Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series

Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting. Landsat data have been widely used to provide efficient and timely estimates of forest AGB because of their long archive and relatively high spatial resolution. Previous studies have...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 102; pp. 222 - 231
Main Authors Zhu, Xiaolin, Liu, Desheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting. Landsat data have been widely used to provide efficient and timely estimates of forest AGB because of their long archive and relatively high spatial resolution. Previous studies have explored different empirical modeling approaches to estimate AGB, but most of them only used a single Landsat image in the peak season, which may cause a saturation problem and low accuracy. To improve the accuracy of AGB estimation using Landsat images, this study explored the use of NDVI seasonal time-series derived from Landsat images across different seasons to estimate AGB in southeast Ohio by six empirical modeling approaches. Results clearly show that NDVI in the fall season has a stronger correlation to AGB than in the peak season, and using seasonal NDVI time-series can result in a more accurate AGB estimation and less saturation than using a single NDVI. In comparing these different empirical approaches, it is difficult to decide which one is superior to the other because they have different strengths and their accuracy is generally similar, indicating that modeling methods may not be the key issue for improving the accuracy of AGB estimation from Landsat data. This study suggests that future research should pay more attention to seasonal time-series data, and especially the data from the fall season.
AbstractList Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting. Landsat data have been widely used to provide efficient and timely estimates of forest AGB because of their long archive and relatively high spatial resolution. Previous studies have explored different empirical modeling approaches to estimate AGB, but most of them only used a single Landsat image in the peak season, which may cause a saturation problem and low accuracy. To improve the accuracy of AGB estimation using Landsat images, this study explored the use of NDVI seasonal time-series derived from Landsat images across different seasons to estimate AGB in southeast Ohio by six empirical modeling approaches. Results clearly show that NDVI in the fall season has a stronger correlation to AGB than in the peak season, and using seasonal NDVI time-series can result in a more accurate AGB estimation and less saturation than using a single NDVI. In comparing these different empirical approaches, it is difficult to decide which one is superior to the other because they have different strengths and their accuracy is generally similar, indicating that modeling methods may not be the key issue for improving the accuracy of AGB estimation from Landsat data. This study suggests that future research should pay more attention to seasonal time-series data, and especially the data from the fall season.
Author Zhu, Xiaolin
Liu, Desheng
Author_xml – sequence: 1
  givenname: Xiaolin
  surname: Zhu
  fullname: Zhu, Xiaolin
– sequence: 2
  givenname: Desheng
  surname: Liu
  fullname: Liu, Desheng
  email: liu.738@osu.edu
BookMark eNqNkE1rGzEQhkVJoE7S39A99rJbSbuWZg89hPTLYNpL2h6FLI2CzFpyNWtD_n3luPSQS3oQL4jnHWaeK3aRckLG3greCS7U-20XaV9oW18nuRg6Dl2NV2whQMsWZL-8YAs-yqGVWqjX7IpoyzkXSwUL9mu125d8jOmhCbkgzY3d5CM-lHxIvtnEvLNETf2POzvHnJoDnVhCSznZqVnb5MnOzbePP1dNhbAlLBHphl0GOxG--ZvX7MfnT_d3X9v19y-ru9t163oQc6sRRgUOAYJc6hD8YHWwXjkrUA6hhpceAuqhl9YJjRY20osRgI-gwqa_Zu_Oc-sVvw91T7OL5HCabMJ8ICOFUKC06uFFVCitRz5oLiv64Yy6kokKBuPi_HT_XGycjODm5N5szT_35uTecDA1al8_6-9LFVge_6N5e25ilXaMWAy5iMmhjwXdbHyOL874AztiqO8
CitedBy_id crossref_primary_10_1117_1_JRS_12_016028
crossref_primary_10_3390_f13050693
crossref_primary_10_1007_s00477_022_02359_z
crossref_primary_10_3390_atmos14020416
crossref_primary_10_3390_rs16071212
crossref_primary_10_3390_s24237774
crossref_primary_10_1002_ldr_4027
crossref_primary_10_1016_j_jag_2021_102307
crossref_primary_10_1016_j_isprsjprs_2023_03_010
crossref_primary_10_1080_10106049_2016_1178814
crossref_primary_10_1016_j_agwat_2020_106346
crossref_primary_10_1080_10106049_2019_1655799
crossref_primary_10_3832_ifor4305_016
crossref_primary_10_1016_j_ecolind_2023_109870
crossref_primary_10_1007_s11676_020_01155_1
crossref_primary_10_3390_rs13020261
crossref_primary_10_3390_cli10100143
crossref_primary_10_53516_ajfr_1558255
crossref_primary_10_3390_f10010039
crossref_primary_10_3390_rs13152962
crossref_primary_10_3390_su11092480
crossref_primary_10_1016_j_ejrs_2021_08_004
crossref_primary_10_21829_myb_2020_2611884
crossref_primary_10_1109_TGRS_2020_2998295
crossref_primary_10_31413_nativa_v7i5_7181
crossref_primary_10_3390_rs15225358
crossref_primary_10_3390_rs14205082
crossref_primary_10_1016_j_rsase_2022_100876
crossref_primary_10_1038_s41561_022_01114_x
crossref_primary_10_3390_rs14092079
crossref_primary_10_3390_w15132473
crossref_primary_10_1029_2024MS004342
crossref_primary_10_3390_rs14030504
crossref_primary_10_1016_j_jag_2022_102811
crossref_primary_10_5194_essd_15_3365_2023
crossref_primary_10_1007_s42965_023_00320_x
crossref_primary_10_1016_j_isprsjprs_2020_08_010
crossref_primary_10_3390_su15064826
crossref_primary_10_3390_rs13071282
crossref_primary_10_1590_0102_77863910007
crossref_primary_10_1186_s40663_019_0210_2
crossref_primary_10_3390_rs14163843
crossref_primary_10_3390_f15101743
crossref_primary_10_3390_rs15153772
crossref_primary_10_1080_01431161_2024_2403626
crossref_primary_10_1007_s11629_019_5968_8
crossref_primary_10_3390_rs11192195
crossref_primary_10_3390_rs15051404
crossref_primary_10_3390_rs11232750
crossref_primary_10_3390_rs16071229
crossref_primary_10_1007_s10661_024_12478_5
crossref_primary_10_3390_f11010045
crossref_primary_10_3390_agronomy14010051
crossref_primary_10_1016_j_ecoleng_2022_106768
crossref_primary_10_1080_01431161_2017_1356488
crossref_primary_10_1016_j_rse_2020_112282
crossref_primary_10_1016_j_rse_2024_114348
crossref_primary_10_1016_j_ecolind_2025_113115
crossref_primary_10_1016_j_rsase_2022_100751
crossref_primary_10_1111_gfs_12520
crossref_primary_10_3390_rs8060469
crossref_primary_10_1080_01431161_2020_1771789
crossref_primary_10_1002_rse2_184
crossref_primary_10_1016_j_ecoinf_2024_102732
crossref_primary_10_1080_10106049_2022_2153930
crossref_primary_10_1080_10106049_2019_1594394
crossref_primary_10_3390_plants13223258
crossref_primary_10_1038_s41598_024_62464_7
crossref_primary_10_1109_JSTARS_2019_2921817
crossref_primary_10_3390_rs16081338
crossref_primary_10_1007_s11676_018_0743_1
crossref_primary_10_1080_07038992_2016_1217485
crossref_primary_10_3390_rs10091446
crossref_primary_10_1016_j_jag_2019_02_004
crossref_primary_10_3389_fpls_2019_01281
crossref_primary_10_3390_f15101720
crossref_primary_10_1371_journal_pone_0213356
crossref_primary_10_3390_rs16050846
crossref_primary_10_18393_ejss_926882
crossref_primary_10_1117_1_JRS_10_035010
crossref_primary_10_1007_s10021_022_00793_2
crossref_primary_10_1016_j_ecolind_2024_111818
crossref_primary_10_1111_phor_12487
crossref_primary_10_1016_j_jenvman_2019_05_097
crossref_primary_10_1111_jac_12732
crossref_primary_10_3390_rs12193228
crossref_primary_10_1016_j_aquabot_2017_10_004
crossref_primary_10_1093_forestry_cpac036
crossref_primary_10_1080_10106049_2019_1629644
crossref_primary_10_1080_10106049_2016_1240717
crossref_primary_10_3390_f14091747
crossref_primary_10_1080_10106049_2020_1861662
crossref_primary_10_1117_1_JRS_12_046026
crossref_primary_10_1117_1_JRS_12_046029
crossref_primary_10_1016_j_rse_2022_113367
crossref_primary_10_3390_f14051064
crossref_primary_10_1016_j_rse_2019_111402
crossref_primary_10_3390_rs10081183
crossref_primary_10_1016_j_apgeog_2024_103357
crossref_primary_10_1016_j_jag_2024_103910
crossref_primary_10_1080_24749508_2022_2139484
crossref_primary_10_3390_rs16040705
crossref_primary_10_1007_s12665_018_7613_1
crossref_primary_10_1080_07038992_2021_1968811
crossref_primary_10_1515_forj_2017_0014
crossref_primary_10_3390_rs14174386
crossref_primary_10_1016_j_ecoinf_2021_101305
crossref_primary_10_1016_j_rse_2017_07_018
crossref_primary_10_1007_s11356_020_09755_4
crossref_primary_10_1016_j_foreco_2024_121726
crossref_primary_10_1016_j_agrformet_2018_04_002
crossref_primary_10_1016_j_eswa_2022_118839
crossref_primary_10_3390_f15020349
crossref_primary_10_1016_j_asr_2021_03_035
crossref_primary_10_1016_j_jag_2023_103369
crossref_primary_10_1186_s13021_016_0055_8
crossref_primary_10_1007_s12517_022_10140_3
crossref_primary_10_3390_f14020299
crossref_primary_10_1016_j_ecolind_2024_112495
crossref_primary_10_1016_j_jag_2016_03_010
crossref_primary_10_1016_j_scitotenv_2021_147335
crossref_primary_10_1016_j_agrformet_2023_109498
crossref_primary_10_5194_hess_26_2045_2022
crossref_primary_10_3390_rs14040930
crossref_primary_10_1016_j_jag_2021_102397
crossref_primary_10_1080_17538947_2020_1808718
crossref_primary_10_3390_rs12010098
crossref_primary_10_1016_j_jag_2018_11_009
crossref_primary_10_1080_10106049_2020_1869328
crossref_primary_10_1016_j_ecoinf_2022_101951
crossref_primary_10_1016_j_jag_2016_11_005
crossref_primary_10_1007_s11676_021_01421_w
crossref_primary_10_1016_j_isprsjprs_2017_07_012
crossref_primary_10_1016_j_resconrec_2022_106485
crossref_primary_10_1016_j_rsase_2024_101430
crossref_primary_10_3832_ifor1880_009
crossref_primary_10_1088_1755_1315_1430_1_012020
crossref_primary_10_1007_s40333_018_0017_y
crossref_primary_10_3389_fclim_2022_938975
crossref_primary_10_3390_f14030526
crossref_primary_10_26848_rbgf_v17_2_p1127_1146
crossref_primary_10_1016_j_scitotenv_2024_171297
crossref_primary_10_1080_10106049_2023_2195824
crossref_primary_10_3390_rs11070738
crossref_primary_10_3390_land13091534
crossref_primary_10_1016_j_jag_2019_05_017
crossref_primary_10_3390_f14061175
crossref_primary_10_3390_rs17071163
crossref_primary_10_1139_cjfr_2017_0346
crossref_primary_10_3390_rs13122338
crossref_primary_10_3390_rs14194702
crossref_primary_10_3390_su132111979
crossref_primary_10_1016_j_ecoinf_2024_102828
crossref_primary_10_1016_j_compag_2019_104875
crossref_primary_10_4995_raet_2023_19242
crossref_primary_10_3390_rs11111275
crossref_primary_10_3390_rs14010176
crossref_primary_10_3390_su15129700
crossref_primary_10_3832_ifor1891_009
crossref_primary_10_1088_1755_1315_860_1_012084
crossref_primary_10_3390_rs11060722
crossref_primary_10_1088_1748_9326_ab93f9
crossref_primary_10_1002_eco_1937
crossref_primary_10_1016_j_ecoinf_2024_102479
crossref_primary_10_1016_j_ecolind_2021_107645
crossref_primary_10_3390_rs12182894
crossref_primary_10_3390_rs13020218
crossref_primary_10_1111_2041_210X_13729
crossref_primary_10_3390_rs11070768
crossref_primary_10_3390_rs15030559
crossref_primary_10_3390_agriculture11010051
crossref_primary_10_1088_1755_1315_500_1_012087
crossref_primary_10_3390_su8020159
crossref_primary_10_1029_2024AV001188
crossref_primary_10_1016_j_rse_2018_05_024
crossref_primary_10_2208_jscejj_22_22010
crossref_primary_10_1016_j_isprsjprs_2019_03_016
crossref_primary_10_1016_j_ecolind_2023_111307
crossref_primary_10_3390_f12070902
crossref_primary_10_3390_rs12152365
crossref_primary_10_3390_f7030070
crossref_primary_10_1016_j_jag_2018_06_014
crossref_primary_10_3390_f14030506
crossref_primary_10_3390_su15075695
crossref_primary_10_1109_TGRS_2024_3408316
crossref_primary_10_3390_rs13132592
crossref_primary_10_3390_f15020394
crossref_primary_10_3390_plants12051006
crossref_primary_10_1038_s41597_024_03543_2
crossref_primary_10_3390_f8090302
crossref_primary_10_1016_j_isprsjprs_2018_01_006
crossref_primary_10_3390_rs17050898
crossref_primary_10_1186_s13007_023_01043_9
crossref_primary_10_3390_agronomy14020376
crossref_primary_10_3390_rs14122786
crossref_primary_10_3390_rs15184488
crossref_primary_10_2166_ws_2023_139
crossref_primary_10_1016_j_catena_2024_108474
crossref_primary_10_1007_s11676_018_0713_7
crossref_primary_10_1186_s40663_020_00276_7
crossref_primary_10_17474_artvinofd_1113265
crossref_primary_10_3390_rs10060898
crossref_primary_10_3390_f15030428
crossref_primary_10_1080_15481603_2023_2270791
crossref_primary_10_2989_20702620_2018_1463150
crossref_primary_10_3832_ifor3209_012
crossref_primary_10_3390_s19245374
crossref_primary_10_1016_j_jsames_2025_105474
crossref_primary_10_1016_j_jag_2023_103435
crossref_primary_10_1080_07038992_2019_1594176
crossref_primary_10_3390_w13192666
crossref_primary_10_3390_rs15010284
crossref_primary_10_1088_2515_7620_acf6fd
crossref_primary_10_3390_f13060840
crossref_primary_10_3390_rs12111824
crossref_primary_10_1590_2179_8087_033818
crossref_primary_10_3390_photonics8120582
crossref_primary_10_2139_ssrn_4008745
crossref_primary_10_3390_rs15225276
crossref_primary_10_1016_j_ecolind_2019_106033
crossref_primary_10_3390_f10020104
crossref_primary_10_3390_rs14153639
crossref_primary_10_1016_j_ecolmodel_2023_110377
crossref_primary_10_1080_10106049_2015_1041557
crossref_primary_10_3390_f9120758
crossref_primary_10_1007_s11676_017_0404_9
crossref_primary_10_1080_10106049_2018_1552322
crossref_primary_10_3390_rs16152760
crossref_primary_10_1016_j_jag_2022_103024
crossref_primary_10_1080_10106049_2016_1188164
crossref_primary_10_2139_ssrn_4107048
crossref_primary_10_3390_w11030483
crossref_primary_10_1016_j_rse_2018_07_024
crossref_primary_10_3390_f15030524
crossref_primary_10_3390_ijgi8060245
crossref_primary_10_3390_ijgi9050329
crossref_primary_10_1007_s43538_021_00046_1
crossref_primary_10_3390_app9224965
crossref_primary_10_3390_agronomy13092302
crossref_primary_10_3390_f9120781
crossref_primary_10_3390_rs8070595
crossref_primary_10_3390_rs9030238
crossref_primary_10_3389_fmars_2021_633128
crossref_primary_10_1016_j_ecolind_2024_111752
crossref_primary_10_1590_0001_3765202420221041
crossref_primary_10_1016_j_ecolind_2021_108363
crossref_primary_10_3390_s150818865
crossref_primary_10_3390_rs14061384
crossref_primary_10_3390_rs12010187
crossref_primary_10_1016_j_ecoinf_2024_102566
crossref_primary_10_1007_s12524_020_01121_8
crossref_primary_10_1016_j_jag_2017_01_016
crossref_primary_10_1007_s10661_025_13649_8
crossref_primary_10_1002_wfp2_12030
crossref_primary_10_3390_ijgi8010007
crossref_primary_10_3390_rs13173468
crossref_primary_10_1016_j_jag_2016_08_007
crossref_primary_10_1007_s11356_024_34456_7
crossref_primary_10_1016_j_isprsjprs_2017_05_016
crossref_primary_10_1016_j_foreco_2021_119828
crossref_primary_10_1007_s41651_025_00220_9
crossref_primary_10_4000_geomorphologie_14564
crossref_primary_10_3390_f9120778
crossref_primary_10_5194_bg_18_6077_2021
crossref_primary_10_3390_rs10111825
Cites_doi 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
10.1093/forestscience/50.4.551
10.1016/0306-4573(95)90003-9
10.3390/rs3071427
10.1016/j.rse.2009.12.012
10.1016/j.rse.2013.08.010
10.1021/ci00027a006
10.1139/x81-021
10.1109/TGRS.2003.811693
10.1016/j.isprsjprs.2012.03.011
10.1016/j.rse.2009.12.018
10.1016/S0034-4257(03)00131-7
10.1016/j.jaridenv.2010.04.007
10.2737/NRS-GTR-61
10.1016/j.foreco.2006.01.030
10.1155/2012/436537
10.1016/j.rse.2012.01.008
10.1016/j.rse.2010.11.010
10.1023/A:1010933404324
10.1016/j.rse.2011.10.012
10.1016/j.rse.2007.08.021
10.1034/j.1600-0889.1991.00012.x
10.1126/science.1155458
10.1016/j.foreco.2005.11.001
10.1016/j.chnaes.2010.08.005
10.1016/j.rse.2004.12.001
10.1016/S0034-4257(97)00005-9
10.1139/x03-099
10.1016/S0034-4257(01)00324-8
10.1111/j.1365-2486.2005.00955.x
10.1016/j.isprsjprs.2012.02.009
10.1046/j.1466-822X.2003.00010.x
10.1590/S0044-59672005000200015
10.1016/0034-4257(93)90040-5
10.1139/x01-111
10.5849/jof.12-071
10.1016/S0034-4257(02)00130-X
10.1006/jare.1999.0505
10.1093/forestscience/45.4.573
10.2747/1548-1603.48.2.141
10.18637/jss.v018.i02
10.1016/S0034-4257(02)00173-6
10.32614/RJ-2010-006
10.3390/rs1030184
ContentType Journal Article
Copyright 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1016/j.isprsjprs.2014.08.014
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 231
ExternalDocumentID 10_1016_j_isprsjprs_2014_08_014
S0924271614002202
GeographicLocations Ohio
GeographicLocations_xml – name: Ohio
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
FR3
H8D
KR7
L7M
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c381t-7e8968ce88f257ffd4a7fad6ca1e24fca1d2d8fe7432ac17ea8b2d19880986fb3
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Sun Aug 24 04:05:25 EDT 2025
Fri Jul 11 11:51:37 EDT 2025
Tue Jul 01 03:46:34 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Fri Feb 23 02:28:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Forest inventory and analysis
Seasonal time-series
NDVI
Empirical model
Landsat
Aboveground biomass
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-7e8968ce88f257ffd4a7fad6ca1e24fca1d2d8fe7432ac17ea8b2d19880986fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1677904702
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_2116867638
proquest_miscellaneous_1677904702
crossref_citationtrail_10_1016_j_isprsjprs_2014_08_014
crossref_primary_10_1016_j_isprsjprs_2014_08_014
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2014_08_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2015
2015-04-00
20150401
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gleason, Im (b0110) 2011; 48
Bradley (b0025) 1995; 31
Richter, Kellenberger, Kaufmann (b0210) 2009; 1
Breiman (b0030) 2001; 45
Dymond, Mladenoff, Radeloff (b0090) 2002; 80
Houghton (b0130) 2005; 11
Labrecque, Fournier, Luther, Piercey (b0140) 2006; 226
Liknes, G.C., Holden, G.R., Nelson, M.D., McRoberts, R.E., 2005. Spatially Locating FIA Plots from Pixel Values. In: McRoberts, R.E.R., Gregory, A., Van Deusen, Paul C., McWilliams, William H., Cieszewski, Chris J. (Eds.), Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium. U.S. Department of Agriculture, Forest Service, North Central Research Station. pp. 99–103.
Drake, Knox, Dubayah, Clark, Condit, Blair, Hofton (b0065) 2003; 12
Tetko, Livingstone, Luik (b0225) 1995; 35
Lu, Batistella (b0160) 2005; 35
Dong, Kaufmann, Myneni, Tucker, Kauppi, Liski, Buermann, Alexeyev, Hughes (b0060) 2003; 84
Woodall, C.W., Conkling, B.L., Amacher, M.C., Coulston, J.W., 2009. The Forest Inventory and Analysis Database Version 4.0: Database Description and Users Manual for Phase 3. U.S. FOREST SERVICE.
Ingram, Dawson, Whittaker (b0135) 2005; 94
Anderson, Hanson, Haas (b0005) 1993; 45
Boelman, Gough, McLaren, Greaves (b0020) 2011
Sarker, Nichol (b0215) 2011; 115
Ludeke, Janecek, Kohlmaier (b0170) 1991; 43
Canadell, Raupach (b0035) 2008; 320
Cohen, Goward (b0045) 2004; 54
Liang, Li, Wang (b0145) 2012
Dyer (b0085) 2001; 31
Westoby (b0245) 1989
Liaw, Wiener (b0150) 2002; 2
Fournier, Luther, Guindon, Lambert, Piercey, Hall, Wulder (b0100) 2003; 33
Soenen, Peddle, Hall, Coburn, Hall (b0220) 2010; 114
Gunther, Fritsch (b0120) 2010; 2
Gasparri, Parmuchi, Bono, Karszenbaum, Montenegro (b0105) 2010; 74
Mevik, Wehrens (b0185) 2007; 18
Blackard, Finco, Helmer, Holden, Hoppus, Jacobs, Lister, Moisen, Nelson, Riemann, Ruefenacht, Salajanu, Weyermann, Winterberger, Brandeis, Czaplewski, McRoberts, Patterson, Tymcio (b0015) 2008; 112
Du, Cui, Zhou, Shi, Xu, Fan, Lü (b0075) 2010; 30
Cutler, Boyd, Foody, Vetrivel (b0055) 2012; 70
du Plessis (b0080) 1999; 42
Grier, Vogt, Keyes, Edmonds (b0115) 1981; 11
Hansen, Schjoerring (b0125) 2003; 86
Riano, Chuvieco, Salas, Aguado (b0205) 2003; 41
Cohen, Maiersperger, Gower, Turner (b0050) 2003; 84
Tsui, Coops, Wulder, Marshall, McCardle (b0230) 2012; 69
Main-Knorn, Moisen, Healey, Keeton, Freeman, Hostert (b0180) 2011; 3
Parresol (b0190) 1999; 45
Fassnacht, Gower, MacKenzie, Nordheim, Lillesand (b0095) 1997; 61
Venables, Ripley (b0240) 2002
Wolter, Berkley, Peckham, Singh, Townsend (b0250) 2012; 121
Main-Knorn, Cohen, Kennedy, Grodzki, Pflugmacher, Griffiths, Hostert (b0175) 2013; 139
Avitabile, Baccini, Friedl, Schmullius (b0010) 2012; 117
Popescu, Wynne, Scrivani (b0195) 2004; 50
United States. Soil Conservation Service, 1985. Soil survey of Athens County, Ohio. Washington, D.C.: The Service.
Chojnacky, Blinn, Prisley (b0040) 2013; 111
Drury, Runkle (b0070) 2006; 223
Powell, Cohen, Healey, Kennedy, Moisen, Pierce, Ohmann (b0200) 2010; 114
Lu, Chen, Wang, Moran, Batistella, Zhang, Vaglio Laurin, Saah (b0165) 2012; 2012
Westoby (10.1016/j.isprsjprs.2014.08.014_b0245) 1989
Sarker (10.1016/j.isprsjprs.2014.08.014_b0215) 2011; 115
Powell (10.1016/j.isprsjprs.2014.08.014_b0200) 2010; 114
10.1016/j.isprsjprs.2014.08.014_b0235
Cohen (10.1016/j.isprsjprs.2014.08.014_b0045) 2004; 54
Liang (10.1016/j.isprsjprs.2014.08.014_b0145) 2012
Houghton (10.1016/j.isprsjprs.2014.08.014_b0130) 2005; 11
Blackard (10.1016/j.isprsjprs.2014.08.014_b0015) 2008; 112
Wolter (10.1016/j.isprsjprs.2014.08.014_b0250) 2012; 121
Riano (10.1016/j.isprsjprs.2014.08.014_b0205) 2003; 41
Avitabile (10.1016/j.isprsjprs.2014.08.014_b0010) 2012; 117
Anderson (10.1016/j.isprsjprs.2014.08.014_b0005) 1993; 45
Main-Knorn (10.1016/j.isprsjprs.2014.08.014_b0175) 2013; 139
Ingram (10.1016/j.isprsjprs.2014.08.014_b0135) 2005; 94
Gasparri (10.1016/j.isprsjprs.2014.08.014_b0105) 2010; 74
Dymond (10.1016/j.isprsjprs.2014.08.014_b0090) 2002; 80
Parresol (10.1016/j.isprsjprs.2014.08.014_b0190) 1999; 45
Cohen (10.1016/j.isprsjprs.2014.08.014_b0050) 2003; 84
Liaw (10.1016/j.isprsjprs.2014.08.014_b0150) 2002; 2
Canadell (10.1016/j.isprsjprs.2014.08.014_b0035) 2008; 320
Main-Knorn (10.1016/j.isprsjprs.2014.08.014_b0180) 2011; 3
Hansen (10.1016/j.isprsjprs.2014.08.014_b0125) 2003; 86
10.1016/j.isprsjprs.2014.08.014_b0155
Fassnacht (10.1016/j.isprsjprs.2014.08.014_b0095) 1997; 61
Tsui (10.1016/j.isprsjprs.2014.08.014_b0230) 2012; 69
Breiman (10.1016/j.isprsjprs.2014.08.014_b0030) 2001; 45
du Plessis (10.1016/j.isprsjprs.2014.08.014_b0080) 1999; 42
Cutler (10.1016/j.isprsjprs.2014.08.014_b0055) 2012; 70
Gunther (10.1016/j.isprsjprs.2014.08.014_b0120) 2010; 2
Lu (10.1016/j.isprsjprs.2014.08.014_b0160) 2005; 35
Boelman (10.1016/j.isprsjprs.2014.08.014_b0020) 2011
Bradley (10.1016/j.isprsjprs.2014.08.014_b0025) 1995; 31
Drake (10.1016/j.isprsjprs.2014.08.014_b0065) 2003; 12
Ludeke (10.1016/j.isprsjprs.2014.08.014_b0170) 1991; 43
Dyer (10.1016/j.isprsjprs.2014.08.014_b0085) 2001; 31
Chojnacky (10.1016/j.isprsjprs.2014.08.014_b0040) 2013; 111
Lu (10.1016/j.isprsjprs.2014.08.014_b0165) 2012; 2012
Tetko (10.1016/j.isprsjprs.2014.08.014_b0225) 1995; 35
Fournier (10.1016/j.isprsjprs.2014.08.014_b0100) 2003; 33
Dong (10.1016/j.isprsjprs.2014.08.014_b0060) 2003; 84
Mevik (10.1016/j.isprsjprs.2014.08.014_b0185) 2007; 18
Grier (10.1016/j.isprsjprs.2014.08.014_b0115) 1981; 11
Labrecque (10.1016/j.isprsjprs.2014.08.014_b0140) 2006; 226
Venables (10.1016/j.isprsjprs.2014.08.014_b0240) 2002
Richter (10.1016/j.isprsjprs.2014.08.014_b0210) 2009; 1
10.1016/j.isprsjprs.2014.08.014_b0255
Gleason (10.1016/j.isprsjprs.2014.08.014_b0110) 2011; 48
Popescu (10.1016/j.isprsjprs.2014.08.014_b0195) 2004; 50
Soenen (10.1016/j.isprsjprs.2014.08.014_b0220) 2010; 114
Drury (10.1016/j.isprsjprs.2014.08.014_b0070) 2006; 223
Du (10.1016/j.isprsjprs.2014.08.014_b0075) 2010; 30
References_xml – volume: 41
  start-page: 1056
  year: 2003
  end-page: 1061
  ident: b0205
  article-title: Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003)
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 61
  start-page: 229
  year: 1997
  end-page: 245
  ident: b0095
  article-title: Estimating the leaf area index of North Central Wisconsin forests using the Landsat Thematic Mapper
  publication-title: Remote Sens. Environ.
– volume: 117
  start-page: 366
  year: 2012
  end-page: 380
  ident: b0010
  article-title: Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda
  publication-title: Remote Sens. Environ.
– year: 2002
  ident: b0240
  article-title: Modern Applied Statistics with S
– volume: 74
  start-page: 1262
  year: 2010
  end-page: 1270
  ident: b0105
  article-title: Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina
  publication-title: J. Arid Environ.
– year: 2012
  ident: b0145
  article-title: Advanced Remote Sensing: Terrestrial Information Extraction and Applications
– volume: 11
  start-page: 945
  year: 2005
  end-page: 958
  ident: b0130
  article-title: Aboveground forest biomass and the global carbon balance
  publication-title: Glob. Change Biol.
– volume: 84
  start-page: 561
  year: 2003
  end-page: 571
  ident: b0050
  article-title: An improved strategy for regression of biophysical variables and Landsat ETM+ data
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0030
  article-title: Random forests
  publication-title: Machine Learning
– volume: 139
  start-page: 277
  year: 2013
  end-page: 290
  ident: b0175
  article-title: Monitoring coniferous forest biomass change using a Landsat trajectory-based approach
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 1053
  year: 2010
  end-page: 1068
  ident: b0200
  article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches
  publication-title: Remote Sens. Environ.
– volume: 33
  start-page: 1846
  year: 2003
  end-page: 1863
  ident: b0100
  article-title: Mapping aboveground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec
  publication-title: Can. J. Forest Res.-Rev. Can. De Recherche Forestiere
– volume: 115
  start-page: 968
  year: 2011
  end-page: 977
  ident: b0215
  article-title: Improved forest biomass estimates using ALOS AVNIR-2 texture indices
  publication-title: Remote Sens. Environ.
– volume: 50
  start-page: 551
  year: 2004
  end-page: 565
  ident: b0195
  article-title: Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA
  publication-title: Forest Sci.
– volume: 35
  start-page: 826
  year: 1995
  end-page: 833
  ident: b0225
  article-title: Neural-network studies. 1. Comparison of overfitting and overtraining
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 2012
  start-page: 16
  year: 2012
  ident: b0165
  article-title: Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates
  publication-title: Int. J. Forestry Res.
– volume: 111
  start-page: 132
  year: 2013
  end-page: 138
  ident: b0040
  article-title: Web application to access and visualize US forest inventory and analysis program down woody materials data
  publication-title: J. Forest.
– volume: 94
  start-page: 491
  year: 2005
  end-page: 507
  ident: b0135
  article-title: Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks
  publication-title: Remote Sens. Environ.
– volume: 80
  start-page: 460
  year: 2002
  end-page: 472
  ident: b0090
  article-title: Phenological differences in Tasseled Cap indices improve deciduous forest classification
  publication-title: Remote Sens. Environ.
– volume: 223
  start-page: 200
  year: 2006
  end-page: 210
  ident: b0070
  article-title: Forest vegetation change in southeast Ohio: do older forests serve as useful models for predicting the successional trajectory of future forests?
  publication-title: For. Ecol. Manage.
– volume: 18
  start-page: 1
  year: 2007
  end-page: 23
  ident: b0185
  article-title: The pls package: principal component and partial least squares regression in R
  publication-title: J. Stat. Software
– volume: 1
  start-page: 184
  year: 2009
  end-page: 196
  ident: b0210
  article-title: Comparison of Topographic correction methods
  publication-title: Remote Sens.
– volume: 121
  start-page: 69
  year: 2012
  end-page: 79
  ident: b0250
  article-title: Exploiting tree shadows on snow for estimating forest basal area using Landsat data
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 165
  year: 1993
  end-page: 175
  ident: b0005
  article-title: Evaluating landsat thematic mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 30
  year: 2010
  end-page: 38
  ident: b0120
  article-title: Neuralnet: training of neural networks
  publication-title: The R J.
– volume: 11
  start-page: 155
  year: 1981
  end-page: 167
  ident: b0115
  article-title: Biomass distribution and above-ground and below-ground production in young and mature Abies-Amabilis zone ecosystems of the Washington Cascades
  publication-title: Can. J. Forest Res.
– volume: 320
  start-page: 1456
  year: 2008
  end-page: 1457
  ident: b0035
  article-title: Managing forests for climate change mitigation
  publication-title: Science
– reference: Liknes, G.C., Holden, G.R., Nelson, M.D., McRoberts, R.E., 2005. Spatially Locating FIA Plots from Pixel Values. In: McRoberts, R.E.R., Gregory, A., Van Deusen, Paul C., McWilliams, William H., Cieszewski, Chris J. (Eds.), Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium. U.S. Department of Agriculture, Forest Service, North Central Research Station. pp. 99–103.
– volume: 114
  start-page: 1325
  year: 2010
  end-page: 1337
  ident: b0220
  article-title: Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain
  publication-title: Remote Sens. Environ.
– volume: 43
  start-page: 188
  year: 1991
  end-page: 196
  ident: b0170
  article-title: Modeling the seasonal Co2 uptake by land vegetation using the global vegetation index
  publication-title: Tellus B
– volume: 226
  start-page: 129
  year: 2006
  end-page: 144
  ident: b0140
  article-title: A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland
  publication-title: For. Ecol. Manage.
– volume: 69
  start-page: 121
  year: 2012
  end-page: 133
  ident: b0230
  article-title: Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest
  publication-title: Isprs J. Photogrammetry Remote Sens.
– volume: 48
  start-page: 141
  year: 2011
  end-page: 170
  ident: b0110
  article-title: A review of remote sensing of forest biomass and biofuel: options for small-area applications
  publication-title: GIsci. Remote Sens.
– volume: 54
  start-page: 535
  year: 2004
  end-page: 545
  ident: b0045
  article-title: Landsat’s role in ecological applications of remote sensing
  publication-title: Bioscience
– start-page: 6
  year: 2011
  ident: b0020
  article-title: Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra?
  publication-title: Environ. Res. Lett.
– volume: 112
  start-page: 1658
  year: 2008
  end-page: 1677
  ident: b0015
  article-title: Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information
  publication-title: Remote Sens. Environ.
– volume: 31
  start-page: 786
  year: 1995
  ident: b0025
  article-title: Neural networks – a comprehensive foundation – Haykin, S
  publication-title: Inf. Process. Manage.
– volume: 86
  start-page: 542
  year: 2003
  end-page: 553
  ident: b0125
  article-title: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 573
  year: 1999
  end-page: 593
  ident: b0190
  article-title: Assessing tree and stand biomass: a review with examples and critical comparisons
  publication-title: Forest Sci.
– year: 1989
  ident: b0245
  article-title: Introduction to World Forestry: People and their Trecs
– volume: 42
  start-page: 235
  year: 1999
  end-page: 260
  ident: b0080
  article-title: Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia
  publication-title: J. Arid Environ.
– volume: 12
  start-page: 147
  year: 2003
  end-page: 159
  ident: b0065
  article-title: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships
  publication-title: Glob. Ecol. Biogeogr.
– volume: 30
  start-page: 257
  year: 2010
  end-page: 263
  ident: b0075
  article-title: The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI
  publication-title: Acta Ecol. Sin.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: b0150
  article-title: Classification and regression by random forest
  publication-title: R News
– reference: United States. Soil Conservation Service, 1985. Soil survey of Athens County, Ohio. Washington, D.C.: The Service.
– reference: Woodall, C.W., Conkling, B.L., Amacher, M.C., Coulston, J.W., 2009. The Forest Inventory and Analysis Database Version 4.0: Database Description and Users Manual for Phase 3. U.S. FOREST SERVICE.
– volume: 3
  start-page: 1427
  year: 2011
  end-page: 1446
  ident: b0180
  article-title: Evaluating the remote sensing and inventory-based estimation of biomass in the Western Carpathians
  publication-title: Remote Sens.
– volume: 84
  start-page: 393
  year: 2003
  end-page: 410
  ident: b0060
  article-title: Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks
  publication-title: Remote Sens. Environ.
– volume: 31
  start-page: 1708
  year: 2001
  end-page: 1718
  ident: b0085
  article-title: Using witness trees to assess forest change in southeastern Ohio
  publication-title: Can. J. Forest Res.-Rev. Can. De Recherche Forestiere
– volume: 35
  start-page: 249
  year: 2005
  end-page: 257
  ident: b0160
  article-title: Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon
  publication-title: Acta Amazonica
– volume: 70
  start-page: 66
  year: 2012
  end-page: 77
  ident: b0055
  article-title: Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: an assessment of predictions between regions
  publication-title: Isprs J. Photogrammetry Remote Sens.
– volume: 54
  start-page: 535
  year: 2004
  ident: 10.1016/j.isprsjprs.2014.08.014_b0045
  article-title: Landsat’s role in ecological applications of remote sensing
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
– volume: 50
  start-page: 551
  year: 2004
  ident: 10.1016/j.isprsjprs.2014.08.014_b0195
  article-title: Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA
  publication-title: Forest Sci.
  doi: 10.1093/forestscience/50.4.551
– volume: 31
  start-page: 786
  year: 1995
  ident: 10.1016/j.isprsjprs.2014.08.014_b0025
  article-title: Neural networks – a comprehensive foundation – Haykin, S
  publication-title: Inf. Process. Manage.
  doi: 10.1016/0306-4573(95)90003-9
– volume: 3
  start-page: 1427
  year: 2011
  ident: 10.1016/j.isprsjprs.2014.08.014_b0180
  article-title: Evaluating the remote sensing and inventory-based estimation of biomass in the Western Carpathians
  publication-title: Remote Sens.
  doi: 10.3390/rs3071427
– ident: 10.1016/j.isprsjprs.2014.08.014_b0235
– volume: 114
  start-page: 1325
  year: 2010
  ident: 10.1016/j.isprsjprs.2014.08.014_b0220
  article-title: Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.12.012
– volume: 139
  start-page: 277
  year: 2013
  ident: 10.1016/j.isprsjprs.2014.08.014_b0175
  article-title: Monitoring coniferous forest biomass change using a Landsat trajectory-based approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.010
– volume: 35
  start-page: 826
  year: 1995
  ident: 10.1016/j.isprsjprs.2014.08.014_b0225
  article-title: Neural-network studies. 1. Comparison of overfitting and overtraining
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00027a006
– volume: 11
  start-page: 155
  year: 1981
  ident: 10.1016/j.isprsjprs.2014.08.014_b0115
  article-title: Biomass distribution and above-ground and below-ground production in young and mature Abies-Amabilis zone ecosystems of the Washington Cascades
  publication-title: Can. J. Forest Res.
  doi: 10.1139/x81-021
– volume: 41
  start-page: 1056
  year: 2003
  ident: 10.1016/j.isprsjprs.2014.08.014_b0205
  article-title: Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003)
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.811693
– volume: 70
  start-page: 66
  year: 2012
  ident: 10.1016/j.isprsjprs.2014.08.014_b0055
  article-title: Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: an assessment of predictions between regions
  publication-title: Isprs J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.03.011
– volume: 114
  start-page: 1053
  year: 2010
  ident: 10.1016/j.isprsjprs.2014.08.014_b0200
  article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.12.018
– volume: 86
  start-page: 542
  year: 2003
  ident: 10.1016/j.isprsjprs.2014.08.014_b0125
  article-title: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00131-7
– volume: 74
  start-page: 1262
  year: 2010
  ident: 10.1016/j.isprsjprs.2014.08.014_b0105
  article-title: Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2010.04.007
– ident: 10.1016/j.isprsjprs.2014.08.014_b0255
  doi: 10.2737/NRS-GTR-61
– volume: 226
  start-page: 129
  year: 2006
  ident: 10.1016/j.isprsjprs.2014.08.014_b0140
  article-title: A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2006.01.030
– volume: 2012
  start-page: 16
  year: 2012
  ident: 10.1016/j.isprsjprs.2014.08.014_b0165
  article-title: Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates
  publication-title: Int. J. Forestry Res.
  doi: 10.1155/2012/436537
– volume: 121
  start-page: 69
  year: 2012
  ident: 10.1016/j.isprsjprs.2014.08.014_b0250
  article-title: Exploiting tree shadows on snow for estimating forest basal area using Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.008
– volume: 115
  start-page: 968
  year: 2011
  ident: 10.1016/j.isprsjprs.2014.08.014_b0215
  article-title: Improved forest biomass estimates using ALOS AVNIR-2 texture indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.11.010
– year: 2012
  ident: 10.1016/j.isprsjprs.2014.08.014_b0145
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.isprsjprs.2014.08.014_b0030
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 117
  start-page: 366
  year: 2012
  ident: 10.1016/j.isprsjprs.2014.08.014_b0010
  article-title: Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.012
– ident: 10.1016/j.isprsjprs.2014.08.014_b0155
– volume: 112
  start-page: 1658
  year: 2008
  ident: 10.1016/j.isprsjprs.2014.08.014_b0015
  article-title: Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.08.021
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.isprsjprs.2014.08.014_b0150
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 43
  start-page: 188
  year: 1991
  ident: 10.1016/j.isprsjprs.2014.08.014_b0170
  article-title: Modeling the seasonal Co2 uptake by land vegetation using the global vegetation index
  publication-title: Tellus B
  doi: 10.1034/j.1600-0889.1991.00012.x
– volume: 320
  start-page: 1456
  year: 2008
  ident: 10.1016/j.isprsjprs.2014.08.014_b0035
  article-title: Managing forests for climate change mitigation
  publication-title: Science
  doi: 10.1126/science.1155458
– volume: 223
  start-page: 200
  year: 2006
  ident: 10.1016/j.isprsjprs.2014.08.014_b0070
  article-title: Forest vegetation change in southeast Ohio: do older forests serve as useful models for predicting the successional trajectory of future forests?
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2005.11.001
– volume: 30
  start-page: 257
  year: 2010
  ident: 10.1016/j.isprsjprs.2014.08.014_b0075
  article-title: The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI
  publication-title: Acta Ecol. Sin.
  doi: 10.1016/j.chnaes.2010.08.005
– volume: 94
  start-page: 491
  year: 2005
  ident: 10.1016/j.isprsjprs.2014.08.014_b0135
  article-title: Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.12.001
– volume: 61
  start-page: 229
  year: 1997
  ident: 10.1016/j.isprsjprs.2014.08.014_b0095
  article-title: Estimating the leaf area index of North Central Wisconsin forests using the Landsat Thematic Mapper
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00005-9
– volume: 33
  start-page: 1846
  year: 2003
  ident: 10.1016/j.isprsjprs.2014.08.014_b0100
  article-title: Mapping aboveground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec
  publication-title: Can. J. Forest Res.-Rev. Can. De Recherche Forestiere
  doi: 10.1139/x03-099
– volume: 80
  start-page: 460
  year: 2002
  ident: 10.1016/j.isprsjprs.2014.08.014_b0090
  article-title: Phenological differences in Tasseled Cap indices improve deciduous forest classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00324-8
– volume: 11
  start-page: 945
  year: 2005
  ident: 10.1016/j.isprsjprs.2014.08.014_b0130
  article-title: Aboveground forest biomass and the global carbon balance
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2005.00955.x
– volume: 69
  start-page: 121
  year: 2012
  ident: 10.1016/j.isprsjprs.2014.08.014_b0230
  article-title: Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest
  publication-title: Isprs J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.02.009
– volume: 12
  start-page: 147
  year: 2003
  ident: 10.1016/j.isprsjprs.2014.08.014_b0065
  article-title: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1046/j.1466-822X.2003.00010.x
– volume: 35
  start-page: 249
  year: 2005
  ident: 10.1016/j.isprsjprs.2014.08.014_b0160
  article-title: Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon
  publication-title: Acta Amazonica
  doi: 10.1590/S0044-59672005000200015
– volume: 45
  start-page: 165
  year: 1993
  ident: 10.1016/j.isprsjprs.2014.08.014_b0005
  article-title: Evaluating landsat thematic mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(93)90040-5
– volume: 31
  start-page: 1708
  year: 2001
  ident: 10.1016/j.isprsjprs.2014.08.014_b0085
  article-title: Using witness trees to assess forest change in southeastern Ohio
  publication-title: Can. J. Forest Res.-Rev. Can. De Recherche Forestiere
  doi: 10.1139/x01-111
– volume: 111
  start-page: 132
  year: 2013
  ident: 10.1016/j.isprsjprs.2014.08.014_b0040
  article-title: Web application to access and visualize US forest inventory and analysis program down woody materials data
  publication-title: J. Forest.
  doi: 10.5849/jof.12-071
– volume: 84
  start-page: 393
  year: 2003
  ident: 10.1016/j.isprsjprs.2014.08.014_b0060
  article-title: Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00130-X
– year: 1989
  ident: 10.1016/j.isprsjprs.2014.08.014_b0245
– start-page: 6
  year: 2011
  ident: 10.1016/j.isprsjprs.2014.08.014_b0020
  article-title: Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra?
  publication-title: Environ. Res. Lett.
– volume: 42
  start-page: 235
  year: 1999
  ident: 10.1016/j.isprsjprs.2014.08.014_b0080
  article-title: Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia
  publication-title: J. Arid Environ.
  doi: 10.1006/jare.1999.0505
– volume: 45
  start-page: 573
  year: 1999
  ident: 10.1016/j.isprsjprs.2014.08.014_b0190
  article-title: Assessing tree and stand biomass: a review with examples and critical comparisons
  publication-title: Forest Sci.
  doi: 10.1093/forestscience/45.4.573
– volume: 48
  start-page: 141
  year: 2011
  ident: 10.1016/j.isprsjprs.2014.08.014_b0110
  article-title: A review of remote sensing of forest biomass and biofuel: options for small-area applications
  publication-title: GIsci. Remote Sens.
  doi: 10.2747/1548-1603.48.2.141
– volume: 18
  start-page: 1
  year: 2007
  ident: 10.1016/j.isprsjprs.2014.08.014_b0185
  article-title: The pls package: principal component and partial least squares regression in R
  publication-title: J. Stat. Software
  doi: 10.18637/jss.v018.i02
– year: 2002
  ident: 10.1016/j.isprsjprs.2014.08.014_b0240
– volume: 84
  start-page: 561
  year: 2003
  ident: 10.1016/j.isprsjprs.2014.08.014_b0050
  article-title: An improved strategy for regression of biophysical variables and Landsat ETM+ data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00173-6
– volume: 2
  start-page: 30
  year: 2010
  ident: 10.1016/j.isprsjprs.2014.08.014_b0120
  article-title: Neuralnet: training of neural networks
  publication-title: The R J.
  doi: 10.32614/RJ-2010-006
– volume: 1
  start-page: 184
  year: 2009
  ident: 10.1016/j.isprsjprs.2014.08.014_b0210
  article-title: Comparison of Topographic correction methods
  publication-title: Remote Sens.
  doi: 10.3390/rs1030184
SSID ssj0001568
Score 2.5593944
Snippet Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting. Landsat data have been widely used to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 222
SubjectTerms Aboveground biomass
Accuracy
autumn
Biomass
carbon footprint
Empirical analysis
Empirical model
Estimates
Forest inventory and analysis
Forests
Landsat
NDVI
normalized difference vegetation index
Ohio
remote sensing
Saturation
Seasonal time-series
Seasons
time series analysis
Title Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series
URI https://dx.doi.org/10.1016/j.isprsjprs.2014.08.014
https://www.proquest.com/docview/1677904702
https://www.proquest.com/docview/2116867638
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iB_UgrrgOEbzWadM0Tb0NozJuc3G9hbRJdETqYEfBi7_d97qMCwwePJTSNinl5a3p994jZI-jHYliBoIkIUBhYewlaWI8P0nhURYJXVbbv-iL3jU_vYvupki3yYVBWGWt-yudXmrr-k67pmZ7OBi0L30IHRi4-xAiYLoo6mHOY-Ty_Y8vmEdQpcPhYA9H_8B4DYrhS_EIB2K8eFnLM-CTLNQvXV0aoONFslB7jrRTfdwSmbL5Mpn_Vk9wmczWLc0f3lfI7Xi7gIJfCu-jsNxvFrM4ckMx6x7cZoo1NqrkRYoI-HuKe4bonNNzzAHWI9o_vDmh2IHeQ2a1xSq5Pj666va8uouCl4E1HnmxlYmQmZXSgXg6Z7iOnTYi04Fl3MHJMCOdBVeC6SyIrZYpM0ECgp1I4dJwjUznz7ldRxiUb1wYOWvQ8GvMRmc2CI0RoY78jG8Q0VBOZXWJcex08aQaLNmjGpNcIckV9sAMYKI_njisqmz8PeWgWRr1g2EU2IK_J-82i6lAnPAfic7t82uhAoEFGHnss8ljIGYWUoBilpv_-YgtMgdXUQUD2ibTo5dXuwMezihtlSzcIjOdk7Ne_xMML_2L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jO0wP4id-G8FrWZu2aeptTGXTuYtTdwtpk-iG1OE2wf_e99Z2OGF48FAKTV8JL3lf6fu9R8hFgHYkjBgIkoAAhfmREyexdtw4gaE05Gpebf--x9uPwe0gHFRIq8TCYFploftznT7X1sWTRsHNxng4bDy4EDowcPchREC4KOjhGlanCquk1uzctXsLhezliDh830GCpTSv4WT8MRnBhWlewbycpxesMlK_1PXcBt1sko3CeaTNfH5bpGKybbL-o6TgNqkXXc1fv3bI8-LEgIJrCt-jsOKfBoEcmaYIvAfPmWKZjRy_SDEJ_oXisSH657SLMGA1pb2rpw7FJvQO7lcz2SWPN9f9VtspGik4KRjkqRMZEXORGiEsSKi1OlCRVZqnyjMssHDTTAtrwJtgKvUio0TCtBeDbMeC28TfI9XsPTP7mAnlauuH1mi0_QoB6cx4vtbcV6GbBgeEl5yTaVFlHJtdvMkynWwkFyyXyHKJbTA9IHQXhOO80MbfJJfl0silPSPBHPxNfF4upgSJwt8kKjPvs4n0ONZgDCKXrX4HwmYuOOhmcfifSZyRert_35XdTu_uiKzBSJhnBR2T6vRjZk7A4Zkmp8WG_gat7gBL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+forest+aboveground+biomass+estimation+using+seasonal+Landsat+NDVI+time-series&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Zhu%2C+Xiaolin&rft.au=Liu%2C+Desheng&rft.date=2015-04-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=102&rft.spage=222&rft.epage=231&rft_id=info:doi/10.1016%2Fj.isprsjprs.2014.08.014&rft.externalDocID=S0924271614002202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon