesion and X-ray elastic constant evaluation of CrN coating
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(94)06373-7
– volume: 18
  start-page: 992
  year: 2003
  ident: 10.1016/j.tsf.2014.09.053_bb0015
  article-title: Direct measurement of residual stress in sub-micron interconnects
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/18/11/315
– volume: 205
  start-page: 2393
  year: 2010
  ident: 10.1016/j.tsf.2014.09.053_bb0060
  article-title: Residual stress evaluation at the micrometer scale: analysis of thin coatings by FIB milling and digital image correlation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.09.033
– volume: 52–3
  start-page: 583
  year: 2004
  ident: 10.1016/j.tsf.2014.09.053_bb0105
  article-title: X-ray diffraction Debye Ring Analysis for STress measurement (DRAST): a new method to evaluate residual stresses
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2003.09.041
– volume: 110
  start-page: 338
  year: 1988
  ident: 10.1016/j.tsf.2014.09.053_bb0090
  article-title: Measurement of non-uniform residual-stresses using the hole-drilling method
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.3226059
– volume: 60
  start-page: 2337
  year: 2012
  ident: 10.1016/j.tsf.2014.09.053_bb0075
  article-title: Submicron-scale depth profiling of residual stress in amorphous materials by incremental focused ion beam slotting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.12.035
– volume: 16–2
  start-page: 254
  year: 2006
  ident: 10.1016/j.tsf.2014.09.053_bb0030
  article-title: Measurement of residual stress by slot milling with focused ion-beam equipment
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/2/009
– volume: 110–4
  start-page: 043520
  year: 2011
  ident: 10.1016/j.tsf.2014.09.053_bb0020
  article-title: Elastic properties of porous low-k dielectric nano-films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3624583
– volume: 11
  start-page: 8864
  year: 2011
  ident: 10.1016/j.tsf.2014.09.053_bb0010
  article-title: On the influence of residual stress on nano-mechanical characterization of thin coatings
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2011.3499
– volume: 63
  start-page: 1961
  year: 2009
  ident: 10.1016/j.tsf.2014.09.053_bb0050
  article-title: Focused ion beam ring drilling for residual stress evaluation
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.06.020
– volume: 71
  start-page: 805
  year: 2004
  ident: 10.1016/j.tsf.2014.09.053_bb0120
  article-title: Intergranular stresses in polycrystalline fatigue: diffraction measurement and self-consistent modelling
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(03)00018-3
– volume: 100
  start-page: 093512
  year: 2006
  ident: 10.1016/j.tsf.2014.09.053_bb0115
  article-title: Stress gradients in CrN coatings
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2363818
– volume: 528
  start-page: 7901
  year: 2011
  ident: 10.1016/j.tsf.2014.09.053_bb0065
  article-title: Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2011.07.001
– volume: 61
  start-page: 6255
  year: 2013
  ident: 10.1016/j.tsf.2014.09.053_bb0005
  article-title: Origins of microstructure and stress gradients in nanocrystalline thin films: the role of growth parameters and self-organization
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.07.009
– year: 2008
  ident: 10.1016/j.tsf.2014.09.053_bb0110
  article-title: Mechanical elastic constants of thin films determineted by X-ray diffraction
– volume: 129
  start-page: 440
  year: 2007
  ident: 10.1016/j.tsf.2014.09.053_bb0095
  article-title: Hole-drilling profiling with smoothing residual stress automated
  publication-title: J. Eng. Mater. Technol. ASME
  doi: 10.1115/1.2744416
– start-page: 120
  year: 2010
  ident: 10.1016/j.tsf.2014.09.053_bb0035
  article-title: A new methodology for in-situ residual stress measurement in MEMS structures
  doi: 10.1063/1.3527116
– volume: 443
  start-page: 71
  year: 2003
  ident: 10.1016/j.tsf.2014.09.053_bb0055
  article-title: A method for in situ measurement of the residual stress in thin films by using the focused ion beam
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(03)00946-5
– volume: 215
  start-page: 407
  year: 2013
  ident: 10.1016/j.tsf.2014.09.053_bb0080
  article-title: Effect of micro-droplets on the local residual stress field in CAE-PVD thin coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2012.08.094
– volume: 100–10
  start-page: 103510
  year: 2006
  ident: 10.1016/j.tsf.2014.09.053_bb0025
  article-title: Analysis of the residual stresses, the biaxial modulus, and the interfacial fracture energy of low-k dielectric thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2386939
– year: 1978
  ident: 10.1016/j.tsf.2014.09.053_bb0040
SSID ssj0001223
Score 2.3066041
Snippet Residual stress has a significant effect on the performance of thin films, in terms of adhesion, hardness, wear and fatigue resistance. Thus, when assessing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 224
SubjectTerms Coatings
CrN
Diffraction
Digital image correlation
Focused ion beam milling
Ion beams
Numerical calculation
Residual stress
Stresses
Surface layer
Texture
Thin films
X-ray diffraction
X-rays
Title A critical comparison between XRD and FIB residual stress measurement techniques in thin films
URI https://dx.doi.org/10.1016/j.tsf.2014.09.053
https://www.proquest.com/docview/1660081707
Volume 572
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEfQgOhXnx4jgSahL2vQjxzkdm8MdhsOdDGmTYGXrhu2u_u0m_dhUcAcvLS1JW16S9_L6fu_3ALimjrSx4sTS_qy0CMWhRb3QMUTIwrWl0BbYRHSfhl5vTB4n7qQGOlUujIFVlrq_0Om5ti7vtEppthZxbHJ8tTFCJgxo3HJq_HZCfDPLbz_XMA9s2yvknGldRTZzjFeW5iyeBdWp6_xlm35p6dz0dA_AfrlnhO3isw5BTSZ1sPeNSbAOdnIkZ5Qegdc2jMryBTBaFRmEJR4LTkb3kCcCdvt3UHvaeSoWLBJG4Gz9vxCuuF1TGCcwe9MHFU9n6TEYdx-eOz2rLKJgRdoYZ1bghtjmEQmk7QrOlSC-UEGoXVNKBSW277qepMpDKnSpxI7CSCDuSI9Gjl7vyDkBW8k8kacAqiCQOJB60QpJBKGhInqUuY0jTvQLcAOgSnwsKhnGTaGLKaugZO9MS5wZiTNEmZZ4A9ysuiwKeo1NjUk1JuzHHGFa_W_qdlWNH9NrxwREeCLny5RhzzNbIh_5Z_979DnYNVcFvOUCbGUfS3mpNylZ2MxnYRNst_uD3tCcB6OXwReWkucZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6hIsRyQMDuijdG2hNSRJzYaXwsj6rl0QMCqae1nNgWRTQgEv4_48QJy0pw4JJDEifRjD3jyXzzDcAfEZuIWsUCjGdNwATNApFksSNC1jwyGj2wy-heT5LRHbuY8ukCnLa1MA5W6W1_Y9Nra-3PHHtpHj_PZq7GF51R6NKALiwXGLcvOnYq3oPFwfhyNOkMMo2iDjznBrTJzRrmVZU1kWfDdsrjz9zTf4a69j7DNVj120YyaL5sHRZMsQEr_5AJbsBSDebMy5_wd0By38GA5F2fQeIhWWR6c0ZUoclwfEIw2K6rsUhTM0Lm778MSUfvWpJZQap7PNjZ47z8BXfD89vTUeD7KAQ5-uMqSHlGI5Wz1ERcK2U162ubZhidCqEFi_qcJ0bYJLQZF4bGloY6VLFJRB7jkg_j39ArngqzCcSmqaGpwXWrDdNMZJaholVEc8XwBXQLwlZ8Mvck467XxaNs0WQPEiUuncRlKCRKfAuOuiHPDcPGVzezVifywzSR6AG-GnbY6k_i8nE5EVWYp9dS0iRxu6J-2N_-3qMPYHl0e30lr8aTyx344a40aJdd6FUvr2YP9yxVtu_n5BtJ--gn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+comparison+between+XRD+and+FIB+residual+stress+measurement+techniques+in+thin+films&rft.jtitle=Thin+solid+films&rft.au=Bemporad%2C+E.&rft.au=Brisotto%2C+M.&rft.au=Depero%2C+L.E.&rft.au=Gelfi%2C+M.&rft.date=2014-12-01&rft.pub=Elsevier+B.V&rft.issn=0040-6090&rft.eissn=1879-2731&rft.volume=572&rft.spage=224&rft.epage=231&rft_id=info:doi/10.1016%2Fj.tsf.2014.09.053&rft.externalDocID=S0040609014009390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6090&client=summon