“Metal oxide -based heterostructures for gas sensors”- A review

This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks t...

Full description

Saved in:
Bibliographic Details
Published inAnalytica chimica acta Vol. 1039; pp. 1 - 23
Main Authors Zappa, Dario, Galstyan, Vardan, Kaur, Navpreet, Munasinghe Arachchige, Hashitha M.M., Sisman, Orhan, Comini, Elisabetta
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 18.12.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures’ surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures. [Display omitted] •Resumes the advantages of properties of metal oxide heterojunctions.•Overviews recent studies on metal oxide heterostructure-based gas sensor.•Highlight progresses and summarizes the data on gas sensing.•Critically proposes footprints of future research and application trends in this field.
AbstractList This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures' surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures.This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures' surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures.
This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures' surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures.
This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures’ surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures. [Display omitted] •Resumes the advantages of properties of metal oxide heterojunctions.•Overviews recent studies on metal oxide heterostructure-based gas sensor.•Highlight progresses and summarizes the data on gas sensing.•Critically proposes footprints of future research and application trends in this field.
Author Comini, Elisabetta
Zappa, Dario
Munasinghe Arachchige, Hashitha M.M.
Sisman, Orhan
Galstyan, Vardan
Kaur, Navpreet
Author_xml – sequence: 1
  givenname: Dario
  surname: Zappa
  fullname: Zappa, Dario
– sequence: 2
  givenname: Vardan
  surname: Galstyan
  fullname: Galstyan, Vardan
– sequence: 3
  givenname: Navpreet
  surname: Kaur
  fullname: Kaur, Navpreet
– sequence: 4
  givenname: Hashitha M.M.
  surname: Munasinghe Arachchige
  fullname: Munasinghe Arachchige, Hashitha M.M.
– sequence: 5
  givenname: Orhan
  surname: Sisman
  fullname: Sisman, Orhan
– sequence: 6
  givenname: Elisabetta
  orcidid: 0000-0003-2559-5197
  surname: Comini
  fullname: Comini, Elisabetta
  email: elisabetta.comini@unibs.it
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30322540$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtOxDAQRS0EguXxATQoEg1NwviRx4pqteIlgWigthxnAl5l48V2eHR8CPwcX4LRLs0WVKPRnDu6uneXbPa2R0IOKWQUaHE6y5RWGQNaZTDOgMEGGdGq5KngTGySEQDwlBUl7JBd72dxZRTENtnhwBnLBYzI9Pvj8xaD6hL7ZhpM0lp5bJInDOisD27QYXDok9a65FH5xGPvrfPfH19pMkkcvhh83Sdbreo8HqzmHnm4OL-fXqU3d5fX08lNqnlFQ1pxKDC6Q4Vt1Yq8Rq55A2Jc1QIogCpLFg9N3QgoxjWjRZXTslU0ekamgO-Rk-XfhbPPA_og58Zr7DrVox28ZJRBmTOAPKLHa-jMDq6P7iKVi5JSwYtIHa2ooZ5jIxfOzJV7l3_xRKBcAjqG4R22UpuggrF9cMp0koL8LULOZCxC_hYhYSxjEVFJ15R_z__TnC01GEOMwTrptcFeY2Mc6iAba_5R_wAqbp7b
CitedBy_id crossref_primary_10_1021_acsami_9b19442
crossref_primary_10_1016_j_colsurfa_2022_129435
crossref_primary_10_1007_s11051_019_4549_7
crossref_primary_10_1039_D4TA02855D
crossref_primary_10_3390_s21134387
crossref_primary_10_1016_j_scitotenv_2021_145311
crossref_primary_10_1166_mex_2022_2315
crossref_primary_10_1002_pssb_202400246
crossref_primary_10_1088_2053_1591_ab0d6b
crossref_primary_10_3390_nano10020398
crossref_primary_10_1016_j_ccr_2023_215542
crossref_primary_10_3390_chemosensors8020039
crossref_primary_10_1002_ente_202200113
crossref_primary_10_1002_est2_432
crossref_primary_10_1149_1945_7111_ac6e0a
crossref_primary_10_3390_s24216839
crossref_primary_10_1016_j_apsusc_2022_156028
crossref_primary_10_1016_j_ceramint_2022_09_352
crossref_primary_10_1016_j_jallcom_2023_170691
crossref_primary_10_1016_j_snb_2021_130431
crossref_primary_10_3390_nano10030511
crossref_primary_10_1016_j_colsurfa_2022_129444
crossref_primary_10_3390_s20216225
crossref_primary_10_1039_D2CP04247A
crossref_primary_10_1021_acs_analchem_9b01428
crossref_primary_10_1007_s44211_024_00573_z
crossref_primary_10_1016_j_apsusc_2019_143756
crossref_primary_10_1016_j_mtchem_2024_101928
crossref_primary_10_1515_phys_2022_0232
crossref_primary_10_1016_j_ceramint_2024_02_257
crossref_primary_10_1016_j_snb_2024_136360
crossref_primary_10_1016_j_snb_2022_132565
crossref_primary_10_1007_s10854_024_12427_5
crossref_primary_10_1021_acssensors_3c02372
crossref_primary_10_1016_j_jelechem_2022_116699
crossref_primary_10_1016_j_snb_2024_137213
crossref_primary_10_1039_C9TC04132J
crossref_primary_10_3390_ma16010263
crossref_primary_10_1016_j_snb_2022_133085
crossref_primary_10_1088_1361_6463_acec85
crossref_primary_10_1016_j_jallcom_2021_160189
crossref_primary_10_3390_coatings14101260
crossref_primary_10_1088_2058_8585_acef39
crossref_primary_10_1016_j_snb_2019_05_049
crossref_primary_10_1109_JSEN_2019_2942490
crossref_primary_10_1016_j_microc_2024_110713
crossref_primary_10_3390_s20236781
crossref_primary_10_3390_chemosensors9090256
crossref_primary_10_1016_j_mtchem_2023_101639
crossref_primary_10_1016_j_snb_2022_132313
crossref_primary_10_1016_j_jics_2024_101496
crossref_primary_10_4028_p_15QUp9
crossref_primary_10_1016_j_snb_2023_134338
crossref_primary_10_1186_s11671_020_3273_7
crossref_primary_10_1109_JSEN_2022_3205887
crossref_primary_10_1016_j_trac_2023_117233
crossref_primary_10_1109_JSEN_2022_3169685
crossref_primary_10_1016_j_sse_2024_109024
crossref_primary_10_1016_j_ijhydene_2025_01_409
crossref_primary_10_1016_j_cej_2024_150204
crossref_primary_10_3390_chemosensors11090495
crossref_primary_10_1021_acsnano_0c05307
crossref_primary_10_1149_2754_2734_acb562
crossref_primary_10_1016_j_cplett_2024_141321
crossref_primary_10_3390_s22041510
crossref_primary_10_1002_admi_202102525
crossref_primary_10_1021_acsomega_2c05953
crossref_primary_10_1063_5_0155416
crossref_primary_10_3390_catal13030459
crossref_primary_10_1016_j_materresbull_2023_112451
crossref_primary_10_1007_s11270_020_04973_5
crossref_primary_10_1016_j_snb_2022_131457
crossref_primary_10_1021_acsaelm_1c00841
crossref_primary_10_1021_acsanm_9b01176
crossref_primary_10_1016_j_apsusc_2023_159103
crossref_primary_10_1039_D0QI01326A
crossref_primary_10_1016_j_vacuum_2021_110102
crossref_primary_10_1016_j_jallcom_2019_05_266
crossref_primary_10_3390_s23239548
crossref_primary_10_1039_D4MA00426D
crossref_primary_10_2139_ssrn_4007269
crossref_primary_10_1016_j_materresbull_2019_05_001
crossref_primary_10_1016_j_ceramint_2024_05_259
crossref_primary_10_1039_D0TA12500H
crossref_primary_10_1016_j_matchemphys_2022_127085
crossref_primary_10_1016_j_mseb_2020_114547
crossref_primary_10_1016_j_trac_2023_117454
crossref_primary_10_1109_TED_2024_3392173
crossref_primary_10_1016_j_jmmm_2019_165905
crossref_primary_10_1016_j_sna_2022_113578
crossref_primary_10_1016_j_snb_2023_133620
crossref_primary_10_1016_j_jpcs_2019_05_028
crossref_primary_10_1016_j_snb_2019_127453
crossref_primary_10_3390_chemosensors11060320
crossref_primary_10_1039_D3DT01078C
crossref_primary_10_1021_acs_analchem_0c04476
crossref_primary_10_1021_acsanm_3c01181
crossref_primary_10_1002_cplu_201900307
crossref_primary_10_1016_j_surfin_2022_102368
crossref_primary_10_3390_s23020882
crossref_primary_10_1039_D4TC01561D
crossref_primary_10_1016_j_ceramint_2024_07_037
crossref_primary_10_3389_fchem_2024_1425693
crossref_primary_10_1016_j_measen_2022_100600
crossref_primary_10_1117_1_JNP_13_036016
crossref_primary_10_1016_j_snb_2023_134721
crossref_primary_10_1016_j_talo_2024_100388
crossref_primary_10_1021_acsanm_9b01038
crossref_primary_10_1016_j_chemphys_2023_112041
crossref_primary_10_1039_D0RA02266G
crossref_primary_10_1016_j_snb_2019_126699
crossref_primary_10_1016_j_aca_2023_341033
crossref_primary_10_1016_j_cej_2022_136094
crossref_primary_10_1038_s41378_022_00410_1
crossref_primary_10_1016_j_snb_2021_130412
crossref_primary_10_1016_j_apsusc_2020_147383
crossref_primary_10_1021_acssensors_1c02606
crossref_primary_10_1016_j_snb_2024_136072
crossref_primary_10_1016_j_ceramint_2020_11_187
crossref_primary_10_1039_D3AY00627A
crossref_primary_10_3390_s24072147
crossref_primary_10_3390_s21082877
crossref_primary_10_1016_j_ceramint_2024_07_047
crossref_primary_10_2298_PAC2404366A
crossref_primary_10_1016_j_rsurfi_2023_100103
crossref_primary_10_1021_acssensors_4c02946
crossref_primary_10_1016_j_apsusc_2024_159871
crossref_primary_10_1038_s41467_024_53577_8
crossref_primary_10_1016_j_snb_2021_129793
crossref_primary_10_3390_ma17143502
crossref_primary_10_1016_j_mssp_2021_106188
crossref_primary_10_1007_s40820_021_00724_1
crossref_primary_10_3390_s23083822
crossref_primary_10_1039_D0TA00511H
crossref_primary_10_3390_ma16134802
crossref_primary_10_1149_2162_8777_acccaf
crossref_primary_10_1016_j_talanta_2023_124442
crossref_primary_10_1016_j_mssp_2019_104732
crossref_primary_10_1016_j_snb_2020_127810
crossref_primary_10_1021_acsanm_1c01895
crossref_primary_10_1016_j_snb_2021_129606
crossref_primary_10_1016_j_apsusc_2019_05_077
crossref_primary_10_1016_j_jcis_2022_07_052
crossref_primary_10_3390_nano13081424
crossref_primary_10_1016_j_jallcom_2019_06_148
crossref_primary_10_1016_j_apt_2021_08_033
crossref_primary_10_1016_j_snb_2023_134754
crossref_primary_10_1039_D2NJ01300B
crossref_primary_10_3390_chemosensors12010008
crossref_primary_10_3390_molecules28041621
crossref_primary_10_1016_j_microc_2025_113083
crossref_primary_10_1016_j_snb_2023_134881
crossref_primary_10_2139_ssrn_4129009
crossref_primary_10_1021_acssensors_9b00975
crossref_primary_10_1088_1361_6528_abdd5e
crossref_primary_10_1007_s10853_020_04569_8
crossref_primary_10_1021_acsami_3c03564
crossref_primary_10_3390_nano9121714
crossref_primary_10_1016_j_ceramint_2024_09_186
crossref_primary_10_1088_2053_1591_abf52e
crossref_primary_10_3390_s20226694
crossref_primary_10_1016_j_snb_2021_130605
crossref_primary_10_1016_j_snb_2020_128110
crossref_primary_10_1109_JSEN_2020_2977392
crossref_primary_10_1007_s10854_021_06997_x
crossref_primary_10_1016_j_snb_2023_134889
crossref_primary_10_1016_j_microc_2024_112056
crossref_primary_10_1016_j_apsusc_2023_156714
crossref_primary_10_1016_j_jcis_2020_01_091
crossref_primary_10_1016_j_sna_2021_113127
crossref_primary_10_1016_j_matlet_2020_127728
crossref_primary_10_1016_j_matpr_2023_04_134
crossref_primary_10_1021_acsomega_3c09239
crossref_primary_10_1080_23746149_2022_2044904
crossref_primary_10_1016_j_jallcom_2021_161312
crossref_primary_10_1016_j_snb_2020_127719
crossref_primary_10_1021_acsami_2c03561
crossref_primary_10_1016_j_yofte_2021_102469
crossref_primary_10_1007_s10854_024_13963_w
crossref_primary_10_1016_j_snb_2020_127954
crossref_primary_10_1016_j_surfin_2024_104637
crossref_primary_10_1002_tcr_202300350
crossref_primary_10_1109_JSEN_2021_3119951
crossref_primary_10_1016_j_snb_2020_127830
crossref_primary_10_1016_j_ccr_2025_216492
crossref_primary_10_1016_j_mtcomm_2022_105045
crossref_primary_10_1007_s00339_023_06647_5
crossref_primary_10_1016_j_inoche_2023_111941
crossref_primary_10_1016_j_snb_2022_131985
crossref_primary_10_1016_j_matchemphys_2022_126275
crossref_primary_10_3390_s21113736
crossref_primary_10_1016_j_mssp_2019_104820
crossref_primary_10_1016_j_snb_2019_127358
crossref_primary_10_3390_ma14226943
crossref_primary_10_1016_j_matchemphys_2023_127667
crossref_primary_10_1039_D3CE00004D
crossref_primary_10_1155_2019_5942194
crossref_primary_10_1016_j_mne_2022_100148
crossref_primary_10_1016_j_snb_2021_130869
crossref_primary_10_1016_j_mssp_2020_105149
crossref_primary_10_1021_acsami_1c04379
crossref_primary_10_1016_j_nanoen_2021_106241
crossref_primary_10_1016_j_snb_2024_136783
crossref_primary_10_3390_molecules26071988
crossref_primary_10_3390_ijms24021570
crossref_primary_10_1007_s00339_021_04927_6
crossref_primary_10_1038_s41598_022_09365_9
crossref_primary_10_1016_j_mssp_2020_105643
crossref_primary_10_1021_acsami_2c03704
crossref_primary_10_14233_ajchem_2020_22249
crossref_primary_10_1016_j_apt_2020_03_013
crossref_primary_10_3390_nano11061555
crossref_primary_10_1016_j_jhazmat_2023_131591
crossref_primary_10_1016_j_snb_2021_131206
crossref_primary_10_1016_j_sna_2021_112804
crossref_primary_10_3390_ma12060877
crossref_primary_10_1016_j_mtchem_2021_100768
crossref_primary_10_1016_j_snb_2023_134558
crossref_primary_10_1088_1361_6528_ac5aea
crossref_primary_10_1088_1402_4896_ac86ae
crossref_primary_10_1007_s10854_020_03332_8
crossref_primary_10_1016_j_snb_2023_134675
crossref_primary_10_1016_j_snb_2024_135489
crossref_primary_10_3390_chemosensors9020041
crossref_primary_10_1016_j_snb_2024_135477
crossref_primary_10_1016_j_ccr_2020_213272
crossref_primary_10_1007_s10854_023_10411_z
crossref_primary_10_1016_j_ceramint_2024_06_075
crossref_primary_10_1590_1980_5373_mr_2021_0007
crossref_primary_10_2139_ssrn_3973724
crossref_primary_10_1016_j_snb_2020_129403
crossref_primary_10_2139_ssrn_4135077
crossref_primary_10_3390_ma14206063
crossref_primary_10_1016_j_mseb_2020_115005
crossref_primary_10_1002_smll_202206100
crossref_primary_10_1016_j_chphi_2023_100350
crossref_primary_10_1016_j_jallcom_2021_158994
crossref_primary_10_3390_mi14091685
crossref_primary_10_1016_j_carbon_2021_04_080
crossref_primary_10_1016_j_sna_2022_113986
crossref_primary_10_3390_ma14216535
crossref_primary_10_3390_app15052522
crossref_primary_10_3390_mi14101875
crossref_primary_10_1016_j_snb_2019_127143
crossref_primary_10_1016_j_materresbull_2020_111109
crossref_primary_10_3390_s21206940
crossref_primary_10_1016_j_colsurfa_2023_131371
crossref_primary_10_1039_D4RA07112C
crossref_primary_10_46670_JSST_2022_31_6_455
crossref_primary_10_1002_admt_202201671
crossref_primary_10_1002_cnma_202000176
crossref_primary_10_1016_j_jics_2021_100126
crossref_primary_10_1016_j_mtcomm_2022_105241
crossref_primary_10_1016_j_snb_2021_130257
crossref_primary_10_1088_1674_1056_ac6947
crossref_primary_10_1007_s43207_019_00003_1
crossref_primary_10_1021_acssensors_4c01216
crossref_primary_10_1016_j_materresbull_2021_111633
crossref_primary_10_1016_j_ijhydene_2024_07_253
crossref_primary_10_1088_1361_6528_abfe92
crossref_primary_10_1016_j_jallcom_2021_160015
crossref_primary_10_1016_j_jallcom_2021_160136
crossref_primary_10_2139_ssrn_4152861
crossref_primary_10_1063_1_5118805
crossref_primary_10_1016_j_snb_2020_128579
crossref_primary_10_1016_j_snb_2019_126746
crossref_primary_10_1016_j_jallcom_2020_155840
crossref_primary_10_1016_j_snb_2019_126629
crossref_primary_10_1016_j_snb_2020_128330
crossref_primary_10_1007_s40820_022_00956_9
crossref_primary_10_1016_j_matchemphys_2024_129430
crossref_primary_10_1080_23746149_2023_2175623
crossref_primary_10_1109_LED_2019_2956560
crossref_primary_10_1016_j_colsurfa_2022_129791
crossref_primary_10_1016_j_nanoen_2023_108301
crossref_primary_10_1016_j_trac_2024_117684
crossref_primary_10_3390_ma16206733
Cites_doi 10.1016/j.snb.2016.07.135
10.1021/cg500031t
10.1016/j.snb.2016.12.009
10.1016/j.ijhydene.2017.05.135
10.1016/j.snb.2011.08.007
10.1016/j.snb.2012.09.027
10.1016/j.snb.2013.02.010
10.1021/am501379m
10.1016/j.snb.2012.02.076
10.1016/j.snb.2015.06.114
10.1088/0957-4484/23/24/245501
10.1016/j.snb.2017.07.013
10.1039/c1ra00077b
10.1039/C4RA09456E
10.5194/jsss-4-305-2015
10.1016/j.snb.2013.04.020
10.1021/am5012518
10.1016/j.snb.2016.04.057
10.1039/C6RA11065G
10.1016/j.snb.2012.02.019
10.1111/jace.14378
10.1166/eef.2014.1118
10.1016/j.snb.2013.11.003
10.1021/am402532v
10.1016/j.snb.2015.03.012
10.1016/j.mseb.2007.01.044
10.1109/JMEMS.2015.2399696
10.1016/j.ceramint.2017.03.032
10.1016/j.jallcom.2014.02.089
10.1016/j.snb.2016.09.005
10.1016/j.mattod.2016.05.016
10.3390/s17040913
10.1016/j.snb.2013.11.005
10.1016/j.snb.2012.09.094
10.1016/j.matlet.2014.05.182
10.1039/C7CE02014G
10.1016/j.ijleo.2018.02.002
10.1016/j.snb.2012.03.003
10.1039/c2jm32230g
10.1016/j.tsf.2007.03.034
10.1016/0925-4005(92)80070-E
10.1016/j.snb.2017.11.063
10.1016/j.nanoen.2014.03.005
10.1016/j.ceramint.2007.09.099
10.1016/j.snb.2012.01.045
10.1021/ac503234e
10.1021/acsami.7b17508
10.1016/j.ceramint.2008.01.028
10.1016/j.snb.2013.01.067
10.1021/acsami.6b00773
10.1016/j.mattod.2014.08.017
10.1021/acsami.5b08630
10.1016/j.mseb.2017.12.036
10.1016/j.jallcom.2017.08.088
10.1016/j.matlet.2018.03.073
10.1016/S0025-5408(00)00264-6
10.1088/0957-4484/27/42/425503
10.1039/C6NR05187A
10.1088/0957-4484/24/44/444008
10.3390/s120607207
10.1039/C7RA04852A
10.1016/j.snb.2004.04.109
10.1021/jp3121066
10.1021/jp500516t
10.1038/srep33092
10.1016/j.jcis.2017.01.106
10.1038/nmat1891
10.3390/s16091373
10.1016/j.snb.2008.04.040
10.1088/0957-4484/27/20/205701
10.1038/srep43887
10.3390/chemosensors4020006
10.1016/j.snb.2014.12.022
10.1109/JSEN.2010.2046409
10.1088/1757-899X/83/1/012002
10.1016/j.jallcom.2017.11.185
10.1016/j.carbon.2010.11.017
10.1016/j.snb.2016.12.044
10.1002/anie.201106948
10.1021/am507983y
10.3390/catal3010189
10.1039/C5RA15019A
10.1016/j.sse.2014.08.010
10.1021/acsami.7b04530
10.1016/j.pmatsci.2008.06.003
10.1016/j.snb.2015.01.130
10.1039/C6RA06538D
10.1021/nn202471f
10.3938/jkps.69.373
10.1016/j.matlet.2012.08.100
10.1016/j.snb.2015.11.120
10.1016/j.snb.2012.07.118
10.1021/acs.analchem.8b00237
10.1016/j.matlet.2018.01.018
10.1016/j.snb.2010.12.034
10.1186/1556-276X-9-638
10.1016/j.matchemphys.2017.12.088
10.1021/cr068121q
10.1016/j.snb.2016.11.152
10.1039/C1CE06086D
10.3390/ma10121418
10.1039/C6RA07292E
10.1002/smll.201402923
10.1016/j.snb.2018.03.099
10.1007/s10832-009-9583-x
10.1088/0268-1242/30/2/024002
10.1021/cm701990f
10.1016/j.snb.2014.06.072
10.1016/j.snb.2017.07.197
10.1016/j.jallcom.2016.02.242
10.1016/j.snb.2017.01.056
10.1016/j.materresbull.2016.02.011
10.1016/j.apsusc.2014.07.161
10.1007/978-0-387-09665-0
10.1021/am300911z
10.1088/0022-3727/45/20/205301
10.1063/1.4901503
10.1016/j.snb.2016.09.086
10.1080/17458080.2012.680930
10.1007/s10854-017-8313-4
10.1039/C4RA14033H
10.1016/j.jcis.2018.05.006
10.1016/j.snb.2012.10.027
10.1039/C4RA05914J
10.1016/j.jallcom.2017.12.016
10.1039/C4RA05736H
10.3762/bjnano.8.122
10.1016/S0925-4005(02)00299-X
10.1016/j.electacta.2017.10.180
10.1016/j.snb.2010.08.007
10.1016/j.snb.2016.06.095
10.1016/S0921-5107(98)00432-2
10.1016/j.snb.2013.05.001
10.3938/jkps.71.487
10.1016/j.snb.2017.09.187
10.1016/j.snb.2014.11.130
10.1016/j.jallcom.2018.02.171
10.1016/j.proeng.2011.12.279
10.1016/j.msec.2012.05.042
10.1016/j.snb.2015.03.037
10.1016/j.snb.2012.01.064
10.1021/acsami.7b11872
10.1016/j.jallcom.2015.03.193
10.1016/j.snb.2018.02.042
10.3390/s17122947
10.1016/j.ceramint.2012.12.017
10.1016/j.snb.2017.09.184
10.1021/ic300749a
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Dec 18, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Dec 18, 2018
DBID AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7TK
7TM
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.aca.2018.09.020
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4324
EndPage 23
ExternalDocumentID 30322540
10_1016_j_aca_2018_09_020
S0003267018310894
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABYKQ
ACBEA
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSK
SSU
SSZ
T5K
TN5
TWZ
UPT
WH7
YK3
ZMT
~02
~G-
.GJ
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FA8
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
MVM
NHB
R2-
RIG
SCB
SEW
SSH
T9H
UQL
VH1
WUQ
XOL
XPP
ZCG
ZXP
ZY4
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7TK
7TM
7U5
7U7
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c381t-8306e873eaef8f45be3c3d0498b40100a772f8fdbd4069b2168517fa1104e2a03
IEDL.DBID .~1
ISSN 0003-2670
1873-4324
IngestDate Thu Jul 10 17:45:09 EDT 2025
Wed Aug 13 07:20:18 EDT 2025
Wed Feb 19 02:42:10 EST 2025
Tue Jul 01 01:11:42 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Fri Feb 23 02:29:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metal oxide
Chemical sensors
Nanostructures
Core-shell
Heterostructures
Hierarchical structures
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-8306e873eaef8f45be3c3d0498b40100a772f8fdbd4069b2168517fa1104e2a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2559-5197
PMID 30322540
PQID 2154711436
PQPubID 2045283
PageCount 23
ParticipantIDs proquest_miscellaneous_2120752005
proquest_journals_2154711436
pubmed_primary_30322540
crossref_citationtrail_10_1016_j_aca_2018_09_020
crossref_primary_10_1016_j_aca_2018_09_020
elsevier_sciencedirect_doi_10_1016_j_aca_2018_09_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-18
PublicationDateYYYYMMDD 2018-12-18
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-18
  day: 18
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Analytica chimica acta
PublicationTitleAlternate Anal Chim Acta
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Liangyuan, Shouli, Guojun, Dianqing, Aifan, Liu (bib90) 2008; 134
Vomiero, Bianchi, Comini, Faglia, Ferroni, Poli, Sberveglieri (bib72) 2007; 515
Woo, Na, Kim, Lee (bib76) 2012; 23
Joshi, Ippolito, Periasamy, Sabri, Sunkara (bib127) 2017
Verma, Gupta (bib143) 2012; 166–167
Walden, Kneer, Knobelspies, Kronast, Mescheder, Palzer (bib162) 2015; 24
Zang, Nie, Zhu, Deng, Xing, Xue (bib37) 2014; 118
Qin, Zhang, Liu, Xie (bib137) 2016; 673
Comini, Baratto, Faglia, Ferroni, Vomiero, Sberveglieri (bib5) 2009; 54
Guo, Luo, Zhang, Lin, Nan (bib145) 2014; 14
Zhu, Su, Chen, Jin, Xu, Zhang (bib111) 2016; 99
Comini (bib97) 2002; vol. 4005
Ge, Chang, Natarajan, Feng, Zhan, Ma (bib99) 2018; 746
Gebauer, Mackert, Ognjanović, Winterer (bib161) 2018; 526
Liang, Yang, Zhu, Hu (bib149) 2018; 29
Yu, Zhu, Xu, Huang (bib31) 2015; 213
Shaposhnik, Pavelko, Llobet, Gispert-Guirado, Vilanova (bib98) 2011; 25
Chen, Ji, Li, Kang, Chang, Wang, Yu, Lu, Claverie, Sang, Liu (bib28) 2015; 7
Wang, Cui, Li, Li, Ma, Luan, Liu, Zhang (bib59) 2016; 6
Park, Kim, Sun, In Lee, Kim, Lee (bib135) 2014; 9
Annanouch, Haddi, Ling, Di Maggio, Vallejos, Vilic, Zhu, Shujah, Umek, Bittencourt, Blackman, Llobet (bib132) 2016; 8
Wang, Cheng, Zhou, Sun, Hu, Shimanoe, Lu, Yamazoe (bib121) 2014
Jiao, Wang, Bian, Liu (bib152) 2000; 35
Trakhtenberg, Gerasimov, Gromov, Belysheva, Ilegbusi (bib87) 2012; 169
Korotcenkov (bib150) 2007; 139
Lee, Kwon, Park, Park, You, Yoon, Jang (bib21) 2011; 5
Yang, Liu, Qin, Liu, Jing, Zhang (bib112) 2017; 727
Lu, Ma, Ma, Yan (bib106) 2017; 43
Liu, Zhou, Zhang, Hong, Xu, Jin, Chen (bib35) 2017; 17
Yan, Ma, Li, Xu, Cheng, Song, Liang (bib128) 2015; vol. 221
Arafat, Dinan, Akbar, Haseeb (bib153) 2012; 12
Li, Wang, Liu, Zhao, Li, Wei, Han (bib124) 2017; vol. 694
Yeon Kwon, Kyeong Jeong (bib16) 2015; 30
Karbalaei Akbari, Hai, Wei, Detavernier, Solano, Verpoort, Zhuiykov (bib52) 2018; 10
Núñez Carmona, Sberveglieri, Ponzoni, Galstyan, Zappa, Pulvirenti, Comini (bib11) 2017; 238
Blattmann, Güntner, Pratsinis (bib43) 2017; 9
Rivera, Mazady, Anwar (bib136) 2015; 104
Liang, Kim, Yoon, Kwak, Lee (bib84) 2015; 209
Larin, Womble, Dobrokhotov (bib144) 2016; 16
Kabcuma, Channei, Tuantranont, Wisitsoraat, Liewhiran, Phanichphant (bib110) 2016; 226
Wang, Liu, Meng, Zhou, Gao, Li, Cao, Xu, Zhu (bib146) 2016; 6
Zappa, Bertuna, Comini, Kaur, Poli, Sberveglieri, Sberveglieri (bib6) 2017; 8
Wang, Jin, Zheng, Zhou, Gao (bib107) 2017; 244
Gardner, Guha, Udrea, Covington (bib159) 2010; 10
Dey (bib63) 2018; 229
Sharma, Tomar, Gupta (bib40) 2013; 176
Katoch, Kim, Kim (bib101) 2015
Sarkar, Singh, Khan, Sarkar, Mandal (bib55) 2014; 4
Joshi, Ippolito (bib116) 2017
Hotovy, Huran, Siciliano, Capone, Spiess, Rehacek (bib75) 2004; 103
Somacescu, Dinescu, Stanoiu, Simion, Calderon Moreno (bib94) 2012; 89
Duc, Quang, Hoang, Van Hieu, Duc (bib130) 2014; 599
Wang, Zhou, Meng, Gao, Cao, Li, Xu, Zhu, Peng, Zhang, Lin, Liu (bib69) 2016; 27
Sze (bib2) 1994
Kim, Lee, Mirzaei, Kim, Kim (bib58) 2018; 258
Liang, Xu, Zhao, Gao (bib142) 2012; 165
Comini (bib151) 2016; 19
Righettoni, Amann, Pratsinis (bib4) 2015; 18
Liu, Sakurai, Aono (bib133) 2012; 22
Barsan, Simion, Heine, Pokhrel, Weimar (bib7) 2010; 25
Mcalpine, Ahmad, Wang, Heath (bib12) 2007; 6
Choi, Lee, Lee, Lee, Lee (bib140) 2017; 71
Galstyan, Comini, Ponzoni, Sberveglieri, Sberveglieri (bib46) 2016; 4
Tang, Wang, Yao, Li (bib100) 2014; 192
Wang, Zhang, Yang, Gao, Zhang, Wang, Zhu (bib125) 2015; 5
Yin, Yao, Fan, Liu (bib93) 2018; 736
Liu, Zhang, Wang, Li, Wang, Han, Jiang, Wei (bib102) 2011; 160
Sun, Chen, Li, Chen, Zhang, Ma, Jia, Cao, Bala, Wang, Zhang (bib118) 2016; 233
Cui, Zhang, Chen, Wang, Li, shi, Wang (bib82) 2017; 7
Qu, Jiang, Yang (bib139) 2016; 8
Feng, Wu, Rao, Wan, Li, Kuang, Su (bib33) 2015; 7
Yousefi, Jamali-Sheini, Khorsand Zak, Azarang (bib51) 2013; 39
Zhai, Xu, Li, Yu, Chen, Wang, Cao (bib39) 2018; 737
Kaur, Comini, Zappa, Poli, Sberveglieri (bib65) 2016; 27
Park, Kim, Kheel, Hyun, Jin, Lee (bib85) 2016; 82
Kumar, Sanger, Kumar, Chandra (bib53) 2016; 6
Her, Yeh, Huang (bib148) 2014; 6
Lee, Hwang, Pi, Yang, Oh, Cho, Cho, Chu (bib42) 2014; 105
Comini, Faglia, Sberveglieri (bib1) 2009
Verma, Gupta (bib96) 2013; 8
Liu, Wang, Zhang, Lin (bib103) 2016; 237
Yang, Lu, Li, Sun, Liu (bib27) 2014; 7
Katoch, Choi, Kim, Lee, Lee, Kim (bib89) 2015; 214
Feng, Wang, Cheng, Li, Wang, Guan, Ma, Zhang, Sun, Sun, Zheng, Lu (bib129) 2015; 221
Trakhtenberg, Gerasimov, Gromov, Belysheva, Ilegbusi (bib95) 2015; 209
Liu, Zhao, Wang, Sun, Wang, Gao, Liang, Zhang, Lu (bib45) 2017; 495
Wang, Sang, Wang, Ji, Liu (bib29) 2015; 639
Choi, Katoch, Sun, Kim (bib49) 2013; 181
Suh, Cho, Kang, Kweon, Lee, Yoo, Park (bib158) 2018; 265
Kim, Lee (bib8) 2014; 192
Reimann, Dausend, Schutze (bib9) 2008
Chen, Xiao, Wang, Zhang, Ma, Gao, Zhu, Zhang, Xu, Li (bib81) 2011; 155
Khoang, Trung, Van Duy, Hoa, Van Hieu (bib80) 2012; 174
Wang, Liu, Li, Wang (bib113) 2018; 221
Schüler, Sauerwald, Schütze (bib10) 2015; 4
Marikutsa, Krivetskiy, Yashina, Rumyantseva, Konstantinova, Ponzoni, Comini, Abakumov, Gaskov (bib88) 2012; 175
Tan, Tan, Fan, Yu, Qian, Huang (bib120) 2018; 256
Arafat, Haseeb, Akbar, Quadir (bib141) 2017; 238
Kim, Na, Hwang, Lee (bib83) 2012; 168
Li, He, Liu, Zhang, Chen (bib163) 2015; 87
Galstyan, Vomiero, Comini, Faglia, Sberveglieri (bib54) 2011; 1
Kaur, Comini, Poli, Zappa, Sberveglieri (bib67) 2016
Jahromi, Behzad (bib115) 2018; 207
Jin, Xiao, Bao, Wang, Wang (bib19) 2012; 51
Liu, Sun, Wang, Wang, Zhang, Zhang, Lin, Xie (bib30) 2014; 4
Bhuvaneshwari, Papachan, Gopalakrishnan (bib92) 2017; 1832
Vasiliev, Rumyantseva, Podguzova, Ryzhikov, Ryabova, Gaskov (bib18) 1999; 57
Moon, Yu, Choi (bib15) 2002; 87
Lou, Deng, Wang, Wang, Fei, Zhang (bib108) 2013; 176
Bai, Li, Han, Luo, Chen, Chung (bib91) 2010; 150
Qin, Zhang, Wang, Liu (bib138) 2017; 240
Güntner, Pineau, Mochalski, Wiesenhofer, Agapiou, Mayhew, Pratsinis (bib3) 2018; 90
Raksa, Gardchareon, Chairuangsri, Mangkorntong, Mangkorntong, Choopun (bib74) 2009; 35
Zhang, Yi (bib109) 2018; 216
Hongsith, Viriyaworasakul, Mangkorntong, Mangkorntong, Choopun (bib64) 2008; 34
Li, Gao, Wang, Zhang, Lu (bib57) 2017; 248
Xu, Zheng, Liu, Song, Chen, Dong, Song (bib70) 2012; 51
Zappa (bib122) 2017; 10
Hernández, Cauda, Chiodoni, Dallorto, Sacco, Hidalgo, Celasco, Pirri (bib62) 2014; 6
Zhu, Lu, Hao, Wang, Wu, Wang, Li, Ye (bib44) 2017; 9
Comini, Baratto, Concina, Faglia, Falasconi, Ferroni, Galstyan, Gobbi, Ponzoni, Vomiero, Zappa, Sberveglieri, Sberveglieri (bib50) 2013; 179
Her, Chiang, Jean, Huang (bib147) 2012; 14
Perrozzi, Cantalini, Ottaviano (bib165) 2017
Shaposhnik, Pavelko, Llobet, Gispert-Guirado, Vilanova (bib17) 2011; 25
Gui, Chai, Mohamed (bib56) 2014; 319
Gao, Zhao, Wang, Sun, Lu, Liu, Chuai, Lu (bib117) 2018; 255
Zappa, Comini, Sberveglieri (bib66) 2013; 24
Kamat (bib155) 2007
Yan, Song, Yang, Wang (bib126) 2015; 5
Traversa, Bearzotti, Miyayama, Yanagida (bib156) 1998; 18
Gotoh, Kinumoto, Fujii, Yamamoto, Hashimoto, Ohkubo, Itadani, Kuroda, Ishida (bib22) 2011; 49
Rakshit, Santra, Manna, Ray (bib38) 2014; 4
Ibhadon, Fitzpatrick (bib154) 2013; 3
Jiang, Ge, Xu, Wang, Cao (bib48) 2018; 20
Arunkumar, Hou, Kim, Choi, Park, Jung, Lee (bib20) 2017; 243
Datta, Ramgir, Kumar, Veerender, Kaur, Kailasaganapathi, Debnath, Aswal, Gupta (bib78) 2014; 202
Chen, Huang, Zhang, Feng, Wang (bib26) 2018; 259
Md Sin, Shafura, Malek, Mamat, Rusop (bib47) 2015; 83
Chen, Zhu, Shi, Cao, Jin (bib24) 2008; 19
Liu, He, Hu, Liu, Jia, Xu (bib34) 2014; 131
Kaur, Zappa, Ferroni, Poli, Campanini, Negrea, Comini (bib23) 2018; 262
Röck, Barsan, Weimar (bib13) 2008; 108
Fiz, Hernandez-Ramirez, Fischer, Lopez-Conesa, Estrade, Peiro, Mathur (bib134) 2013; 117
Kim, Na, Choi, Kwak, Kim (bib86) 2012; 45
Li, Zhang, Zhang, Gao, He, Liu, Li, Chen (bib164) 2017; 244
Lou, Li, Deng, Wang, Zhang (bib68) 2013; 5
Galstyan (bib25) 2017; 17
Zhao, Tang, Mao, Chen, Song, Wang, Song, Liang, Zhang (bib131) 2016; vol. 674
Zhao, Wang, Kang, Sang, Liu (bib32) 2014; 3
Qin, Xu, Song, Xing, Song (bib104) 2013; 185
Mirzaei, Park, Sun, Kheel, Lee, Lee (bib105) 2016; 69
Wang, Kang, Wang, Zhu, Zhang, Huang, Wang (bib119) 2012; 32
Zappa, Bertuna, Comini, Herold, Poli, Sberveglieri (bib160) 2015
Deng, Yu, Lou, Wang, Wang, Zhang (bib71) 2013; 184
Shao, Hoffmann, Prades, Zamani, Arbiol, Morante, Varechkina, Rumyantseva, Gaskov, Giebelhaus, Fischer, Mathur, Hernández-Ramírez (bib77) 2013; 181
Fang, Zhu, Wu, Zhang, Xu, Xiong, Yang, Wang, Chu (bib41) 2017; 252
Jiao, Van Duy, Viet (bib114) 2017; 42
Zou, Yan, Li, Tian, Zhang, Liang (bib60) 2017; 7
Jiang, Shi, Xie, Wang, Lin (bib61) 2018; 254
Kruefu, Wisitsoraat, Tuantranont, Phanichphant (bib73) 2015; 215
Zhang, Song, Zhang, Li, Yang, Wang (bib36) 2016; 6
Maurya, Prajapati, Raikwar, Saini (bib166) 2018; 160
Barreca, Comini, Ferrucci, Gasparotto, Maccato, Maragno, Sberveglieri, Tondello (bib14) 2007; 19
Dutronc, Carbonne, Menil, Lucat (bib157) 1992; 6
Mashock, Yu, Cui, Mao, Lu, Chen (bib79) 2012; 4
Cui, Wen, Huang, Chang, Chen (bib123) 2015; 11
Somacescu (10.1016/j.aca.2018.09.020_bib94) 2012; 89
Chen (10.1016/j.aca.2018.09.020_bib81) 2011; 155
Xu (10.1016/j.aca.2018.09.020_bib70) 2012; 51
Liu (10.1016/j.aca.2018.09.020_bib35) 2017; 17
Md Sin (10.1016/j.aca.2018.09.020_bib47) 2015; 83
Datta (10.1016/j.aca.2018.09.020_bib78) 2014; 202
Zhai (10.1016/j.aca.2018.09.020_bib39) 2018; 737
Wang (10.1016/j.aca.2018.09.020_bib69) 2016; 27
Her (10.1016/j.aca.2018.09.020_bib147) 2012; 14
Yang (10.1016/j.aca.2018.09.020_bib112) 2017; 727
Zou (10.1016/j.aca.2018.09.020_bib60) 2017; 7
Hongsith (10.1016/j.aca.2018.09.020_bib64) 2008; 34
Perrozzi (10.1016/j.aca.2018.09.020_bib165) 2017
Mcalpine (10.1016/j.aca.2018.09.020_bib12) 2007; 6
Zhang (10.1016/j.aca.2018.09.020_bib109) 2018; 216
Trakhtenberg (10.1016/j.aca.2018.09.020_bib95) 2015; 209
Zhao (10.1016/j.aca.2018.09.020_bib131) 2016; vol. 674
Gebauer (10.1016/j.aca.2018.09.020_bib161) 2018; 526
Galstyan (10.1016/j.aca.2018.09.020_bib46) 2016; 4
Jahromi (10.1016/j.aca.2018.09.020_bib115) 2018; 207
Arunkumar (10.1016/j.aca.2018.09.020_bib20) 2017; 243
Galstyan (10.1016/j.aca.2018.09.020_bib25) 2017; 17
Yu (10.1016/j.aca.2018.09.020_bib31) 2015; 213
Liang (10.1016/j.aca.2018.09.020_bib84) 2015; 209
Chen (10.1016/j.aca.2018.09.020_bib28) 2015; 7
Annanouch (10.1016/j.aca.2018.09.020_bib132) 2016; 8
Wang (10.1016/j.aca.2018.09.020_bib146) 2016; 6
Comini (10.1016/j.aca.2018.09.020_bib5) 2009; 54
Kabcuma (10.1016/j.aca.2018.09.020_bib110) 2016; 226
Sze (10.1016/j.aca.2018.09.020_bib2) 1994
Duc (10.1016/j.aca.2018.09.020_bib130) 2014; 599
Cui (10.1016/j.aca.2018.09.020_bib82) 2017; 7
Comini (10.1016/j.aca.2018.09.020_bib97) 2002; vol. 4005
Cui (10.1016/j.aca.2018.09.020_bib123) 2015; 11
Guo (10.1016/j.aca.2018.09.020_bib145) 2014; 14
Wang (10.1016/j.aca.2018.09.020_bib29) 2015; 639
Deng (10.1016/j.aca.2018.09.020_bib71) 2013; 184
Schüler (10.1016/j.aca.2018.09.020_bib10) 2015; 4
Vasiliev (10.1016/j.aca.2018.09.020_bib18) 1999; 57
Jin (10.1016/j.aca.2018.09.020_bib19) 2012; 51
Feng (10.1016/j.aca.2018.09.020_bib33) 2015; 7
Jiao (10.1016/j.aca.2018.09.020_bib152) 2000; 35
Wang (10.1016/j.aca.2018.09.020_bib119) 2012; 32
Sharma (10.1016/j.aca.2018.09.020_bib40) 2013; 176
Kaur (10.1016/j.aca.2018.09.020_bib23) 2018; 262
Zang (10.1016/j.aca.2018.09.020_bib37) 2014; 118
Wang (10.1016/j.aca.2018.09.020_bib125) 2015; 5
Wang (10.1016/j.aca.2018.09.020_bib107) 2017; 244
Lee (10.1016/j.aca.2018.09.020_bib42) 2014; 105
Kim (10.1016/j.aca.2018.09.020_bib8) 2014; 192
Qin (10.1016/j.aca.2018.09.020_bib104) 2013; 185
Karbalaei Akbari (10.1016/j.aca.2018.09.020_bib52) 2018; 10
Vomiero (10.1016/j.aca.2018.09.020_bib72) 2007; 515
Liu (10.1016/j.aca.2018.09.020_bib34) 2014; 131
Kaur (10.1016/j.aca.2018.09.020_bib67) 2016
Liangyuan (10.1016/j.aca.2018.09.020_bib90) 2008; 134
Liu (10.1016/j.aca.2018.09.020_bib133) 2012; 22
Kruefu (10.1016/j.aca.2018.09.020_bib73) 2015; 215
Arafat (10.1016/j.aca.2018.09.020_bib153) 2012; 12
Katoch (10.1016/j.aca.2018.09.020_bib89) 2015; 214
Lou (10.1016/j.aca.2018.09.020_bib108) 2013; 176
Mirzaei (10.1016/j.aca.2018.09.020_bib105) 2016; 69
Kim (10.1016/j.aca.2018.09.020_bib83) 2012; 168
Jiao (10.1016/j.aca.2018.09.020_bib114) 2017; 42
Qin (10.1016/j.aca.2018.09.020_bib138) 2017; 240
Choi (10.1016/j.aca.2018.09.020_bib140) 2017; 71
Shaposhnik (10.1016/j.aca.2018.09.020_bib98) 2011; 25
Güntner (10.1016/j.aca.2018.09.020_bib3) 2018; 90
Moon (10.1016/j.aca.2018.09.020_bib15) 2002; 87
Verma (10.1016/j.aca.2018.09.020_bib96) 2013; 8
Bhuvaneshwari (10.1016/j.aca.2018.09.020_bib92) 2017; 1832
Gao (10.1016/j.aca.2018.09.020_bib117) 2018; 255
Qin (10.1016/j.aca.2018.09.020_bib137) 2016; 673
Gotoh (10.1016/j.aca.2018.09.020_bib22) 2011; 49
Dutronc (10.1016/j.aca.2018.09.020_bib157) 1992; 6
Larin (10.1016/j.aca.2018.09.020_bib144) 2016; 16
Zappa (10.1016/j.aca.2018.09.020_bib122) 2017; 10
Marikutsa (10.1016/j.aca.2018.09.020_bib88) 2012; 175
Katoch (10.1016/j.aca.2018.09.020_bib101) 2015
Kim (10.1016/j.aca.2018.09.020_bib58) 2018; 258
Comini (10.1016/j.aca.2018.09.020_bib50) 2013; 179
Lou (10.1016/j.aca.2018.09.020_bib68) 2013; 5
Liu (10.1016/j.aca.2018.09.020_bib102) 2011; 160
Yeon Kwon (10.1016/j.aca.2018.09.020_bib16) 2015; 30
Dey (10.1016/j.aca.2018.09.020_bib63) 2018; 229
Núñez Carmona (10.1016/j.aca.2018.09.020_bib11) 2017; 238
Mashock (10.1016/j.aca.2018.09.020_bib79) 2012; 4
Zhu (10.1016/j.aca.2018.09.020_bib44) 2017; 9
Tan (10.1016/j.aca.2018.09.020_bib120) 2018; 256
Jiang (10.1016/j.aca.2018.09.020_bib61) 2018; 254
Feng (10.1016/j.aca.2018.09.020_bib129) 2015; 221
Gardner (10.1016/j.aca.2018.09.020_bib159) 2010; 10
Lee (10.1016/j.aca.2018.09.020_bib21) 2011; 5
Liang (10.1016/j.aca.2018.09.020_bib149) 2018; 29
Jiang (10.1016/j.aca.2018.09.020_bib48) 2018; 20
Walden (10.1016/j.aca.2018.09.020_bib162) 2015; 24
Arafat (10.1016/j.aca.2018.09.020_bib141) 2017; 238
Rivera (10.1016/j.aca.2018.09.020_bib136) 2015; 104
Ge (10.1016/j.aca.2018.09.020_bib99) 2018; 746
Barreca (10.1016/j.aca.2018.09.020_bib14) 2007; 19
Yousefi (10.1016/j.aca.2018.09.020_bib51) 2013; 39
Traversa (10.1016/j.aca.2018.09.020_bib156) 1998; 18
Raksa (10.1016/j.aca.2018.09.020_bib74) 2009; 35
Shaposhnik (10.1016/j.aca.2018.09.020_bib17) 2011; 25
Wang (10.1016/j.aca.2018.09.020_bib59) 2016; 6
Fiz (10.1016/j.aca.2018.09.020_bib134) 2013; 117
Zhu (10.1016/j.aca.2018.09.020_bib111) 2016; 99
Chen (10.1016/j.aca.2018.09.020_bib26) 2018; 259
Li (10.1016/j.aca.2018.09.020_bib124) 2017; vol. 694
Liang (10.1016/j.aca.2018.09.020_bib142) 2012; 165
Korotcenkov (10.1016/j.aca.2018.09.020_bib150) 2007; 139
Her (10.1016/j.aca.2018.09.020_bib148) 2014; 6
Zappa (10.1016/j.aca.2018.09.020_bib66) 2013; 24
Röck (10.1016/j.aca.2018.09.020_bib13) 2008; 108
Joshi (10.1016/j.aca.2018.09.020_bib116) 2017
Kamat (10.1016/j.aca.2018.09.020_bib155) 2007
Comini (10.1016/j.aca.2018.09.020_bib151) 2016; 19
Righettoni (10.1016/j.aca.2018.09.020_bib4) 2015; 18
Fang (10.1016/j.aca.2018.09.020_bib41) 2017; 252
Trakhtenberg (10.1016/j.aca.2018.09.020_bib87) 2012; 169
Chen (10.1016/j.aca.2018.09.020_bib24) 2008; 19
Suh (10.1016/j.aca.2018.09.020_bib158) 2018; 265
Zappa (10.1016/j.aca.2018.09.020_bib6) 2017; 8
Sun (10.1016/j.aca.2018.09.020_bib118) 2016; 233
Yan (10.1016/j.aca.2018.09.020_bib126) 2015; 5
Comini (10.1016/j.aca.2018.09.020_bib1) 2009
Li (10.1016/j.aca.2018.09.020_bib163) 2015; 87
Liu (10.1016/j.aca.2018.09.020_bib45) 2017; 495
Kumar (10.1016/j.aca.2018.09.020_bib53) 2016; 6
Joshi (10.1016/j.aca.2018.09.020_bib127) 2017
Galstyan (10.1016/j.aca.2018.09.020_bib54) 2011; 1
Shao (10.1016/j.aca.2018.09.020_bib77) 2013; 181
Zappa (10.1016/j.aca.2018.09.020_bib160) 2015
Zhang (10.1016/j.aca.2018.09.020_bib36) 2016; 6
Khoang (10.1016/j.aca.2018.09.020_bib80) 2012; 174
Wang (10.1016/j.aca.2018.09.020_bib113) 2018; 221
Zhao (10.1016/j.aca.2018.09.020_bib32) 2014; 3
Rakshit (10.1016/j.aca.2018.09.020_bib38) 2014; 4
Bai (10.1016/j.aca.2018.09.020_bib91) 2010; 150
Choi (10.1016/j.aca.2018.09.020_bib49) 2013; 181
Verma (10.1016/j.aca.2018.09.020_bib143) 2012; 166–167
Yin (10.1016/j.aca.2018.09.020_bib93) 2018; 736
Park (10.1016/j.aca.2018.09.020_bib135) 2014; 9
Liu (10.1016/j.aca.2018.09.020_bib103) 2016; 237
Sarkar (10.1016/j.aca.2018.09.020_bib55) 2014; 4
Blattmann (10.1016/j.aca.2018.09.020_bib43) 2017; 9
Liu (10.1016/j.aca.2018.09.020_bib30) 2014; 4
Li (10.1016/j.aca.2018.09.020_bib164) 2017; 244
Li (10.1016/j.aca.2018.09.020_bib57) 2017; 248
Qu (10.1016/j.aca.2018.09.020_bib139) 2016; 8
Kim (10.1016/j.aca.2018.09.020_bib86) 2012; 45
Hotovy (10.1016/j.aca.2018.09.020_bib75) 2004; 103
Woo (10.1016/j.aca.2018.09.020_bib76) 2012; 23
Yang (10.1016/j.aca.2018.09.020_bib27) 2014; 7
Gui (10.1016/j.aca.2018.09.020_bib56) 2014; 319
Tang (10.1016/j.aca.2018.09.020_bib100) 2014; 192
Yan (10.1016/j.aca.2018.09.020_bib128) 2015; vol. 221
Kaur (10.1016/j.aca.2018.09.020_bib65) 2016; 27
Reimann (10.1016/j.aca.2018.09.020_bib9) 2008
Hernández (10.1016/j.aca.2018.09.020_bib62) 2014; 6
Barsan (10.1016/j.aca.2018.09.020_bib7) 2010; 25
Lu (10.1016/j.aca.2018.09.020_bib106) 2017; 43
Maurya (10.1016/j.aca.2018.09.020_bib166) 2018; 160
Park (10.1016/j.aca.2018.09.020_bib85) 2016; 82
Ibhadon (10.1016/j.aca.2018.09.020_bib154) 2013; 3
Wang (10.1016/j.aca.2018.09.020_bib121) 2014
References_xml – volume: 746
  start-page: 36
  year: 2018
  end-page: 44
  ident: bib99
  article-title: In2O3-SnO2hybrid porous nanostructures delivering enhanced formaldehyde sensing performance
  publication-title: J. Alloy. Comp.
– volume: 259
  start-page: 131
  year: 2018
  end-page: 142
  ident: bib26
  article-title: Porous TiO2 nanobelts coated with mixed transition-metal oxides Sn3O4 nanosheets core-shell composites as high-performance anode materials of lithium ion batteries
  publication-title: Electrochim. Acta
– volume: 185
  start-page: 231
  year: 2013
  end-page: 237
  ident: bib104
  article-title: Highly enhanced gas sensing properties of porous SnO2-CeO2composite nanofibers prepared by electrospinning
  publication-title: Sensor. Actuator. B Chem.
– volume: vol. 221
  start-page: 88
  year: 2015
  end-page: 95
  ident: bib128
  publication-title: Synthesis of SnO 2 – ZnO Heterostructured Nanofibers for Enhanced Ethanol Gas-sensing Performance
– volume: 1832
  start-page: 2
  year: 2017
  end-page: 5
  ident: bib92
  article-title: Free standing CuO-MnO2 nanocomposite for room temperature ammonia sensing
  publication-title: AIP Conf. Proc
– volume: 192
  start-page: 543
  year: 2014
  end-page: 549
  ident: bib100
  article-title: Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol
  publication-title: Sensor. Actuator. B Chem.
– volume: 176
  start-page: 323
  year: 2013
  end-page: 329
  ident: bib108
  article-title: Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures
  publication-title: Sensor. Actuator. B Chem.
– volume: 5
  start-page: 12310
  year: 2013
  end-page: 12316
  ident: bib68
  article-title: Branch-like hierarchical heterostructure (α-Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 638
  year: 2014
  ident: bib135
  article-title: Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors
  publication-title: Nanoscale Res. Lett.
– year: 2015
  ident: bib160
  article-title: Tungsten oxide nanowires on micro hotplates for gas sensing applications
  publication-title: Procedia Eng
– volume: 262
  year: 2018
  ident: bib23
  article-title: Branch-like NiO/ZnO heterostructures for VOC sensing
  publication-title: Sensor. Actuator. B Chem.
– volume: 6
  start-page: 9150
  year: 2014
  end-page: 9159
  ident: bib148
  article-title: Vapor–solid growth of p-Te/n-SnO
  publication-title: ACS Appl. Mater. Interfaces
– year: 2007
  ident: bib155
  article-title: Meeting the Clean Energy Demand:  Nanostructure Architectures for Solar Energy Conversion
– volume: 18
  start-page: 621
  year: 1998
  end-page: 631
  ident: bib156
  article-title: Influence of the electrode materials on the electrical response of ZnO-based contact
  publication-title: Sensors
– volume: 49
  start-page: 1118
  year: 2011
  end-page: 1125
  ident: bib22
  article-title: Exfoliated graphene sheets decorated with metal/metal oxide nanoparticles: simple preparation from cation exchanged graphite oxide
  publication-title: Carbon N. Y.
– volume: 24
  start-page: 1384
  year: 2015
  end-page: 1390
  ident: bib162
  article-title: Micromachined hotplate platform for the investigation of ink-jet printed, functionalized metal oxide nanoparticles
  publication-title: J. Microelectromechanical Syst.
– volume: 45
  start-page: 205301
  year: 2012
  ident: bib86
  article-title: Novel growth of CuO-functionalized, branched SnO
  publication-title: J. Phys. D Appl. Phys.
– volume: 32
  start-page: 2079
  year: 2012
  end-page: 2085
  ident: bib119
  article-title: CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection
  publication-title: Mater. Sci. Eng. C
– volume: 90
  start-page: 4940
  year: 2018
  end-page: 4945
  ident: bib3
  article-title: Sniffing entrapped humans with sensor arrays
  publication-title: Anal. Chem.
– volume: 9
  start-page: 38537
  year: 2017
  end-page: 38544
  ident: bib44
  article-title: Three-dimensional lupinus-like TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 639
  start-page: 571
  year: 2015
  end-page: 576
  ident: bib29
  article-title: Enhanced gas sensing property of SnO2 nanoparticles by constructing the SnO2–TiO2 nanobelt heterostructure
  publication-title: J. Alloy. Comp.
– volume: 5
  start-page: 7992
  year: 2011
  end-page: 8001
  ident: bib21
  article-title: Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application
  publication-title: ACS Nano
– year: 2009
  ident: bib1
  publication-title: Solid State Gas Sensing
– year: 1994
  ident: bib2
  article-title: Semiconductor Sensors
– volume: 244
  start-page: 344
  year: 2017
  end-page: 356
  ident: bib107
  article-title: Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures
  publication-title: Sensor. Actuator. B Chem.
– volume: 71
  start-page: 487
  year: 2017
  end-page: 493
  ident: bib140
  article-title: Acetone sensing of multi-networked WO3-NiO core-shell nanorod sensors
  publication-title: J. Kor. Phys. Soc.
– volume: 139
  start-page: 1
  year: 2007
  end-page: 23
  ident: bib150
  article-title: Metal oxides for solid-state gas sensors: what determines our choice?
  publication-title: Mater. Sci. Eng. B
– volume: 51
  start-page: 6406
  year: 2012
  end-page: 6410
  ident: bib19
  article-title: A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 1038
  year: 2011
  ident: bib54
  article-title: TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates
  publication-title: RSC Adv.
– volume: 16
  start-page: 1373
  year: 2016
  ident: bib144
  article-title: Hybrid SnO2/TiO2 nanocomposites for selective detection of ultra-low hydrogen sulfide concentrations in complex backgrounds
  publication-title: Sensors
– volume: vol. 694
  start-page: 939
  year: 2017
  end-page: 945
  ident: bib124
  publication-title: Synthesis and Enhanced Toluene Gas Sensing Properties of 1-D a -MoO 3/Fe 2 ( MoO 4 ) 3 Heterostructure
– volume: 4
  start-page: 6
  year: 2016
  ident: bib46
  article-title: ZnO Quasi-1D nanostructures: synthesis, modeling, and properties for applications in conductometric chemical sensors
  publication-title: Chemosensors
– volume: 150
  start-page: 749
  year: 2010
  end-page: 755
  ident: bib91
  article-title: Preparation, characterization of WO3-SnO2nanocomposites and their sensing properties for NO2
  publication-title: Sensor. Actuator. B Chem.
– volume: 215
  start-page: 630
  year: 2015
  end-page: 636
  ident: bib73
  article-title: Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods
  publication-title: Sensor. Actuator. B Chem.
– volume: 209
  start-page: 562
  year: 2015
  end-page: 569
  ident: bib95
  article-title: Effect of composition and temperature on conductive and sensing properties of CeO2+ In2O3nanocomposite films
  publication-title: Sensor. Actuator. B Chem.
– volume: vol. 4005
  start-page: 26
  year: 2002
  end-page: 32
  ident: bib97
  publication-title: Nanostructured Mixed Oxides Compounds for Gas Sensing Applications Nanostructured Mixed Oxides Compounds for Gas Sensing Applications
– volume: 7
  start-page: 34482
  year: 2017
  end-page: 34487
  ident: bib60
  article-title: Solution combustion synthesis and enhanced gas sensing properties of porous in
  publication-title: RSC Adv.
– volume: 181
  start-page: 787
  year: 2013
  end-page: 794
  ident: bib49
  article-title: Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure
  publication-title: Sensor. Actuator. B Chem.
– volume: 169
  start-page: 32
  year: 2012
  end-page: 38
  ident: bib87
  article-title: Effect of composition on sensing properties of SnO 2 + in 2O 3 mixed nanostructured films
  publication-title: Sensor. Actuator. B Chem.
– volume: 57
  start-page: 241
  year: 1999
  end-page: 246
  ident: bib18
  article-title: Effect of interdiffusion on electrical and gas sensor properties of CuO/SnO2 heterostructure
  publication-title: Mater. Sci. Eng. B
– volume: 117
  start-page: 10086
  year: 2013
  end-page: 10094
  ident: bib134
  article-title: Synthesis, characterization, and humidity detection properties of Nb2O5 nanorods and SnO2/Nb2O5 heterostructures
  publication-title: J. Phys. Chem. C
– volume: 105
  start-page: 201601
  year: 2014
  ident: bib42
  article-title: Characterization of amorphous multilayered ZnO-SnO
  publication-title: Appl. Phys. Lett.
– volume: 209
  start-page: 934
  year: 2015
  end-page: 942
  ident: bib84
  article-title: Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating
  publication-title: Sensor. Actuator. B Chem.
– year: 2014
  ident: bib121
  article-title: Hierarchical Α - Fe 2 O 3/NiO Composites with a Hollow Structure for a Gas Sensor
– volume: 17
  year: 2017
  ident: bib25
  article-title: Porous TiO₂-Based gas sensors for cyber chemical systems to provide security and medical diagnosis
  publication-title: Sensors
– volume: 495
  start-page: 207
  year: 2017
  end-page: 215
  ident: bib45
  article-title: Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit
  publication-title: J. Colloid Interface Sci.
– volume: 19
  year: 2008
  ident: bib24
  article-title: The synthesis and selective gas sensing characteristics of SnO
  publication-title: Nanotechnology
– volume: 221
  start-page: 434
  year: 2015
  end-page: 442
  ident: bib129
  article-title: Facile synthesis and gas sensing properties of La 2 O 3 – WO 3 nanofibers
  publication-title: Sensor. Actuator. B Chem.
– volume: 11
  start-page: 2305
  year: 2015
  end-page: 2313
  ident: bib123
  article-title: Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air
  publication-title: Small
– year: 2016
  ident: bib67
  article-title: NiO/ZnO nanowire-heterostructures by vapor phase growth for gas sensing
  publication-title: Procedia Eng
– volume: 319
  start-page: 37
  year: 2014
  end-page: 43
  ident: bib56
  article-title: Modification of MWCNT@TiO2 core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 32773
  year: 2014
  ident: bib30
  article-title: Construction of a branched ZnO–TiO
  publication-title: RSC Adv.
– volume: 34
  start-page: 823
  year: 2008
  end-page: 826
  ident: bib64
  article-title: Ethanol sensor based on ZnO and Au-doped ZnO nanowires
  publication-title: Ceram. Int.
– volume: 27
  start-page: 425503
  year: 2016
  ident: bib69
  article-title: A high-response ethanol gas sensor based on one-dimensional TiO
  publication-title: Nanotechnology
– volume: 25
  start-page: 11
  year: 2010
  end-page: 19
  ident: bib7
  article-title: Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors
  publication-title: J. Electroceram.
– volume: 243
  start-page: 990
  year: 2017
  end-page: 1001
  ident: bib20
  article-title: Au Decorated ZnO hierarchical architectures: facile synthesis, tunable morphology and enhanced CO detection at room temperature
  publication-title: Sensor. Actuator. B Chem.
– volume: 181
  start-page: 130
  year: 2013
  end-page: 135
  ident: bib77
  article-title: Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection
  publication-title: Sensor. Actuator. B Chem.
– volume: 8
  start-page: 16349
  year: 2016
  end-page: 16356
  ident: bib139
  article-title: Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties
  publication-title: Nanoscale
– start-page: 192
  year: 2008
  end-page: 195
  ident: bib9
  article-title: A self-monitoring and self-diagnosis strategy for semiconductor gas sensor systems
  publication-title: 2008 IEEE Sensors
– volume: 265
  start-page: 660
  year: 2018
  end-page: 667
  ident: bib158
  article-title: Fully integrated and portable semiconductor-type multi-gas sensing module for IoT applications
  publication-title: Sensor. Actuator. B Chem.
– year: 2017
  ident: bib127
  article-title: Efficient Heterostructures of Ag @ CuO/BaTiO 3 for Low-temperature CO 2 Gas Detection : Assessing the Role of Nanointerfaces during Sensing by Operando DRIFTS Technique
– volume: 226
  start-page: 76
  year: 2016
  end-page: 89
  ident: bib110
  article-title: Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods
  publication-title: Sensor. Actuator. B
– volume: 99
  start-page: 3770
  year: 2016
  end-page: 3774
  ident: bib111
  article-title: A facile synthesis of PdO-decorated SnO2Nanocomposites with open porous hierarchical architectures for gas sensors
  publication-title: J. Am. Ceram. Soc.
– volume: 19
  start-page: 559
  year: 2016
  end-page: 567
  ident: bib151
  article-title: Metal oxide nanowire chemical sensors: innovation and quality of life
  publication-title: Mater. Today
– volume: 12
  start-page: 7207
  year: 2012
  end-page: 7258
  ident: bib153
  article-title: Gas sensors based on one dimensional nanostructured metal-oxides: a review
  publication-title: Sensors
– volume: 244
  start-page: 664
  year: 2017
  end-page: 672
  ident: bib164
  article-title: 2D ultrathin Co3O4 nanosheet array deposited on 3D carbon foam for enhanced ethanol gas sensing application
  publication-title: Sensor. Actuator. B
– volume: 7
  start-page: 5199
  year: 2015
  end-page: 5205
  ident: bib33
  article-title: Three-dimensional TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 256
  start-page: 282
  year: 2018
  end-page: 293
  ident: bib120
  article-title: Sensors and Actuators B : chemical Fe 2 O 3 -loaded NiO nanosheets for fast response/recovery and high response gas sensor
  publication-title: Sensor. Actuator. B Chem.
– volume: 526
  start-page: 400
  year: 2018
  end-page: 409
  ident: bib161
  article-title: Tailoring metal oxide nanoparticle dispersions for inkjet printing
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 170
  year: 2014
  end-page: 178
  ident: bib27
  article-title: Hierarchical construction of core–shell metal oxide nanoarrays with ultrahigh areal capacitance
  publication-title: Nanomater. Energy
– volume: 4
  start-page: 305
  year: 2015
  end-page: 311
  ident: bib10
  article-title: A novel approach for detecting HMDSO poisoning of metal oxide gas sensors and improving their stability by temperature cycled operation
  publication-title: J. Sensors Sens. Syst.
– volume: 118
  start-page: 9209
  year: 2014
  end-page: 9216
  ident: bib37
  article-title: Core–shell in
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 12153
  year: 2014
  end-page: 12167
  ident: bib62
  article-title: Optimization of 1D ZnO@TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 55629
  year: 2014
  end-page: 55634
  ident: bib55
  article-title: TiO
  publication-title: RSC Adv.
– volume: 6
  start-page: 50423
  year: 2016
  end-page: 50430
  ident: bib36
  article-title: In
  publication-title: RSC Adv.
– volume: 240
  start-page: 477
  year: 2017
  end-page: 486
  ident: bib138
  article-title: Remarkable improvement of W18O49/TiO2 heteronanowires in ambient temperature-responsive NO2-sensing abilities and its unexpected n-p transition phenomenon
  publication-title: Sensor. Actuator. B Chem.
– volume: 737
  start-page: 603
  year: 2018
  end-page: 612
  ident: bib39
  article-title: Low-temperature in-situ growth of SnO2 nanosheets and its high triethylamine sensing response by constructing Au-loaded ZnO/SnO2 heterostructure
  publication-title: J. Alloy. Comp.
– volume: 221
  start-page: 260
  year: 2018
  end-page: 263
  ident: bib113
  article-title: Controllable construction of Cr2O3-ZnO hierarchical heterostructures and their formaldehyde gas sensing properties
  publication-title: Mater. Lett.
– volume: 134
  start-page: 360
  year: 2008
  end-page: 366
  ident: bib90
  article-title: Synthesis of ZnO-SnO2nanocomposites by microemulsion and sensing properties for NO2
  publication-title: Sensor. Actuator. B Chem.
– start-page: 2015
  year: 2015
  ident: bib101
  article-title: Significance of the Nanograin Size on the H 2 S-sensing Ability of CuO-sno 2 Composite Nanofibers
– volume: 216
  start-page: 196
  year: 2018
  end-page: 198
  ident: bib109
  article-title: Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO 3 perovskite nanoparticles
  publication-title: Mater. Lett.
– volume: 10
  start-page: 10304
  year: 2018
  end-page: 10314
  ident: bib52
  article-title: ALD-developed plasmonic two-dimensional Au–WO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 58452
  year: 2016
  end-page: 58457
  ident: bib59
  article-title: Facile fabrication hybrids of TiO
  publication-title: RSC Adv.
– volume: 202
  start-page: 1270
  year: 2014
  end-page: 1280
  ident: bib78
  article-title: Role of various interfaces of CuO/ZnO random nanowire networks in H2S sensing: an impedance and Kelvin probe analysis
  publication-title: Sensor. Actuator. B Chem.
– volume: 7
  start-page: 43887
  year: 2017
  ident: bib82
  article-title: Highly sensitive H2S sensors based on Cu2O/Co3O4 nano/microstructure heteroarrays at and below room temperature
  publication-title: Sci. Rep.
– volume: 238
  year: 2017
  ident: bib11
  article-title: Detection of food and skin pathogen microbiota by means of an electronic nose based on metal oxide chemiresistors
  publication-title: Sensor. Actuator. B Chem.
– volume: 213
  start-page: 27
  year: 2015
  end-page: 34
  ident: bib31
  article-title: Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors
  publication-title: Sensor. Actuator. B Chem.
– volume: 179
  year: 2013
  ident: bib50
  article-title: Metal oxide nanoscience and nanotechnology for chemical sensors
  publication-title: Sensor. Actuator. B Chem.
– volume: 5
  start-page: 10048
  year: 2015
  end-page: 10057
  ident: bib125
  article-title: Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanoheterostructures for enhanced gas sensing performances
  publication-title: RSC Adv.
– volume: 17
  start-page: 913
  year: 2017
  ident: bib35
  article-title: Synthesis, characterization and enhanced sensing properties of a NiO/ZnO p–n junctions sensor for the SF6 decomposition byproducts SO2, SO2F2, and SOF2
  publication-title: Sensors
– volume: 175
  start-page: 186
  year: 2012
  end-page: 193
  ident: bib88
  article-title: Catalytic impact of RuOx clusters to high ammonia sensitivity of tin dioxide
  publication-title: Sensor. Actuator. B Chem.
– volume: 42
  start-page: 16294
  year: 2017
  end-page: 16304
  ident: bib114
  article-title: On-chip growth of patterned ZnO nanorod sensors with PdO decoration for enhancement of hydrogen-sensing performance
  publication-title: Int. J. Hydrogen Energy
– volume: 24
  year: 2013
  ident: bib66
  article-title: Thermally oxidized zinc oxide nanowires for use as chemical sensors
  publication-title: Nanotechnology
– volume: 736
  start-page: 322
  year: 2018
  end-page: 331
  ident: bib93
  article-title: WO3-SnO2nanosheet composites: hydrothermal synthesis and gas sensing mechanism
  publication-title: J. Alloy. Comp.
– volume: 10
  start-page: 1833
  year: 2010
  end-page: 1848
  ident: bib159
  article-title: CMOS interfacing for integrated gas sensors: a review
  publication-title: IEEE Sensor. J.
– volume: 254
  start-page: 863
  year: 2018
  end-page: 871
  ident: bib61
  article-title: Study on the gas-sensitive properties for formaldehyde based on SnO2-ZnO heterostructure in UV excitation
  publication-title: Sensor. Actuator. B Chem.
– volume: 160
  start-page: 428
  year: 2018
  end-page: 433
  ident: bib166
  article-title: A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas
  publication-title: Optik
– volume: 108
  start-page: 705
  year: 2008
  end-page: 725
  ident: bib13
  article-title: Electronic nose: current status and future trends
  publication-title: Chem. Rev.
– volume: 27
  year: 2016
  ident: bib65
  article-title: Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device
  publication-title: Nanotechnology
– volume: 165
  start-page: 76
  year: 2012
  end-page: 81
  ident: bib142
  article-title: Micro humidity sensors based on ZnO–In2O3 thin films with high performances
  publication-title: Sensor. Actuator. B Chem.
– volume: 18
  start-page: 163
  year: 2015
  end-page: 171
  ident: bib4
  article-title: Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors
  publication-title: Mater. Today
– volume: 87
  start-page: 1638
  year: 2015
  end-page: 1645
  ident: bib163
  article-title: Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature
  publication-title: Anal. Chem.
– volume: 3
  start-page: 189
  year: 2013
  end-page: 218
  ident: bib154
  article-title: Heterogeneous photocatalysis: recent advances and applications
  publication-title: Catalysts
– volume: 3
  start-page: 404
  year: 2014
  end-page: 410
  ident: bib32
  article-title: Hierarchically assembled ZnO nanorods on TiO
  publication-title: Energy Environ. Focus
– volume: 83
  year: 2015
  ident: bib47
  article-title: Structural properties of ZnO/SnO
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: vol. 674
  start-page: 252
  year: 2016
  end-page: 258
  ident: bib131
  publication-title: One-dimensional MoS 2 -Decorated TiO 2 Nanotube Gas Sensors for Ef Fi Cient Alcohol Sensing
– volume: 4
  start-page: 4192
  year: 2012
  end-page: 4199
  ident: bib79
  article-title: Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces
  publication-title: ACS Appl. Mater. Interfaces
– volume: 69
  start-page: 373
  year: 2016
  end-page: 380
  ident: bib105
  article-title: Fe2O3/Co3O4 composite nanoparticle ethanol sensor
  publication-title: J. Kor. Phys. Soc.
– volume: 255
  start-page: 3505
  year: 2018
  end-page: 3515
  ident: bib117
  article-title: Sensors and Actuators B : chemical Ultrasensitive and low detection limit of toluene gas sensor based on SnO 2 -decorated NiO nanostructure
  publication-title: Sensor. Actuator. B Chem.
– volume: 23
  start-page: 245501
  year: 2012
  ident: bib76
  article-title: Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr
  publication-title: Nanotechnology
– year: 2017
  ident: bib165
  article-title: Chemically Exfoliated Layered Materials for Practical Gas Sensing Applications, GraphITA
– volume: 25
  start-page: 1133
  year: 2011
  end-page: 1136
  ident: bib98
  article-title: Hydrogen sensors on the basis of SnO 2-TiO 2 systems
  publication-title: Procedia Eng
– volume: 6
  start-page: 279
  year: 1992
  end-page: 284
  ident: bib157
  article-title: Influence of the nature of the screen-printed electrode metal on the transport and detection properties of thick-film semiconductor gas sensors
  publication-title: Sensor. Actuator. B Chem.
– volume: 5
  start-page: 79593
  year: 2015
  end-page: 79599
  ident: bib126
  article-title: Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol
  publication-title: RSC Adv.
– volume: 673
  start-page: 364
  year: 2016
  end-page: 371
  ident: bib137
  article-title: Highly aligned array of W18O49/CuO core–shell nanorods and its promising NO2 sensing properties
  publication-title: J. Alloy. Comp.
– volume: 155
  start-page: 270
  year: 2011
  end-page: 277
  ident: bib81
  article-title: α-MoO3/TiO2 core/shell nanorods: controlled-synthesis and low-temperature gas sensing properties
  publication-title: Sensor. Actuator. B Chem.
– volume: 104
  start-page: 126
  year: 2015
  end-page: 130
  ident: bib136
  article-title: Co-axial core–shell ZnMgO/ZnO NWs
  publication-title: Solid State Electron.
– volume: 6
  start-page: 33092
  year: 2016
  ident: bib146
  article-title: A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures
  publication-title: Sci. Rep.
– volume: 35
  start-page: 741
  year: 2000
  end-page: 745
  ident: bib152
  article-title: Stability of SnO2/Fe2O3 multilayer thin film gas sensor
  publication-title: Mater. Res. Bull.
– volume: 168
  start-page: 83
  year: 2012
  end-page: 89
  ident: bib83
  article-title: One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection
  publication-title: Sensor. Actuator. B Chem.
– volume: 192
  start-page: 607
  year: 2014
  end-page: 627
  ident: bib8
  article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview
  publication-title: Sensor. Actuator. B Chem.
– volume: 6
  start-page: 379
  year: 2007
  end-page: 384
  ident: bib12
  article-title: Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors
  publication-title: Nat. Mater.
– volume: 4
  start-page: 36749
  year: 2014
  ident: bib38
  article-title: Enhanced sensitivity and selectivity of brush-like SnO
  publication-title: RSC Adv.
– volume: 176
  start-page: 675
  year: 2013
  end-page: 684
  ident: bib40
  article-title: WO3 nanoclusters–SnO2 film gas sensor heterostructure with enhanced response for NO2
  publication-title: Sensor. Actuator. B Chem.
– volume: 8
  start-page: 10413
  year: 2016
  end-page: 10421
  ident: bib132
  article-title: Aerosol-assisted CVD-grown PdO nanoparticle-decorated tungsten oxide nanoneedles extremely sensitive and selective to hydrogen
  publication-title: ACS Appl. Mater. Interfaces
– volume: 82
  start-page: 130
  year: 2016
  end-page: 135
  ident: bib85
  article-title: Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor
  publication-title: Mater. Res. Bull.
– start-page: 137
  year: 2017
  end-page: 142
  ident: bib116
  article-title: Hierarchical Assembly of Interleaved N-ZnO Network and P-CuO for Improved Chemo-resistive CO 2 Gas Sensing Performance
– volume: 599
  start-page: 195
  year: 2014
  end-page: 201
  ident: bib130
  article-title: Facile preparation of large-scale α-Fe
  publication-title: J. Alloy. Comp.
– volume: 7
  start-page: 24950
  year: 2015
  end-page: 24956
  ident: bib28
  article-title: High-energy faceted SnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 12882
  year: 2012
  end-page: 12887
  ident: bib133
  article-title: One-step fabrication of [small beta]-Ga2O3-amorphous-SnO2 core-shell microribbons and their thermally switchable humidity sensing properties
  publication-title: J. Mater. Chem.
– volume: 51
  start-page: 7733
  year: 2012
  end-page: 7740
  ident: bib70
  article-title: NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties
  publication-title: Inorg. Chem.
– volume: 10
  year: 2017
  ident: bib122
  article-title: Molybdenum dichalcogenides for environmental chemical sensing
  publication-title: Materials
– volume: 19
  start-page: 5642
  year: 2007
  end-page: 5649
  ident: bib14
  article-title: First example of ZnO−TiO2 nanocomposites by chemical vapor Deposition:  structure, morphology, composition, and gas sensing performances
  publication-title: Chem. Mater.
– volume: 89
  start-page: 219
  year: 2012
  end-page: 222
  ident: bib94
  article-title: Hydrothermal synthesis of ZnO-Eu 2O 3 binary oxide with straight strips morphology and sensitivity to NO 2 gas
  publication-title: Mater. Lett.
– volume: 515
  start-page: 8356
  year: 2007
  end-page: 8359
  ident: bib72
  article-title: In2O3 nanowires for gas sensors: morphology and sensing characterisation
  publication-title: Thin Solid Films
– volume: 229
  start-page: 206
  year: 2018
  end-page: 217
  ident: bib63
  article-title: Semiconductor metal oxide gas sensors: a review
  publication-title: Mater. Sci. Eng. B
– volume: 35
  start-page: 649
  year: 2009
  end-page: 652
  ident: bib74
  article-title: Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction
  publication-title: Ceram. Int.
– volume: 727
  start-page: 52
  year: 2017
  end-page: 62
  ident: bib112
  article-title: Co 3 O 4 nanoparticle-decorated hierarchical flower-like α-Fe 2 O 3 microspheres : synthesis and ethanol sensing properties
  publication-title: J. Alloy. Comp.
– volume: 131
  start-page: 104
  year: 2014
  end-page: 107
  ident: bib34
  article-title: One-step hydrothermal synthesis of In2O3–ZnO heterostructural composites and their enhanced visible-light photocatalytic activity
  publication-title: Mater. Lett.
– volume: 174
  start-page: 594
  year: 2012
  end-page: 601
  ident: bib80
  article-title: Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance
  publication-title: Sensor. Actuator. B Chem.
– volume: 166–167
  start-page: 378
  year: 2012
  end-page: 385
  ident: bib143
  article-title: A highly sensitive SnO2–CuO multilayered sensor structure for detection of H2S gas
  publication-title: Sensor. Actuator. B Chem.
– volume: 160
  start-page: 448
  year: 2011
  end-page: 454
  ident: bib102
  article-title: High toluene sensing properties of NiO-SnO2composite nanofiber sensors operating at 330 °c
  publication-title: Sensor. Actuator. B Chem.
– volume: 9
  start-page: 23926
  year: 2017
  end-page: 23933
  ident: bib43
  article-title: In situ monitoring of the deposition of flame-made chemoresistive gas-sensing films
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 1296
  year: 2012
  end-page: 1300
  ident: bib147
  article-title: Self-catalytic growth of hierarchical in
  publication-title: CrystEngComm
– volume: 184
  start-page: 21
  year: 2013
  end-page: 26
  ident: bib71
  article-title: Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO–TiO2 heterojunctions nanofibers
  publication-title: Sensor. Actuator. B Chem.
– volume: 54
  start-page: 1
  year: 2009
  end-page: 67
  ident: bib5
  article-title: Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors
  publication-title: Prog. Mater. Sci.
– volume: 6
  start-page: 47178
  year: 2016
  end-page: 47184
  ident: bib53
  article-title: Highly sensitive and selective CO gas sensor based on a hydrophobic SnO
  publication-title: RSC Adv.
– volume: 103
  start-page: 300
  year: 2004
  end-page: 311
  ident: bib75
  article-title: Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification
  publication-title: Sensor. Actuator. B Chem.
– volume: 14
  start-page: 2329
  year: 2014
  end-page: 2334
  ident: bib145
  article-title: Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current
  publication-title: Cryst. Growth Des.
– volume: 252
  start-page: 1163
  year: 2017
  end-page: 1168
  ident: bib41
  article-title: Gas sensing properties of NiO/SnO2 heterojunction thin film
  publication-title: Sensor. Actuator. B Chem.
– volume: 8
  start-page: 326
  year: 2013
  end-page: 331
  ident: bib96
  article-title: SnO2-CuO nanocomposite thin film sensor for fast detection of H2S gas
  publication-title: J. Exp. Nanosci.
– volume: 8
  year: 2017
  ident: bib6
  article-title: Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors
  publication-title: Beilstein J. Nanotechnol.
– volume: 248
  start-page: 812
  year: 2017
  end-page: 819
  ident: bib57
  article-title: Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor
  publication-title: Sensor. Actuator. B Chem.
– volume: 43
  start-page: 7508
  year: 2017
  end-page: 7515
  ident: bib106
  article-title: Hierarchical heterostructure of porous NiO nanosheets on flower-like ZnO assembled by hexagonal nanorods for high-performance gas sensor
  publication-title: Ceram. Int.
– volume: 258
  start-page: 204
  year: 2018
  end-page: 214
  ident: bib58
  article-title: SnO2 (n)-NiO (p) composite nanowebs: gas sensing properties and sensing mechanisms
  publication-title: Sensor. Actuator. B Chem.
– volume: 87
  start-page: 464
  year: 2002
  end-page: 470
  ident: bib15
  article-title: The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor
  publication-title: Sensor. Actuator. B Chem.
– volume: 237
  start-page: 275
  year: 2016
  end-page: 283
  ident: bib103
  article-title: Synthesis of novel RuO2/NaBi(MoO4)2nanosheets composite and its gas sensing performances towards ethanol
  publication-title: Sensor. Actuator. B Chem.
– volume: 29
  start-page: 3780
  year: 2018
  end-page: 3789
  ident: bib149
  article-title: Room temperature acetone-sensing properties of branch-like VO2 (B)@ZnO hierarchical hetero-nanostructures
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 238
  start-page: 972
  year: 2017
  end-page: 984
  ident: bib141
  article-title: In-situ fabricated gas sensors based on one dimensional core-shell TiO2-Al2O3 nanostructures
  publication-title: Sensor. Actuator. B Chem.
– volume: 30
  year: 2015
  ident: bib16
  article-title: Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors
  publication-title: Semicond. Sci. Technol.
– volume: 20
  start-page: 556
  year: 2018
  end-page: 562
  ident: bib48
  article-title: growth of ZnO/SnO
  publication-title: CrystEngComm
– volume: 39
  start-page: 5191
  year: 2013
  end-page: 5196
  ident: bib51
  article-title: Growth and optical properties of ZnO–In2O3 heterostructure nanowires
  publication-title: Ceram. Int.
– volume: 214
  start-page: 111
  year: 2015
  end-page: 116
  ident: bib89
  article-title: Importance of the nanograin size on the H2S-sensing properties of ZnO-CuO composite nanofibers
  publication-title: Sensor. Actuator. B Chem.
– volume: 207
  start-page: 489
  year: 2018
  end-page: 498
  ident: bib115
  article-title: Construction of 0, 1, 2 and 3 dimensional SnO2nanostructures decorated by NiO nanopetals: structures, growth and gas-sensing properties
  publication-title: Mater. Chem. Phys.
– volume: 233
  start-page: 180
  year: 2016
  end-page: 192
  ident: bib118
  article-title: Sensors and Actuators B : chemical Synthesis and improved gas sensing properties of NiO-decorated SnO 2 microflowers assembled with porous nanorods
  publication-title: Sensor. Actuator. B Chem.
– volume: 25
  start-page: 1133
  year: 2011
  end-page: 1136
  ident: bib17
  article-title: Hydrogen sensors on the basis of SnO2-TiO2 systems
  publication-title: Procedia Eng
– volume: 238
  start-page: 972
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib141
  article-title: In-situ fabricated gas sensors based on one dimensional core-shell TiO2-Al2O3 nanostructures
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.07.135
– volume: 14
  start-page: 2329
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib145
  article-title: Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg500031t
– volume: 248
  start-page: 812
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib57
  article-title: Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.12.009
– volume: vol. 4005
  start-page: 26
  year: 2002
  ident: 10.1016/j.aca.2018.09.020_bib97
– volume: 42
  start-page: 16294
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib114
  article-title: On-chip growth of patterned ZnO nanorod sensors with PdO decoration for enhancement of hydrogen-sensing performance
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.05.135
– volume: 160
  start-page: 448
  year: 2011
  ident: 10.1016/j.aca.2018.09.020_bib102
  article-title: High toluene sensing properties of NiO-SnO2composite nanofiber sensors operating at 330 °c
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2011.08.007
– volume: 176
  start-page: 323
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib108
  article-title: Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.09.027
– volume: 181
  start-page: 787
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib49
  article-title: Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2013.02.010
– volume: 6
  start-page: 12153
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib62
  article-title: Optimization of 1D ZnO@TiO 2 core–shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501379m
– volume: vol. 674
  start-page: 252
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib131
– volume: 166–167
  start-page: 378
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib143
  article-title: A highly sensitive SnO2–CuO multilayered sensor structure for detection of H2S gas
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.02.076
– volume: 221
  start-page: 434
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib129
  article-title: Facile synthesis and gas sensing properties of La 2 O 3 – WO 3 nanofibers
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2015.06.114
– volume: 18
  start-page: 621
  year: 1998
  ident: 10.1016/j.aca.2018.09.020_bib156
  article-title: Influence of the electrode materials on the electrical response of ZnO-based contact
  publication-title: Sensors
– volume: 23
  start-page: 245501
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib76
  article-title: Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr 2 O 3 hetero-nanostructures
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/24/245501
– volume: 252
  start-page: 1163
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib41
  article-title: Gas sensing properties of NiO/SnO2 heterojunction thin film
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.07.013
– volume: 1
  start-page: 1038
  year: 2011
  ident: 10.1016/j.aca.2018.09.020_bib54
  article-title: TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates
  publication-title: RSC Adv.
  doi: 10.1039/c1ra00077b
– volume: 4
  start-page: 55629
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib55
  article-title: TiO 2/ZnO core/shell nano-heterostructure arrays as photo-electrodes with enhanced visible light photoelectrochemical performance
  publication-title: RSC Adv.
  doi: 10.1039/C4RA09456E
– volume: 4
  start-page: 305
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib10
  article-title: A novel approach for detecting HMDSO poisoning of metal oxide gas sensors and improving their stability by temperature cycled operation
  publication-title: J. Sensors Sens. Syst.
  doi: 10.5194/jsss-4-305-2015
– year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib165
– volume: 184
  start-page: 21
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib71
  article-title: Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO–TiO2 heterojunctions nanofibers
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2013.04.020
– volume: 6
  start-page: 9150
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib148
  article-title: Vapor–solid growth of p-Te/n-SnO 2 hierarchical heterostructures and their enhanced room-temperature gas sensing properties
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5012518
– volume: 233
  start-page: 180
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib118
  article-title: Sensors and Actuators B : chemical Synthesis and improved gas sensing properties of NiO-decorated SnO 2 microflowers assembled with porous nanorods
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.04.057
– volume: 6
  start-page: 58452
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib59
  article-title: Facile fabrication hybrids of TiO 2 @ZnO tubes with enhanced photocatalytic properties
  publication-title: RSC Adv.
  doi: 10.1039/C6RA11065G
– volume: 165
  start-page: 76
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib142
  article-title: Micro humidity sensors based on ZnO–In2O3 thin films with high performances
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.02.019
– volume: 99
  start-page: 3770
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib111
  article-title: A facile synthesis of PdO-decorated SnO2Nanocomposites with open porous hierarchical architectures for gas sensors
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14378
– volume: 3
  start-page: 404
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib32
  article-title: Hierarchically assembled ZnO nanorods on TiO2 nanobelts for high performance gas sensor
  publication-title: Energy Environ. Focus
  doi: 10.1166/eef.2014.1118
– volume: 192
  start-page: 543
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib100
  article-title: Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2013.11.003
– volume: 5
  start-page: 12310
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib68
  article-title: Branch-like hierarchical heterostructure (α-Fe 2 O 3/TiO 2 ): a novel sensing material for trimethylamine gas sensor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402532v
– volume: 214
  start-page: 111
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib89
  article-title: Importance of the nanograin size on the H2S-sensing properties of ZnO-CuO composite nanofibers
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2015.03.012
– volume: 139
  start-page: 1
  year: 2007
  ident: 10.1016/j.aca.2018.09.020_bib150
  article-title: Metal oxides for solid-state gas sensors: what determines our choice?
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2007.01.044
– volume: 24
  start-page: 1384
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib162
  article-title: Micromachined hotplate platform for the investigation of ink-jet printed, functionalized metal oxide nanoparticles
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2015.2399696
– volume: 43
  start-page: 7508
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib106
  article-title: Hierarchical heterostructure of porous NiO nanosheets on flower-like ZnO assembled by hexagonal nanorods for high-performance gas sensor
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.03.032
– year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib127
– volume: 599
  start-page: 195
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib130
  article-title: Facile preparation of large-scale α-Fe2O3 nanorod/SnO2 nanorod composites and their LPG-sensing properties
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2014.02.089
– volume: 240
  start-page: 477
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib138
  article-title: Remarkable improvement of W18O49/TiO2 heteronanowires in ambient temperature-responsive NO2-sensing abilities and its unexpected n-p transition phenomenon
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.09.005
– volume: 19
  start-page: 559
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib151
  article-title: Metal oxide nanowire chemical sensors: innovation and quality of life
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.05.016
– volume: 17
  start-page: 913
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib35
  article-title: Synthesis, characterization and enhanced sensing properties of a NiO/ZnO p–n junctions sensor for the SF6 decomposition byproducts SO2, SO2F2, and SOF2
  publication-title: Sensors
  doi: 10.3390/s17040913
– volume: 19
  year: 2008
  ident: 10.1016/j.aca.2018.09.020_bib24
  article-title: The synthesis and selective gas sensing characteristics of SnO 2/α-Fe 2 O 3 hierarchical nanostructures
  publication-title: Nanotechnology
– start-page: 137
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib116
– volume: 192
  start-page: 607
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib8
  article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2013.11.005
– volume: 176
  start-page: 675
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib40
  article-title: WO3 nanoclusters–SnO2 film gas sensor heterostructure with enhanced response for NO2
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.09.094
– volume: 131
  start-page: 104
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib34
  article-title: One-step hydrothermal synthesis of In2O3–ZnO heterostructural composites and their enhanced visible-light photocatalytic activity
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.05.182
– volume: 20
  start-page: 556
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib48
  article-title: In situ growth of ZnO/SnO 2 (ZnO:Sn) m binary/superlattice heterojunction nanowire arrays
  publication-title: CrystEngComm
  doi: 10.1039/C7CE02014G
– volume: 160
  start-page: 428
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib166
  article-title: A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.02.002
– volume: 175
  start-page: 186
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib88
  article-title: Catalytic impact of RuOx clusters to high ammonia sensitivity of tin dioxide
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.03.003
– volume: 22
  start-page: 12882
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib133
  article-title: One-step fabrication of [small beta]-Ga2O3-amorphous-SnO2 core-shell microribbons and their thermally switchable humidity sensing properties
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32230g
– volume: vol. 221
  start-page: 88
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib128
– volume: 515
  start-page: 8356
  year: 2007
  ident: 10.1016/j.aca.2018.09.020_bib72
  article-title: In2O3 nanowires for gas sensors: morphology and sensing characterisation
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.03.034
– volume: 6
  start-page: 279
  year: 1992
  ident: 10.1016/j.aca.2018.09.020_bib157
  article-title: Influence of the nature of the screen-printed electrode metal on the transport and detection properties of thick-film semiconductor gas sensors
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/0925-4005(92)80070-E
– volume: 258
  start-page: 204
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib58
  article-title: SnO2 (n)-NiO (p) composite nanowebs: gas sensing properties and sensing mechanisms
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.11.063
– volume: 7
  start-page: 170
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib27
  article-title: Hierarchical construction of core–shell metal oxide nanoarrays with ultrahigh areal capacitance
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2014.03.005
– volume: 34
  start-page: 823
  year: 2008
  ident: 10.1016/j.aca.2018.09.020_bib64
  article-title: Ethanol sensor based on ZnO and Au-doped ZnO nanowires
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2007.09.099
– volume: 168
  start-page: 83
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib83
  article-title: One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.01.045
– volume: 87
  start-page: 1638
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib163
  article-title: Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature
  publication-title: Anal. Chem.
  doi: 10.1021/ac503234e
– volume: 10
  start-page: 10304
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib52
  article-title: ALD-developed plasmonic two-dimensional Au–WO 3 –TiO 2 heterojunction architectonics for design of photovoltaic devices
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17508
– volume: 35
  start-page: 649
  year: 2009
  ident: 10.1016/j.aca.2018.09.020_bib74
  article-title: Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2008.01.028
– volume: vol. 694
  start-page: 939
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib124
– volume: 181
  start-page: 130
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib77
  article-title: Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2013.01.067
– volume: 8
  start-page: 10413
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib132
  article-title: Aerosol-assisted CVD-grown PdO nanoparticle-decorated tungsten oxide nanoneedles extremely sensitive and selective to hydrogen
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00773
– volume: 18
  start-page: 163
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib4
  article-title: Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.08.017
– volume: 7
  start-page: 24950
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib28
  article-title: High-energy faceted SnO 2 -coated TiO 2 nanobelt heterostructure for near-ambient temperature-responsive ethanol sensor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08630
– volume: 229
  start-page: 206
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib63
  article-title: Semiconductor metal oxide gas sensors: a review
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2017.12.036
– volume: 727
  start-page: 52
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib112
  article-title: Co 3 O 4 nanoparticle-decorated hierarchical flower-like α-Fe 2 O 3 microspheres : synthesis and ethanol sensing properties
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.08.088
– year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib67
  article-title: NiO/ZnO nanowire-heterostructures by vapor phase growth for gas sensing
– volume: 221
  start-page: 260
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib113
  article-title: Controllable construction of Cr2O3-ZnO hierarchical heterostructures and their formaldehyde gas sensing properties
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.03.073
– volume: 35
  start-page: 741
  year: 2000
  ident: 10.1016/j.aca.2018.09.020_bib152
  article-title: Stability of SnO2/Fe2O3 multilayer thin film gas sensor
  publication-title: Mater. Res. Bull.
  doi: 10.1016/S0025-5408(00)00264-6
– volume: 27
  start-page: 425503
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib69
  article-title: A high-response ethanol gas sensor based on one-dimensional TiO 2/V 2 O 5 branched nanoheterostructures
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/42/425503
– volume: 8
  start-page: 16349
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib139
  article-title: Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties
  publication-title: Nanoscale
  doi: 10.1039/C6NR05187A
– volume: 24
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib66
  article-title: Thermally oxidized zinc oxide nanowires for use as chemical sensors
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/44/444008
– volume: 12
  start-page: 7207
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib153
  article-title: Gas sensors based on one dimensional nanostructured metal-oxides: a review
  publication-title: Sensors
  doi: 10.3390/s120607207
– volume: 7
  start-page: 34482
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib60
  article-title: Solution combustion synthesis and enhanced gas sensing properties of porous in 2 O 3/ZnO heterostructures
  publication-title: RSC Adv.
  doi: 10.1039/C7RA04852A
– volume: 103
  start-page: 300
  year: 2004
  ident: 10.1016/j.aca.2018.09.020_bib75
  article-title: Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2004.04.109
– volume: 117
  start-page: 10086
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib134
  article-title: Synthesis, characterization, and humidity detection properties of Nb2O5 nanorods and SnO2/Nb2O5 heterostructures
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3121066
– volume: 118
  start-page: 9209
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib37
  article-title: Core–shell in 2 O 3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H 2 S sensitivity and selectivity at room temperature
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp500516t
– volume: 6
  start-page: 33092
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib146
  article-title: A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures
  publication-title: Sci. Rep.
  doi: 10.1038/srep33092
– volume: 495
  start-page: 207
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib45
  article-title: Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.01.106
– volume: 6
  start-page: 379
  year: 2007
  ident: 10.1016/j.aca.2018.09.020_bib12
  article-title: Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1891
– volume: 16
  start-page: 1373
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib144
  article-title: Hybrid SnO2/TiO2 nanocomposites for selective detection of ultra-low hydrogen sulfide concentrations in complex backgrounds
  publication-title: Sensors
  doi: 10.3390/s16091373
– volume: 134
  start-page: 360
  year: 2008
  ident: 10.1016/j.aca.2018.09.020_bib90
  article-title: Synthesis of ZnO-SnO2nanocomposites by microemulsion and sensing properties for NO2
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2008.04.040
– volume: 27
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib65
  article-title: Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/20/205701
– volume: 7
  start-page: 43887
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib82
  article-title: Highly sensitive H2S sensors based on Cu2O/Co3O4 nano/microstructure heteroarrays at and below room temperature
  publication-title: Sci. Rep.
  doi: 10.1038/srep43887
– volume: 4
  start-page: 6
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib46
  article-title: ZnO Quasi-1D nanostructures: synthesis, modeling, and properties for applications in conductometric chemical sensors
  publication-title: Chemosensors
  doi: 10.3390/chemosensors4020006
– volume: 209
  start-page: 562
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib95
  article-title: Effect of composition and temperature on conductive and sensing properties of CeO2+ In2O3nanocomposite films
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2014.12.022
– volume: 10
  start-page: 1833
  year: 2010
  ident: 10.1016/j.aca.2018.09.020_bib159
  article-title: CMOS interfacing for integrated gas sensors: a review
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2010.2046409
– volume: 83
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib47
  article-title: Structural properties of ZnO/SnO 2 -Composite-Nanorod deposited using thermal chemical vapour deposition
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/83/1/012002
– volume: 736
  start-page: 322
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib93
  article-title: WO3-SnO2nanosheet composites: hydrothermal synthesis and gas sensing mechanism
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.11.185
– volume: 49
  start-page: 1118
  year: 2011
  ident: 10.1016/j.aca.2018.09.020_bib22
  article-title: Exfoliated graphene sheets decorated with metal/metal oxide nanoparticles: simple preparation from cation exchanged graphite oxide
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2010.11.017
– volume: 244
  start-page: 344
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib107
  article-title: Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.12.044
– volume: 51
  start-page: 6406
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib19
  article-title: A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201106948
– volume: 7
  start-page: 5199
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib33
  article-title: Three-dimensional TiO 2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507983y
– volume: 3
  start-page: 189
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib154
  article-title: Heterogeneous photocatalysis: recent advances and applications
  publication-title: Catalysts
  doi: 10.3390/catal3010189
– volume: 5
  start-page: 79593
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib126
  article-title: Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol
  publication-title: RSC Adv.
  doi: 10.1039/C5RA15019A
– volume: 104
  start-page: 126
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib136
  article-title: Co-axial core–shell ZnMgO/ZnO NWs
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2014.08.010
– volume: 9
  start-page: 23926
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib43
  article-title: In situ monitoring of the deposition of flame-made chemoresistive gas-sensing films
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04530
– volume: 54
  start-page: 1
  year: 2009
  ident: 10.1016/j.aca.2018.09.020_bib5
  article-title: Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2008.06.003
– volume: 213
  start-page: 27
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib31
  article-title: Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2015.01.130
– volume: 6
  start-page: 47178
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib53
  article-title: Highly sensitive and selective CO gas sensor based on a hydrophobic SnO 2/CuO bilayer
  publication-title: RSC Adv.
  doi: 10.1039/C6RA06538D
– volume: 5
  start-page: 7992
  year: 2011
  ident: 10.1016/j.aca.2018.09.020_bib21
  article-title: Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application
  publication-title: ACS Nano
  doi: 10.1021/nn202471f
– volume: 69
  start-page: 373
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib105
  article-title: Fe2O3/Co3O4 composite nanoparticle ethanol sensor
  publication-title: J. Kor. Phys. Soc.
  doi: 10.3938/jkps.69.373
– volume: 89
  start-page: 219
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib94
  article-title: Hydrothermal synthesis of ZnO-Eu 2O 3 binary oxide with straight strips morphology and sensitivity to NO 2 gas
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.08.100
– volume: 226
  start-page: 76
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib110
  article-title: Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods
  publication-title: Sensor. Actuator. B
  doi: 10.1016/j.snb.2015.11.120
– volume: 174
  start-page: 594
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib80
  article-title: Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.07.118
– volume: 90
  start-page: 4940
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib3
  article-title: Sniffing entrapped humans with sensor arrays
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b00237
– volume: 216
  start-page: 196
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib109
  article-title: Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO 3 perovskite nanoparticles
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.01.018
– volume: 155
  start-page: 270
  year: 2011
  ident: 10.1016/j.aca.2018.09.020_bib81
  article-title: α-MoO3/TiO2 core/shell nanorods: controlled-synthesis and low-temperature gas sensing properties
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2010.12.034
– volume: 1832
  start-page: 2
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib92
  article-title: Free standing CuO-MnO2 nanocomposite for room temperature ammonia sensing
– volume: 9
  start-page: 638
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib135
  article-title: Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-638
– volume: 207
  start-page: 489
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib115
  article-title: Construction of 0, 1, 2 and 3 dimensional SnO2nanostructures decorated by NiO nanopetals: structures, growth and gas-sensing properties
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.12.088
– volume: 108
  start-page: 705
  year: 2008
  ident: 10.1016/j.aca.2018.09.020_bib13
  article-title: Electronic nose: current status and future trends
  publication-title: Chem. Rev.
  doi: 10.1021/cr068121q
– volume: 243
  start-page: 990
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib20
  article-title: Au Decorated ZnO hierarchical architectures: facile synthesis, tunable morphology and enhanced CO detection at room temperature
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.11.152
– volume: 14
  start-page: 1296
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib147
  article-title: Self-catalytic growth of hierarchical in 2 O 3 nanostructures on SnO 2 nanowires and their CO sensing properties
  publication-title: CrystEngComm
  doi: 10.1039/C1CE06086D
– start-page: 192
  year: 2008
  ident: 10.1016/j.aca.2018.09.020_bib9
  article-title: A self-monitoring and self-diagnosis strategy for semiconductor gas sensor systems
– volume: 10
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib122
  article-title: Molybdenum dichalcogenides for environmental chemical sensing
  publication-title: Materials
  doi: 10.3390/ma10121418
– volume: 6
  start-page: 50423
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib36
  article-title: In 2 O 3 -functionalized MoO 3 heterostructure nanobelts with improved gas-sensing performance
  publication-title: RSC Adv.
  doi: 10.1039/C6RA07292E
– start-page: 2015
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib101
– year: 2007
  ident: 10.1016/j.aca.2018.09.020_bib155
– volume: 11
  start-page: 2305
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib123
  article-title: Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air
  publication-title: Small
  doi: 10.1002/smll.201402923
– volume: 265
  start-page: 660
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib158
  article-title: Fully integrated and portable semiconductor-type multi-gas sensing module for IoT applications
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2018.03.099
– volume: 25
  start-page: 11
  year: 2010
  ident: 10.1016/j.aca.2018.09.020_bib7
  article-title: Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-009-9583-x
– volume: 30
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib16
  article-title: Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/30/2/024002
– volume: 19
  start-page: 5642
  year: 2007
  ident: 10.1016/j.aca.2018.09.020_bib14
  article-title: First example of ZnO−TiO2 nanocomposites by chemical vapor Deposition:  structure, morphology, composition, and gas sensing performances
  publication-title: Chem. Mater.
  doi: 10.1021/cm701990f
– volume: 202
  start-page: 1270
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib78
  article-title: Role of various interfaces of CuO/ZnO random nanowire networks in H2S sensing: an impedance and Kelvin probe analysis
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2014.06.072
– volume: 254
  start-page: 863
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib61
  article-title: Study on the gas-sensitive properties for formaldehyde based on SnO2-ZnO heterostructure in UV excitation
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.07.197
– volume: 673
  start-page: 364
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib137
  article-title: Highly aligned array of W18O49/CuO core–shell nanorods and its promising NO2 sensing properties
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2016.02.242
– volume: 244
  start-page: 664
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib164
  article-title: 2D ultrathin Co3O4 nanosheet array deposited on 3D carbon foam for enhanced ethanol gas sensing application
  publication-title: Sensor. Actuator. B
  doi: 10.1016/j.snb.2017.01.056
– volume: 82
  start-page: 130
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib85
  article-title: Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2016.02.011
– volume: 319
  start-page: 37
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib56
  article-title: Modification of MWCNT@TiO2 core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.07.161
– year: 2009
  ident: 10.1016/j.aca.2018.09.020_bib1
  publication-title: Solid State Gas Sensing
  doi: 10.1007/978-0-387-09665-0
– year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib160
  article-title: Tungsten oxide nanowires on micro hotplates for gas sensing applications
– volume: 4
  start-page: 4192
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib79
  article-title: Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am300911z
– volume: 45
  start-page: 205301
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib86
  article-title: Novel growth of CuO-functionalized, branched SnO 2 nanowires and their application to H 2 S sensors
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/45/20/205301
– volume: 105
  start-page: 201601
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib42
  article-title: Characterization of amorphous multilayered ZnO-SnO 2 heterostructure thin films and their field effect electronic properties
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4901503
– volume: 238
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib11
  article-title: Detection of food and skin pathogen microbiota by means of an electronic nose based on metal oxide chemiresistors
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.09.086
– volume: 8
  start-page: 326
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib96
  article-title: SnO2-CuO nanocomposite thin film sensor for fast detection of H2S gas
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2012.680930
– volume: 29
  start-page: 3780
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib149
  article-title: Room temperature acetone-sensing properties of branch-like VO2 (B)@ZnO hierarchical hetero-nanostructures
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-017-8313-4
– volume: 5
  start-page: 10048
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib125
  article-title: Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanoheterostructures for enhanced gas sensing performances
  publication-title: RSC Adv.
  doi: 10.1039/C4RA14033H
– volume: 526
  start-page: 400
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib161
  article-title: Tailoring metal oxide nanoparticle dispersions for inkjet printing
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.05.006
– volume: 179
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib50
  article-title: Metal oxide nanoscience and nanotechnology for chemical sensors
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.10.027
– volume: 4
  start-page: 36749
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib38
  article-title: Enhanced sensitivity and selectivity of brush-like SnO 2 nanowire/ZnO nanorod heterostructure based sensors for volatile organic compounds
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05914J
– volume: 737
  start-page: 603
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib39
  article-title: Low-temperature in-situ growth of SnO2 nanosheets and its high triethylamine sensing response by constructing Au-loaded ZnO/SnO2 heterostructure
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.12.016
– year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib121
– volume: 4
  start-page: 32773
  year: 2014
  ident: 10.1016/j.aca.2018.09.020_bib30
  article-title: Construction of a branched ZnO–TiO 2 nanorod array heterostructure for enhancing the photovoltaic properties in quantum dot-sensitized solar cells
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05736H
– volume: 8
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib6
  article-title: Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.8.122
– volume: 87
  start-page: 464
  year: 2002
  ident: 10.1016/j.aca.2018.09.020_bib15
  article-title: The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/S0925-4005(02)00299-X
– volume: 259
  start-page: 131
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib26
  article-title: Porous TiO2 nanobelts coated with mixed transition-metal oxides Sn3O4 nanosheets core-shell composites as high-performance anode materials of lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.180
– volume: 150
  start-page: 749
  year: 2010
  ident: 10.1016/j.aca.2018.09.020_bib91
  article-title: Preparation, characterization of WO3-SnO2nanocomposites and their sensing properties for NO2
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2010.08.007
– volume: 237
  start-page: 275
  year: 2016
  ident: 10.1016/j.aca.2018.09.020_bib103
  article-title: Synthesis of novel RuO2/NaBi(MoO4)2nanosheets composite and its gas sensing performances towards ethanol
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.06.095
– volume: 57
  start-page: 241
  year: 1999
  ident: 10.1016/j.aca.2018.09.020_bib18
  article-title: Effect of interdiffusion on electrical and gas sensor properties of CuO/SnO2 heterostructure
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/S0921-5107(98)00432-2
– volume: 185
  start-page: 231
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib104
  article-title: Highly enhanced gas sensing properties of porous SnO2-CeO2composite nanofibers prepared by electrospinning
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2013.05.001
– volume: 71
  start-page: 487
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib140
  article-title: Acetone sensing of multi-networked WO3-NiO core-shell nanorod sensors
  publication-title: J. Kor. Phys. Soc.
  doi: 10.3938/jkps.71.487
– volume: 256
  start-page: 282
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib120
  article-title: Sensors and Actuators B : chemical Fe 2 O 3 -loaded NiO nanosheets for fast response/recovery and high response gas sensor
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.09.187
– volume: 209
  start-page: 934
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib84
  article-title: Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2014.11.130
– volume: 746
  start-page: 36
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib99
  article-title: In2O3-SnO2hybrid porous nanostructures delivering enhanced formaldehyde sensing performance
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.02.171
– volume: 25
  start-page: 1133
  year: 2011
  ident: 10.1016/j.aca.2018.09.020_bib98
  article-title: Hydrogen sensors on the basis of SnO 2-TiO 2 systems
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.12.279
– volume: 32
  start-page: 2079
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib119
  article-title: CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2012.05.042
– year: 1994
  ident: 10.1016/j.aca.2018.09.020_bib2
– volume: 215
  start-page: 630
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib73
  article-title: Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2015.03.037
– volume: 169
  start-page: 32
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib87
  article-title: Effect of composition on sensing properties of SnO 2 + in 2O 3 mixed nanostructured films
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.01.064
– volume: 9
  start-page: 38537
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib44
  article-title: Three-dimensional lupinus-like TiO 2 nanorod@Sn 3 O 4 nanosheet hierarchical heterostructured arrays as photoanode for enhanced photoelectrochemical performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11872
– volume: 639
  start-page: 571
  year: 2015
  ident: 10.1016/j.aca.2018.09.020_bib29
  article-title: Enhanced gas sensing property of SnO2 nanoparticles by constructing the SnO2–TiO2 nanobelt heterostructure
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2015.03.193
– volume: 262
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib23
  article-title: Branch-like NiO/ZnO heterostructures for VOC sensing
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2018.02.042
– volume: 17
  year: 2017
  ident: 10.1016/j.aca.2018.09.020_bib25
  article-title: Porous TiO₂-Based gas sensors for cyber chemical systems to provide security and medical diagnosis
  publication-title: Sensors
  doi: 10.3390/s17122947
– volume: 39
  start-page: 5191
  year: 2013
  ident: 10.1016/j.aca.2018.09.020_bib51
  article-title: Growth and optical properties of ZnO–In2O3 heterostructure nanowires
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.12.017
– volume: 25
  start-page: 1133
  year: 2011
  ident: 10.1016/j.aca.2018.09.020_bib17
  article-title: Hydrogen sensors on the basis of SnO2-TiO2 systems
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.12.279
– volume: 255
  start-page: 3505
  year: 2018
  ident: 10.1016/j.aca.2018.09.020_bib117
  article-title: Sensors and Actuators B : chemical Ultrasensitive and low detection limit of toluene gas sensor based on SnO 2 -decorated NiO nanostructure
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.09.184
– volume: 51
  start-page: 7733
  year: 2012
  ident: 10.1016/j.aca.2018.09.020_bib70
  article-title: NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties
  publication-title: Inorg. Chem.
  doi: 10.1021/ic300749a
SSID ssj0002104
Score 2.6597939
SecondaryResourceType review_article
Snippet This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Catalysis
Chemical compounds
Chemical perception
Chemical sensors
Chemical synthesis
Chemoreception
Control stability
Core-shell
Core-shell structure
Detection
Fabrication
Gas detectors
Gas sensors
Heterojunctions
Heterostructures
Hierarchical structures
Interfaces
Interfacial properties
Metal oxide
Metal oxides
Metals
Molecular structure
Morphology
Nanostructure
Nanostructured materials
Nanostructures
Nanotechnology
Organic chemistry
Oxides
Reproducibility
Selectivity
Sensors
Title “Metal oxide -based heterostructures for gas sensors”- A review
URI https://dx.doi.org/10.1016/j.aca.2018.09.020
https://www.ncbi.nlm.nih.gov/pubmed/30322540
https://www.proquest.com/docview/2154711436
https://www.proquest.com/docview/2120752005
Volume 1039
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsMwDLYmOMAF8c9goCBxQgpL26zNjtMEGiA4gcQtSpoUhtCKGEicEA8CL7cnwe7PEBLswLGtI6WfU_tz49gAB954qzKfcpt0HJdhEnCTRo57L7KOzALrUgoULy7jwbU8u-ncNKBfn4WhtMrK9pc2vbDW1Z12hWb7cTikM74CuUciAuqVpbpUE1TKhFb50dt3mgeGNLLumkfS9c5mkeNlUio9FKii1Cm1_P7dN_3FPQsfdLIMSxV5ZL1yfivQ8KNVWOjXPdvWoD95_7jwyKdZ_jp0nnFyUo7dUc5LXpaKfcH4miFTZbdmzMYYxOZP48n7J2c9Vh5jWYfrk-Or_oBXbRJ4iu72mStk_V4lEcKeqUx2rI8QbWT-ymLwJIRBAo0PnHV0ytWGQYwsK8kMOn7pQyOiDZgb5SO_BQzJkAyQc8VRpqR0KO1siKQidpkzYRI2QdQA6bSqIU6tLB50nSx2rxFTTZhq0dWIaRMOp0MeywIas4Rljbr-sQo0GvhZw1q1hnT1CY41chl0vEgH4ybsTx-jPmhHxIx8_kIy9Hb0Y60Jm6Vmp5NE3462Tort_81pBxbpijJfAtWCOVSx30X-8mz3igW6B_O90_PB5ReQju3Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcAFsVNWI3FCsnASJzHHqgKVpT2BxM2yYweKUFNRkDj2Q-Dn-iXMNEklJODANbYl540z8yaeBeDYG29V7jNu09hxGaYBN1nkuPcij2UeWJeRo9jtJZ07eXUf389Bu86FobDKSveXOn2qrasnpxWap8N-n3J8BXKPVATUK0udyXlYoOpUcQMWWpfXnd5MIaNXI-vGebSgvtychnmZjKoPBWpa7ZS6fv9snn6jn1MzdLECyxV_ZK1yi6sw5wdrsNiu27atQ3sy_uh6pNSseO87zzjZKcceKeylKKvFvqGLzZCssgczYiP0Y4uX0WT8yVmLlZksG3B3cX7b7vCqUwLP0OK-coXE36s0QuRzlcvY-ggBR_KvLPpPQhjk0DjgrKNEVxsGCRKtNDdo-6UPjYg2oTEoBn4bGPIhGSDtSqJcSelwtrMh8orE5c6EadgEUQOks6qMOHWzeNZ1vNiTRkw1YarFmUZMm3AyWzIsa2j8NVnWqOtvB0Gjjv9r2V4tIV19hSONdAZtLzLCpAlHs2GUB12KmIEv3mgOvR39W2vCVinZ2SbRvKO6k2Lnf3s6hMXObfdG31z2rndhiUYoECZQe9BAcft9pDOv9qA6rl_BPvCB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%22Metal+oxide+-based+heterostructures+for+gas+sensors%22-+A+review&rft.jtitle=Analytica+chimica+acta&rft.au=Zappa%2C+Dario&rft.au=Galstyan%2C+Vardan&rft.au=Kaur%2C+Navpreet&rft.au=Munasinghe+Arachchige%2C+Hashitha+M+M&rft.date=2018-12-18&rft.issn=1873-4324&rft.eissn=1873-4324&rft.volume=1039&rft.spage=1&rft_id=info:doi/10.1016%2Fj.aca.2018.09.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon