“Metal oxide -based heterostructures for gas sensors”- A review
This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks t...
Saved in:
Published in | Analytica chimica acta Vol. 1039; pp. 1 - 23 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
18.12.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures’ surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism).
The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures.
Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures.
[Display omitted]
•Resumes the advantages of properties of metal oxide heterojunctions.•Overviews recent studies on metal oxide heterostructure-based gas sensor.•Highlight progresses and summarizes the data on gas sensing.•Critically proposes footprints of future research and application trends in this field. |
---|---|
AbstractList | This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures' surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures.This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures' surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures. This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures' surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures. This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures’ surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures. [Display omitted] •Resumes the advantages of properties of metal oxide heterojunctions.•Overviews recent studies on metal oxide heterostructure-based gas sensor.•Highlight progresses and summarizes the data on gas sensing.•Critically proposes footprints of future research and application trends in this field. |
Author | Comini, Elisabetta Zappa, Dario Munasinghe Arachchige, Hashitha M.M. Sisman, Orhan Galstyan, Vardan Kaur, Navpreet |
Author_xml | – sequence: 1 givenname: Dario surname: Zappa fullname: Zappa, Dario – sequence: 2 givenname: Vardan surname: Galstyan fullname: Galstyan, Vardan – sequence: 3 givenname: Navpreet surname: Kaur fullname: Kaur, Navpreet – sequence: 4 givenname: Hashitha M.M. surname: Munasinghe Arachchige fullname: Munasinghe Arachchige, Hashitha M.M. – sequence: 5 givenname: Orhan surname: Sisman fullname: Sisman, Orhan – sequence: 6 givenname: Elisabetta orcidid: 0000-0003-2559-5197 surname: Comini fullname: Comini, Elisabetta email: elisabetta.comini@unibs.it |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30322540$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtOxDAQRS0EguXxATQoEg1NwviRx4pqteIlgWigthxnAl5l48V2eHR8CPwcX4LRLs0WVKPRnDu6uneXbPa2R0IOKWQUaHE6y5RWGQNaZTDOgMEGGdGq5KngTGySEQDwlBUl7JBd72dxZRTENtnhwBnLBYzI9Pvj8xaD6hL7ZhpM0lp5bJInDOisD27QYXDok9a65FH5xGPvrfPfH19pMkkcvhh83Sdbreo8HqzmHnm4OL-fXqU3d5fX08lNqnlFQ1pxKDC6Q4Vt1Yq8Rq55A2Jc1QIogCpLFg9N3QgoxjWjRZXTslU0ekamgO-Rk-XfhbPPA_og58Zr7DrVox28ZJRBmTOAPKLHa-jMDq6P7iKVi5JSwYtIHa2ooZ5jIxfOzJV7l3_xRKBcAjqG4R22UpuggrF9cMp0koL8LULOZCxC_hYhYSxjEVFJ15R_z__TnC01GEOMwTrptcFeY2Mc6iAba_5R_wAqbp7b |
CitedBy_id | crossref_primary_10_1021_acsami_9b19442 crossref_primary_10_1016_j_colsurfa_2022_129435 crossref_primary_10_1007_s11051_019_4549_7 crossref_primary_10_1039_D4TA02855D crossref_primary_10_3390_s21134387 crossref_primary_10_1016_j_scitotenv_2021_145311 crossref_primary_10_1166_mex_2022_2315 crossref_primary_10_1002_pssb_202400246 crossref_primary_10_1088_2053_1591_ab0d6b crossref_primary_10_3390_nano10020398 crossref_primary_10_1016_j_ccr_2023_215542 crossref_primary_10_3390_chemosensors8020039 crossref_primary_10_1002_ente_202200113 crossref_primary_10_1002_est2_432 crossref_primary_10_1149_1945_7111_ac6e0a crossref_primary_10_3390_s24216839 crossref_primary_10_1016_j_apsusc_2022_156028 crossref_primary_10_1016_j_ceramint_2022_09_352 crossref_primary_10_1016_j_jallcom_2023_170691 crossref_primary_10_1016_j_snb_2021_130431 crossref_primary_10_3390_nano10030511 crossref_primary_10_1016_j_colsurfa_2022_129444 crossref_primary_10_3390_s20216225 crossref_primary_10_1039_D2CP04247A crossref_primary_10_1021_acs_analchem_9b01428 crossref_primary_10_1007_s44211_024_00573_z crossref_primary_10_1016_j_apsusc_2019_143756 crossref_primary_10_1016_j_mtchem_2024_101928 crossref_primary_10_1515_phys_2022_0232 crossref_primary_10_1016_j_ceramint_2024_02_257 crossref_primary_10_1016_j_snb_2024_136360 crossref_primary_10_1016_j_snb_2022_132565 crossref_primary_10_1007_s10854_024_12427_5 crossref_primary_10_1021_acssensors_3c02372 crossref_primary_10_1016_j_jelechem_2022_116699 crossref_primary_10_1016_j_snb_2024_137213 crossref_primary_10_1039_C9TC04132J crossref_primary_10_3390_ma16010263 crossref_primary_10_1016_j_snb_2022_133085 crossref_primary_10_1088_1361_6463_acec85 crossref_primary_10_1016_j_jallcom_2021_160189 crossref_primary_10_3390_coatings14101260 crossref_primary_10_1088_2058_8585_acef39 crossref_primary_10_1016_j_snb_2019_05_049 crossref_primary_10_1109_JSEN_2019_2942490 crossref_primary_10_1016_j_microc_2024_110713 crossref_primary_10_3390_s20236781 crossref_primary_10_3390_chemosensors9090256 crossref_primary_10_1016_j_mtchem_2023_101639 crossref_primary_10_1016_j_snb_2022_132313 crossref_primary_10_1016_j_jics_2024_101496 crossref_primary_10_4028_p_15QUp9 crossref_primary_10_1016_j_snb_2023_134338 crossref_primary_10_1186_s11671_020_3273_7 crossref_primary_10_1109_JSEN_2022_3205887 crossref_primary_10_1016_j_trac_2023_117233 crossref_primary_10_1109_JSEN_2022_3169685 crossref_primary_10_1016_j_sse_2024_109024 crossref_primary_10_1016_j_ijhydene_2025_01_409 crossref_primary_10_1016_j_cej_2024_150204 crossref_primary_10_3390_chemosensors11090495 crossref_primary_10_1021_acsnano_0c05307 crossref_primary_10_1149_2754_2734_acb562 crossref_primary_10_1016_j_cplett_2024_141321 crossref_primary_10_3390_s22041510 crossref_primary_10_1002_admi_202102525 crossref_primary_10_1021_acsomega_2c05953 crossref_primary_10_1063_5_0155416 crossref_primary_10_3390_catal13030459 crossref_primary_10_1016_j_materresbull_2023_112451 crossref_primary_10_1007_s11270_020_04973_5 crossref_primary_10_1016_j_snb_2022_131457 crossref_primary_10_1021_acsaelm_1c00841 crossref_primary_10_1021_acsanm_9b01176 crossref_primary_10_1016_j_apsusc_2023_159103 crossref_primary_10_1039_D0QI01326A crossref_primary_10_1016_j_vacuum_2021_110102 crossref_primary_10_1016_j_jallcom_2019_05_266 crossref_primary_10_3390_s23239548 crossref_primary_10_1039_D4MA00426D crossref_primary_10_2139_ssrn_4007269 crossref_primary_10_1016_j_materresbull_2019_05_001 crossref_primary_10_1016_j_ceramint_2024_05_259 crossref_primary_10_1039_D0TA12500H crossref_primary_10_1016_j_matchemphys_2022_127085 crossref_primary_10_1016_j_mseb_2020_114547 crossref_primary_10_1016_j_trac_2023_117454 crossref_primary_10_1109_TED_2024_3392173 crossref_primary_10_1016_j_jmmm_2019_165905 crossref_primary_10_1016_j_sna_2022_113578 crossref_primary_10_1016_j_snb_2023_133620 crossref_primary_10_1016_j_jpcs_2019_05_028 crossref_primary_10_1016_j_snb_2019_127453 crossref_primary_10_3390_chemosensors11060320 crossref_primary_10_1039_D3DT01078C crossref_primary_10_1021_acs_analchem_0c04476 crossref_primary_10_1021_acsanm_3c01181 crossref_primary_10_1002_cplu_201900307 crossref_primary_10_1016_j_surfin_2022_102368 crossref_primary_10_3390_s23020882 crossref_primary_10_1039_D4TC01561D crossref_primary_10_1016_j_ceramint_2024_07_037 crossref_primary_10_3389_fchem_2024_1425693 crossref_primary_10_1016_j_measen_2022_100600 crossref_primary_10_1117_1_JNP_13_036016 crossref_primary_10_1016_j_snb_2023_134721 crossref_primary_10_1016_j_talo_2024_100388 crossref_primary_10_1021_acsanm_9b01038 crossref_primary_10_1016_j_chemphys_2023_112041 crossref_primary_10_1039_D0RA02266G crossref_primary_10_1016_j_snb_2019_126699 crossref_primary_10_1016_j_aca_2023_341033 crossref_primary_10_1016_j_cej_2022_136094 crossref_primary_10_1038_s41378_022_00410_1 crossref_primary_10_1016_j_snb_2021_130412 crossref_primary_10_1016_j_apsusc_2020_147383 crossref_primary_10_1021_acssensors_1c02606 crossref_primary_10_1016_j_snb_2024_136072 crossref_primary_10_1016_j_ceramint_2020_11_187 crossref_primary_10_1039_D3AY00627A crossref_primary_10_3390_s24072147 crossref_primary_10_3390_s21082877 crossref_primary_10_1016_j_ceramint_2024_07_047 crossref_primary_10_2298_PAC2404366A crossref_primary_10_1016_j_rsurfi_2023_100103 crossref_primary_10_1021_acssensors_4c02946 crossref_primary_10_1016_j_apsusc_2024_159871 crossref_primary_10_1038_s41467_024_53577_8 crossref_primary_10_1016_j_snb_2021_129793 crossref_primary_10_3390_ma17143502 crossref_primary_10_1016_j_mssp_2021_106188 crossref_primary_10_1007_s40820_021_00724_1 crossref_primary_10_3390_s23083822 crossref_primary_10_1039_D0TA00511H crossref_primary_10_3390_ma16134802 crossref_primary_10_1149_2162_8777_acccaf crossref_primary_10_1016_j_talanta_2023_124442 crossref_primary_10_1016_j_mssp_2019_104732 crossref_primary_10_1016_j_snb_2020_127810 crossref_primary_10_1021_acsanm_1c01895 crossref_primary_10_1016_j_snb_2021_129606 crossref_primary_10_1016_j_apsusc_2019_05_077 crossref_primary_10_1016_j_jcis_2022_07_052 crossref_primary_10_3390_nano13081424 crossref_primary_10_1016_j_jallcom_2019_06_148 crossref_primary_10_1016_j_apt_2021_08_033 crossref_primary_10_1016_j_snb_2023_134754 crossref_primary_10_1039_D2NJ01300B crossref_primary_10_3390_chemosensors12010008 crossref_primary_10_3390_molecules28041621 crossref_primary_10_1016_j_microc_2025_113083 crossref_primary_10_1016_j_snb_2023_134881 crossref_primary_10_2139_ssrn_4129009 crossref_primary_10_1021_acssensors_9b00975 crossref_primary_10_1088_1361_6528_abdd5e crossref_primary_10_1007_s10853_020_04569_8 crossref_primary_10_1021_acsami_3c03564 crossref_primary_10_3390_nano9121714 crossref_primary_10_1016_j_ceramint_2024_09_186 crossref_primary_10_1088_2053_1591_abf52e crossref_primary_10_3390_s20226694 crossref_primary_10_1016_j_snb_2021_130605 crossref_primary_10_1016_j_snb_2020_128110 crossref_primary_10_1109_JSEN_2020_2977392 crossref_primary_10_1007_s10854_021_06997_x crossref_primary_10_1016_j_snb_2023_134889 crossref_primary_10_1016_j_microc_2024_112056 crossref_primary_10_1016_j_apsusc_2023_156714 crossref_primary_10_1016_j_jcis_2020_01_091 crossref_primary_10_1016_j_sna_2021_113127 crossref_primary_10_1016_j_matlet_2020_127728 crossref_primary_10_1016_j_matpr_2023_04_134 crossref_primary_10_1021_acsomega_3c09239 crossref_primary_10_1080_23746149_2022_2044904 crossref_primary_10_1016_j_jallcom_2021_161312 crossref_primary_10_1016_j_snb_2020_127719 crossref_primary_10_1021_acsami_2c03561 crossref_primary_10_1016_j_yofte_2021_102469 crossref_primary_10_1007_s10854_024_13963_w crossref_primary_10_1016_j_snb_2020_127954 crossref_primary_10_1016_j_surfin_2024_104637 crossref_primary_10_1002_tcr_202300350 crossref_primary_10_1109_JSEN_2021_3119951 crossref_primary_10_1016_j_snb_2020_127830 crossref_primary_10_1016_j_ccr_2025_216492 crossref_primary_10_1016_j_mtcomm_2022_105045 crossref_primary_10_1007_s00339_023_06647_5 crossref_primary_10_1016_j_inoche_2023_111941 crossref_primary_10_1016_j_snb_2022_131985 crossref_primary_10_1016_j_matchemphys_2022_126275 crossref_primary_10_3390_s21113736 crossref_primary_10_1016_j_mssp_2019_104820 crossref_primary_10_1016_j_snb_2019_127358 crossref_primary_10_3390_ma14226943 crossref_primary_10_1016_j_matchemphys_2023_127667 crossref_primary_10_1039_D3CE00004D crossref_primary_10_1155_2019_5942194 crossref_primary_10_1016_j_mne_2022_100148 crossref_primary_10_1016_j_snb_2021_130869 crossref_primary_10_1016_j_mssp_2020_105149 crossref_primary_10_1021_acsami_1c04379 crossref_primary_10_1016_j_nanoen_2021_106241 crossref_primary_10_1016_j_snb_2024_136783 crossref_primary_10_3390_molecules26071988 crossref_primary_10_3390_ijms24021570 crossref_primary_10_1007_s00339_021_04927_6 crossref_primary_10_1038_s41598_022_09365_9 crossref_primary_10_1016_j_mssp_2020_105643 crossref_primary_10_1021_acsami_2c03704 crossref_primary_10_14233_ajchem_2020_22249 crossref_primary_10_1016_j_apt_2020_03_013 crossref_primary_10_3390_nano11061555 crossref_primary_10_1016_j_jhazmat_2023_131591 crossref_primary_10_1016_j_snb_2021_131206 crossref_primary_10_1016_j_sna_2021_112804 crossref_primary_10_3390_ma12060877 crossref_primary_10_1016_j_mtchem_2021_100768 crossref_primary_10_1016_j_snb_2023_134558 crossref_primary_10_1088_1361_6528_ac5aea crossref_primary_10_1088_1402_4896_ac86ae crossref_primary_10_1007_s10854_020_03332_8 crossref_primary_10_1016_j_snb_2023_134675 crossref_primary_10_1016_j_snb_2024_135489 crossref_primary_10_3390_chemosensors9020041 crossref_primary_10_1016_j_snb_2024_135477 crossref_primary_10_1016_j_ccr_2020_213272 crossref_primary_10_1007_s10854_023_10411_z crossref_primary_10_1016_j_ceramint_2024_06_075 crossref_primary_10_1590_1980_5373_mr_2021_0007 crossref_primary_10_2139_ssrn_3973724 crossref_primary_10_1016_j_snb_2020_129403 crossref_primary_10_2139_ssrn_4135077 crossref_primary_10_3390_ma14206063 crossref_primary_10_1016_j_mseb_2020_115005 crossref_primary_10_1002_smll_202206100 crossref_primary_10_1016_j_chphi_2023_100350 crossref_primary_10_1016_j_jallcom_2021_158994 crossref_primary_10_3390_mi14091685 crossref_primary_10_1016_j_carbon_2021_04_080 crossref_primary_10_1016_j_sna_2022_113986 crossref_primary_10_3390_ma14216535 crossref_primary_10_3390_app15052522 crossref_primary_10_3390_mi14101875 crossref_primary_10_1016_j_snb_2019_127143 crossref_primary_10_1016_j_materresbull_2020_111109 crossref_primary_10_3390_s21206940 crossref_primary_10_1016_j_colsurfa_2023_131371 crossref_primary_10_1039_D4RA07112C crossref_primary_10_46670_JSST_2022_31_6_455 crossref_primary_10_1002_admt_202201671 crossref_primary_10_1002_cnma_202000176 crossref_primary_10_1016_j_jics_2021_100126 crossref_primary_10_1016_j_mtcomm_2022_105241 crossref_primary_10_1016_j_snb_2021_130257 crossref_primary_10_1088_1674_1056_ac6947 crossref_primary_10_1007_s43207_019_00003_1 crossref_primary_10_1021_acssensors_4c01216 crossref_primary_10_1016_j_materresbull_2021_111633 crossref_primary_10_1016_j_ijhydene_2024_07_253 crossref_primary_10_1088_1361_6528_abfe92 crossref_primary_10_1016_j_jallcom_2021_160015 crossref_primary_10_1016_j_jallcom_2021_160136 crossref_primary_10_2139_ssrn_4152861 crossref_primary_10_1063_1_5118805 crossref_primary_10_1016_j_snb_2020_128579 crossref_primary_10_1016_j_snb_2019_126746 crossref_primary_10_1016_j_jallcom_2020_155840 crossref_primary_10_1016_j_snb_2019_126629 crossref_primary_10_1016_j_snb_2020_128330 crossref_primary_10_1007_s40820_022_00956_9 crossref_primary_10_1016_j_matchemphys_2024_129430 crossref_primary_10_1080_23746149_2023_2175623 crossref_primary_10_1109_LED_2019_2956560 crossref_primary_10_1016_j_colsurfa_2022_129791 crossref_primary_10_1016_j_nanoen_2023_108301 crossref_primary_10_1016_j_trac_2024_117684 crossref_primary_10_3390_ma16206733 |
Cites_doi | 10.1016/j.snb.2016.07.135 10.1021/cg500031t 10.1016/j.snb.2016.12.009 10.1016/j.ijhydene.2017.05.135 10.1016/j.snb.2011.08.007 10.1016/j.snb.2012.09.027 10.1016/j.snb.2013.02.010 10.1021/am501379m 10.1016/j.snb.2012.02.076 10.1016/j.snb.2015.06.114 10.1088/0957-4484/23/24/245501 10.1016/j.snb.2017.07.013 10.1039/c1ra00077b 10.1039/C4RA09456E 10.5194/jsss-4-305-2015 10.1016/j.snb.2013.04.020 10.1021/am5012518 10.1016/j.snb.2016.04.057 10.1039/C6RA11065G 10.1016/j.snb.2012.02.019 10.1111/jace.14378 10.1166/eef.2014.1118 10.1016/j.snb.2013.11.003 10.1021/am402532v 10.1016/j.snb.2015.03.012 10.1016/j.mseb.2007.01.044 10.1109/JMEMS.2015.2399696 10.1016/j.ceramint.2017.03.032 10.1016/j.jallcom.2014.02.089 10.1016/j.snb.2016.09.005 10.1016/j.mattod.2016.05.016 10.3390/s17040913 10.1016/j.snb.2013.11.005 10.1016/j.snb.2012.09.094 10.1016/j.matlet.2014.05.182 10.1039/C7CE02014G 10.1016/j.ijleo.2018.02.002 10.1016/j.snb.2012.03.003 10.1039/c2jm32230g 10.1016/j.tsf.2007.03.034 10.1016/0925-4005(92)80070-E 10.1016/j.snb.2017.11.063 10.1016/j.nanoen.2014.03.005 10.1016/j.ceramint.2007.09.099 10.1016/j.snb.2012.01.045 10.1021/ac503234e 10.1021/acsami.7b17508 10.1016/j.ceramint.2008.01.028 10.1016/j.snb.2013.01.067 10.1021/acsami.6b00773 10.1016/j.mattod.2014.08.017 10.1021/acsami.5b08630 10.1016/j.mseb.2017.12.036 10.1016/j.jallcom.2017.08.088 10.1016/j.matlet.2018.03.073 10.1016/S0025-5408(00)00264-6 10.1088/0957-4484/27/42/425503 10.1039/C6NR05187A 10.1088/0957-4484/24/44/444008 10.3390/s120607207 10.1039/C7RA04852A 10.1016/j.snb.2004.04.109 10.1021/jp3121066 10.1021/jp500516t 10.1038/srep33092 10.1016/j.jcis.2017.01.106 10.1038/nmat1891 10.3390/s16091373 10.1016/j.snb.2008.04.040 10.1088/0957-4484/27/20/205701 10.1038/srep43887 10.3390/chemosensors4020006 10.1016/j.snb.2014.12.022 10.1109/JSEN.2010.2046409 10.1088/1757-899X/83/1/012002 10.1016/j.jallcom.2017.11.185 10.1016/j.carbon.2010.11.017 10.1016/j.snb.2016.12.044 10.1002/anie.201106948 10.1021/am507983y 10.3390/catal3010189 10.1039/C5RA15019A 10.1016/j.sse.2014.08.010 10.1021/acsami.7b04530 10.1016/j.pmatsci.2008.06.003 10.1016/j.snb.2015.01.130 10.1039/C6RA06538D 10.1021/nn202471f 10.3938/jkps.69.373 10.1016/j.matlet.2012.08.100 10.1016/j.snb.2015.11.120 10.1016/j.snb.2012.07.118 10.1021/acs.analchem.8b00237 10.1016/j.matlet.2018.01.018 10.1016/j.snb.2010.12.034 10.1186/1556-276X-9-638 10.1016/j.matchemphys.2017.12.088 10.1021/cr068121q 10.1016/j.snb.2016.11.152 10.1039/C1CE06086D 10.3390/ma10121418 10.1039/C6RA07292E 10.1002/smll.201402923 10.1016/j.snb.2018.03.099 10.1007/s10832-009-9583-x 10.1088/0268-1242/30/2/024002 10.1021/cm701990f 10.1016/j.snb.2014.06.072 10.1016/j.snb.2017.07.197 10.1016/j.jallcom.2016.02.242 10.1016/j.snb.2017.01.056 10.1016/j.materresbull.2016.02.011 10.1016/j.apsusc.2014.07.161 10.1007/978-0-387-09665-0 10.1021/am300911z 10.1088/0022-3727/45/20/205301 10.1063/1.4901503 10.1016/j.snb.2016.09.086 10.1080/17458080.2012.680930 10.1007/s10854-017-8313-4 10.1039/C4RA14033H 10.1016/j.jcis.2018.05.006 10.1016/j.snb.2012.10.027 10.1039/C4RA05914J 10.1016/j.jallcom.2017.12.016 10.1039/C4RA05736H 10.3762/bjnano.8.122 10.1016/S0925-4005(02)00299-X 10.1016/j.electacta.2017.10.180 10.1016/j.snb.2010.08.007 10.1016/j.snb.2016.06.095 10.1016/S0921-5107(98)00432-2 10.1016/j.snb.2013.05.001 10.3938/jkps.71.487 10.1016/j.snb.2017.09.187 10.1016/j.snb.2014.11.130 10.1016/j.jallcom.2018.02.171 10.1016/j.proeng.2011.12.279 10.1016/j.msec.2012.05.042 10.1016/j.snb.2015.03.037 10.1016/j.snb.2012.01.064 10.1021/acsami.7b11872 10.1016/j.jallcom.2015.03.193 10.1016/j.snb.2018.02.042 10.3390/s17122947 10.1016/j.ceramint.2012.12.017 10.1016/j.snb.2017.09.184 10.1021/ic300749a |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. Copyright Elsevier BV Dec 18, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Dec 18, 2018 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7TK 7TM 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1016/j.aca.2018.09.020 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-4324 |
EndPage | 23 |
ExternalDocumentID | 30322540 10_1016_j_aca_2018_09_020 S0003267018310894 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABFYP ABGSF ABJNI ABLST ABMAC ABUDA ABYKQ ACBEA ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSJ SSK SSU SSZ T5K TN5 TWZ UPT WH7 YK3 ZMT ~02 ~G- .GJ 3O- 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AI. AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FA8 FEDTE FGOYB HMU HVGLF HZ~ H~9 MVM NHB R2- RIG SCB SEW SSH T9H UQL VH1 WUQ XOL XPP ZCG ZXP ZY4 NPM 7QF 7QO 7QP 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7TK 7TM 7U5 7U7 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c381t-8306e873eaef8f45be3c3d0498b40100a772f8fdbd4069b2168517fa1104e2a03 |
IEDL.DBID | .~1 |
ISSN | 0003-2670 1873-4324 |
IngestDate | Thu Jul 10 17:45:09 EDT 2025 Wed Aug 13 07:20:18 EDT 2025 Wed Feb 19 02:42:10 EST 2025 Tue Jul 01 01:11:42 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Fri Feb 23 02:29:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metal oxide Chemical sensors Nanostructures Core-shell Heterostructures Hierarchical structures |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-8306e873eaef8f45be3c3d0498b40100a772f8fdbd4069b2168517fa1104e2a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2559-5197 |
PMID | 30322540 |
PQID | 2154711436 |
PQPubID | 2045283 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2120752005 proquest_journals_2154711436 pubmed_primary_30322540 crossref_citationtrail_10_1016_j_aca_2018_09_020 crossref_primary_10_1016_j_aca_2018_09_020 elsevier_sciencedirect_doi_10_1016_j_aca_2018_09_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-18 |
PublicationDateYYYYMMDD | 2018-12-18 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Analytica chimica acta |
PublicationTitleAlternate | Anal Chim Acta |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Liangyuan, Shouli, Guojun, Dianqing, Aifan, Liu (bib90) 2008; 134 Vomiero, Bianchi, Comini, Faglia, Ferroni, Poli, Sberveglieri (bib72) 2007; 515 Woo, Na, Kim, Lee (bib76) 2012; 23 Joshi, Ippolito, Periasamy, Sabri, Sunkara (bib127) 2017 Verma, Gupta (bib143) 2012; 166–167 Walden, Kneer, Knobelspies, Kronast, Mescheder, Palzer (bib162) 2015; 24 Zang, Nie, Zhu, Deng, Xing, Xue (bib37) 2014; 118 Qin, Zhang, Liu, Xie (bib137) 2016; 673 Comini, Baratto, Faglia, Ferroni, Vomiero, Sberveglieri (bib5) 2009; 54 Guo, Luo, Zhang, Lin, Nan (bib145) 2014; 14 Zhu, Su, Chen, Jin, Xu, Zhang (bib111) 2016; 99 Comini (bib97) 2002; vol. 4005 Ge, Chang, Natarajan, Feng, Zhan, Ma (bib99) 2018; 746 Gebauer, Mackert, Ognjanović, Winterer (bib161) 2018; 526 Liang, Yang, Zhu, Hu (bib149) 2018; 29 Yu, Zhu, Xu, Huang (bib31) 2015; 213 Shaposhnik, Pavelko, Llobet, Gispert-Guirado, Vilanova (bib98) 2011; 25 Chen, Ji, Li, Kang, Chang, Wang, Yu, Lu, Claverie, Sang, Liu (bib28) 2015; 7 Wang, Cui, Li, Li, Ma, Luan, Liu, Zhang (bib59) 2016; 6 Park, Kim, Sun, In Lee, Kim, Lee (bib135) 2014; 9 Annanouch, Haddi, Ling, Di Maggio, Vallejos, Vilic, Zhu, Shujah, Umek, Bittencourt, Blackman, Llobet (bib132) 2016; 8 Wang, Cheng, Zhou, Sun, Hu, Shimanoe, Lu, Yamazoe (bib121) 2014 Jiao, Wang, Bian, Liu (bib152) 2000; 35 Trakhtenberg, Gerasimov, Gromov, Belysheva, Ilegbusi (bib87) 2012; 169 Korotcenkov (bib150) 2007; 139 Lee, Kwon, Park, Park, You, Yoon, Jang (bib21) 2011; 5 Yang, Liu, Qin, Liu, Jing, Zhang (bib112) 2017; 727 Lu, Ma, Ma, Yan (bib106) 2017; 43 Liu, Zhou, Zhang, Hong, Xu, Jin, Chen (bib35) 2017; 17 Yan, Ma, Li, Xu, Cheng, Song, Liang (bib128) 2015; vol. 221 Arafat, Dinan, Akbar, Haseeb (bib153) 2012; 12 Li, Wang, Liu, Zhao, Li, Wei, Han (bib124) 2017; vol. 694 Yeon Kwon, Kyeong Jeong (bib16) 2015; 30 Karbalaei Akbari, Hai, Wei, Detavernier, Solano, Verpoort, Zhuiykov (bib52) 2018; 10 Núñez Carmona, Sberveglieri, Ponzoni, Galstyan, Zappa, Pulvirenti, Comini (bib11) 2017; 238 Blattmann, Güntner, Pratsinis (bib43) 2017; 9 Rivera, Mazady, Anwar (bib136) 2015; 104 Liang, Kim, Yoon, Kwak, Lee (bib84) 2015; 209 Larin, Womble, Dobrokhotov (bib144) 2016; 16 Kabcuma, Channei, Tuantranont, Wisitsoraat, Liewhiran, Phanichphant (bib110) 2016; 226 Wang, Liu, Meng, Zhou, Gao, Li, Cao, Xu, Zhu (bib146) 2016; 6 Zappa, Bertuna, Comini, Kaur, Poli, Sberveglieri, Sberveglieri (bib6) 2017; 8 Wang, Jin, Zheng, Zhou, Gao (bib107) 2017; 244 Gardner, Guha, Udrea, Covington (bib159) 2010; 10 Dey (bib63) 2018; 229 Sharma, Tomar, Gupta (bib40) 2013; 176 Katoch, Kim, Kim (bib101) 2015 Sarkar, Singh, Khan, Sarkar, Mandal (bib55) 2014; 4 Joshi, Ippolito (bib116) 2017 Hotovy, Huran, Siciliano, Capone, Spiess, Rehacek (bib75) 2004; 103 Somacescu, Dinescu, Stanoiu, Simion, Calderon Moreno (bib94) 2012; 89 Duc, Quang, Hoang, Van Hieu, Duc (bib130) 2014; 599 Wang, Zhou, Meng, Gao, Cao, Li, Xu, Zhu, Peng, Zhang, Lin, Liu (bib69) 2016; 27 Sze (bib2) 1994 Kim, Lee, Mirzaei, Kim, Kim (bib58) 2018; 258 Liang, Xu, Zhao, Gao (bib142) 2012; 165 Comini (bib151) 2016; 19 Righettoni, Amann, Pratsinis (bib4) 2015; 18 Liu, Sakurai, Aono (bib133) 2012; 22 Barsan, Simion, Heine, Pokhrel, Weimar (bib7) 2010; 25 Mcalpine, Ahmad, Wang, Heath (bib12) 2007; 6 Choi, Lee, Lee, Lee, Lee (bib140) 2017; 71 Galstyan, Comini, Ponzoni, Sberveglieri, Sberveglieri (bib46) 2016; 4 Tang, Wang, Yao, Li (bib100) 2014; 192 Wang, Zhang, Yang, Gao, Zhang, Wang, Zhu (bib125) 2015; 5 Yin, Yao, Fan, Liu (bib93) 2018; 736 Liu, Zhang, Wang, Li, Wang, Han, Jiang, Wei (bib102) 2011; 160 Sun, Chen, Li, Chen, Zhang, Ma, Jia, Cao, Bala, Wang, Zhang (bib118) 2016; 233 Cui, Zhang, Chen, Wang, Li, shi, Wang (bib82) 2017; 7 Qu, Jiang, Yang (bib139) 2016; 8 Feng, Wu, Rao, Wan, Li, Kuang, Su (bib33) 2015; 7 Yousefi, Jamali-Sheini, Khorsand Zak, Azarang (bib51) 2013; 39 Zhai, Xu, Li, Yu, Chen, Wang, Cao (bib39) 2018; 737 Kaur, Comini, Zappa, Poli, Sberveglieri (bib65) 2016; 27 Park, Kim, Kheel, Hyun, Jin, Lee (bib85) 2016; 82 Kumar, Sanger, Kumar, Chandra (bib53) 2016; 6 Her, Yeh, Huang (bib148) 2014; 6 Lee, Hwang, Pi, Yang, Oh, Cho, Cho, Chu (bib42) 2014; 105 Comini, Faglia, Sberveglieri (bib1) 2009 Verma, Gupta (bib96) 2013; 8 Liu, Wang, Zhang, Lin (bib103) 2016; 237 Yang, Lu, Li, Sun, Liu (bib27) 2014; 7 Katoch, Choi, Kim, Lee, Lee, Kim (bib89) 2015; 214 Feng, Wang, Cheng, Li, Wang, Guan, Ma, Zhang, Sun, Sun, Zheng, Lu (bib129) 2015; 221 Trakhtenberg, Gerasimov, Gromov, Belysheva, Ilegbusi (bib95) 2015; 209 Liu, Zhao, Wang, Sun, Wang, Gao, Liang, Zhang, Lu (bib45) 2017; 495 Wang, Sang, Wang, Ji, Liu (bib29) 2015; 639 Choi, Katoch, Sun, Kim (bib49) 2013; 181 Suh, Cho, Kang, Kweon, Lee, Yoo, Park (bib158) 2018; 265 Kim, Lee (bib8) 2014; 192 Reimann, Dausend, Schutze (bib9) 2008 Chen, Xiao, Wang, Zhang, Ma, Gao, Zhu, Zhang, Xu, Li (bib81) 2011; 155 Khoang, Trung, Van Duy, Hoa, Van Hieu (bib80) 2012; 174 Wang, Liu, Li, Wang (bib113) 2018; 221 Schüler, Sauerwald, Schütze (bib10) 2015; 4 Marikutsa, Krivetskiy, Yashina, Rumyantseva, Konstantinova, Ponzoni, Comini, Abakumov, Gaskov (bib88) 2012; 175 Tan, Tan, Fan, Yu, Qian, Huang (bib120) 2018; 256 Arafat, Haseeb, Akbar, Quadir (bib141) 2017; 238 Kim, Na, Hwang, Lee (bib83) 2012; 168 Li, He, Liu, Zhang, Chen (bib163) 2015; 87 Galstyan, Vomiero, Comini, Faglia, Sberveglieri (bib54) 2011; 1 Kaur, Comini, Poli, Zappa, Sberveglieri (bib67) 2016 Jahromi, Behzad (bib115) 2018; 207 Jin, Xiao, Bao, Wang, Wang (bib19) 2012; 51 Liu, Sun, Wang, Wang, Zhang, Zhang, Lin, Xie (bib30) 2014; 4 Bhuvaneshwari, Papachan, Gopalakrishnan (bib92) 2017; 1832 Vasiliev, Rumyantseva, Podguzova, Ryzhikov, Ryabova, Gaskov (bib18) 1999; 57 Moon, Yu, Choi (bib15) 2002; 87 Lou, Deng, Wang, Wang, Fei, Zhang (bib108) 2013; 176 Bai, Li, Han, Luo, Chen, Chung (bib91) 2010; 150 Qin, Zhang, Wang, Liu (bib138) 2017; 240 Güntner, Pineau, Mochalski, Wiesenhofer, Agapiou, Mayhew, Pratsinis (bib3) 2018; 90 Raksa, Gardchareon, Chairuangsri, Mangkorntong, Mangkorntong, Choopun (bib74) 2009; 35 Zhang, Yi (bib109) 2018; 216 Hongsith, Viriyaworasakul, Mangkorntong, Mangkorntong, Choopun (bib64) 2008; 34 Li, Gao, Wang, Zhang, Lu (bib57) 2017; 248 Xu, Zheng, Liu, Song, Chen, Dong, Song (bib70) 2012; 51 Zappa (bib122) 2017; 10 Hernández, Cauda, Chiodoni, Dallorto, Sacco, Hidalgo, Celasco, Pirri (bib62) 2014; 6 Zhu, Lu, Hao, Wang, Wu, Wang, Li, Ye (bib44) 2017; 9 Comini, Baratto, Concina, Faglia, Falasconi, Ferroni, Galstyan, Gobbi, Ponzoni, Vomiero, Zappa, Sberveglieri, Sberveglieri (bib50) 2013; 179 Her, Chiang, Jean, Huang (bib147) 2012; 14 Perrozzi, Cantalini, Ottaviano (bib165) 2017 Shaposhnik, Pavelko, Llobet, Gispert-Guirado, Vilanova (bib17) 2011; 25 Gui, Chai, Mohamed (bib56) 2014; 319 Gao, Zhao, Wang, Sun, Lu, Liu, Chuai, Lu (bib117) 2018; 255 Zappa, Comini, Sberveglieri (bib66) 2013; 24 Kamat (bib155) 2007 Yan, Song, Yang, Wang (bib126) 2015; 5 Traversa, Bearzotti, Miyayama, Yanagida (bib156) 1998; 18 Gotoh, Kinumoto, Fujii, Yamamoto, Hashimoto, Ohkubo, Itadani, Kuroda, Ishida (bib22) 2011; 49 Rakshit, Santra, Manna, Ray (bib38) 2014; 4 Ibhadon, Fitzpatrick (bib154) 2013; 3 Jiang, Ge, Xu, Wang, Cao (bib48) 2018; 20 Arunkumar, Hou, Kim, Choi, Park, Jung, Lee (bib20) 2017; 243 Datta, Ramgir, Kumar, Veerender, Kaur, Kailasaganapathi, Debnath, Aswal, Gupta (bib78) 2014; 202 Chen, Huang, Zhang, Feng, Wang (bib26) 2018; 259 Md Sin, Shafura, Malek, Mamat, Rusop (bib47) 2015; 83 Chen, Zhu, Shi, Cao, Jin (bib24) 2008; 19 Liu, He, Hu, Liu, Jia, Xu (bib34) 2014; 131 Kaur, Zappa, Ferroni, Poli, Campanini, Negrea, Comini (bib23) 2018; 262 Röck, Barsan, Weimar (bib13) 2008; 108 Fiz, Hernandez-Ramirez, Fischer, Lopez-Conesa, Estrade, Peiro, Mathur (bib134) 2013; 117 Kim, Na, Choi, Kwak, Kim (bib86) 2012; 45 Li, Zhang, Zhang, Gao, He, Liu, Li, Chen (bib164) 2017; 244 Lou, Li, Deng, Wang, Zhang (bib68) 2013; 5 Galstyan (bib25) 2017; 17 Zhao, Tang, Mao, Chen, Song, Wang, Song, Liang, Zhang (bib131) 2016; vol. 674 Zhao, Wang, Kang, Sang, Liu (bib32) 2014; 3 Qin, Xu, Song, Xing, Song (bib104) 2013; 185 Mirzaei, Park, Sun, Kheel, Lee, Lee (bib105) 2016; 69 Wang, Kang, Wang, Zhu, Zhang, Huang, Wang (bib119) 2012; 32 Zappa, Bertuna, Comini, Herold, Poli, Sberveglieri (bib160) 2015 Deng, Yu, Lou, Wang, Wang, Zhang (bib71) 2013; 184 Shao, Hoffmann, Prades, Zamani, Arbiol, Morante, Varechkina, Rumyantseva, Gaskov, Giebelhaus, Fischer, Mathur, Hernández-Ramírez (bib77) 2013; 181 Fang, Zhu, Wu, Zhang, Xu, Xiong, Yang, Wang, Chu (bib41) 2017; 252 Jiao, Van Duy, Viet (bib114) 2017; 42 Zou, Yan, Li, Tian, Zhang, Liang (bib60) 2017; 7 Jiang, Shi, Xie, Wang, Lin (bib61) 2018; 254 Kruefu, Wisitsoraat, Tuantranont, Phanichphant (bib73) 2015; 215 Zhang, Song, Zhang, Li, Yang, Wang (bib36) 2016; 6 Maurya, Prajapati, Raikwar, Saini (bib166) 2018; 160 Barreca, Comini, Ferrucci, Gasparotto, Maccato, Maragno, Sberveglieri, Tondello (bib14) 2007; 19 Dutronc, Carbonne, Menil, Lucat (bib157) 1992; 6 Mashock, Yu, Cui, Mao, Lu, Chen (bib79) 2012; 4 Cui, Wen, Huang, Chang, Chen (bib123) 2015; 11 Somacescu (10.1016/j.aca.2018.09.020_bib94) 2012; 89 Chen (10.1016/j.aca.2018.09.020_bib81) 2011; 155 Xu (10.1016/j.aca.2018.09.020_bib70) 2012; 51 Liu (10.1016/j.aca.2018.09.020_bib35) 2017; 17 Md Sin (10.1016/j.aca.2018.09.020_bib47) 2015; 83 Datta (10.1016/j.aca.2018.09.020_bib78) 2014; 202 Zhai (10.1016/j.aca.2018.09.020_bib39) 2018; 737 Wang (10.1016/j.aca.2018.09.020_bib69) 2016; 27 Her (10.1016/j.aca.2018.09.020_bib147) 2012; 14 Yang (10.1016/j.aca.2018.09.020_bib112) 2017; 727 Zou (10.1016/j.aca.2018.09.020_bib60) 2017; 7 Hongsith (10.1016/j.aca.2018.09.020_bib64) 2008; 34 Perrozzi (10.1016/j.aca.2018.09.020_bib165) 2017 Mcalpine (10.1016/j.aca.2018.09.020_bib12) 2007; 6 Zhang (10.1016/j.aca.2018.09.020_bib109) 2018; 216 Trakhtenberg (10.1016/j.aca.2018.09.020_bib95) 2015; 209 Zhao (10.1016/j.aca.2018.09.020_bib131) 2016; vol. 674 Gebauer (10.1016/j.aca.2018.09.020_bib161) 2018; 526 Galstyan (10.1016/j.aca.2018.09.020_bib46) 2016; 4 Jahromi (10.1016/j.aca.2018.09.020_bib115) 2018; 207 Arunkumar (10.1016/j.aca.2018.09.020_bib20) 2017; 243 Galstyan (10.1016/j.aca.2018.09.020_bib25) 2017; 17 Yu (10.1016/j.aca.2018.09.020_bib31) 2015; 213 Liang (10.1016/j.aca.2018.09.020_bib84) 2015; 209 Chen (10.1016/j.aca.2018.09.020_bib28) 2015; 7 Annanouch (10.1016/j.aca.2018.09.020_bib132) 2016; 8 Wang (10.1016/j.aca.2018.09.020_bib146) 2016; 6 Comini (10.1016/j.aca.2018.09.020_bib5) 2009; 54 Kabcuma (10.1016/j.aca.2018.09.020_bib110) 2016; 226 Sze (10.1016/j.aca.2018.09.020_bib2) 1994 Duc (10.1016/j.aca.2018.09.020_bib130) 2014; 599 Cui (10.1016/j.aca.2018.09.020_bib82) 2017; 7 Comini (10.1016/j.aca.2018.09.020_bib97) 2002; vol. 4005 Cui (10.1016/j.aca.2018.09.020_bib123) 2015; 11 Guo (10.1016/j.aca.2018.09.020_bib145) 2014; 14 Wang (10.1016/j.aca.2018.09.020_bib29) 2015; 639 Deng (10.1016/j.aca.2018.09.020_bib71) 2013; 184 Schüler (10.1016/j.aca.2018.09.020_bib10) 2015; 4 Vasiliev (10.1016/j.aca.2018.09.020_bib18) 1999; 57 Jin (10.1016/j.aca.2018.09.020_bib19) 2012; 51 Feng (10.1016/j.aca.2018.09.020_bib33) 2015; 7 Jiao (10.1016/j.aca.2018.09.020_bib152) 2000; 35 Wang (10.1016/j.aca.2018.09.020_bib119) 2012; 32 Sharma (10.1016/j.aca.2018.09.020_bib40) 2013; 176 Kaur (10.1016/j.aca.2018.09.020_bib23) 2018; 262 Zang (10.1016/j.aca.2018.09.020_bib37) 2014; 118 Wang (10.1016/j.aca.2018.09.020_bib125) 2015; 5 Wang (10.1016/j.aca.2018.09.020_bib107) 2017; 244 Lee (10.1016/j.aca.2018.09.020_bib42) 2014; 105 Kim (10.1016/j.aca.2018.09.020_bib8) 2014; 192 Qin (10.1016/j.aca.2018.09.020_bib104) 2013; 185 Karbalaei Akbari (10.1016/j.aca.2018.09.020_bib52) 2018; 10 Vomiero (10.1016/j.aca.2018.09.020_bib72) 2007; 515 Liu (10.1016/j.aca.2018.09.020_bib34) 2014; 131 Kaur (10.1016/j.aca.2018.09.020_bib67) 2016 Liangyuan (10.1016/j.aca.2018.09.020_bib90) 2008; 134 Liu (10.1016/j.aca.2018.09.020_bib133) 2012; 22 Kruefu (10.1016/j.aca.2018.09.020_bib73) 2015; 215 Arafat (10.1016/j.aca.2018.09.020_bib153) 2012; 12 Katoch (10.1016/j.aca.2018.09.020_bib89) 2015; 214 Lou (10.1016/j.aca.2018.09.020_bib108) 2013; 176 Mirzaei (10.1016/j.aca.2018.09.020_bib105) 2016; 69 Kim (10.1016/j.aca.2018.09.020_bib83) 2012; 168 Jiao (10.1016/j.aca.2018.09.020_bib114) 2017; 42 Qin (10.1016/j.aca.2018.09.020_bib138) 2017; 240 Choi (10.1016/j.aca.2018.09.020_bib140) 2017; 71 Shaposhnik (10.1016/j.aca.2018.09.020_bib98) 2011; 25 Güntner (10.1016/j.aca.2018.09.020_bib3) 2018; 90 Moon (10.1016/j.aca.2018.09.020_bib15) 2002; 87 Verma (10.1016/j.aca.2018.09.020_bib96) 2013; 8 Bhuvaneshwari (10.1016/j.aca.2018.09.020_bib92) 2017; 1832 Gao (10.1016/j.aca.2018.09.020_bib117) 2018; 255 Qin (10.1016/j.aca.2018.09.020_bib137) 2016; 673 Gotoh (10.1016/j.aca.2018.09.020_bib22) 2011; 49 Dutronc (10.1016/j.aca.2018.09.020_bib157) 1992; 6 Larin (10.1016/j.aca.2018.09.020_bib144) 2016; 16 Zappa (10.1016/j.aca.2018.09.020_bib122) 2017; 10 Marikutsa (10.1016/j.aca.2018.09.020_bib88) 2012; 175 Katoch (10.1016/j.aca.2018.09.020_bib101) 2015 Kim (10.1016/j.aca.2018.09.020_bib58) 2018; 258 Comini (10.1016/j.aca.2018.09.020_bib50) 2013; 179 Lou (10.1016/j.aca.2018.09.020_bib68) 2013; 5 Liu (10.1016/j.aca.2018.09.020_bib102) 2011; 160 Yeon Kwon (10.1016/j.aca.2018.09.020_bib16) 2015; 30 Dey (10.1016/j.aca.2018.09.020_bib63) 2018; 229 Núñez Carmona (10.1016/j.aca.2018.09.020_bib11) 2017; 238 Mashock (10.1016/j.aca.2018.09.020_bib79) 2012; 4 Zhu (10.1016/j.aca.2018.09.020_bib44) 2017; 9 Tan (10.1016/j.aca.2018.09.020_bib120) 2018; 256 Jiang (10.1016/j.aca.2018.09.020_bib61) 2018; 254 Feng (10.1016/j.aca.2018.09.020_bib129) 2015; 221 Gardner (10.1016/j.aca.2018.09.020_bib159) 2010; 10 Lee (10.1016/j.aca.2018.09.020_bib21) 2011; 5 Liang (10.1016/j.aca.2018.09.020_bib149) 2018; 29 Jiang (10.1016/j.aca.2018.09.020_bib48) 2018; 20 Walden (10.1016/j.aca.2018.09.020_bib162) 2015; 24 Arafat (10.1016/j.aca.2018.09.020_bib141) 2017; 238 Rivera (10.1016/j.aca.2018.09.020_bib136) 2015; 104 Ge (10.1016/j.aca.2018.09.020_bib99) 2018; 746 Barreca (10.1016/j.aca.2018.09.020_bib14) 2007; 19 Yousefi (10.1016/j.aca.2018.09.020_bib51) 2013; 39 Traversa (10.1016/j.aca.2018.09.020_bib156) 1998; 18 Raksa (10.1016/j.aca.2018.09.020_bib74) 2009; 35 Shaposhnik (10.1016/j.aca.2018.09.020_bib17) 2011; 25 Wang (10.1016/j.aca.2018.09.020_bib59) 2016; 6 Fiz (10.1016/j.aca.2018.09.020_bib134) 2013; 117 Zhu (10.1016/j.aca.2018.09.020_bib111) 2016; 99 Chen (10.1016/j.aca.2018.09.020_bib26) 2018; 259 Li (10.1016/j.aca.2018.09.020_bib124) 2017; vol. 694 Liang (10.1016/j.aca.2018.09.020_bib142) 2012; 165 Korotcenkov (10.1016/j.aca.2018.09.020_bib150) 2007; 139 Her (10.1016/j.aca.2018.09.020_bib148) 2014; 6 Zappa (10.1016/j.aca.2018.09.020_bib66) 2013; 24 Röck (10.1016/j.aca.2018.09.020_bib13) 2008; 108 Joshi (10.1016/j.aca.2018.09.020_bib116) 2017 Kamat (10.1016/j.aca.2018.09.020_bib155) 2007 Comini (10.1016/j.aca.2018.09.020_bib151) 2016; 19 Righettoni (10.1016/j.aca.2018.09.020_bib4) 2015; 18 Fang (10.1016/j.aca.2018.09.020_bib41) 2017; 252 Trakhtenberg (10.1016/j.aca.2018.09.020_bib87) 2012; 169 Chen (10.1016/j.aca.2018.09.020_bib24) 2008; 19 Suh (10.1016/j.aca.2018.09.020_bib158) 2018; 265 Zappa (10.1016/j.aca.2018.09.020_bib6) 2017; 8 Sun (10.1016/j.aca.2018.09.020_bib118) 2016; 233 Yan (10.1016/j.aca.2018.09.020_bib126) 2015; 5 Comini (10.1016/j.aca.2018.09.020_bib1) 2009 Li (10.1016/j.aca.2018.09.020_bib163) 2015; 87 Liu (10.1016/j.aca.2018.09.020_bib45) 2017; 495 Kumar (10.1016/j.aca.2018.09.020_bib53) 2016; 6 Joshi (10.1016/j.aca.2018.09.020_bib127) 2017 Galstyan (10.1016/j.aca.2018.09.020_bib54) 2011; 1 Shao (10.1016/j.aca.2018.09.020_bib77) 2013; 181 Zappa (10.1016/j.aca.2018.09.020_bib160) 2015 Zhang (10.1016/j.aca.2018.09.020_bib36) 2016; 6 Khoang (10.1016/j.aca.2018.09.020_bib80) 2012; 174 Wang (10.1016/j.aca.2018.09.020_bib113) 2018; 221 Zhao (10.1016/j.aca.2018.09.020_bib32) 2014; 3 Rakshit (10.1016/j.aca.2018.09.020_bib38) 2014; 4 Bai (10.1016/j.aca.2018.09.020_bib91) 2010; 150 Choi (10.1016/j.aca.2018.09.020_bib49) 2013; 181 Verma (10.1016/j.aca.2018.09.020_bib143) 2012; 166–167 Yin (10.1016/j.aca.2018.09.020_bib93) 2018; 736 Park (10.1016/j.aca.2018.09.020_bib135) 2014; 9 Liu (10.1016/j.aca.2018.09.020_bib103) 2016; 237 Sarkar (10.1016/j.aca.2018.09.020_bib55) 2014; 4 Blattmann (10.1016/j.aca.2018.09.020_bib43) 2017; 9 Liu (10.1016/j.aca.2018.09.020_bib30) 2014; 4 Li (10.1016/j.aca.2018.09.020_bib164) 2017; 244 Li (10.1016/j.aca.2018.09.020_bib57) 2017; 248 Qu (10.1016/j.aca.2018.09.020_bib139) 2016; 8 Kim (10.1016/j.aca.2018.09.020_bib86) 2012; 45 Hotovy (10.1016/j.aca.2018.09.020_bib75) 2004; 103 Woo (10.1016/j.aca.2018.09.020_bib76) 2012; 23 Yang (10.1016/j.aca.2018.09.020_bib27) 2014; 7 Gui (10.1016/j.aca.2018.09.020_bib56) 2014; 319 Tang (10.1016/j.aca.2018.09.020_bib100) 2014; 192 Yan (10.1016/j.aca.2018.09.020_bib128) 2015; vol. 221 Kaur (10.1016/j.aca.2018.09.020_bib65) 2016; 27 Reimann (10.1016/j.aca.2018.09.020_bib9) 2008 Hernández (10.1016/j.aca.2018.09.020_bib62) 2014; 6 Barsan (10.1016/j.aca.2018.09.020_bib7) 2010; 25 Lu (10.1016/j.aca.2018.09.020_bib106) 2017; 43 Maurya (10.1016/j.aca.2018.09.020_bib166) 2018; 160 Park (10.1016/j.aca.2018.09.020_bib85) 2016; 82 Ibhadon (10.1016/j.aca.2018.09.020_bib154) 2013; 3 Wang (10.1016/j.aca.2018.09.020_bib121) 2014 |
References_xml | – volume: 746 start-page: 36 year: 2018 end-page: 44 ident: bib99 article-title: In2O3-SnO2hybrid porous nanostructures delivering enhanced formaldehyde sensing performance publication-title: J. Alloy. Comp. – volume: 259 start-page: 131 year: 2018 end-page: 142 ident: bib26 article-title: Porous TiO2 nanobelts coated with mixed transition-metal oxides Sn3O4 nanosheets core-shell composites as high-performance anode materials of lithium ion batteries publication-title: Electrochim. Acta – volume: 185 start-page: 231 year: 2013 end-page: 237 ident: bib104 article-title: Highly enhanced gas sensing properties of porous SnO2-CeO2composite nanofibers prepared by electrospinning publication-title: Sensor. Actuator. B Chem. – volume: vol. 221 start-page: 88 year: 2015 end-page: 95 ident: bib128 publication-title: Synthesis of SnO 2 – ZnO Heterostructured Nanofibers for Enhanced Ethanol Gas-sensing Performance – volume: 1832 start-page: 2 year: 2017 end-page: 5 ident: bib92 article-title: Free standing CuO-MnO2 nanocomposite for room temperature ammonia sensing publication-title: AIP Conf. Proc – volume: 192 start-page: 543 year: 2014 end-page: 549 ident: bib100 article-title: Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol publication-title: Sensor. Actuator. B Chem. – volume: 176 start-page: 323 year: 2013 end-page: 329 ident: bib108 article-title: Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures publication-title: Sensor. Actuator. B Chem. – volume: 5 start-page: 12310 year: 2013 end-page: 12316 ident: bib68 article-title: Branch-like hierarchical heterostructure (α-Fe publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 638 year: 2014 ident: bib135 article-title: Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors publication-title: Nanoscale Res. Lett. – year: 2015 ident: bib160 article-title: Tungsten oxide nanowires on micro hotplates for gas sensing applications publication-title: Procedia Eng – volume: 262 year: 2018 ident: bib23 article-title: Branch-like NiO/ZnO heterostructures for VOC sensing publication-title: Sensor. Actuator. B Chem. – volume: 6 start-page: 9150 year: 2014 end-page: 9159 ident: bib148 article-title: Vapor–solid growth of p-Te/n-SnO publication-title: ACS Appl. Mater. Interfaces – year: 2007 ident: bib155 article-title: Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion – volume: 18 start-page: 621 year: 1998 end-page: 631 ident: bib156 article-title: Influence of the electrode materials on the electrical response of ZnO-based contact publication-title: Sensors – volume: 49 start-page: 1118 year: 2011 end-page: 1125 ident: bib22 article-title: Exfoliated graphene sheets decorated with metal/metal oxide nanoparticles: simple preparation from cation exchanged graphite oxide publication-title: Carbon N. Y. – volume: 24 start-page: 1384 year: 2015 end-page: 1390 ident: bib162 article-title: Micromachined hotplate platform for the investigation of ink-jet printed, functionalized metal oxide nanoparticles publication-title: J. Microelectromechanical Syst. – volume: 45 start-page: 205301 year: 2012 ident: bib86 article-title: Novel growth of CuO-functionalized, branched SnO publication-title: J. Phys. D Appl. Phys. – volume: 32 start-page: 2079 year: 2012 end-page: 2085 ident: bib119 article-title: CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection publication-title: Mater. Sci. Eng. C – volume: 90 start-page: 4940 year: 2018 end-page: 4945 ident: bib3 article-title: Sniffing entrapped humans with sensor arrays publication-title: Anal. Chem. – volume: 9 start-page: 38537 year: 2017 end-page: 38544 ident: bib44 article-title: Three-dimensional lupinus-like TiO publication-title: ACS Appl. Mater. Interfaces – volume: 639 start-page: 571 year: 2015 end-page: 576 ident: bib29 article-title: Enhanced gas sensing property of SnO2 nanoparticles by constructing the SnO2–TiO2 nanobelt heterostructure publication-title: J. Alloy. Comp. – volume: 5 start-page: 7992 year: 2011 end-page: 8001 ident: bib21 article-title: Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application publication-title: ACS Nano – year: 2009 ident: bib1 publication-title: Solid State Gas Sensing – year: 1994 ident: bib2 article-title: Semiconductor Sensors – volume: 244 start-page: 344 year: 2017 end-page: 356 ident: bib107 article-title: Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures publication-title: Sensor. Actuator. B Chem. – volume: 71 start-page: 487 year: 2017 end-page: 493 ident: bib140 article-title: Acetone sensing of multi-networked WO3-NiO core-shell nanorod sensors publication-title: J. Kor. Phys. Soc. – volume: 139 start-page: 1 year: 2007 end-page: 23 ident: bib150 article-title: Metal oxides for solid-state gas sensors: what determines our choice? publication-title: Mater. Sci. Eng. B – volume: 51 start-page: 6406 year: 2012 end-page: 6410 ident: bib19 article-title: A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 1038 year: 2011 ident: bib54 article-title: TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates publication-title: RSC Adv. – volume: 16 start-page: 1373 year: 2016 ident: bib144 article-title: Hybrid SnO2/TiO2 nanocomposites for selective detection of ultra-low hydrogen sulfide concentrations in complex backgrounds publication-title: Sensors – volume: vol. 694 start-page: 939 year: 2017 end-page: 945 ident: bib124 publication-title: Synthesis and Enhanced Toluene Gas Sensing Properties of 1-D a -MoO 3/Fe 2 ( MoO 4 ) 3 Heterostructure – volume: 4 start-page: 6 year: 2016 ident: bib46 article-title: ZnO Quasi-1D nanostructures: synthesis, modeling, and properties for applications in conductometric chemical sensors publication-title: Chemosensors – volume: 150 start-page: 749 year: 2010 end-page: 755 ident: bib91 article-title: Preparation, characterization of WO3-SnO2nanocomposites and their sensing properties for NO2 publication-title: Sensor. Actuator. B Chem. – volume: 215 start-page: 630 year: 2015 end-page: 636 ident: bib73 article-title: Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods publication-title: Sensor. Actuator. B Chem. – volume: 209 start-page: 562 year: 2015 end-page: 569 ident: bib95 article-title: Effect of composition and temperature on conductive and sensing properties of CeO2+ In2O3nanocomposite films publication-title: Sensor. Actuator. B Chem. – volume: vol. 4005 start-page: 26 year: 2002 end-page: 32 ident: bib97 publication-title: Nanostructured Mixed Oxides Compounds for Gas Sensing Applications Nanostructured Mixed Oxides Compounds for Gas Sensing Applications – volume: 7 start-page: 34482 year: 2017 end-page: 34487 ident: bib60 article-title: Solution combustion synthesis and enhanced gas sensing properties of porous in publication-title: RSC Adv. – volume: 181 start-page: 787 year: 2013 end-page: 794 ident: bib49 article-title: Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure publication-title: Sensor. Actuator. B Chem. – volume: 169 start-page: 32 year: 2012 end-page: 38 ident: bib87 article-title: Effect of composition on sensing properties of SnO 2 + in 2O 3 mixed nanostructured films publication-title: Sensor. Actuator. B Chem. – volume: 57 start-page: 241 year: 1999 end-page: 246 ident: bib18 article-title: Effect of interdiffusion on electrical and gas sensor properties of CuO/SnO2 heterostructure publication-title: Mater. Sci. Eng. B – volume: 117 start-page: 10086 year: 2013 end-page: 10094 ident: bib134 article-title: Synthesis, characterization, and humidity detection properties of Nb2O5 nanorods and SnO2/Nb2O5 heterostructures publication-title: J. Phys. Chem. C – volume: 105 start-page: 201601 year: 2014 ident: bib42 article-title: Characterization of amorphous multilayered ZnO-SnO publication-title: Appl. Phys. Lett. – volume: 209 start-page: 934 year: 2015 end-page: 942 ident: bib84 article-title: Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating publication-title: Sensor. Actuator. B Chem. – year: 2014 ident: bib121 article-title: Hierarchical Α - Fe 2 O 3/NiO Composites with a Hollow Structure for a Gas Sensor – volume: 17 year: 2017 ident: bib25 article-title: Porous TiO₂-Based gas sensors for cyber chemical systems to provide security and medical diagnosis publication-title: Sensors – volume: 495 start-page: 207 year: 2017 end-page: 215 ident: bib45 article-title: Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit publication-title: J. Colloid Interface Sci. – volume: 19 year: 2008 ident: bib24 article-title: The synthesis and selective gas sensing characteristics of SnO publication-title: Nanotechnology – volume: 221 start-page: 434 year: 2015 end-page: 442 ident: bib129 article-title: Facile synthesis and gas sensing properties of La 2 O 3 – WO 3 nanofibers publication-title: Sensor. Actuator. B Chem. – volume: 11 start-page: 2305 year: 2015 end-page: 2313 ident: bib123 article-title: Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air publication-title: Small – year: 2016 ident: bib67 article-title: NiO/ZnO nanowire-heterostructures by vapor phase growth for gas sensing publication-title: Procedia Eng – volume: 319 start-page: 37 year: 2014 end-page: 43 ident: bib56 article-title: Modification of MWCNT@TiO2 core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane publication-title: Appl. Surf. Sci. – volume: 4 start-page: 32773 year: 2014 ident: bib30 article-title: Construction of a branched ZnO–TiO publication-title: RSC Adv. – volume: 34 start-page: 823 year: 2008 end-page: 826 ident: bib64 article-title: Ethanol sensor based on ZnO and Au-doped ZnO nanowires publication-title: Ceram. Int. – volume: 27 start-page: 425503 year: 2016 ident: bib69 article-title: A high-response ethanol gas sensor based on one-dimensional TiO publication-title: Nanotechnology – volume: 25 start-page: 11 year: 2010 end-page: 19 ident: bib7 article-title: Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors publication-title: J. Electroceram. – volume: 243 start-page: 990 year: 2017 end-page: 1001 ident: bib20 article-title: Au Decorated ZnO hierarchical architectures: facile synthesis, tunable morphology and enhanced CO detection at room temperature publication-title: Sensor. Actuator. B Chem. – volume: 181 start-page: 130 year: 2013 end-page: 135 ident: bib77 article-title: Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection publication-title: Sensor. Actuator. B Chem. – volume: 8 start-page: 16349 year: 2016 end-page: 16356 ident: bib139 article-title: Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties publication-title: Nanoscale – start-page: 192 year: 2008 end-page: 195 ident: bib9 article-title: A self-monitoring and self-diagnosis strategy for semiconductor gas sensor systems publication-title: 2008 IEEE Sensors – volume: 265 start-page: 660 year: 2018 end-page: 667 ident: bib158 article-title: Fully integrated and portable semiconductor-type multi-gas sensing module for IoT applications publication-title: Sensor. Actuator. B Chem. – year: 2017 ident: bib127 article-title: Efficient Heterostructures of Ag @ CuO/BaTiO 3 for Low-temperature CO 2 Gas Detection : Assessing the Role of Nanointerfaces during Sensing by Operando DRIFTS Technique – volume: 226 start-page: 76 year: 2016 end-page: 89 ident: bib110 article-title: Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods publication-title: Sensor. Actuator. B – volume: 99 start-page: 3770 year: 2016 end-page: 3774 ident: bib111 article-title: A facile synthesis of PdO-decorated SnO2Nanocomposites with open porous hierarchical architectures for gas sensors publication-title: J. Am. Ceram. Soc. – volume: 19 start-page: 559 year: 2016 end-page: 567 ident: bib151 article-title: Metal oxide nanowire chemical sensors: innovation and quality of life publication-title: Mater. Today – volume: 12 start-page: 7207 year: 2012 end-page: 7258 ident: bib153 article-title: Gas sensors based on one dimensional nanostructured metal-oxides: a review publication-title: Sensors – volume: 244 start-page: 664 year: 2017 end-page: 672 ident: bib164 article-title: 2D ultrathin Co3O4 nanosheet array deposited on 3D carbon foam for enhanced ethanol gas sensing application publication-title: Sensor. Actuator. B – volume: 7 start-page: 5199 year: 2015 end-page: 5205 ident: bib33 article-title: Three-dimensional TiO publication-title: ACS Appl. Mater. Interfaces – volume: 256 start-page: 282 year: 2018 end-page: 293 ident: bib120 article-title: Sensors and Actuators B : chemical Fe 2 O 3 -loaded NiO nanosheets for fast response/recovery and high response gas sensor publication-title: Sensor. Actuator. B Chem. – volume: 526 start-page: 400 year: 2018 end-page: 409 ident: bib161 article-title: Tailoring metal oxide nanoparticle dispersions for inkjet printing publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 170 year: 2014 end-page: 178 ident: bib27 article-title: Hierarchical construction of core–shell metal oxide nanoarrays with ultrahigh areal capacitance publication-title: Nanomater. Energy – volume: 4 start-page: 305 year: 2015 end-page: 311 ident: bib10 article-title: A novel approach for detecting HMDSO poisoning of metal oxide gas sensors and improving their stability by temperature cycled operation publication-title: J. Sensors Sens. Syst. – volume: 118 start-page: 9209 year: 2014 end-page: 9216 ident: bib37 article-title: Core–shell in publication-title: J. Phys. Chem. C – volume: 6 start-page: 12153 year: 2014 end-page: 12167 ident: bib62 article-title: Optimization of 1D ZnO@TiO publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 55629 year: 2014 end-page: 55634 ident: bib55 article-title: TiO publication-title: RSC Adv. – volume: 6 start-page: 50423 year: 2016 end-page: 50430 ident: bib36 article-title: In publication-title: RSC Adv. – volume: 240 start-page: 477 year: 2017 end-page: 486 ident: bib138 article-title: Remarkable improvement of W18O49/TiO2 heteronanowires in ambient temperature-responsive NO2-sensing abilities and its unexpected n-p transition phenomenon publication-title: Sensor. Actuator. B Chem. – volume: 737 start-page: 603 year: 2018 end-page: 612 ident: bib39 article-title: Low-temperature in-situ growth of SnO2 nanosheets and its high triethylamine sensing response by constructing Au-loaded ZnO/SnO2 heterostructure publication-title: J. Alloy. Comp. – volume: 221 start-page: 260 year: 2018 end-page: 263 ident: bib113 article-title: Controllable construction of Cr2O3-ZnO hierarchical heterostructures and their formaldehyde gas sensing properties publication-title: Mater. Lett. – volume: 134 start-page: 360 year: 2008 end-page: 366 ident: bib90 article-title: Synthesis of ZnO-SnO2nanocomposites by microemulsion and sensing properties for NO2 publication-title: Sensor. Actuator. B Chem. – start-page: 2015 year: 2015 ident: bib101 article-title: Significance of the Nanograin Size on the H 2 S-sensing Ability of CuO-sno 2 Composite Nanofibers – volume: 216 start-page: 196 year: 2018 end-page: 198 ident: bib109 article-title: Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO 3 perovskite nanoparticles publication-title: Mater. Lett. – volume: 10 start-page: 10304 year: 2018 end-page: 10314 ident: bib52 article-title: ALD-developed plasmonic two-dimensional Au–WO publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 58452 year: 2016 end-page: 58457 ident: bib59 article-title: Facile fabrication hybrids of TiO publication-title: RSC Adv. – volume: 202 start-page: 1270 year: 2014 end-page: 1280 ident: bib78 article-title: Role of various interfaces of CuO/ZnO random nanowire networks in H2S sensing: an impedance and Kelvin probe analysis publication-title: Sensor. Actuator. B Chem. – volume: 7 start-page: 43887 year: 2017 ident: bib82 article-title: Highly sensitive H2S sensors based on Cu2O/Co3O4 nano/microstructure heteroarrays at and below room temperature publication-title: Sci. Rep. – volume: 238 year: 2017 ident: bib11 article-title: Detection of food and skin pathogen microbiota by means of an electronic nose based on metal oxide chemiresistors publication-title: Sensor. Actuator. B Chem. – volume: 213 start-page: 27 year: 2015 end-page: 34 ident: bib31 article-title: Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors publication-title: Sensor. Actuator. B Chem. – volume: 179 year: 2013 ident: bib50 article-title: Metal oxide nanoscience and nanotechnology for chemical sensors publication-title: Sensor. Actuator. B Chem. – volume: 5 start-page: 10048 year: 2015 end-page: 10057 ident: bib125 article-title: Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanoheterostructures for enhanced gas sensing performances publication-title: RSC Adv. – volume: 17 start-page: 913 year: 2017 ident: bib35 article-title: Synthesis, characterization and enhanced sensing properties of a NiO/ZnO p–n junctions sensor for the SF6 decomposition byproducts SO2, SO2F2, and SOF2 publication-title: Sensors – volume: 175 start-page: 186 year: 2012 end-page: 193 ident: bib88 article-title: Catalytic impact of RuOx clusters to high ammonia sensitivity of tin dioxide publication-title: Sensor. Actuator. B Chem. – volume: 42 start-page: 16294 year: 2017 end-page: 16304 ident: bib114 article-title: On-chip growth of patterned ZnO nanorod sensors with PdO decoration for enhancement of hydrogen-sensing performance publication-title: Int. J. Hydrogen Energy – volume: 24 year: 2013 ident: bib66 article-title: Thermally oxidized zinc oxide nanowires for use as chemical sensors publication-title: Nanotechnology – volume: 736 start-page: 322 year: 2018 end-page: 331 ident: bib93 article-title: WO3-SnO2nanosheet composites: hydrothermal synthesis and gas sensing mechanism publication-title: J. Alloy. Comp. – volume: 10 start-page: 1833 year: 2010 end-page: 1848 ident: bib159 article-title: CMOS interfacing for integrated gas sensors: a review publication-title: IEEE Sensor. J. – volume: 254 start-page: 863 year: 2018 end-page: 871 ident: bib61 article-title: Study on the gas-sensitive properties for formaldehyde based on SnO2-ZnO heterostructure in UV excitation publication-title: Sensor. Actuator. B Chem. – volume: 160 start-page: 428 year: 2018 end-page: 433 ident: bib166 article-title: A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas publication-title: Optik – volume: 108 start-page: 705 year: 2008 end-page: 725 ident: bib13 article-title: Electronic nose: current status and future trends publication-title: Chem. Rev. – volume: 27 year: 2016 ident: bib65 article-title: Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device publication-title: Nanotechnology – volume: 165 start-page: 76 year: 2012 end-page: 81 ident: bib142 article-title: Micro humidity sensors based on ZnO–In2O3 thin films with high performances publication-title: Sensor. Actuator. B Chem. – volume: 18 start-page: 163 year: 2015 end-page: 171 ident: bib4 article-title: Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors publication-title: Mater. Today – volume: 87 start-page: 1638 year: 2015 end-page: 1645 ident: bib163 article-title: Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature publication-title: Anal. Chem. – volume: 3 start-page: 189 year: 2013 end-page: 218 ident: bib154 article-title: Heterogeneous photocatalysis: recent advances and applications publication-title: Catalysts – volume: 3 start-page: 404 year: 2014 end-page: 410 ident: bib32 article-title: Hierarchically assembled ZnO nanorods on TiO publication-title: Energy Environ. Focus – volume: 83 year: 2015 ident: bib47 article-title: Structural properties of ZnO/SnO publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: vol. 674 start-page: 252 year: 2016 end-page: 258 ident: bib131 publication-title: One-dimensional MoS 2 -Decorated TiO 2 Nanotube Gas Sensors for Ef Fi Cient Alcohol Sensing – volume: 4 start-page: 4192 year: 2012 end-page: 4199 ident: bib79 article-title: Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces publication-title: ACS Appl. Mater. Interfaces – volume: 69 start-page: 373 year: 2016 end-page: 380 ident: bib105 article-title: Fe2O3/Co3O4 composite nanoparticle ethanol sensor publication-title: J. Kor. Phys. Soc. – volume: 255 start-page: 3505 year: 2018 end-page: 3515 ident: bib117 article-title: Sensors and Actuators B : chemical Ultrasensitive and low detection limit of toluene gas sensor based on SnO 2 -decorated NiO nanostructure publication-title: Sensor. Actuator. B Chem. – volume: 23 start-page: 245501 year: 2012 ident: bib76 article-title: Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr publication-title: Nanotechnology – year: 2017 ident: bib165 article-title: Chemically Exfoliated Layered Materials for Practical Gas Sensing Applications, GraphITA – volume: 25 start-page: 1133 year: 2011 end-page: 1136 ident: bib98 article-title: Hydrogen sensors on the basis of SnO 2-TiO 2 systems publication-title: Procedia Eng – volume: 6 start-page: 279 year: 1992 end-page: 284 ident: bib157 article-title: Influence of the nature of the screen-printed electrode metal on the transport and detection properties of thick-film semiconductor gas sensors publication-title: Sensor. Actuator. B Chem. – volume: 5 start-page: 79593 year: 2015 end-page: 79599 ident: bib126 article-title: Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol publication-title: RSC Adv. – volume: 673 start-page: 364 year: 2016 end-page: 371 ident: bib137 article-title: Highly aligned array of W18O49/CuO core–shell nanorods and its promising NO2 sensing properties publication-title: J. Alloy. Comp. – volume: 155 start-page: 270 year: 2011 end-page: 277 ident: bib81 article-title: α-MoO3/TiO2 core/shell nanorods: controlled-synthesis and low-temperature gas sensing properties publication-title: Sensor. Actuator. B Chem. – volume: 104 start-page: 126 year: 2015 end-page: 130 ident: bib136 article-title: Co-axial core–shell ZnMgO/ZnO NWs publication-title: Solid State Electron. – volume: 6 start-page: 33092 year: 2016 ident: bib146 article-title: A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures publication-title: Sci. Rep. – volume: 35 start-page: 741 year: 2000 end-page: 745 ident: bib152 article-title: Stability of SnO2/Fe2O3 multilayer thin film gas sensor publication-title: Mater. Res. Bull. – volume: 168 start-page: 83 year: 2012 end-page: 89 ident: bib83 article-title: One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection publication-title: Sensor. Actuator. B Chem. – volume: 192 start-page: 607 year: 2014 end-page: 627 ident: bib8 article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview publication-title: Sensor. Actuator. B Chem. – volume: 6 start-page: 379 year: 2007 end-page: 384 ident: bib12 article-title: Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors publication-title: Nat. Mater. – volume: 4 start-page: 36749 year: 2014 ident: bib38 article-title: Enhanced sensitivity and selectivity of brush-like SnO publication-title: RSC Adv. – volume: 176 start-page: 675 year: 2013 end-page: 684 ident: bib40 article-title: WO3 nanoclusters–SnO2 film gas sensor heterostructure with enhanced response for NO2 publication-title: Sensor. Actuator. B Chem. – volume: 8 start-page: 10413 year: 2016 end-page: 10421 ident: bib132 article-title: Aerosol-assisted CVD-grown PdO nanoparticle-decorated tungsten oxide nanoneedles extremely sensitive and selective to hydrogen publication-title: ACS Appl. Mater. Interfaces – volume: 82 start-page: 130 year: 2016 end-page: 135 ident: bib85 article-title: Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor publication-title: Mater. Res. Bull. – start-page: 137 year: 2017 end-page: 142 ident: bib116 article-title: Hierarchical Assembly of Interleaved N-ZnO Network and P-CuO for Improved Chemo-resistive CO 2 Gas Sensing Performance – volume: 599 start-page: 195 year: 2014 end-page: 201 ident: bib130 article-title: Facile preparation of large-scale α-Fe publication-title: J. Alloy. Comp. – volume: 7 start-page: 24950 year: 2015 end-page: 24956 ident: bib28 article-title: High-energy faceted SnO publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 12882 year: 2012 end-page: 12887 ident: bib133 article-title: One-step fabrication of [small beta]-Ga2O3-amorphous-SnO2 core-shell microribbons and their thermally switchable humidity sensing properties publication-title: J. Mater. Chem. – volume: 51 start-page: 7733 year: 2012 end-page: 7740 ident: bib70 article-title: NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties publication-title: Inorg. Chem. – volume: 10 year: 2017 ident: bib122 article-title: Molybdenum dichalcogenides for environmental chemical sensing publication-title: Materials – volume: 19 start-page: 5642 year: 2007 end-page: 5649 ident: bib14 article-title: First example of ZnO−TiO2 nanocomposites by chemical vapor Deposition: structure, morphology, composition, and gas sensing performances publication-title: Chem. Mater. – volume: 89 start-page: 219 year: 2012 end-page: 222 ident: bib94 article-title: Hydrothermal synthesis of ZnO-Eu 2O 3 binary oxide with straight strips morphology and sensitivity to NO 2 gas publication-title: Mater. Lett. – volume: 515 start-page: 8356 year: 2007 end-page: 8359 ident: bib72 article-title: In2O3 nanowires for gas sensors: morphology and sensing characterisation publication-title: Thin Solid Films – volume: 229 start-page: 206 year: 2018 end-page: 217 ident: bib63 article-title: Semiconductor metal oxide gas sensors: a review publication-title: Mater. Sci. Eng. B – volume: 35 start-page: 649 year: 2009 end-page: 652 ident: bib74 article-title: Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction publication-title: Ceram. Int. – volume: 727 start-page: 52 year: 2017 end-page: 62 ident: bib112 article-title: Co 3 O 4 nanoparticle-decorated hierarchical flower-like α-Fe 2 O 3 microspheres : synthesis and ethanol sensing properties publication-title: J. Alloy. Comp. – volume: 131 start-page: 104 year: 2014 end-page: 107 ident: bib34 article-title: One-step hydrothermal synthesis of In2O3–ZnO heterostructural composites and their enhanced visible-light photocatalytic activity publication-title: Mater. Lett. – volume: 174 start-page: 594 year: 2012 end-page: 601 ident: bib80 article-title: Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance publication-title: Sensor. Actuator. B Chem. – volume: 166–167 start-page: 378 year: 2012 end-page: 385 ident: bib143 article-title: A highly sensitive SnO2–CuO multilayered sensor structure for detection of H2S gas publication-title: Sensor. Actuator. B Chem. – volume: 160 start-page: 448 year: 2011 end-page: 454 ident: bib102 article-title: High toluene sensing properties of NiO-SnO2composite nanofiber sensors operating at 330 °c publication-title: Sensor. Actuator. B Chem. – volume: 9 start-page: 23926 year: 2017 end-page: 23933 ident: bib43 article-title: In situ monitoring of the deposition of flame-made chemoresistive gas-sensing films publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1296 year: 2012 end-page: 1300 ident: bib147 article-title: Self-catalytic growth of hierarchical in publication-title: CrystEngComm – volume: 184 start-page: 21 year: 2013 end-page: 26 ident: bib71 article-title: Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO–TiO2 heterojunctions nanofibers publication-title: Sensor. Actuator. B Chem. – volume: 54 start-page: 1 year: 2009 end-page: 67 ident: bib5 article-title: Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors publication-title: Prog. Mater. Sci. – volume: 6 start-page: 47178 year: 2016 end-page: 47184 ident: bib53 article-title: Highly sensitive and selective CO gas sensor based on a hydrophobic SnO publication-title: RSC Adv. – volume: 103 start-page: 300 year: 2004 end-page: 311 ident: bib75 article-title: Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification publication-title: Sensor. Actuator. B Chem. – volume: 14 start-page: 2329 year: 2014 end-page: 2334 ident: bib145 article-title: Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current publication-title: Cryst. Growth Des. – volume: 252 start-page: 1163 year: 2017 end-page: 1168 ident: bib41 article-title: Gas sensing properties of NiO/SnO2 heterojunction thin film publication-title: Sensor. Actuator. B Chem. – volume: 8 start-page: 326 year: 2013 end-page: 331 ident: bib96 article-title: SnO2-CuO nanocomposite thin film sensor for fast detection of H2S gas publication-title: J. Exp. Nanosci. – volume: 8 year: 2017 ident: bib6 article-title: Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors publication-title: Beilstein J. Nanotechnol. – volume: 248 start-page: 812 year: 2017 end-page: 819 ident: bib57 article-title: Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor publication-title: Sensor. Actuator. B Chem. – volume: 43 start-page: 7508 year: 2017 end-page: 7515 ident: bib106 article-title: Hierarchical heterostructure of porous NiO nanosheets on flower-like ZnO assembled by hexagonal nanorods for high-performance gas sensor publication-title: Ceram. Int. – volume: 258 start-page: 204 year: 2018 end-page: 214 ident: bib58 article-title: SnO2 (n)-NiO (p) composite nanowebs: gas sensing properties and sensing mechanisms publication-title: Sensor. Actuator. B Chem. – volume: 87 start-page: 464 year: 2002 end-page: 470 ident: bib15 article-title: The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor publication-title: Sensor. Actuator. B Chem. – volume: 237 start-page: 275 year: 2016 end-page: 283 ident: bib103 article-title: Synthesis of novel RuO2/NaBi(MoO4)2nanosheets composite and its gas sensing performances towards ethanol publication-title: Sensor. Actuator. B Chem. – volume: 29 start-page: 3780 year: 2018 end-page: 3789 ident: bib149 article-title: Room temperature acetone-sensing properties of branch-like VO2 (B)@ZnO hierarchical hetero-nanostructures publication-title: J. Mater. Sci. Mater. Electron. – volume: 238 start-page: 972 year: 2017 end-page: 984 ident: bib141 article-title: In-situ fabricated gas sensors based on one dimensional core-shell TiO2-Al2O3 nanostructures publication-title: Sensor. Actuator. B Chem. – volume: 30 year: 2015 ident: bib16 article-title: Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors publication-title: Semicond. Sci. Technol. – volume: 20 start-page: 556 year: 2018 end-page: 562 ident: bib48 article-title: growth of ZnO/SnO publication-title: CrystEngComm – volume: 39 start-page: 5191 year: 2013 end-page: 5196 ident: bib51 article-title: Growth and optical properties of ZnO–In2O3 heterostructure nanowires publication-title: Ceram. Int. – volume: 214 start-page: 111 year: 2015 end-page: 116 ident: bib89 article-title: Importance of the nanograin size on the H2S-sensing properties of ZnO-CuO composite nanofibers publication-title: Sensor. Actuator. B Chem. – volume: 207 start-page: 489 year: 2018 end-page: 498 ident: bib115 article-title: Construction of 0, 1, 2 and 3 dimensional SnO2nanostructures decorated by NiO nanopetals: structures, growth and gas-sensing properties publication-title: Mater. Chem. Phys. – volume: 233 start-page: 180 year: 2016 end-page: 192 ident: bib118 article-title: Sensors and Actuators B : chemical Synthesis and improved gas sensing properties of NiO-decorated SnO 2 microflowers assembled with porous nanorods publication-title: Sensor. Actuator. B Chem. – volume: 25 start-page: 1133 year: 2011 end-page: 1136 ident: bib17 article-title: Hydrogen sensors on the basis of SnO2-TiO2 systems publication-title: Procedia Eng – volume: 238 start-page: 972 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib141 article-title: In-situ fabricated gas sensors based on one dimensional core-shell TiO2-Al2O3 nanostructures publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.07.135 – volume: 14 start-page: 2329 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib145 article-title: Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current publication-title: Cryst. Growth Des. doi: 10.1021/cg500031t – volume: 248 start-page: 812 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib57 article-title: Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.12.009 – volume: vol. 4005 start-page: 26 year: 2002 ident: 10.1016/j.aca.2018.09.020_bib97 – volume: 42 start-page: 16294 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib114 article-title: On-chip growth of patterned ZnO nanorod sensors with PdO decoration for enhancement of hydrogen-sensing performance publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.05.135 – volume: 160 start-page: 448 year: 2011 ident: 10.1016/j.aca.2018.09.020_bib102 article-title: High toluene sensing properties of NiO-SnO2composite nanofiber sensors operating at 330 °c publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2011.08.007 – volume: 176 start-page: 323 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib108 article-title: Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.09.027 – volume: 181 start-page: 787 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib49 article-title: Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2013.02.010 – volume: 6 start-page: 12153 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib62 article-title: Optimization of 1D ZnO@TiO 2 core–shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501379m – volume: vol. 674 start-page: 252 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib131 – volume: 166–167 start-page: 378 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib143 article-title: A highly sensitive SnO2–CuO multilayered sensor structure for detection of H2S gas publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.02.076 – volume: 221 start-page: 434 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib129 article-title: Facile synthesis and gas sensing properties of La 2 O 3 – WO 3 nanofibers publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2015.06.114 – volume: 18 start-page: 621 year: 1998 ident: 10.1016/j.aca.2018.09.020_bib156 article-title: Influence of the electrode materials on the electrical response of ZnO-based contact publication-title: Sensors – volume: 23 start-page: 245501 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib76 article-title: Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr 2 O 3 hetero-nanostructures publication-title: Nanotechnology doi: 10.1088/0957-4484/23/24/245501 – volume: 252 start-page: 1163 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib41 article-title: Gas sensing properties of NiO/SnO2 heterojunction thin film publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.07.013 – volume: 1 start-page: 1038 year: 2011 ident: 10.1016/j.aca.2018.09.020_bib54 article-title: TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates publication-title: RSC Adv. doi: 10.1039/c1ra00077b – volume: 4 start-page: 55629 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib55 article-title: TiO 2/ZnO core/shell nano-heterostructure arrays as photo-electrodes with enhanced visible light photoelectrochemical performance publication-title: RSC Adv. doi: 10.1039/C4RA09456E – volume: 4 start-page: 305 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib10 article-title: A novel approach for detecting HMDSO poisoning of metal oxide gas sensors and improving their stability by temperature cycled operation publication-title: J. Sensors Sens. Syst. doi: 10.5194/jsss-4-305-2015 – year: 2017 ident: 10.1016/j.aca.2018.09.020_bib165 – volume: 184 start-page: 21 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib71 article-title: Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO–TiO2 heterojunctions nanofibers publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2013.04.020 – volume: 6 start-page: 9150 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib148 article-title: Vapor–solid growth of p-Te/n-SnO 2 hierarchical heterostructures and their enhanced room-temperature gas sensing properties publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5012518 – volume: 233 start-page: 180 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib118 article-title: Sensors and Actuators B : chemical Synthesis and improved gas sensing properties of NiO-decorated SnO 2 microflowers assembled with porous nanorods publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.04.057 – volume: 6 start-page: 58452 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib59 article-title: Facile fabrication hybrids of TiO 2 @ZnO tubes with enhanced photocatalytic properties publication-title: RSC Adv. doi: 10.1039/C6RA11065G – volume: 165 start-page: 76 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib142 article-title: Micro humidity sensors based on ZnO–In2O3 thin films with high performances publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.02.019 – volume: 99 start-page: 3770 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib111 article-title: A facile synthesis of PdO-decorated SnO2Nanocomposites with open porous hierarchical architectures for gas sensors publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14378 – volume: 3 start-page: 404 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib32 article-title: Hierarchically assembled ZnO nanorods on TiO2 nanobelts for high performance gas sensor publication-title: Energy Environ. Focus doi: 10.1166/eef.2014.1118 – volume: 192 start-page: 543 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib100 article-title: Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2013.11.003 – volume: 5 start-page: 12310 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib68 article-title: Branch-like hierarchical heterostructure (α-Fe 2 O 3/TiO 2 ): a novel sensing material for trimethylamine gas sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402532v – volume: 214 start-page: 111 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib89 article-title: Importance of the nanograin size on the H2S-sensing properties of ZnO-CuO composite nanofibers publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2015.03.012 – volume: 139 start-page: 1 year: 2007 ident: 10.1016/j.aca.2018.09.020_bib150 article-title: Metal oxides for solid-state gas sensors: what determines our choice? publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2007.01.044 – volume: 24 start-page: 1384 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib162 article-title: Micromachined hotplate platform for the investigation of ink-jet printed, functionalized metal oxide nanoparticles publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2015.2399696 – volume: 43 start-page: 7508 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib106 article-title: Hierarchical heterostructure of porous NiO nanosheets on flower-like ZnO assembled by hexagonal nanorods for high-performance gas sensor publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.03.032 – year: 2017 ident: 10.1016/j.aca.2018.09.020_bib127 – volume: 599 start-page: 195 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib130 article-title: Facile preparation of large-scale α-Fe2O3 nanorod/SnO2 nanorod composites and their LPG-sensing properties publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2014.02.089 – volume: 240 start-page: 477 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib138 article-title: Remarkable improvement of W18O49/TiO2 heteronanowires in ambient temperature-responsive NO2-sensing abilities and its unexpected n-p transition phenomenon publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.09.005 – volume: 19 start-page: 559 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib151 article-title: Metal oxide nanowire chemical sensors: innovation and quality of life publication-title: Mater. Today doi: 10.1016/j.mattod.2016.05.016 – volume: 17 start-page: 913 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib35 article-title: Synthesis, characterization and enhanced sensing properties of a NiO/ZnO p–n junctions sensor for the SF6 decomposition byproducts SO2, SO2F2, and SOF2 publication-title: Sensors doi: 10.3390/s17040913 – volume: 19 year: 2008 ident: 10.1016/j.aca.2018.09.020_bib24 article-title: The synthesis and selective gas sensing characteristics of SnO 2/α-Fe 2 O 3 hierarchical nanostructures publication-title: Nanotechnology – start-page: 137 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib116 – volume: 192 start-page: 607 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib8 article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2013.11.005 – volume: 176 start-page: 675 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib40 article-title: WO3 nanoclusters–SnO2 film gas sensor heterostructure with enhanced response for NO2 publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.09.094 – volume: 131 start-page: 104 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib34 article-title: One-step hydrothermal synthesis of In2O3–ZnO heterostructural composites and their enhanced visible-light photocatalytic activity publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.05.182 – volume: 20 start-page: 556 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib48 article-title: In situ growth of ZnO/SnO 2 (ZnO:Sn) m binary/superlattice heterojunction nanowire arrays publication-title: CrystEngComm doi: 10.1039/C7CE02014G – volume: 160 start-page: 428 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib166 article-title: A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas publication-title: Optik doi: 10.1016/j.ijleo.2018.02.002 – volume: 175 start-page: 186 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib88 article-title: Catalytic impact of RuOx clusters to high ammonia sensitivity of tin dioxide publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.03.003 – volume: 22 start-page: 12882 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib133 article-title: One-step fabrication of [small beta]-Ga2O3-amorphous-SnO2 core-shell microribbons and their thermally switchable humidity sensing properties publication-title: J. Mater. Chem. doi: 10.1039/c2jm32230g – volume: vol. 221 start-page: 88 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib128 – volume: 515 start-page: 8356 year: 2007 ident: 10.1016/j.aca.2018.09.020_bib72 article-title: In2O3 nanowires for gas sensors: morphology and sensing characterisation publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.03.034 – volume: 6 start-page: 279 year: 1992 ident: 10.1016/j.aca.2018.09.020_bib157 article-title: Influence of the nature of the screen-printed electrode metal on the transport and detection properties of thick-film semiconductor gas sensors publication-title: Sensor. Actuator. B Chem. doi: 10.1016/0925-4005(92)80070-E – volume: 258 start-page: 204 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib58 article-title: SnO2 (n)-NiO (p) composite nanowebs: gas sensing properties and sensing mechanisms publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.11.063 – volume: 7 start-page: 170 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib27 article-title: Hierarchical construction of core–shell metal oxide nanoarrays with ultrahigh areal capacitance publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2014.03.005 – volume: 34 start-page: 823 year: 2008 ident: 10.1016/j.aca.2018.09.020_bib64 article-title: Ethanol sensor based on ZnO and Au-doped ZnO nanowires publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2007.09.099 – volume: 168 start-page: 83 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib83 article-title: One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.01.045 – volume: 87 start-page: 1638 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib163 article-title: Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature publication-title: Anal. Chem. doi: 10.1021/ac503234e – volume: 10 start-page: 10304 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib52 article-title: ALD-developed plasmonic two-dimensional Au–WO 3 –TiO 2 heterojunction architectonics for design of photovoltaic devices publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17508 – volume: 35 start-page: 649 year: 2009 ident: 10.1016/j.aca.2018.09.020_bib74 article-title: Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2008.01.028 – volume: vol. 694 start-page: 939 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib124 – volume: 181 start-page: 130 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib77 article-title: Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2013.01.067 – volume: 8 start-page: 10413 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib132 article-title: Aerosol-assisted CVD-grown PdO nanoparticle-decorated tungsten oxide nanoneedles extremely sensitive and selective to hydrogen publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00773 – volume: 18 start-page: 163 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib4 article-title: Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors publication-title: Mater. Today doi: 10.1016/j.mattod.2014.08.017 – volume: 7 start-page: 24950 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib28 article-title: High-energy faceted SnO 2 -coated TiO 2 nanobelt heterostructure for near-ambient temperature-responsive ethanol sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08630 – volume: 229 start-page: 206 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib63 article-title: Semiconductor metal oxide gas sensors: a review publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2017.12.036 – volume: 727 start-page: 52 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib112 article-title: Co 3 O 4 nanoparticle-decorated hierarchical flower-like α-Fe 2 O 3 microspheres : synthesis and ethanol sensing properties publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.08.088 – year: 2016 ident: 10.1016/j.aca.2018.09.020_bib67 article-title: NiO/ZnO nanowire-heterostructures by vapor phase growth for gas sensing – volume: 221 start-page: 260 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib113 article-title: Controllable construction of Cr2O3-ZnO hierarchical heterostructures and their formaldehyde gas sensing properties publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.03.073 – volume: 35 start-page: 741 year: 2000 ident: 10.1016/j.aca.2018.09.020_bib152 article-title: Stability of SnO2/Fe2O3 multilayer thin film gas sensor publication-title: Mater. Res. Bull. doi: 10.1016/S0025-5408(00)00264-6 – volume: 27 start-page: 425503 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib69 article-title: A high-response ethanol gas sensor based on one-dimensional TiO 2/V 2 O 5 branched nanoheterostructures publication-title: Nanotechnology doi: 10.1088/0957-4484/27/42/425503 – volume: 8 start-page: 16349 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib139 article-title: Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties publication-title: Nanoscale doi: 10.1039/C6NR05187A – volume: 24 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib66 article-title: Thermally oxidized zinc oxide nanowires for use as chemical sensors publication-title: Nanotechnology doi: 10.1088/0957-4484/24/44/444008 – volume: 12 start-page: 7207 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib153 article-title: Gas sensors based on one dimensional nanostructured metal-oxides: a review publication-title: Sensors doi: 10.3390/s120607207 – volume: 7 start-page: 34482 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib60 article-title: Solution combustion synthesis and enhanced gas sensing properties of porous in 2 O 3/ZnO heterostructures publication-title: RSC Adv. doi: 10.1039/C7RA04852A – volume: 103 start-page: 300 year: 2004 ident: 10.1016/j.aca.2018.09.020_bib75 article-title: Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2004.04.109 – volume: 117 start-page: 10086 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib134 article-title: Synthesis, characterization, and humidity detection properties of Nb2O5 nanorods and SnO2/Nb2O5 heterostructures publication-title: J. Phys. Chem. C doi: 10.1021/jp3121066 – volume: 118 start-page: 9209 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib37 article-title: Core–shell in 2 O 3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H 2 S sensitivity and selectivity at room temperature publication-title: J. Phys. Chem. C doi: 10.1021/jp500516t – volume: 6 start-page: 33092 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib146 article-title: A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures publication-title: Sci. Rep. doi: 10.1038/srep33092 – volume: 495 start-page: 207 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib45 article-title: Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.01.106 – volume: 6 start-page: 379 year: 2007 ident: 10.1016/j.aca.2018.09.020_bib12 article-title: Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors publication-title: Nat. Mater. doi: 10.1038/nmat1891 – volume: 16 start-page: 1373 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib144 article-title: Hybrid SnO2/TiO2 nanocomposites for selective detection of ultra-low hydrogen sulfide concentrations in complex backgrounds publication-title: Sensors doi: 10.3390/s16091373 – volume: 134 start-page: 360 year: 2008 ident: 10.1016/j.aca.2018.09.020_bib90 article-title: Synthesis of ZnO-SnO2nanocomposites by microemulsion and sensing properties for NO2 publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2008.04.040 – volume: 27 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib65 article-title: Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device publication-title: Nanotechnology doi: 10.1088/0957-4484/27/20/205701 – volume: 7 start-page: 43887 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib82 article-title: Highly sensitive H2S sensors based on Cu2O/Co3O4 nano/microstructure heteroarrays at and below room temperature publication-title: Sci. Rep. doi: 10.1038/srep43887 – volume: 4 start-page: 6 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib46 article-title: ZnO Quasi-1D nanostructures: synthesis, modeling, and properties for applications in conductometric chemical sensors publication-title: Chemosensors doi: 10.3390/chemosensors4020006 – volume: 209 start-page: 562 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib95 article-title: Effect of composition and temperature on conductive and sensing properties of CeO2+ In2O3nanocomposite films publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2014.12.022 – volume: 10 start-page: 1833 year: 2010 ident: 10.1016/j.aca.2018.09.020_bib159 article-title: CMOS interfacing for integrated gas sensors: a review publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2010.2046409 – volume: 83 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib47 article-title: Structural properties of ZnO/SnO 2 -Composite-Nanorod deposited using thermal chemical vapour deposition publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/83/1/012002 – volume: 736 start-page: 322 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib93 article-title: WO3-SnO2nanosheet composites: hydrothermal synthesis and gas sensing mechanism publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.11.185 – volume: 49 start-page: 1118 year: 2011 ident: 10.1016/j.aca.2018.09.020_bib22 article-title: Exfoliated graphene sheets decorated with metal/metal oxide nanoparticles: simple preparation from cation exchanged graphite oxide publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2010.11.017 – volume: 244 start-page: 344 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib107 article-title: Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.12.044 – volume: 51 start-page: 6406 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib19 article-title: A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201106948 – volume: 7 start-page: 5199 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib33 article-title: Three-dimensional TiO 2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507983y – volume: 3 start-page: 189 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib154 article-title: Heterogeneous photocatalysis: recent advances and applications publication-title: Catalysts doi: 10.3390/catal3010189 – volume: 5 start-page: 79593 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib126 article-title: Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol publication-title: RSC Adv. doi: 10.1039/C5RA15019A – volume: 104 start-page: 126 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib136 article-title: Co-axial core–shell ZnMgO/ZnO NWs publication-title: Solid State Electron. doi: 10.1016/j.sse.2014.08.010 – volume: 9 start-page: 23926 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib43 article-title: In situ monitoring of the deposition of flame-made chemoresistive gas-sensing films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04530 – volume: 54 start-page: 1 year: 2009 ident: 10.1016/j.aca.2018.09.020_bib5 article-title: Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2008.06.003 – volume: 213 start-page: 27 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib31 article-title: Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2015.01.130 – volume: 6 start-page: 47178 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib53 article-title: Highly sensitive and selective CO gas sensor based on a hydrophobic SnO 2/CuO bilayer publication-title: RSC Adv. doi: 10.1039/C6RA06538D – volume: 5 start-page: 7992 year: 2011 ident: 10.1016/j.aca.2018.09.020_bib21 article-title: Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application publication-title: ACS Nano doi: 10.1021/nn202471f – volume: 69 start-page: 373 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib105 article-title: Fe2O3/Co3O4 composite nanoparticle ethanol sensor publication-title: J. Kor. Phys. Soc. doi: 10.3938/jkps.69.373 – volume: 89 start-page: 219 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib94 article-title: Hydrothermal synthesis of ZnO-Eu 2O 3 binary oxide with straight strips morphology and sensitivity to NO 2 gas publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.08.100 – volume: 226 start-page: 76 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib110 article-title: Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods publication-title: Sensor. Actuator. B doi: 10.1016/j.snb.2015.11.120 – volume: 174 start-page: 594 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib80 article-title: Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.07.118 – volume: 90 start-page: 4940 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib3 article-title: Sniffing entrapped humans with sensor arrays publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00237 – volume: 216 start-page: 196 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib109 article-title: Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO 3 perovskite nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.01.018 – volume: 155 start-page: 270 year: 2011 ident: 10.1016/j.aca.2018.09.020_bib81 article-title: α-MoO3/TiO2 core/shell nanorods: controlled-synthesis and low-temperature gas sensing properties publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2010.12.034 – volume: 1832 start-page: 2 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib92 article-title: Free standing CuO-MnO2 nanocomposite for room temperature ammonia sensing – volume: 9 start-page: 638 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib135 article-title: Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-9-638 – volume: 207 start-page: 489 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib115 article-title: Construction of 0, 1, 2 and 3 dimensional SnO2nanostructures decorated by NiO nanopetals: structures, growth and gas-sensing properties publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.12.088 – volume: 108 start-page: 705 year: 2008 ident: 10.1016/j.aca.2018.09.020_bib13 article-title: Electronic nose: current status and future trends publication-title: Chem. Rev. doi: 10.1021/cr068121q – volume: 243 start-page: 990 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib20 article-title: Au Decorated ZnO hierarchical architectures: facile synthesis, tunable morphology and enhanced CO detection at room temperature publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.11.152 – volume: 14 start-page: 1296 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib147 article-title: Self-catalytic growth of hierarchical in 2 O 3 nanostructures on SnO 2 nanowires and their CO sensing properties publication-title: CrystEngComm doi: 10.1039/C1CE06086D – start-page: 192 year: 2008 ident: 10.1016/j.aca.2018.09.020_bib9 article-title: A self-monitoring and self-diagnosis strategy for semiconductor gas sensor systems – volume: 10 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib122 article-title: Molybdenum dichalcogenides for environmental chemical sensing publication-title: Materials doi: 10.3390/ma10121418 – volume: 6 start-page: 50423 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib36 article-title: In 2 O 3 -functionalized MoO 3 heterostructure nanobelts with improved gas-sensing performance publication-title: RSC Adv. doi: 10.1039/C6RA07292E – start-page: 2015 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib101 – year: 2007 ident: 10.1016/j.aca.2018.09.020_bib155 – volume: 11 start-page: 2305 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib123 article-title: Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air publication-title: Small doi: 10.1002/smll.201402923 – volume: 265 start-page: 660 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib158 article-title: Fully integrated and portable semiconductor-type multi-gas sensing module for IoT applications publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2018.03.099 – volume: 25 start-page: 11 year: 2010 ident: 10.1016/j.aca.2018.09.020_bib7 article-title: Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors publication-title: J. Electroceram. doi: 10.1007/s10832-009-9583-x – volume: 30 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib16 article-title: Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/30/2/024002 – volume: 19 start-page: 5642 year: 2007 ident: 10.1016/j.aca.2018.09.020_bib14 article-title: First example of ZnO−TiO2 nanocomposites by chemical vapor Deposition: structure, morphology, composition, and gas sensing performances publication-title: Chem. Mater. doi: 10.1021/cm701990f – volume: 202 start-page: 1270 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib78 article-title: Role of various interfaces of CuO/ZnO random nanowire networks in H2S sensing: an impedance and Kelvin probe analysis publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2014.06.072 – volume: 254 start-page: 863 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib61 article-title: Study on the gas-sensitive properties for formaldehyde based on SnO2-ZnO heterostructure in UV excitation publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.07.197 – volume: 673 start-page: 364 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib137 article-title: Highly aligned array of W18O49/CuO core–shell nanorods and its promising NO2 sensing properties publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.02.242 – volume: 244 start-page: 664 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib164 article-title: 2D ultrathin Co3O4 nanosheet array deposited on 3D carbon foam for enhanced ethanol gas sensing application publication-title: Sensor. Actuator. B doi: 10.1016/j.snb.2017.01.056 – volume: 82 start-page: 130 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib85 article-title: Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2016.02.011 – volume: 319 start-page: 37 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib56 article-title: Modification of MWCNT@TiO2 core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.07.161 – year: 2009 ident: 10.1016/j.aca.2018.09.020_bib1 publication-title: Solid State Gas Sensing doi: 10.1007/978-0-387-09665-0 – year: 2015 ident: 10.1016/j.aca.2018.09.020_bib160 article-title: Tungsten oxide nanowires on micro hotplates for gas sensing applications – volume: 4 start-page: 4192 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib79 article-title: Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am300911z – volume: 45 start-page: 205301 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib86 article-title: Novel growth of CuO-functionalized, branched SnO 2 nanowires and their application to H 2 S sensors publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/45/20/205301 – volume: 105 start-page: 201601 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib42 article-title: Characterization of amorphous multilayered ZnO-SnO 2 heterostructure thin films and their field effect electronic properties publication-title: Appl. Phys. Lett. doi: 10.1063/1.4901503 – volume: 238 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib11 article-title: Detection of food and skin pathogen microbiota by means of an electronic nose based on metal oxide chemiresistors publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.09.086 – volume: 8 start-page: 326 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib96 article-title: SnO2-CuO nanocomposite thin film sensor for fast detection of H2S gas publication-title: J. Exp. Nanosci. doi: 10.1080/17458080.2012.680930 – volume: 29 start-page: 3780 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib149 article-title: Room temperature acetone-sensing properties of branch-like VO2 (B)@ZnO hierarchical hetero-nanostructures publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-017-8313-4 – volume: 5 start-page: 10048 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib125 article-title: Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanoheterostructures for enhanced gas sensing performances publication-title: RSC Adv. doi: 10.1039/C4RA14033H – volume: 526 start-page: 400 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib161 article-title: Tailoring metal oxide nanoparticle dispersions for inkjet printing publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.05.006 – volume: 179 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib50 article-title: Metal oxide nanoscience and nanotechnology for chemical sensors publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.10.027 – volume: 4 start-page: 36749 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib38 article-title: Enhanced sensitivity and selectivity of brush-like SnO 2 nanowire/ZnO nanorod heterostructure based sensors for volatile organic compounds publication-title: RSC Adv. doi: 10.1039/C4RA05914J – volume: 737 start-page: 603 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib39 article-title: Low-temperature in-situ growth of SnO2 nanosheets and its high triethylamine sensing response by constructing Au-loaded ZnO/SnO2 heterostructure publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.12.016 – year: 2014 ident: 10.1016/j.aca.2018.09.020_bib121 – volume: 4 start-page: 32773 year: 2014 ident: 10.1016/j.aca.2018.09.020_bib30 article-title: Construction of a branched ZnO–TiO 2 nanorod array heterostructure for enhancing the photovoltaic properties in quantum dot-sensitized solar cells publication-title: RSC Adv. doi: 10.1039/C4RA05736H – volume: 8 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib6 article-title: Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.8.122 – volume: 87 start-page: 464 year: 2002 ident: 10.1016/j.aca.2018.09.020_bib15 article-title: The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor publication-title: Sensor. Actuator. B Chem. doi: 10.1016/S0925-4005(02)00299-X – volume: 259 start-page: 131 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib26 article-title: Porous TiO2 nanobelts coated with mixed transition-metal oxides Sn3O4 nanosheets core-shell composites as high-performance anode materials of lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.180 – volume: 150 start-page: 749 year: 2010 ident: 10.1016/j.aca.2018.09.020_bib91 article-title: Preparation, characterization of WO3-SnO2nanocomposites and their sensing properties for NO2 publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2010.08.007 – volume: 237 start-page: 275 year: 2016 ident: 10.1016/j.aca.2018.09.020_bib103 article-title: Synthesis of novel RuO2/NaBi(MoO4)2nanosheets composite and its gas sensing performances towards ethanol publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.06.095 – volume: 57 start-page: 241 year: 1999 ident: 10.1016/j.aca.2018.09.020_bib18 article-title: Effect of interdiffusion on electrical and gas sensor properties of CuO/SnO2 heterostructure publication-title: Mater. Sci. Eng. B doi: 10.1016/S0921-5107(98)00432-2 – volume: 185 start-page: 231 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib104 article-title: Highly enhanced gas sensing properties of porous SnO2-CeO2composite nanofibers prepared by electrospinning publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2013.05.001 – volume: 71 start-page: 487 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib140 article-title: Acetone sensing of multi-networked WO3-NiO core-shell nanorod sensors publication-title: J. Kor. Phys. Soc. doi: 10.3938/jkps.71.487 – volume: 256 start-page: 282 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib120 article-title: Sensors and Actuators B : chemical Fe 2 O 3 -loaded NiO nanosheets for fast response/recovery and high response gas sensor publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.09.187 – volume: 209 start-page: 934 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib84 article-title: Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2014.11.130 – volume: 746 start-page: 36 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib99 article-title: In2O3-SnO2hybrid porous nanostructures delivering enhanced formaldehyde sensing performance publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.02.171 – volume: 25 start-page: 1133 year: 2011 ident: 10.1016/j.aca.2018.09.020_bib98 article-title: Hydrogen sensors on the basis of SnO 2-TiO 2 systems publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.12.279 – volume: 32 start-page: 2079 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib119 article-title: CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2012.05.042 – year: 1994 ident: 10.1016/j.aca.2018.09.020_bib2 – volume: 215 start-page: 630 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib73 article-title: Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2015.03.037 – volume: 169 start-page: 32 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib87 article-title: Effect of composition on sensing properties of SnO 2 + in 2O 3 mixed nanostructured films publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.01.064 – volume: 9 start-page: 38537 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib44 article-title: Three-dimensional lupinus-like TiO 2 nanorod@Sn 3 O 4 nanosheet hierarchical heterostructured arrays as photoanode for enhanced photoelectrochemical performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11872 – volume: 639 start-page: 571 year: 2015 ident: 10.1016/j.aca.2018.09.020_bib29 article-title: Enhanced gas sensing property of SnO2 nanoparticles by constructing the SnO2–TiO2 nanobelt heterostructure publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2015.03.193 – volume: 262 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib23 article-title: Branch-like NiO/ZnO heterostructures for VOC sensing publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2018.02.042 – volume: 17 year: 2017 ident: 10.1016/j.aca.2018.09.020_bib25 article-title: Porous TiO₂-Based gas sensors for cyber chemical systems to provide security and medical diagnosis publication-title: Sensors doi: 10.3390/s17122947 – volume: 39 start-page: 5191 year: 2013 ident: 10.1016/j.aca.2018.09.020_bib51 article-title: Growth and optical properties of ZnO–In2O3 heterostructure nanowires publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.12.017 – volume: 25 start-page: 1133 year: 2011 ident: 10.1016/j.aca.2018.09.020_bib17 article-title: Hydrogen sensors on the basis of SnO2-TiO2 systems publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.12.279 – volume: 255 start-page: 3505 year: 2018 ident: 10.1016/j.aca.2018.09.020_bib117 article-title: Sensors and Actuators B : chemical Ultrasensitive and low detection limit of toluene gas sensor based on SnO 2 -decorated NiO nanostructure publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.09.184 – volume: 51 start-page: 7733 year: 2012 ident: 10.1016/j.aca.2018.09.020_bib70 article-title: NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties publication-title: Inorg. Chem. doi: 10.1021/ic300749a |
SSID | ssj0002104 |
Score | 2.6597939 |
SecondaryResourceType | review_article |
Snippet | This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Catalysis Chemical compounds Chemical perception Chemical sensors Chemical synthesis Chemoreception Control stability Core-shell Core-shell structure Detection Fabrication Gas detectors Gas sensors Heterojunctions Heterostructures Hierarchical structures Interfaces Interfacial properties Metal oxide Metal oxides Metals Molecular structure Morphology Nanostructure Nanostructured materials Nanostructures Nanotechnology Organic chemistry Oxides Reproducibility Selectivity Sensors |
Title | “Metal oxide -based heterostructures for gas sensors”- A review |
URI | https://dx.doi.org/10.1016/j.aca.2018.09.020 https://www.ncbi.nlm.nih.gov/pubmed/30322540 https://www.proquest.com/docview/2154711436 https://www.proquest.com/docview/2120752005 |
Volume | 1039 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsMwDLYmOMAF8c9goCBxQgpL26zNjtMEGiA4gcQtSpoUhtCKGEicEA8CL7cnwe7PEBLswLGtI6WfU_tz49gAB954qzKfcpt0HJdhEnCTRo57L7KOzALrUgoULy7jwbU8u-ncNKBfn4WhtMrK9pc2vbDW1Z12hWb7cTikM74CuUciAuqVpbpUE1TKhFb50dt3mgeGNLLumkfS9c5mkeNlUio9FKii1Cm1_P7dN_3FPQsfdLIMSxV5ZL1yfivQ8KNVWOjXPdvWoD95_7jwyKdZ_jp0nnFyUo7dUc5LXpaKfcH4miFTZbdmzMYYxOZP48n7J2c9Vh5jWYfrk-Or_oBXbRJ4iu72mStk_V4lEcKeqUx2rI8QbWT-ymLwJIRBAo0PnHV0ytWGQYwsK8kMOn7pQyOiDZgb5SO_BQzJkAyQc8VRpqR0KO1siKQidpkzYRI2QdQA6bSqIU6tLB50nSx2rxFTTZhq0dWIaRMOp0MeywIas4Rljbr-sQo0GvhZw1q1hnT1CY41chl0vEgH4ybsTx-jPmhHxIx8_kIy9Hb0Y60Jm6Vmp5NE3462Tort_81pBxbpijJfAtWCOVSx30X-8mz3igW6B_O90_PB5ReQju3Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcAFsVNWI3FCsnASJzHHqgKVpT2BxM2yYweKUFNRkDj2Q-Dn-iXMNEklJODANbYl540z8yaeBeDYG29V7jNu09hxGaYBN1nkuPcij2UeWJeRo9jtJZ07eXUf389Bu86FobDKSveXOn2qrasnpxWap8N-n3J8BXKPVATUK0udyXlYoOpUcQMWWpfXnd5MIaNXI-vGebSgvtychnmZjKoPBWpa7ZS6fv9snn6jn1MzdLECyxV_ZK1yi6sw5wdrsNiu27atQ3sy_uh6pNSseO87zzjZKcceKeylKKvFvqGLzZCssgczYiP0Y4uX0WT8yVmLlZksG3B3cX7b7vCqUwLP0OK-coXE36s0QuRzlcvY-ggBR_KvLPpPQhjk0DjgrKNEVxsGCRKtNDdo-6UPjYg2oTEoBn4bGPIhGSDtSqJcSelwtrMh8orE5c6EadgEUQOks6qMOHWzeNZ1vNiTRkw1YarFmUZMm3AyWzIsa2j8NVnWqOtvB0Gjjv9r2V4tIV19hSONdAZtLzLCpAlHs2GUB12KmIEv3mgOvR39W2vCVinZ2SbRvKO6k2Lnf3s6hMXObfdG31z2rndhiUYoECZQe9BAcft9pDOv9qA6rl_BPvCB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%22Metal+oxide+-based+heterostructures+for+gas+sensors%22-+A+review&rft.jtitle=Analytica+chimica+acta&rft.au=Zappa%2C+Dario&rft.au=Galstyan%2C+Vardan&rft.au=Kaur%2C+Navpreet&rft.au=Munasinghe+Arachchige%2C+Hashitha+M+M&rft.date=2018-12-18&rft.issn=1873-4324&rft.eissn=1873-4324&rft.volume=1039&rft.spage=1&rft_id=info:doi/10.1016%2Fj.aca.2018.09.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon |