Giant bowing of the band gap and spin-orbit splitting energy in GaP1−xBix dilute bismide alloys

Using spectroscopic ellipsometry measurements on GaP 1− x Bi x /GaP epitaxial layers up to x  = 3.7% we observe a giant bowing of the direct band gap ( E g Γ ) and valence band spin-orbit splitting energy (Δ SO ). E g Γ (Δ SO ) is measured to decrease (increase) by approximately 200 meV (240 meV) wi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 6835
Main Authors Bushell, Zoe L., Broderick, Christopher A., Nattermann, Lukas, Joseph, Rita, Keddie, Joseph L., Rorison, Judy M., Volz, Kerstin, Sweeney, Stephen J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.05.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using spectroscopic ellipsometry measurements on GaP 1− x Bi x /GaP epitaxial layers up to x  = 3.7% we observe a giant bowing of the direct band gap ( E g Γ ) and valence band spin-orbit splitting energy (Δ SO ). E g Γ (Δ SO ) is measured to decrease (increase) by approximately 200 meV (240 meV) with the incorporation of 1% Bi, corresponding to a greater than fourfold increase in Δ SO in going from GaP to GaP 0.99 Bi 0.01 . The evolution of E g Γ and Δ SO with x is characterised by strong, composition-dependent bowing. We demonstrate that a simple valence band-anticrossing model, parametrised directly from atomistic supercell calculations, quantitatively describes the measured evolution of E g Γ and Δ SO with x . In contrast to the well-studied GaAs 1− x Bi x alloy , in GaP 1− x Bi x substitutional Bi creates localised impurity states lying energetically within the GaP host matrix band gap. This leads to the emergence of an optically active band of Bi-hybridised states, accounting for the overall large bowing of E g Γ and Δ SO and in particular for the giant bowing observed for x  ≲ 1%. Our analysis provides insight into the action of Bi as an isovalent impurity, and constitutes the first detailed experimental and theoretical analysis of the GaP 1− x Bi x alloy band structure.
AbstractList Using spectroscopic ellipsometry measurements on GaP 1− x Bi x /GaP epitaxial layers up to x  = 3.7% we observe a giant bowing of the direct band gap ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{g}^{{\rm{\Gamma }}}$$\end{document} E g Γ ) and valence band spin-orbit splitting energy (Δ SO ). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{g}^{{\rm{\Gamma }}}$$\end{document} E g Γ (Δ SO ) is measured to decrease (increase) by approximately 200 meV (240 meV) with the incorporation of 1% Bi, corresponding to a greater than fourfold increase in Δ SO in going from GaP to GaP 0.99 Bi 0.01 . The evolution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{g}^{{\rm{\Gamma }}}$$\end{document} E g Γ and Δ SO with x is characterised by strong, composition-dependent bowing. We demonstrate that a simple valence band-anticrossing model, parametrised directly from atomistic supercell calculations, quantitatively describes the measured evolution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{g}^{{\rm{\Gamma }}}$$\end{document} E g Γ and Δ SO with x . In contrast to the well-studied GaAs 1− x Bi x alloy , in GaP 1− x Bi x substitutional Bi creates localised impurity states lying energetically within the GaP host matrix band gap. This leads to the emergence of an optically active band of Bi-hybridised states, accounting for the overall large bowing of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{g}^{{\rm{\Gamma }}}$$\end{document} E g Γ and Δ SO and in particular for the giant bowing observed for x  ≲ 1%. Our analysis provides insight into the action of Bi as an isovalent impurity, and constitutes the first detailed experimental and theoretical analysis of the GaP 1− x Bi x alloy band structure.
Using spectroscopic ellipsometry measurements on GaP 1− x Bi x /GaP epitaxial layers up to x  = 3.7% we observe a giant bowing of the direct band gap ( E g Γ ) and valence band spin-orbit splitting energy (Δ SO ). E g Γ (Δ SO ) is measured to decrease (increase) by approximately 200 meV (240 meV) with the incorporation of 1% Bi, corresponding to a greater than fourfold increase in Δ SO in going from GaP to GaP 0.99 Bi 0.01 . The evolution of E g Γ and Δ SO with x is characterised by strong, composition-dependent bowing. We demonstrate that a simple valence band-anticrossing model, parametrised directly from atomistic supercell calculations, quantitatively describes the measured evolution of E g Γ and Δ SO with x . In contrast to the well-studied GaAs 1− x Bi x alloy , in GaP 1− x Bi x substitutional Bi creates localised impurity states lying energetically within the GaP host matrix band gap. This leads to the emergence of an optically active band of Bi-hybridised states, accounting for the overall large bowing of E g Γ and Δ SO and in particular for the giant bowing observed for x  ≲ 1%. Our analysis provides insight into the action of Bi as an isovalent impurity, and constitutes the first detailed experimental and theoretical analysis of the GaP 1− x Bi x alloy band structure.
Abstract Using spectroscopic ellipsometry measurements on GaP 1− x Bi x /GaP epitaxial layers up to x  = 3.7% we observe a giant bowing of the direct band gap ( $${E}_{g}^{{\rm{\Gamma }}}$$ E g Γ ) and valence band spin-orbit splitting energy (Δ SO ). $${E}_{g}^{{\rm{\Gamma }}}$$ E g Γ (Δ SO ) is measured to decrease (increase) by approximately 200 meV (240 meV) with the incorporation of 1% Bi, corresponding to a greater than fourfold increase in Δ SO in going from GaP to GaP 0.99 Bi 0.01 . The evolution of $${E}_{g}^{{\rm{\Gamma }}}$$ E g Γ and Δ SO with x is characterised by strong, composition-dependent bowing. We demonstrate that a simple valence band-anticrossing model, parametrised directly from atomistic supercell calculations, quantitatively describes the measured evolution of $${E}_{g}^{{\rm{\Gamma }}}$$ E g Γ and Δ SO with x . In contrast to the well-studied GaAs 1− x Bi x alloy , in GaP 1− x Bi x substitutional Bi creates localised impurity states lying energetically within the GaP host matrix band gap. This leads to the emergence of an optically active band of Bi-hybridised states, accounting for the overall large bowing of $${E}_{g}^{{\rm{\Gamma }}}$$ E g Γ and Δ SO and in particular for the giant bowing observed for x  ≲ 1%. Our analysis provides insight into the action of Bi as an isovalent impurity, and constitutes the first detailed experimental and theoretical analysis of the GaP 1− x Bi x alloy band structure.
Using spectroscopic ellipsometry measurements on GaP1−xBix/GaP epitaxial layers up to x = 3.7% we observe a giant bowing of the direct band gap (EgΓ) and valence band spin-orbit splitting energy (ΔSO). EgΓ (ΔSO) is measured to decrease (increase) by approximately 200 meV (240 meV) with the incorporation of 1% Bi, corresponding to a greater than fourfold increase in ΔSO in going from GaP to GaP0.99Bi0.01. The evolution of EgΓ and ΔSO with x is characterised by strong, composition-dependent bowing. We demonstrate that a simple valence band-anticrossing model, parametrised directly from atomistic supercell calculations, quantitatively describes the measured evolution of EgΓ and ΔSO with x. In contrast to the well-studied GaAs1−xBix alloy, in GaP1−xBix substitutional Bi creates localised impurity states lying energetically within the GaP host matrix band gap. This leads to the emergence of an optically active band of Bi-hybridised states, accounting for the overall large bowing of EgΓ and ΔSO and in particular for the giant bowing observed for x ≲ 1%. Our analysis provides insight into the action of Bi as an isovalent impurity, and constitutes the first detailed experimental and theoretical analysis of the GaP1−xBix alloy band structure.
ArticleNumber 6835
Author Sweeney, Stephen J.
Nattermann, Lukas
Bushell, Zoe L.
Rorison, Judy M.
Broderick, Christopher A.
Volz, Kerstin
Joseph, Rita
Keddie, Joseph L.
Author_xml – sequence: 1
  givenname: Zoe L.
  orcidid: 0000-0002-7353-2847
  surname: Bushell
  fullname: Bushell, Zoe L.
  organization: Advanced Technology Institute and Department of Physics, University of Surrey
– sequence: 2
  givenname: Christopher A.
  orcidid: 0000-0002-5370-7582
  surname: Broderick
  fullname: Broderick, Christopher A.
  email: c.broderick@umail.ucc.ie
  organization: Tyndall National Institute, Lee Maltings, Dyke Parade, Department of Electrical and Electronic Engineering, University of Bristol
– sequence: 3
  givenname: Lukas
  surname: Nattermann
  fullname: Nattermann, Lukas
  organization: Materials Science Center and Faculty of Physics, Philipps-Universität Marburg
– sequence: 4
  givenname: Rita
  surname: Joseph
  fullname: Joseph, Rita
  organization: Advanced Technology Institute and Department of Physics, University of Surrey
– sequence: 5
  givenname: Joseph L.
  surname: Keddie
  fullname: Keddie, Joseph L.
  organization: Advanced Technology Institute and Department of Physics, University of Surrey
– sequence: 6
  givenname: Judy M.
  surname: Rorison
  fullname: Rorison, Judy M.
  organization: Department of Electrical and Electronic Engineering, University of Bristol
– sequence: 7
  givenname: Kerstin
  surname: Volz
  fullname: Volz, Kerstin
  organization: Materials Science Center and Faculty of Physics, Philipps-Universität Marburg
– sequence: 8
  givenname: Stephen J.
  surname: Sweeney
  fullname: Sweeney, Stephen J.
  email: s.sweeney@surrey.ac.uk
  organization: Advanced Technology Institute and Department of Physics, University of Surrey
BookMark eNp9kc1u1TAQhS1UREvpC7CyxIZNwGM7ib1BgopekCrBAtaWk0xSV7n2xXZK7xuw5hH7JDjcir8Fs5mR5jtHMzqPyZEPHgl5CuwFMKFeJgm1VhUDXUkBklf1A3LCmawrLjg_-mM-JmcpXbNSNdcS9CNyLIBJ1Tb8hNiNsz7TLnx1fqJhpPkKaWf9QCe7o2tPO-erEDuXyzi7nFcQPcZpT52nG_sR7r59v33jbung5iUXuUtbNyC18xz26Ql5ONo54dl9PyWfL95-On9XXX7YvD9_fVn1QkGuFOsl1mNXt40A6EWrhOJWt8wCQj3AqLnsuVbQFV51otUNaqVG0YysV8jFKXl18N0t3RaHHn2Odja76LY27k2wzvy98e7KTOHGNFK3TVsXg-f3BjF8WTBls3Wpx3m2HsOSDOdcc65aKQv67B_0OizRl_cKBUo3GmCl-IHqY0gp4vjrGGBmDdEcQjQlRPMzRLNeIQ6iVGA_Yfxt_R_VD_qon7I
CitedBy_id crossref_primary_10_1063_5_0055874
crossref_primary_10_1116_6_0001894
crossref_primary_10_3390_cryst11050548
crossref_primary_10_1016_j_ijleo_2022_169793
crossref_primary_10_1063_5_0173748
crossref_primary_10_3938_jkps_77_981
crossref_primary_10_1039_D0NR04728G
crossref_primary_10_1063_5_0192047
crossref_primary_10_1007_s40042_021_00364_z
crossref_primary_10_1038_s41598_020_75383_0
crossref_primary_10_1039_C9NR07237C
Cites_doi 10.1088/0022-3727/47/34/345103
10.1103/PhysRevB.70.035212
10.1088/0268-1242/27/9/094011
10.1143/JJAP.42.371
10.1016/j.mssp.2015.06.065
10.1021/acsphotonics.7b00240
10.1063/1.5006974
10.1016/j.apmt.2016.09.018
10.1063/1.1754592
10.1063/1.126597
10.1103/PhysRevB.39.1871
10.1063/1.1581983
10.1103/PhysRevB.75.045203
10.1063/1.4837615
10.1016/j.jcrysgro.2017.02.021
10.1088/0268-1242/30/9/094001
10.1109/LPT.2012.2225420
10.1088/0268-1242/28/12/125025
10.1063/1.4812660
10.1103/PhysRevLett.97.067205
10.1063/1.4873403
10.7567/APEX.8.061202
10.1103/PhysRevB.71.155201
10.1109/NUSOD.2016.7547020
10.1016/j.jcrysgro.2017.04.005
10.1088/1361-6641/aad2bd
10.7567/APEX.7.082101
10.7567/JJAP.55.108002
10.1063/1.346291
10.1088/0268-1242/30/9/094009
10.1103/PhysRevB.84.245202
10.1103/PhysRevB.90.165203
10.1109/2944.640627
10.1063/1.4895116
10.1103/PhysRevB.82.193204
10.1063/1.119158
10.1109/JSTQE.2015.2448652
10.1016/j.cap.2015.11.019
10.1063/1.4811736
10.1103/PhysRevB.72.073203
10.1103/PhysRevB.65.241303
10.1088/0268-1242/6/1/005
10.1007/978-1-4614-8121-8
10.1063/1.4728028
10.1063/1.1368156
10.1109/ICTON.2011.5970829
10.1002/9780470060193
10.1049/el.2014.1741
10.1063/1.4940201
10.1088/0268-1242/24/3/033001
10.1103/PhysRevB.65.115203
10.1063/1.4768532
10.1063/1.4781415
10.1103/PhysRevB.64.115208
10.1063/1.4932122
10.1038/srep28863
10.1088/0268-1242/30/9/094010
10.1063/1.4761996
10.1103/PhysRevB.92.241201
10.1103/PhysRevB.62.4493
10.1088/1361-6641/aa729b
10.1063/1.3624927
10.1103/PhysRevLett.82.1221
10.1063/1.4789624
10.1103/PhysRevB.87.115104
10.1109/PVSC.2016.7749791
10.1103/PhysRevB.74.241202
10.1109/JSTQE.2017.2719403
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-019-43142-5
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 6835
ExternalDocumentID 10_1038_s41598_019_43142_5
GrantInformation_xml – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/N021037/1; EP/H005587/1; EP/K029665/1; EP/N021037/1; EP/H005587/1; EP/N021037/1; EP/H005587/1; EP/K029665/1; EP/N021037/1; EP/H005587/1
  funderid: https://doi.org/10.13039/501100000266
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: GRK 1782; GRK 1782
  funderid: https://doi.org/10.13039/501100001659
– fundername: Science Foundation Ireland (SFI)
  grantid: 15/IA/3082
  funderid: https://doi.org/10.13039/501100001602
– fundername: ;
  grantid: 15/IA/3082
– fundername: ;
  grantid: GRK 1782; GRK 1782
– fundername: ;
  grantid: EP/N021037/1; EP/H005587/1; EP/K029665/1; EP/N021037/1; EP/H005587/1; EP/N021037/1; EP/H005587/1; EP/K029665/1; EP/N021037/1; EP/H005587/1
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
AFGXO
5PM
ID FETCH-LOGICAL-c381t-80c4e5fb576311c378382a970a1e15d1f924c2981bc388b3796e988f36f0c8e23
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Sep 17 21:27:50 EDT 2024
Sat Aug 17 01:20:18 EDT 2024
Thu Oct 10 16:54:01 EDT 2024
Fri Aug 23 00:39:15 EDT 2024
Fri Oct 11 20:50:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-80c4e5fb576311c378382a970a1e15d1f924c2981bc388b3796e988f36f0c8e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7353-2847
0000-0002-5370-7582
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497675/
PMID 31048762
PQID 2218969114
PQPubID 2041939
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6497675
proquest_miscellaneous_2229228744
proquest_journals_2218969114
crossref_primary_10_1038_s41598_019_43142_5
springer_journals_10_1038_s41598_019_43142_5
PublicationCentury 2000
PublicationDate 2019-05-02
PublicationDateYYYYMMDD 2019-05-02
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Van de WalleCGBand lineups and deformation potentials in the model-solid theoryPhys. Rev. B19893918711989PhRvB..39.1871V10.1103/PhysRevB.39.1871
Wang, C. et al. Molecular beam epitaxy growth of AlAs1−xBix. Semicond. Sci. Technol. in press (2018).
MarkoIPPhysical properties and optimization of GaBiAs/(Al)GaAs based near-infrared laser diodes grown by MOVPE with up to 4.4% BiJ. Phys. D: Appl. Phys.20144734510310.1088/0022-3727/47/34/345103
DongmoPEnhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAsJ. Appl. Phys.20121120937102012JAP...112i3710D10.1063/1.4761996
MarkoIPTemperature and Bi-concentration dependence of the bandgap and spin-orbit splitting in InGaBiAs/InP semiconductors for mid-infrared applicationsAppl. Phys. Lett.20121012211082012ApPhL.101v1108M10.1063/1.4768532
ZhangYFluegelBMascarenhasAXinHPTuCWOptical transitions in the isoelectronically doped semiconductor GaP:N: an evolution from isolated centers, pairs, and clusters to an impurity bandPhys. Rev. B20006244932000PhRvB..62.4493Z1:CAS:528:DC%2BD3cXls1Wrsbg%3D10.1103/PhysRevB.62.4493
MarkoIPSweeneySJProgress towards III-V bismide alloys for near- and mid-infrared laser diodesIEEE J. Sel. Topics Quantum Electron.201723150151210.1109/JSTQE.2017.2719403
SweeneySJJinSRBismide-nitride alloys: Promising for efficient light emitting devices in the near- and mid-infraredJ. Appl. Phys.20131130431102013JAP...113d3110S10.1063/1.4789624
KimHGuanYForghaniKKeuchTFMawstLJLaser diodes employing GaAs1−xBix/GaAs1−yPy quantum well active regionsSemicond. Sci. Technol.2017320750072017SeScT..32g5007K10.1088/1361-6641/aa729b
ZhangYMascarenhasAWangL-WSimilar and dissimilar aspects of III-V semiconductors containing Bi versus NPhys. Rev. B2005711552012005PhRvB..71o5201Z10.1103/PhysRevB.71.155201
WuX1.142 mm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxyACS Photonics2017413221:CAS:528:DC%2BC2sXpt1Siurs%3D10.1021/acsphotonics.7b00240
BroderickCAXiongWSweeneySJO’ReillyEPRorisonJMTheory and design of InGaAsBi mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 μm on InP substratesSemicond. Sci. Technol.2018330940072018SeScT..33i4007B10.1088/1361-6641/aad2bd
CarrierPWeiS-HCalculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors: Effects of p1/2 local orbitals and chemical trendsPhys. Rev. B2004700352122004PhRvB..70c5212C10.1103/PhysRevB.70.035212
NattermannLMOVPE growth and characterization of quaternary Ga(PAsBi)/GaAs alloys for optoelectronic applicationsApplied Materials Today20165209339037910.1016/j.apmt.2016.09.018
LiebichSLaser operation of Ga(NAsP) lattice-matched to (001) silicon substrateAppl. Phys. Lett.2011990711092011ApPhL..99g1109L10.1063/1.3624927
GüngerichMExperimental and theoretical investigation of the conduction band edge of GaNxP1−xPhys. Rev. B2006742412022006PhRvB..74x1202G10.1103/PhysRevB.74.241202
BroderickCAUsmanMSweeneySJO’ReillyEPBand engineering in dilute nitride and bismide semiconductor lasersSemicond. Sci. Technol.2012270940112012SeScT..27i4011B10.1088/0268-1242/27/9/094011
MazzucatoSElectron spin dynamics and g-factor in GaAsBiAppl. Phys. Lett.20131022521072013ApPhL.102y2107M10.1063/1.4812660
ForghaniKGaAs1−y−zPyBiz, an alternative reduced band gap alloy system lattice-matched to GaAsAppl. Phys. Lett.20141051111012014ApPhL.105k1101F10.1063/1.4895116
VurgaftmanIMeyerJRRam-MohanLRBand parameters for III-V compound semiconductors and their alloysJ. Appl. Phys.20018958152001JAP....89.5815V1:CAS:528:DC%2BD3MXkt1Wrt74%3D10.1063/1.1368156
AlayaRMbarkiMRebeyAPostnikovAVAb initio predictions of structure preferences and band gap character in ordered AlAs1−xBix alloysCurr. Appl. Phys.2016162882016CAP....16..288A10.1016/j.cap.2015.11.019
ChristianTMFluegelBBeatonDAAlberiKMascarenhasABismuth-induced raman modes in GaP1−xBixJpn. J. Appl. Phys.2016551080022016JaJAP..55j8002C10.7567/JJAP.55.108002
NattermannLLudewigPSterzerEVolzKExploiting strain to enhance the Bi incorporation in GaAs-based III/V semiconductors using MOVPEJ. Cryst. Growth2017470152017JCrGr.470...15N1:CAS:528:DC%2BC2sXmtVGlt7g%3D10.1016/j.jcrysgro.2017.04.005
KentPRCZungerATheory of electronic structure evolution in GaAsN and GaPN alloysPhys. Rev. B2001641152082001PhRvB..64k5208K10.1103/PhysRevB.64.115208
SamadjarDPDasTDDharSValence band anticrossing model for GaSb1−xBix and GaP1−xBix using k · p methodMater. Sci. Semicond. Process.20154053910.1016/j.mssp.2015.06.065
BushellZLOptical functions and critical points of dilute bismide alloys studied by spectroscopic ellipsometryJ. Appl. Phys.20181230457012018JAP...123d5701B10.1063/1.5006974
JoshyaRSPtakAJFranceRMascarenhasAKiniRNResonant state due to Bi in the dilute bismide alloy GaAs1−xBixPhys. Rev. B2014901652032014PhRvB..90p5203J10.1103/PhysRevB.90.165203
Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Chichester, 2007).
LudewigPElectrical injection Ga(AsBi)/(AlGa)As single quantum well laserAppl. Phys. Lett.20131022421152013ApPhL.102x2115L10.1063/1.4811736
PolakMPScharochPKudraweicRFirst-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental dataSemicond. Sci. Technol.2015300940012015SeScT..30i4001P10.1088/0268-1242/30/9/094001
AlberiKBeatonDAMascarenhasADirect observation of the e_resonant state in GaAs1−xBixPhys. Rev. B2015922412012015PhRvB..92x1201A10.1103/PhysRevB.92.241201
FluegelBGiant spin-orbit bowing in GaAs1−xBixPhys. Rev. Lett.2006970672052006PhRvL..97f7205F1:STN:280:DC%2BD28rpsVantQ%3D%3D10.1103/PhysRevLett.97.067205
FluegelBZhangYGeiszJFMascarenhasAConfirmation of the impurity band model for GaP1−xNxPhys. Rev. B2005720732032005PhRvB..72g3203F10.1103/PhysRevB.72.073203
MarkoIPOptical gain in GaAsBi/GaAs quantum well diode lasersSci. Rep.201662016NatSR...628863M1:CAS:528:DC%2BC28XhtFaitL7E10.1038/srep28863
Richards, R. D. et al. GaAsBi: an alternative to InGaAs based multiple quantum well photovoltaics. In proceedings of the 43rd IEEE Photovoltaics Specialists Conference1135 (2016).
GuYNearly lattice-matched short-wave infrared InGaAsBi photodetectors on InPAppl. Phys. Lett.20161080321022016ApPhL.108c2102G10.1063/1.4940201
Broderick, C. A., Xiong, W. & Rorison, J. M. Theory of InGaBiAs dilute bismide alloys for highly efficient InP-based mid-infrared semiconductor lasers. In proceedings of the 16th International Conference on Numerical Simulation of Optoelectronic Devices47 (2016).
SandallICDemonstration of InAsBi photoresponse beyond 3.5 mmAppl. Phys. Lett.20141041711092014ApPhL.104q1109S10.1063/1.4873403
FuyukiTYoshidaKYoshiokaRYoshimotoMElectrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelengthAppl. Phys. Express201470821012014APExp...7h2101F10.7567/APEX.7.082101
BroderickCAUsmanMO’ReillyEPDerivation of 12 and 14-band k · p hamiltonians for dilute bismide and bismide-nitride alloysSemicond. Sci. Technol.2013281250252013SeScT..28l5025B10.1088/0268-1242/28/12/125025
JinSRSweeneySJInGaAsBi alloys on InP for efficient near-and mid-infrared light emitting devicesJ. Appl. Phys.20131142131032013JAP...114u3103J10.1063/1.4837615
WuJBand anticrossing in GaP1−xNx alloysPhys. Rev. B200265241303(R)2002PhRvB..65x1303W10.1103/PhysRevB.65.241303
JanottiAWeiS-HZhangSBTheoretical study of the effects of isovalent coalloying of Bi and N in GaAsPhys. Rev. B2002651152032002PhRvB..65k5203J10.1103/PhysRevB.65.115203
BroderickCAHarnedyPEO’ReillyEPTheory of the electronic and optical properties of dilute bismide quantum well lasersIEEE J. Sel. Top. Quant. Electron.201521150331310.1109/JSTQE.2015.2448652
ThomasTRequirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cellSemicond. Sci. Technol.2015300940102015SeScT..30i4010T10.1088/0268-1242/30/9/094010
DengH-XBand crossing in isovalent semiconductor alloys with large size mismatch: First-principles calculations of the electronic structure of bi and n incorporated gaasPhys. Rev. B2010821932042010PhRvB..82s3204D10.1103/PhysRevB.82.193204
SimmonsRAJinSRSweeneySJClowesSKEnhancement of the Rashba interaction in GaAs/AlGaAs quantum wells due to the incorporation of bismuthAppl. Phys. Lett.20151071424012015ApPhL.107n2401S10.1063/1.4932122
UsmanMBroderickCALindsayAO’ReillyEPTight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAsPhys. Rev. B2011842452022011PhRvB..84x5202U10.1103/PhysRevB.84.245202
Sweeney, S. J., Batool, Z., Hild, K., Jin, S. R. & Hosea, T. J. C. The potential role of bismide alloys in future photonic devices. In proceedings of the 13th International Conference on Transparent Optical Networks1 (2011).
PursleyBLuengo-KovacMVardarGGoldmanRSSihVSpin lifetime measurements in gaasbi thin filmsAppl. Phys. Lett.20131020224202013ApPhL.102b2420P10.1063/1.4781415
ChristianTMBeatonDAAlberiKFluegelBMascarenhasAMysterious absence of pair luminescence in gallium phosphide bismideAppl. Phys. Express201580612022015APExp...8f1202C10.7567/APEX.8.061202
NattermannLMOVPE growth of Ga(PBi) on GaP and GaP on Si with Bi fractions up to 8%J. Cryst. Growth20174631512017JCrGr.463..151N1:CAS:528:DC%2BC2sXjsVyjt7g%3D10.1016/j.jcrysgro.2017.02.021
LuoGUnderstanding and reducing deleterious defects in the metastable alloy GaAsBi. NPG AsiaMaterials20179345
Li, H. & Wang, S. M. (eds) Bismuth-Containing Compounds (Springer, New York, 2013).
KondowMGaInNAs: a novel material for long-wavelength semiconductor lasersIEEE J. Sel. Topics Quantum Electron.199737191997IJSTQ...3..719K1:CAS:528:DyaK2sXntVKntr0%3D10.1109/2944.640627
YoshidaJKitaTWadaOOeKTemperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopyJpn. J. Appl. Phys.2003423712003JaJAP..42..371Y1:CAS:528:DC%2BD3sXhvFWis7Y%3D10.1143/JJAP.42.371
BroderickCADetermination of type-I band offsets in GaBixAs1−x quantum wells using polarisation-resolved photovoltage spectroscopy and 12-band k · p calculationsSemicond. Sci. Technol.20153009400
TM Christian (43142_CR41) 2015; 8
T Fuyuki (43142_CR8) 2014; 7
ZL Bushell (43142_CR46) 2018; 123
CA Broderick (43142_CR61) 2015; 21
43142_CR2
RS Joshya (43142_CR62) 2014; 90
CA Broderick (43142_CR3) 2012; 27
43142_CR1
IC Sandall (43142_CR24) 2014; 104
Z Batool (43142_CR31) 2012; 111
TM Christian (43142_CR42) 2016; 55
CA Broderick (43142_CR32) 2013; 28
H-X Deng (43142_CR34) 2010; 82
K Alberi (43142_CR63) 2015; 92
L Nattermann (43142_CR71) 2017; 470
B Fluegel (43142_CR40) 2006; 97
RA Simmons (43142_CR21) 2015; 107
M Güngerich (43142_CR67) 2006; 74
T Thomas (43142_CR17) 2015; 30
Y Zhang (43142_CR64) 2000; 62
R Alaya (43142_CR58) 2016; 16
FA Trumbore (43142_CR44) 1966; 9
43142_CR18
J Yoshida (43142_CR28) 2003; 42
P Ludewig (43142_CR6) 2013; 102
43142_CR15
Y Gu (43142_CR25) 2016; 108
43142_CR57
DP Samadjar (43142_CR49) 2015; 40
H Kim (43142_CR11) 2017; 32
M Usman (43142_CR30) 2011; 84
IP Marko (43142_CR10) 2016; 6
S Francoeur (43142_CR27) 2003; 82
S Liebich (43142_CR68) 2011; 99
G Luo (43142_CR51) 2017; 9
SJ Sweeney (43142_CR5) 2013; 113
K Alberi (43142_CR29) 2007; 75
JJ Lee (43142_CR22) 1997; 70
EP O’Reilly (43142_CR38) 2009; 24
SR Jin (43142_CR14) 2013; 114
B Pursley (43142_CR20) 2013; 102
W Shan (43142_CR35) 1999; 82
W Shan (43142_CR53) 2000; 76
I Vurgaftman (43142_CR56) 2001; 89
P Dongmo (43142_CR26) 2012; 112
J Wu (43142_CR65) 2002; 65
A Janotti (43142_CR55) 2002; 65
CA Broderick (43142_CR52) 2015; 30
IP Marko (43142_CR13) 2017; 23
X Wu (43142_CR12) 2017; 4
L Nattermann (43142_CR43) 2017; 463
S Mazzucato (43142_CR19) 2013; 102
CJ Hunter (43142_CR23) 2012; 24
IP Marko (43142_CR4) 2012; 101
L Nattermann (43142_CR70) 2016; 5
Y Zhang (43142_CR33) 2005; 71
43142_CR45
M Kondow (43142_CR36) 1997; 3
P Carrier (43142_CR39) 2004; 70
CA Broderick (43142_CR16) 2018; 33
B Fluegel (43142_CR66) 2005; 72
K Forghani (43142_CR69) 2014; 105
MPCM Krijn (43142_CR60) 1991; 6
R Butkutė (43142_CR9) 2014; 50
MP Polak (43142_CR48) 2015; 30
SC Jain (43142_CR47) 1990; 68
CG Van de Walle (43142_CR59) 1989; 39
M Usman (43142_CR50) 2013; 87
IP Marko (43142_CR7) 2014; 47
PRC Kent (43142_CR37) 2001; 64
C Harris (43142_CR54) 2008; 20
References_xml – volume: 47
  start-page: 345103
  year: 2014
  ident: 43142_CR7
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/34/345103
  contributor:
    fullname: IP Marko
– volume: 70
  start-page: 035212
  year: 2004
  ident: 43142_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.035212
  contributor:
    fullname: P Carrier
– volume: 27
  start-page: 094011
  year: 2012
  ident: 43142_CR3
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/27/9/094011
  contributor:
    fullname: CA Broderick
– volume: 42
  start-page: 371
  year: 2003
  ident: 43142_CR28
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.42.371
  contributor:
    fullname: J Yoshida
– volume: 40
  start-page: 539
  year: 2015
  ident: 43142_CR49
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2015.06.065
  contributor:
    fullname: DP Samadjar
– volume: 4
  start-page: 1322
  year: 2017
  ident: 43142_CR12
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00240
  contributor:
    fullname: X Wu
– volume: 123
  start-page: 045701
  year: 2018
  ident: 43142_CR46
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5006974
  contributor:
    fullname: ZL Bushell
– volume: 5
  start-page: 209
  year: 2016
  ident: 43142_CR70
  publication-title: Applied Materials Today
  doi: 10.1016/j.apmt.2016.09.018
  contributor:
    fullname: L Nattermann
– volume: 9
  start-page: 4
  year: 1966
  ident: 43142_CR44
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1754592
  contributor:
    fullname: FA Trumbore
– volume: 76
  start-page: 3251
  year: 2000
  ident: 43142_CR53
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126597
  contributor:
    fullname: W Shan
– volume: 39
  start-page: 1871
  year: 1989
  ident: 43142_CR59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1871
  contributor:
    fullname: CG Van de Walle
– volume: 82
  start-page: 3874
  year: 2003
  ident: 43142_CR27
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1581983
  contributor:
    fullname: S Francoeur
– volume: 75
  start-page: 045203
  year: 2007
  ident: 43142_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.045203
  contributor:
    fullname: K Alberi
– volume: 114
  start-page: 213103
  year: 2013
  ident: 43142_CR14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4837615
  contributor:
    fullname: SR Jin
– volume: 463
  start-page: 151
  year: 2017
  ident: 43142_CR43
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2017.02.021
  contributor:
    fullname: L Nattermann
– volume: 30
  start-page: 094001
  year: 2015
  ident: 43142_CR48
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/30/9/094001
  contributor:
    fullname: MP Polak
– volume: 24
  start-page: 2191
  year: 2012
  ident: 43142_CR23
  publication-title: IEEE Photon. Tech. Lett.
  doi: 10.1109/LPT.2012.2225420
  contributor:
    fullname: CJ Hunter
– volume: 28
  start-page: 125025
  year: 2013
  ident: 43142_CR32
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/28/12/125025
  contributor:
    fullname: CA Broderick
– volume: 102
  start-page: 252107
  year: 2013
  ident: 43142_CR19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4812660
  contributor:
    fullname: S Mazzucato
– volume: 97
  start-page: 067205
  year: 2006
  ident: 43142_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.067205
  contributor:
    fullname: B Fluegel
– volume: 104
  start-page: 171109
  year: 2014
  ident: 43142_CR24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4873403
  contributor:
    fullname: IC Sandall
– volume: 8
  start-page: 061202
  year: 2015
  ident: 43142_CR41
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.8.061202
  contributor:
    fullname: TM Christian
– volume: 71
  start-page: 155201
  year: 2005
  ident: 43142_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.155201
  contributor:
    fullname: Y Zhang
– ident: 43142_CR15
  doi: 10.1109/NUSOD.2016.7547020
– volume: 470
  start-page: 15
  year: 2017
  ident: 43142_CR71
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2017.04.005
  contributor:
    fullname: L Nattermann
– volume: 33
  start-page: 094007
  year: 2018
  ident: 43142_CR16
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aad2bd
  contributor:
    fullname: CA Broderick
– volume: 7
  start-page: 082101
  year: 2014
  ident: 43142_CR8
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.7.082101
  contributor:
    fullname: T Fuyuki
– volume: 55
  start-page: 108002
  year: 2016
  ident: 43142_CR42
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.55.108002
  contributor:
    fullname: TM Christian
– volume: 68
  start-page: 3747
  year: 1990
  ident: 43142_CR47
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.346291
  contributor:
    fullname: SC Jain
– volume: 30
  start-page: 094009
  year: 2015
  ident: 43142_CR52
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/30/9/094009
  contributor:
    fullname: CA Broderick
– volume: 84
  start-page: 245202
  year: 2011
  ident: 43142_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.245202
  contributor:
    fullname: M Usman
– volume: 90
  start-page: 165203
  year: 2014
  ident: 43142_CR62
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.165203
  contributor:
    fullname: RS Joshya
– volume: 3
  start-page: 719
  year: 1997
  ident: 43142_CR36
  publication-title: IEEE J. Sel. Topics Quantum Electron.
  doi: 10.1109/2944.640627
  contributor:
    fullname: M Kondow
– volume: 105
  start-page: 111101
  year: 2014
  ident: 43142_CR69
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4895116
  contributor:
    fullname: K Forghani
– volume: 82
  start-page: 193204
  year: 2010
  ident: 43142_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.193204
  contributor:
    fullname: H-X Deng
– volume: 70
  start-page: 3266
  year: 1997
  ident: 43142_CR22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119158
  contributor:
    fullname: JJ Lee
– volume: 21
  start-page: 1503313
  year: 2015
  ident: 43142_CR61
  publication-title: IEEE J. Sel. Top. Quant. Electron.
  doi: 10.1109/JSTQE.2015.2448652
  contributor:
    fullname: CA Broderick
– volume: 16
  start-page: 288
  year: 2016
  ident: 43142_CR58
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2015.11.019
  contributor:
    fullname: R Alaya
– volume: 102
  start-page: 242115
  year: 2013
  ident: 43142_CR6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4811736
  contributor:
    fullname: P Ludewig
– volume: 72
  start-page: 073203
  year: 2005
  ident: 43142_CR66
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.073203
  contributor:
    fullname: B Fluegel
– volume: 65
  start-page: 241303(R)
  year: 2002
  ident: 43142_CR65
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.241303
  contributor:
    fullname: J Wu
– volume: 6
  start-page: 27
  year: 1991
  ident: 43142_CR60
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/6/1/005
  contributor:
    fullname: MPCM Krijn
– ident: 43142_CR1
  doi: 10.1007/978-1-4614-8121-8
– volume: 111
  start-page: 113108
  year: 2012
  ident: 43142_CR31
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4728028
  contributor:
    fullname: Z Batool
– volume: 89
  start-page: 5815
  year: 2001
  ident: 43142_CR56
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1368156
  contributor:
    fullname: I Vurgaftman
– ident: 43142_CR2
  doi: 10.1109/ICTON.2011.5970829
– ident: 43142_CR45
  doi: 10.1002/9780470060193
– volume: 50
  start-page: 1155
  year: 2014
  ident: 43142_CR9
  publication-title: Electron. Lett.
  doi: 10.1049/el.2014.1741
  contributor:
    fullname: R Butkutė
– volume: 108
  start-page: 032102
  year: 2016
  ident: 43142_CR25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4940201
  contributor:
    fullname: Y Gu
– volume: 24
  start-page: 033001
  year: 2009
  ident: 43142_CR38
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/24/3/033001
  contributor:
    fullname: EP O’Reilly
– volume: 65
  start-page: 115203
  year: 2002
  ident: 43142_CR55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.115203
  contributor:
    fullname: A Janotti
– volume: 20
  start-page: 295211
  year: 2008
  ident: 43142_CR54
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: C Harris
– volume: 101
  start-page: 221108
  year: 2012
  ident: 43142_CR4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4768532
  contributor:
    fullname: IP Marko
– volume: 102
  start-page: 022420
  year: 2013
  ident: 43142_CR20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4781415
  contributor:
    fullname: B Pursley
– volume: 64
  start-page: 115208
  year: 2001
  ident: 43142_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.115208
  contributor:
    fullname: PRC Kent
– volume: 107
  start-page: 142401
  year: 2015
  ident: 43142_CR21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932122
  contributor:
    fullname: RA Simmons
– volume: 6
  year: 2016
  ident: 43142_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/srep28863
  contributor:
    fullname: IP Marko
– volume: 30
  start-page: 094010
  year: 2015
  ident: 43142_CR17
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/30/9/094010
  contributor:
    fullname: T Thomas
– volume: 112
  start-page: 093710
  year: 2012
  ident: 43142_CR26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4761996
  contributor:
    fullname: P Dongmo
– volume: 92
  start-page: 241201
  year: 2015
  ident: 43142_CR63
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.241201
  contributor:
    fullname: K Alberi
– volume: 62
  start-page: 4493
  year: 2000
  ident: 43142_CR64
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.4493
  contributor:
    fullname: Y Zhang
– volume: 32
  start-page: 075007
  year: 2017
  ident: 43142_CR11
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aa729b
  contributor:
    fullname: H Kim
– volume: 99
  start-page: 071109
  year: 2011
  ident: 43142_CR68
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3624927
  contributor:
    fullname: S Liebich
– volume: 82
  start-page: 1221
  year: 1999
  ident: 43142_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.1221
  contributor:
    fullname: W Shan
– volume: 113
  start-page: 043110
  year: 2013
  ident: 43142_CR5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4789624
  contributor:
    fullname: SJ Sweeney
– volume: 87
  start-page: 115104
  year: 2013
  ident: 43142_CR50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.115104
  contributor:
    fullname: M Usman
– volume: 9
  start-page: 345
  year: 2017
  ident: 43142_CR51
  publication-title: Materials
  contributor:
    fullname: G Luo
– ident: 43142_CR18
  doi: 10.1109/PVSC.2016.7749791
– volume: 74
  start-page: 241202
  year: 2006
  ident: 43142_CR67
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.241202
  contributor:
    fullname: M Güngerich
– volume: 23
  start-page: 1501512
  year: 2017
  ident: 43142_CR13
  publication-title: IEEE J. Sel. Topics Quantum Electron.
  doi: 10.1109/JSTQE.2017.2719403
  contributor:
    fullname: IP Marko
– ident: 43142_CR57
SSID ssj0000529419
Score 2.3781834
Snippet Using spectroscopic ellipsometry measurements on GaP 1− x Bi x /GaP epitaxial layers up to x  = 3.7% we observe a giant bowing of the direct band gap ( E g Γ )...
Abstract Using spectroscopic ellipsometry measurements on GaP 1− x Bi x /GaP epitaxial layers up to x  = 3.7% we observe a giant bowing of the direct band gap...
Using spectroscopic ellipsometry measurements on GaP1−xBix/GaP epitaxial layers up to x = 3.7% we observe a giant bowing of the direct band gap (EgΓ) and...
Using spectroscopic ellipsometry measurements on GaP 1− x Bi x /GaP epitaxial layers up to x  = 3.7% we observe a giant bowing of the direct band gap (...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 6835
SubjectTerms 132/122
639/301/119/1000
639/301/119/995
Alloys
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Splitting
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxQxcNCK4EupX7i1lQi-6dJLsrtJnqQV2yIoPli4tyXJZjWgu6e7xfYf-OxP9Jc4k9u74wr6tAtJSDIzycxkvgBeeFu1pPzk2iufF87YXJetzWei9Y7yrzWO4p3ff6jOL4p383I-PbgNk1vl6k5MF3XTe3ojPxLIi0yFR7N4vfieU9Uosq5OJTRuwx0uUJhAelZztX5jIStWwc0UKzOT-mhAfkUxZdzkyDkL1MO2-dFGyLzpInnDTprYz-ke7E5yIzteIvo-3ArdA7i7rCR5_RDsGaJ5ZK7_iaNZ3zKU65izXcM-2wWj77CIHW7IxRF_v8bk7sxCivxjsWNn9iP_8-v31Um8Yk1EcsThcfgWm8DINH89PIKL07ef3pznU_WE3CMXHpH1-CKUrUOFQnLupdJSC2vUzPLAy4a3qHl5YVBsxf7aSWWqYLRuJSLP6yDkY9jp-i48ASaNDXIWjFNloARtuqnKMrRcWhVCVdgMXq5gWC-WSTLqZNyWul5CvEaI1wnidZnBwQrM9XRghnqD3gyer5uR1Ml-YbvQX1IfYUTK15-B2kLPelZKlr3d0sUvKWl2VRjKW5PBqxUiN5P_e637_1_rU7gniJbIAVIcwM744zIcopAyumeJEv8Cknzmow
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OE8EX8ROrp0TwTaObj7bJg4iKd4dw4oML9xaSNNXA2a7bHu7-9076ccceJ_jUQhISZqad3zCZ3wC89LaoU_BDlS89lU5bqvLa0gWvvUv8a5VL9c4nX4vjpfxymp_uwdzuaBJgd21ol_pJLddnbza_t-_xg383loyrtx06oVQoxjRFdygxuLoBN7kUMln8yQT3R65vriXTU-3M9Ut3_dMl6Lx6ZfJK3nRwR4d34c6EI8mHUfH3YC809-HW2Fly-wDMEaq9J679g6tJWxPEecTZpiI_7IqkZ7eKDW3XLvb4ehaH688kDJWAJDbkyH5jdPMxbkgV0Thxcex-xSqQlKjfdg9hefj5-6djOvVSoB59co-OyMuQ1w7DC8GYF6USiltdLiwLLK9YjXGY5xpBLM5XTpS6CFqpWqAqvQpcPIL9pm3CYyBC2yAWQbsyD4muTVVFnoeaCVuGUEibwatZgmY1UmaYIdUtlBnlbVDeZpC3yTM4mIVsZu0bjsBDF_gflhm8uBhGw0_ZDNuE9jzN4ZoP7P0ZlDvKudg1UWfvjjTx50ChXUidWGwyeD2r8XLzf5_1yX8c5inc5smc0p1IfgD7_fo8PEPc0rvngzH-BWv16hc
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEB6aDYFcQv5K3SZBhd4a05VkydKxWfJDoaWHBnIzkiwngtZeYodk36DnPGKepCOvd8OG9tCTDZpBZmbsmfHMfAL44IysYvKTKpe7NLPapEpUJh2zytmIv1baOO_89Zu8uMy-XImrASYnzsKs1O-5-tSig4lDYFSn6OoyTJzWYF1QOY4WPJGT5f-UWLHKqB7mYv7Ouup7ngPKl-2QL2qivas524atIUYkn-dK3YFXvt6FjfmpkbM9MOeo0o7Y5h65SVMRjOGINXVJrs2UxGs7DXXa3NrQ4e3P0Lc2E99P-ZFQk3PznT79fnw4CQ-kDGh6yB7aX6H0JJbhZ-0-XJ6d_phcpMNJCalDj9uhm3GZF5XF5IFT6niuuGJG52NDPRUlrTDLckxjiIr0yvJcS6-VqjgqyinP-GsY1U3t3wDh2ng-9trmwkcwNlVKIXxFucm9l5lJ4ONChsV0DohR9IVsroq5xAuUeNFLvBAJHCzEXAwvR1swDCu0xK9slsD75TKadaxVmNo3d5GGadZj8yeQr6hnuWsExl5dqcNND5AtMx0xahI4XijyefN_P-vb_yN_B5ss2lZsfmQHMOpu7_whBiidPeot8w-Yh9-S
  priority: 102
  providerName: Springer Nature
Title Giant bowing of the band gap and spin-orbit splitting energy in GaP1−xBix dilute bismide alloys
URI https://link.springer.com/article/10.1038/s41598-019-43142-5
https://www.proquest.com/docview/2218969114
https://search.proquest.com/docview/2229228744
https://pubmed.ncbi.nlm.nih.gov/PMC6497675
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SlJZcSp9023RRobfW2bUk29KxWfKgsGEpDezNSLLcCrL2Ejs0-Qc55yf2l3Qk20k30EsvfiAJiZmxZsYz8wngo1Fp6Z2fSJjMRFxLFYmkVNGUlkZ7_LVC-3rn-Wl6csa_LpPlFiRDLUxI2jfa7Vfnq_3K_Qy5leuVmQx5YpPFfJZy6TFIJtuwnTH2l4veAXpTyWPZF8hMmZg0qKR8IVksI1SXHJ2vXXiCZg33O8GmPro3Mh-mSD6Ikwb1c_QMnvZ2I_nSre85bNnqBTzuTpK8fgnqGNncEl3_wtGkLgnadUSrqiA_1Jr4e7N2VVRfaNfi47kL6c7Ehso_4ipyrBbx75vbqwN3RQqH4ojDXbNyhSU-NH_dvIKzo8Pvs5OoPz0hMqiFW1Q9htuk1OhQsDg2LBNMUCWzqYptnBRxiZ6XoRLNVuwvNMtkaqUQJUPmGWEpew07VV3ZN0CYVJZNrdRZYj1AmyjSJLFlzFRmbcrVCD4NNMzXHUhGHoLbTOQd8XMkfh6Inycj2BvInPcfTJNTNDVkijsvH8GHu2YUdR-_UJWtL30fKmnA6x9BtsGeu1k9WPZmC8pQAM3uZWYEnwdG3k_-77W-_e-J3sEu9RLncyPpHuy0F5f2PdovrR6j1C6zMTw6ODxdfMO3WTobh38BeJ1zMQ7y_AdXMfTg
link.rule.ids 230,315,733,786,790,870,891,12083,21416,24346,27955,27956,31752,31753,33777,33778,41153,42222,43343,43838,51609,53825,53827,74100,74657
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQwcARFCC6IpwgUMBI3iLqxndg-VYBoF2grDq20N8t2nGIJkoWkov0Dzv1EvoSxN7urrQSnRLIt2zNjz4znBfDKmaqJyk8unXA5t8rksmxMPqGNszH_Wm1jvPPhUTU94Z9m5Wx8cOtHt8rlnZgu6rpz8Y18hyIvUhUeTb47_5HHqlHRujqW0LgONzhjPNK5mInVG0u0YvFCjbEyEyZ3euRXMaasUDlyTo562CY_WguZV10kr9hJE_vZuwt3RrmRvF0g-h5c8-19uLmoJHnxAMw-onkgtvuFo0nXEJTriDVtTU7NnMRvPw8tbsiGAX-_heTuTHyK_COhJfvmS_Hn9-X5u3BO6oDkiMND_z3UnkTT_EX_EE72Phy_n-Zj9YTcIRcekPU47svGokLBisIxIZmkRomJKXxR1kWDmpejCsVW7C8tE6rySsqGIfKc9JQ9gq22a_1jIEwZzyZeWVH6mKBN1lVZ-qZgRnhfcZPB6yUM9XyRJEMn4zaTegFxjRDXCeK6zGB7CWY9Hpher9GbwctVM5J6tF-Y1ndnsQ9VNOXrz0BsoGc1a0yWvdnShq8paXbFVcxbk8GbJSLXk_97rU_-v9YXcGt6fHigDz4efX4Kt2mkq-gMSbdha_h55p-hwDLY54kq_wKMY-mQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagCNQL4lcEWjASN4g2tpPYPiEKbMtf1QOV9mbZjk0ttclCUtG-AWcekSdh7M3uaivBKZFiy87M2N-MZzyD0Aurax-Nn1xYbvPSSJ2Lyuu8oN6amH-tMfG-85fD-uC4_DirZmP8Uz-GVS73xLRRN52NZ-QTClgka1ia5cSPYRFH76av59_zWEEqelrHchrX0Q1AySKWceAzvjpviR6tksjx3kzBxKQH7Ir3y4jMAUVLsMk2sWmtcF4Nl7ziM01QNL2Dbo86JH6zYPpddM2199DNRVXJy_tI7wPLB2y6n9Abdx6DjoeNbhv8Tc9xfPbz0MIPmTDA62lIoc_YpVuAOLR4Xx-RP79-X-yFC9wEEE3oHvqz0Dgc3fSX_QN0PH3_9e1BPlZSyC0g8gAwZEtXeQPGBSPEMi6YoFryQhNHqoZ4sMIslaDCQnthGJe1k0J4Boy0wlH2EG21XeseIcykdqxw0vDKxWRtoqmrynnCNHeuLnWGXi5pqOaLhBkqObqZUAuKK6C4ShRXVYZ2lmRW4-Lp1ZrVGXq--gxiH30ZunXdeWxDJU25-zPEN9izGjUmzt780oaTlEC7LmXMYZOhV0tGrgf_91wf_3-uz9AtEEj1-cPhpydom0axinGRdAdtDT_O3S7oLoN5moTyL1a17bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+bowing+of+the+band+gap+and+spin-orbit+splitting+energy+in+GaP1-xBix+dilute+bismide+alloys&rft.jtitle=Scientific+reports&rft.au=Bushell%2C+Zoe+L&rft.au=Broderick%2C+Christopher+A&rft.au=Nattermann%2C+Lukas&rft.au=Joseph%2C+Rita&rft.date=2019-05-02&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=6835&rft.epage=6835&rft_id=info:doi/10.1038%2Fs41598-019-43142-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon