Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series
Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting. Landsat data have been widely used to provide efficient and timely estimates of forest AGB because of their long archive and relatively high spatial resolution. Previous studies have...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 102; pp. 222 - 231 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting. Landsat data have been widely used to provide efficient and timely estimates of forest AGB because of their long archive and relatively high spatial resolution. Previous studies have explored different empirical modeling approaches to estimate AGB, but most of them only used a single Landsat image in the peak season, which may cause a saturation problem and low accuracy. To improve the accuracy of AGB estimation using Landsat images, this study explored the use of NDVI seasonal time-series derived from Landsat images across different seasons to estimate AGB in southeast Ohio by six empirical modeling approaches. Results clearly show that NDVI in the fall season has a stronger correlation to AGB than in the peak season, and using seasonal NDVI time-series can result in a more accurate AGB estimation and less saturation than using a single NDVI. In comparing these different empirical approaches, it is difficult to decide which one is superior to the other because they have different strengths and their accuracy is generally similar, indicating that modeling methods may not be the key issue for improving the accuracy of AGB estimation from Landsat data. This study suggests that future research should pay more attention to seasonal time-series data, and especially the data from the fall season. |
---|---|
AbstractList | Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting. Landsat data have been widely used to provide efficient and timely estimates of forest AGB because of their long archive and relatively high spatial resolution. Previous studies have explored different empirical modeling approaches to estimate AGB, but most of them only used a single Landsat image in the peak season, which may cause a saturation problem and low accuracy. To improve the accuracy of AGB estimation using Landsat images, this study explored the use of NDVI seasonal time-series derived from Landsat images across different seasons to estimate AGB in southeast Ohio by six empirical modeling approaches. Results clearly show that NDVI in the fall season has a stronger correlation to AGB than in the peak season, and using seasonal NDVI time-series can result in a more accurate AGB estimation and less saturation than using a single NDVI. In comparing these different empirical approaches, it is difficult to decide which one is superior to the other because they have different strengths and their accuracy is generally similar, indicating that modeling methods may not be the key issue for improving the accuracy of AGB estimation from Landsat data. This study suggests that future research should pay more attention to seasonal time-series data, and especially the data from the fall season. |
Author | Zhu, Xiaolin Liu, Desheng |
Author_xml | – sequence: 1 givenname: Xiaolin surname: Zhu fullname: Zhu, Xiaolin – sequence: 2 givenname: Desheng surname: Liu fullname: Liu, Desheng email: liu.738@osu.edu |
BookMark | eNqNkE1rGzEQhkVJoE7S39A99rJbSbuWZg89hPTLYNpL2h6FLI2CzFpyNWtD_n3luPSQS3oQL4jnHWaeK3aRckLG3greCS7U-20XaV9oW18nuRg6Dl2NV2whQMsWZL-8YAs-yqGVWqjX7IpoyzkXSwUL9mu125d8jOmhCbkgzY3d5CM-lHxIvtnEvLNETf2POzvHnJoDnVhCSznZqVnb5MnOzbePP1dNhbAlLBHphl0GOxG--ZvX7MfnT_d3X9v19y-ru9t163oQc6sRRgUOAYJc6hD8YHWwXjkrUA6hhpceAuqhl9YJjRY20osRgI-gwqa_Zu_Oc-sVvw91T7OL5HCabMJ8ICOFUKC06uFFVCitRz5oLiv64Yy6kokKBuPi_HT_XGycjODm5N5szT_35uTecDA1al8_6-9LFVge_6N5e25ilXaMWAy5iMmhjwXdbHyOL874AztiqO8 |
CitedBy_id | crossref_primary_10_1117_1_JRS_12_016028 crossref_primary_10_3390_f13050693 crossref_primary_10_1007_s00477_022_02359_z crossref_primary_10_3390_atmos14020416 crossref_primary_10_3390_rs16071212 crossref_primary_10_3390_s24237774 crossref_primary_10_1002_ldr_4027 crossref_primary_10_1016_j_jag_2021_102307 crossref_primary_10_1016_j_isprsjprs_2023_03_010 crossref_primary_10_1080_10106049_2016_1178814 crossref_primary_10_1016_j_agwat_2020_106346 crossref_primary_10_1080_10106049_2019_1655799 crossref_primary_10_3832_ifor4305_016 crossref_primary_10_1016_j_ecolind_2023_109870 crossref_primary_10_1007_s11676_020_01155_1 crossref_primary_10_3390_rs13020261 crossref_primary_10_3390_cli10100143 crossref_primary_10_53516_ajfr_1558255 crossref_primary_10_3390_f10010039 crossref_primary_10_3390_rs13152962 crossref_primary_10_3390_su11092480 crossref_primary_10_1016_j_ejrs_2021_08_004 crossref_primary_10_21829_myb_2020_2611884 crossref_primary_10_1109_TGRS_2020_2998295 crossref_primary_10_31413_nativa_v7i5_7181 crossref_primary_10_3390_rs15225358 crossref_primary_10_3390_rs14205082 crossref_primary_10_1016_j_rsase_2022_100876 crossref_primary_10_1038_s41561_022_01114_x crossref_primary_10_3390_rs14092079 crossref_primary_10_3390_w15132473 crossref_primary_10_1029_2024MS004342 crossref_primary_10_3390_rs14030504 crossref_primary_10_1016_j_jag_2022_102811 crossref_primary_10_5194_essd_15_3365_2023 crossref_primary_10_1007_s42965_023_00320_x crossref_primary_10_1016_j_isprsjprs_2020_08_010 crossref_primary_10_3390_su15064826 crossref_primary_10_3390_rs13071282 crossref_primary_10_1590_0102_77863910007 crossref_primary_10_1186_s40663_019_0210_2 crossref_primary_10_3390_rs14163843 crossref_primary_10_3390_f15101743 crossref_primary_10_3390_rs15153772 crossref_primary_10_1080_01431161_2024_2403626 crossref_primary_10_1007_s11629_019_5968_8 crossref_primary_10_3390_rs11192195 crossref_primary_10_3390_rs15051404 crossref_primary_10_3390_rs11232750 crossref_primary_10_3390_rs16071229 crossref_primary_10_1007_s10661_024_12478_5 crossref_primary_10_3390_f11010045 crossref_primary_10_3390_agronomy14010051 crossref_primary_10_1016_j_ecoleng_2022_106768 crossref_primary_10_1080_01431161_2017_1356488 crossref_primary_10_1016_j_rse_2020_112282 crossref_primary_10_1016_j_rse_2024_114348 crossref_primary_10_1016_j_ecolind_2025_113115 crossref_primary_10_1016_j_rsase_2022_100751 crossref_primary_10_1111_gfs_12520 crossref_primary_10_3390_rs8060469 crossref_primary_10_1080_01431161_2020_1771789 crossref_primary_10_1002_rse2_184 crossref_primary_10_1016_j_ecoinf_2024_102732 crossref_primary_10_1080_10106049_2022_2153930 crossref_primary_10_1080_10106049_2019_1594394 crossref_primary_10_3390_plants13223258 crossref_primary_10_1038_s41598_024_62464_7 crossref_primary_10_1109_JSTARS_2019_2921817 crossref_primary_10_3390_rs16081338 crossref_primary_10_1007_s11676_018_0743_1 crossref_primary_10_1080_07038992_2016_1217485 crossref_primary_10_3390_rs10091446 crossref_primary_10_1016_j_jag_2019_02_004 crossref_primary_10_3389_fpls_2019_01281 crossref_primary_10_3390_f15101720 crossref_primary_10_1371_journal_pone_0213356 crossref_primary_10_3390_rs16050846 crossref_primary_10_18393_ejss_926882 crossref_primary_10_1117_1_JRS_10_035010 crossref_primary_10_1007_s10021_022_00793_2 crossref_primary_10_1016_j_ecolind_2024_111818 crossref_primary_10_1111_phor_12487 crossref_primary_10_1016_j_jenvman_2019_05_097 crossref_primary_10_1111_jac_12732 crossref_primary_10_3390_rs12193228 crossref_primary_10_1016_j_aquabot_2017_10_004 crossref_primary_10_1093_forestry_cpac036 crossref_primary_10_1080_10106049_2019_1629644 crossref_primary_10_1080_10106049_2016_1240717 crossref_primary_10_3390_f14091747 crossref_primary_10_1080_10106049_2020_1861662 crossref_primary_10_1117_1_JRS_12_046026 crossref_primary_10_1117_1_JRS_12_046029 crossref_primary_10_1016_j_rse_2022_113367 crossref_primary_10_3390_f14051064 crossref_primary_10_1016_j_rse_2019_111402 crossref_primary_10_3390_rs10081183 crossref_primary_10_1016_j_apgeog_2024_103357 crossref_primary_10_1016_j_jag_2024_103910 crossref_primary_10_1080_24749508_2022_2139484 crossref_primary_10_3390_rs16040705 crossref_primary_10_1007_s12665_018_7613_1 crossref_primary_10_1080_07038992_2021_1968811 crossref_primary_10_1515_forj_2017_0014 crossref_primary_10_3390_rs14174386 crossref_primary_10_1016_j_ecoinf_2021_101305 crossref_primary_10_1016_j_rse_2017_07_018 crossref_primary_10_1007_s11356_020_09755_4 crossref_primary_10_1016_j_foreco_2024_121726 crossref_primary_10_1016_j_agrformet_2018_04_002 crossref_primary_10_1016_j_eswa_2022_118839 crossref_primary_10_3390_f15020349 crossref_primary_10_1016_j_asr_2021_03_035 crossref_primary_10_1016_j_jag_2023_103369 crossref_primary_10_1186_s13021_016_0055_8 crossref_primary_10_1007_s12517_022_10140_3 crossref_primary_10_3390_f14020299 crossref_primary_10_1016_j_ecolind_2024_112495 crossref_primary_10_1016_j_jag_2016_03_010 crossref_primary_10_1016_j_scitotenv_2021_147335 crossref_primary_10_1016_j_agrformet_2023_109498 crossref_primary_10_5194_hess_26_2045_2022 crossref_primary_10_3390_rs14040930 crossref_primary_10_1016_j_jag_2021_102397 crossref_primary_10_1080_17538947_2020_1808718 crossref_primary_10_3390_rs12010098 crossref_primary_10_1016_j_jag_2018_11_009 crossref_primary_10_1080_10106049_2020_1869328 crossref_primary_10_1016_j_ecoinf_2022_101951 crossref_primary_10_1016_j_jag_2016_11_005 crossref_primary_10_1007_s11676_021_01421_w crossref_primary_10_1016_j_isprsjprs_2017_07_012 crossref_primary_10_1016_j_resconrec_2022_106485 crossref_primary_10_1016_j_rsase_2024_101430 crossref_primary_10_3832_ifor1880_009 crossref_primary_10_1088_1755_1315_1430_1_012020 crossref_primary_10_1007_s40333_018_0017_y crossref_primary_10_3389_fclim_2022_938975 crossref_primary_10_3390_f14030526 crossref_primary_10_26848_rbgf_v17_2_p1127_1146 crossref_primary_10_1016_j_scitotenv_2024_171297 crossref_primary_10_1080_10106049_2023_2195824 crossref_primary_10_3390_rs11070738 crossref_primary_10_3390_land13091534 crossref_primary_10_1016_j_jag_2019_05_017 crossref_primary_10_3390_f14061175 crossref_primary_10_3390_rs17071163 crossref_primary_10_1139_cjfr_2017_0346 crossref_primary_10_3390_rs13122338 crossref_primary_10_3390_rs14194702 crossref_primary_10_3390_su132111979 crossref_primary_10_1016_j_ecoinf_2024_102828 crossref_primary_10_1016_j_compag_2019_104875 crossref_primary_10_4995_raet_2023_19242 crossref_primary_10_3390_rs11111275 crossref_primary_10_3390_rs14010176 crossref_primary_10_3390_su15129700 crossref_primary_10_3832_ifor1891_009 crossref_primary_10_1088_1755_1315_860_1_012084 crossref_primary_10_3390_rs11060722 crossref_primary_10_1088_1748_9326_ab93f9 crossref_primary_10_1002_eco_1937 crossref_primary_10_1016_j_ecoinf_2024_102479 crossref_primary_10_1016_j_ecolind_2021_107645 crossref_primary_10_3390_rs12182894 crossref_primary_10_3390_rs13020218 crossref_primary_10_1111_2041_210X_13729 crossref_primary_10_3390_rs11070768 crossref_primary_10_3390_rs15030559 crossref_primary_10_3390_agriculture11010051 crossref_primary_10_1088_1755_1315_500_1_012087 crossref_primary_10_3390_su8020159 crossref_primary_10_1029_2024AV001188 crossref_primary_10_1016_j_rse_2018_05_024 crossref_primary_10_2208_jscejj_22_22010 crossref_primary_10_1016_j_isprsjprs_2019_03_016 crossref_primary_10_1016_j_ecolind_2023_111307 crossref_primary_10_3390_f12070902 crossref_primary_10_3390_rs12152365 crossref_primary_10_3390_f7030070 crossref_primary_10_1016_j_jag_2018_06_014 crossref_primary_10_3390_f14030506 crossref_primary_10_3390_su15075695 crossref_primary_10_1109_TGRS_2024_3408316 crossref_primary_10_3390_rs13132592 crossref_primary_10_3390_f15020394 crossref_primary_10_3390_plants12051006 crossref_primary_10_1038_s41597_024_03543_2 crossref_primary_10_3390_f8090302 crossref_primary_10_1016_j_isprsjprs_2018_01_006 crossref_primary_10_3390_rs17050898 crossref_primary_10_1186_s13007_023_01043_9 crossref_primary_10_3390_agronomy14020376 crossref_primary_10_3390_rs14122786 crossref_primary_10_3390_rs15184488 crossref_primary_10_2166_ws_2023_139 crossref_primary_10_1016_j_catena_2024_108474 crossref_primary_10_1007_s11676_018_0713_7 crossref_primary_10_1186_s40663_020_00276_7 crossref_primary_10_17474_artvinofd_1113265 crossref_primary_10_3390_rs10060898 crossref_primary_10_3390_f15030428 crossref_primary_10_1080_15481603_2023_2270791 crossref_primary_10_2989_20702620_2018_1463150 crossref_primary_10_3832_ifor3209_012 crossref_primary_10_3390_s19245374 crossref_primary_10_1016_j_jsames_2025_105474 crossref_primary_10_1016_j_jag_2023_103435 crossref_primary_10_1080_07038992_2019_1594176 crossref_primary_10_3390_w13192666 crossref_primary_10_3390_rs15010284 crossref_primary_10_1088_2515_7620_acf6fd crossref_primary_10_3390_f13060840 crossref_primary_10_3390_rs12111824 crossref_primary_10_1590_2179_8087_033818 crossref_primary_10_3390_photonics8120582 crossref_primary_10_2139_ssrn_4008745 crossref_primary_10_3390_rs15225276 crossref_primary_10_1016_j_ecolind_2019_106033 crossref_primary_10_3390_f10020104 crossref_primary_10_3390_rs14153639 crossref_primary_10_1016_j_ecolmodel_2023_110377 crossref_primary_10_1080_10106049_2015_1041557 crossref_primary_10_3390_f9120758 crossref_primary_10_1007_s11676_017_0404_9 crossref_primary_10_1080_10106049_2018_1552322 crossref_primary_10_3390_rs16152760 crossref_primary_10_1016_j_jag_2022_103024 crossref_primary_10_1080_10106049_2016_1188164 crossref_primary_10_2139_ssrn_4107048 crossref_primary_10_3390_w11030483 crossref_primary_10_1016_j_rse_2018_07_024 crossref_primary_10_3390_f15030524 crossref_primary_10_3390_ijgi8060245 crossref_primary_10_3390_ijgi9050329 crossref_primary_10_1007_s43538_021_00046_1 crossref_primary_10_3390_app9224965 crossref_primary_10_3390_agronomy13092302 crossref_primary_10_3390_f9120781 crossref_primary_10_3390_rs8070595 crossref_primary_10_3390_rs9030238 crossref_primary_10_3389_fmars_2021_633128 crossref_primary_10_1016_j_ecolind_2024_111752 crossref_primary_10_1590_0001_3765202420221041 crossref_primary_10_1016_j_ecolind_2021_108363 crossref_primary_10_3390_s150818865 crossref_primary_10_3390_rs14061384 crossref_primary_10_3390_rs12010187 crossref_primary_10_1016_j_ecoinf_2024_102566 crossref_primary_10_1007_s12524_020_01121_8 crossref_primary_10_1016_j_jag_2017_01_016 crossref_primary_10_1007_s10661_025_13649_8 crossref_primary_10_1002_wfp2_12030 crossref_primary_10_3390_ijgi8010007 crossref_primary_10_3390_rs13173468 crossref_primary_10_1016_j_jag_2016_08_007 crossref_primary_10_1007_s11356_024_34456_7 crossref_primary_10_1016_j_isprsjprs_2017_05_016 crossref_primary_10_1016_j_foreco_2021_119828 crossref_primary_10_1007_s41651_025_00220_9 crossref_primary_10_4000_geomorphologie_14564 crossref_primary_10_3390_f9120778 crossref_primary_10_5194_bg_18_6077_2021 crossref_primary_10_3390_rs10111825 |
Cites_doi | 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 10.1093/forestscience/50.4.551 10.1016/0306-4573(95)90003-9 10.3390/rs3071427 10.1016/j.rse.2009.12.012 10.1016/j.rse.2013.08.010 10.1021/ci00027a006 10.1139/x81-021 10.1109/TGRS.2003.811693 10.1016/j.isprsjprs.2012.03.011 10.1016/j.rse.2009.12.018 10.1016/S0034-4257(03)00131-7 10.1016/j.jaridenv.2010.04.007 10.2737/NRS-GTR-61 10.1016/j.foreco.2006.01.030 10.1155/2012/436537 10.1016/j.rse.2012.01.008 10.1016/j.rse.2010.11.010 10.1023/A:1010933404324 10.1016/j.rse.2011.10.012 10.1016/j.rse.2007.08.021 10.1034/j.1600-0889.1991.00012.x 10.1126/science.1155458 10.1016/j.foreco.2005.11.001 10.1016/j.chnaes.2010.08.005 10.1016/j.rse.2004.12.001 10.1016/S0034-4257(97)00005-9 10.1139/x03-099 10.1016/S0034-4257(01)00324-8 10.1111/j.1365-2486.2005.00955.x 10.1016/j.isprsjprs.2012.02.009 10.1046/j.1466-822X.2003.00010.x 10.1590/S0044-59672005000200015 10.1016/0034-4257(93)90040-5 10.1139/x01-111 10.5849/jof.12-071 10.1016/S0034-4257(02)00130-X 10.1006/jare.1999.0505 10.1093/forestscience/45.4.573 10.2747/1548-1603.48.2.141 10.18637/jss.v018.i02 10.1016/S0034-4257(02)00173-6 10.32614/RJ-2010-006 10.3390/rs1030184 |
ContentType | Journal Article |
Copyright | 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2014.08.014 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 231 |
ExternalDocumentID | 10_1016_j_isprsjprs_2014_08_014 S0924271614002202 |
GeographicLocations | Ohio |
GeographicLocations_xml | – name: Ohio |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD FR3 H8D KR7 L7M 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c381t-7e8968ce88f257ffd4a7fad6ca1e24fca1d2d8fe7432ac17ea8b2d19880986fb3 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Sun Aug 24 04:05:25 EDT 2025 Fri Jul 11 11:51:37 EDT 2025 Tue Jul 01 03:46:34 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Fri Feb 23 02:28:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Forest inventory and analysis Seasonal time-series NDVI Empirical model Landsat Aboveground biomass |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-7e8968ce88f257ffd4a7fad6ca1e24fca1d2d8fe7432ac17ea8b2d19880986fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1677904702 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2116867638 proquest_miscellaneous_1677904702 crossref_citationtrail_10_1016_j_isprsjprs_2014_08_014 crossref_primary_10_1016_j_isprsjprs_2014_08_014 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2014_08_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2015 2015-04-00 20150401 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
PublicationDecade | 2010 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gleason, Im (b0110) 2011; 48 Bradley (b0025) 1995; 31 Richter, Kellenberger, Kaufmann (b0210) 2009; 1 Breiman (b0030) 2001; 45 Dymond, Mladenoff, Radeloff (b0090) 2002; 80 Houghton (b0130) 2005; 11 Labrecque, Fournier, Luther, Piercey (b0140) 2006; 226 Liknes, G.C., Holden, G.R., Nelson, M.D., McRoberts, R.E., 2005. Spatially Locating FIA Plots from Pixel Values. In: McRoberts, R.E.R., Gregory, A., Van Deusen, Paul C., McWilliams, William H., Cieszewski, Chris J. (Eds.), Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium. U.S. Department of Agriculture, Forest Service, North Central Research Station. pp. 99–103. Drake, Knox, Dubayah, Clark, Condit, Blair, Hofton (b0065) 2003; 12 Tetko, Livingstone, Luik (b0225) 1995; 35 Lu, Batistella (b0160) 2005; 35 Dong, Kaufmann, Myneni, Tucker, Kauppi, Liski, Buermann, Alexeyev, Hughes (b0060) 2003; 84 Woodall, C.W., Conkling, B.L., Amacher, M.C., Coulston, J.W., 2009. The Forest Inventory and Analysis Database Version 4.0: Database Description and Users Manual for Phase 3. U.S. FOREST SERVICE. Ingram, Dawson, Whittaker (b0135) 2005; 94 Anderson, Hanson, Haas (b0005) 1993; 45 Boelman, Gough, McLaren, Greaves (b0020) 2011 Sarker, Nichol (b0215) 2011; 115 Ludeke, Janecek, Kohlmaier (b0170) 1991; 43 Canadell, Raupach (b0035) 2008; 320 Cohen, Goward (b0045) 2004; 54 Liang, Li, Wang (b0145) 2012 Dyer (b0085) 2001; 31 Westoby (b0245) 1989 Liaw, Wiener (b0150) 2002; 2 Fournier, Luther, Guindon, Lambert, Piercey, Hall, Wulder (b0100) 2003; 33 Soenen, Peddle, Hall, Coburn, Hall (b0220) 2010; 114 Gunther, Fritsch (b0120) 2010; 2 Gasparri, Parmuchi, Bono, Karszenbaum, Montenegro (b0105) 2010; 74 Mevik, Wehrens (b0185) 2007; 18 Blackard, Finco, Helmer, Holden, Hoppus, Jacobs, Lister, Moisen, Nelson, Riemann, Ruefenacht, Salajanu, Weyermann, Winterberger, Brandeis, Czaplewski, McRoberts, Patterson, Tymcio (b0015) 2008; 112 Du, Cui, Zhou, Shi, Xu, Fan, Lü (b0075) 2010; 30 Cutler, Boyd, Foody, Vetrivel (b0055) 2012; 70 du Plessis (b0080) 1999; 42 Grier, Vogt, Keyes, Edmonds (b0115) 1981; 11 Hansen, Schjoerring (b0125) 2003; 86 Riano, Chuvieco, Salas, Aguado (b0205) 2003; 41 Cohen, Maiersperger, Gower, Turner (b0050) 2003; 84 Tsui, Coops, Wulder, Marshall, McCardle (b0230) 2012; 69 Main-Knorn, Moisen, Healey, Keeton, Freeman, Hostert (b0180) 2011; 3 Parresol (b0190) 1999; 45 Fassnacht, Gower, MacKenzie, Nordheim, Lillesand (b0095) 1997; 61 Venables, Ripley (b0240) 2002 Wolter, Berkley, Peckham, Singh, Townsend (b0250) 2012; 121 Main-Knorn, Cohen, Kennedy, Grodzki, Pflugmacher, Griffiths, Hostert (b0175) 2013; 139 Avitabile, Baccini, Friedl, Schmullius (b0010) 2012; 117 Popescu, Wynne, Scrivani (b0195) 2004; 50 United States. Soil Conservation Service, 1985. Soil survey of Athens County, Ohio. Washington, D.C.: The Service. Chojnacky, Blinn, Prisley (b0040) 2013; 111 Drury, Runkle (b0070) 2006; 223 Powell, Cohen, Healey, Kennedy, Moisen, Pierce, Ohmann (b0200) 2010; 114 Lu, Chen, Wang, Moran, Batistella, Zhang, Vaglio Laurin, Saah (b0165) 2012; 2012 Westoby (10.1016/j.isprsjprs.2014.08.014_b0245) 1989 Sarker (10.1016/j.isprsjprs.2014.08.014_b0215) 2011; 115 Powell (10.1016/j.isprsjprs.2014.08.014_b0200) 2010; 114 10.1016/j.isprsjprs.2014.08.014_b0235 Cohen (10.1016/j.isprsjprs.2014.08.014_b0045) 2004; 54 Liang (10.1016/j.isprsjprs.2014.08.014_b0145) 2012 Houghton (10.1016/j.isprsjprs.2014.08.014_b0130) 2005; 11 Blackard (10.1016/j.isprsjprs.2014.08.014_b0015) 2008; 112 Wolter (10.1016/j.isprsjprs.2014.08.014_b0250) 2012; 121 Riano (10.1016/j.isprsjprs.2014.08.014_b0205) 2003; 41 Avitabile (10.1016/j.isprsjprs.2014.08.014_b0010) 2012; 117 Anderson (10.1016/j.isprsjprs.2014.08.014_b0005) 1993; 45 Main-Knorn (10.1016/j.isprsjprs.2014.08.014_b0175) 2013; 139 Ingram (10.1016/j.isprsjprs.2014.08.014_b0135) 2005; 94 Gasparri (10.1016/j.isprsjprs.2014.08.014_b0105) 2010; 74 Dymond (10.1016/j.isprsjprs.2014.08.014_b0090) 2002; 80 Parresol (10.1016/j.isprsjprs.2014.08.014_b0190) 1999; 45 Cohen (10.1016/j.isprsjprs.2014.08.014_b0050) 2003; 84 Liaw (10.1016/j.isprsjprs.2014.08.014_b0150) 2002; 2 Canadell (10.1016/j.isprsjprs.2014.08.014_b0035) 2008; 320 Main-Knorn (10.1016/j.isprsjprs.2014.08.014_b0180) 2011; 3 Hansen (10.1016/j.isprsjprs.2014.08.014_b0125) 2003; 86 10.1016/j.isprsjprs.2014.08.014_b0155 Fassnacht (10.1016/j.isprsjprs.2014.08.014_b0095) 1997; 61 Tsui (10.1016/j.isprsjprs.2014.08.014_b0230) 2012; 69 Breiman (10.1016/j.isprsjprs.2014.08.014_b0030) 2001; 45 du Plessis (10.1016/j.isprsjprs.2014.08.014_b0080) 1999; 42 Cutler (10.1016/j.isprsjprs.2014.08.014_b0055) 2012; 70 Gunther (10.1016/j.isprsjprs.2014.08.014_b0120) 2010; 2 Lu (10.1016/j.isprsjprs.2014.08.014_b0160) 2005; 35 Boelman (10.1016/j.isprsjprs.2014.08.014_b0020) 2011 Bradley (10.1016/j.isprsjprs.2014.08.014_b0025) 1995; 31 Drake (10.1016/j.isprsjprs.2014.08.014_b0065) 2003; 12 Ludeke (10.1016/j.isprsjprs.2014.08.014_b0170) 1991; 43 Dyer (10.1016/j.isprsjprs.2014.08.014_b0085) 2001; 31 Chojnacky (10.1016/j.isprsjprs.2014.08.014_b0040) 2013; 111 Lu (10.1016/j.isprsjprs.2014.08.014_b0165) 2012; 2012 Tetko (10.1016/j.isprsjprs.2014.08.014_b0225) 1995; 35 Fournier (10.1016/j.isprsjprs.2014.08.014_b0100) 2003; 33 Dong (10.1016/j.isprsjprs.2014.08.014_b0060) 2003; 84 Mevik (10.1016/j.isprsjprs.2014.08.014_b0185) 2007; 18 Grier (10.1016/j.isprsjprs.2014.08.014_b0115) 1981; 11 Labrecque (10.1016/j.isprsjprs.2014.08.014_b0140) 2006; 226 Venables (10.1016/j.isprsjprs.2014.08.014_b0240) 2002 Richter (10.1016/j.isprsjprs.2014.08.014_b0210) 2009; 1 10.1016/j.isprsjprs.2014.08.014_b0255 Gleason (10.1016/j.isprsjprs.2014.08.014_b0110) 2011; 48 Popescu (10.1016/j.isprsjprs.2014.08.014_b0195) 2004; 50 Soenen (10.1016/j.isprsjprs.2014.08.014_b0220) 2010; 114 Drury (10.1016/j.isprsjprs.2014.08.014_b0070) 2006; 223 Du (10.1016/j.isprsjprs.2014.08.014_b0075) 2010; 30 |
References_xml | – volume: 41 start-page: 1056 year: 2003 end-page: 1061 ident: b0205 article-title: Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003) publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 61 start-page: 229 year: 1997 end-page: 245 ident: b0095 article-title: Estimating the leaf area index of North Central Wisconsin forests using the Landsat Thematic Mapper publication-title: Remote Sens. Environ. – volume: 117 start-page: 366 year: 2012 end-page: 380 ident: b0010 article-title: Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda publication-title: Remote Sens. Environ. – year: 2002 ident: b0240 article-title: Modern Applied Statistics with S – volume: 74 start-page: 1262 year: 2010 end-page: 1270 ident: b0105 article-title: Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina publication-title: J. Arid Environ. – year: 2012 ident: b0145 article-title: Advanced Remote Sensing: Terrestrial Information Extraction and Applications – volume: 11 start-page: 945 year: 2005 end-page: 958 ident: b0130 article-title: Aboveground forest biomass and the global carbon balance publication-title: Glob. Change Biol. – volume: 84 start-page: 561 year: 2003 end-page: 571 ident: b0050 article-title: An improved strategy for regression of biophysical variables and Landsat ETM+ data publication-title: Remote Sens. Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0030 article-title: Random forests publication-title: Machine Learning – volume: 139 start-page: 277 year: 2013 end-page: 290 ident: b0175 article-title: Monitoring coniferous forest biomass change using a Landsat trajectory-based approach publication-title: Remote Sens. Environ. – volume: 114 start-page: 1053 year: 2010 end-page: 1068 ident: b0200 article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches publication-title: Remote Sens. Environ. – volume: 33 start-page: 1846 year: 2003 end-page: 1863 ident: b0100 article-title: Mapping aboveground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec publication-title: Can. J. Forest Res.-Rev. Can. De Recherche Forestiere – volume: 115 start-page: 968 year: 2011 end-page: 977 ident: b0215 article-title: Improved forest biomass estimates using ALOS AVNIR-2 texture indices publication-title: Remote Sens. Environ. – volume: 50 start-page: 551 year: 2004 end-page: 565 ident: b0195 article-title: Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA publication-title: Forest Sci. – volume: 35 start-page: 826 year: 1995 end-page: 833 ident: b0225 article-title: Neural-network studies. 1. Comparison of overfitting and overtraining publication-title: J. Chem. Inf. Comput. Sci. – volume: 2012 start-page: 16 year: 2012 ident: b0165 article-title: Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates publication-title: Int. J. Forestry Res. – volume: 111 start-page: 132 year: 2013 end-page: 138 ident: b0040 article-title: Web application to access and visualize US forest inventory and analysis program down woody materials data publication-title: J. Forest. – volume: 94 start-page: 491 year: 2005 end-page: 507 ident: b0135 article-title: Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks publication-title: Remote Sens. Environ. – volume: 80 start-page: 460 year: 2002 end-page: 472 ident: b0090 article-title: Phenological differences in Tasseled Cap indices improve deciduous forest classification publication-title: Remote Sens. Environ. – volume: 223 start-page: 200 year: 2006 end-page: 210 ident: b0070 article-title: Forest vegetation change in southeast Ohio: do older forests serve as useful models for predicting the successional trajectory of future forests? publication-title: For. Ecol. Manage. – volume: 18 start-page: 1 year: 2007 end-page: 23 ident: b0185 article-title: The pls package: principal component and partial least squares regression in R publication-title: J. Stat. Software – volume: 1 start-page: 184 year: 2009 end-page: 196 ident: b0210 article-title: Comparison of Topographic correction methods publication-title: Remote Sens. – volume: 121 start-page: 69 year: 2012 end-page: 79 ident: b0250 article-title: Exploiting tree shadows on snow for estimating forest basal area using Landsat data publication-title: Remote Sens. Environ. – volume: 45 start-page: 165 year: 1993 end-page: 175 ident: b0005 article-title: Evaluating landsat thematic mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands publication-title: Remote Sens. Environ. – volume: 2 start-page: 30 year: 2010 end-page: 38 ident: b0120 article-title: Neuralnet: training of neural networks publication-title: The R J. – volume: 11 start-page: 155 year: 1981 end-page: 167 ident: b0115 article-title: Biomass distribution and above-ground and below-ground production in young and mature Abies-Amabilis zone ecosystems of the Washington Cascades publication-title: Can. J. Forest Res. – volume: 320 start-page: 1456 year: 2008 end-page: 1457 ident: b0035 article-title: Managing forests for climate change mitigation publication-title: Science – reference: Liknes, G.C., Holden, G.R., Nelson, M.D., McRoberts, R.E., 2005. Spatially Locating FIA Plots from Pixel Values. In: McRoberts, R.E.R., Gregory, A., Van Deusen, Paul C., McWilliams, William H., Cieszewski, Chris J. (Eds.), Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium. U.S. Department of Agriculture, Forest Service, North Central Research Station. pp. 99–103. – volume: 114 start-page: 1325 year: 2010 end-page: 1337 ident: b0220 article-title: Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain publication-title: Remote Sens. Environ. – volume: 43 start-page: 188 year: 1991 end-page: 196 ident: b0170 article-title: Modeling the seasonal Co2 uptake by land vegetation using the global vegetation index publication-title: Tellus B – volume: 226 start-page: 129 year: 2006 end-page: 144 ident: b0140 article-title: A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland publication-title: For. Ecol. Manage. – volume: 69 start-page: 121 year: 2012 end-page: 133 ident: b0230 article-title: Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest publication-title: Isprs J. Photogrammetry Remote Sens. – volume: 48 start-page: 141 year: 2011 end-page: 170 ident: b0110 article-title: A review of remote sensing of forest biomass and biofuel: options for small-area applications publication-title: GIsci. Remote Sens. – volume: 54 start-page: 535 year: 2004 end-page: 545 ident: b0045 article-title: Landsat’s role in ecological applications of remote sensing publication-title: Bioscience – start-page: 6 year: 2011 ident: b0020 article-title: Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra? publication-title: Environ. Res. Lett. – volume: 112 start-page: 1658 year: 2008 end-page: 1677 ident: b0015 article-title: Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information publication-title: Remote Sens. Environ. – volume: 31 start-page: 786 year: 1995 ident: b0025 article-title: Neural networks – a comprehensive foundation – Haykin, S publication-title: Inf. Process. Manage. – volume: 86 start-page: 542 year: 2003 end-page: 553 ident: b0125 article-title: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression publication-title: Remote Sens. Environ. – volume: 45 start-page: 573 year: 1999 end-page: 593 ident: b0190 article-title: Assessing tree and stand biomass: a review with examples and critical comparisons publication-title: Forest Sci. – year: 1989 ident: b0245 article-title: Introduction to World Forestry: People and their Trecs – volume: 42 start-page: 235 year: 1999 end-page: 260 ident: b0080 article-title: Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia publication-title: J. Arid Environ. – volume: 12 start-page: 147 year: 2003 end-page: 159 ident: b0065 article-title: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships publication-title: Glob. Ecol. Biogeogr. – volume: 30 start-page: 257 year: 2010 end-page: 263 ident: b0075 article-title: The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI publication-title: Acta Ecol. Sin. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: b0150 article-title: Classification and regression by random forest publication-title: R News – reference: United States. Soil Conservation Service, 1985. Soil survey of Athens County, Ohio. Washington, D.C.: The Service. – reference: Woodall, C.W., Conkling, B.L., Amacher, M.C., Coulston, J.W., 2009. The Forest Inventory and Analysis Database Version 4.0: Database Description and Users Manual for Phase 3. U.S. FOREST SERVICE. – volume: 3 start-page: 1427 year: 2011 end-page: 1446 ident: b0180 article-title: Evaluating the remote sensing and inventory-based estimation of biomass in the Western Carpathians publication-title: Remote Sens. – volume: 84 start-page: 393 year: 2003 end-page: 410 ident: b0060 article-title: Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks publication-title: Remote Sens. Environ. – volume: 31 start-page: 1708 year: 2001 end-page: 1718 ident: b0085 article-title: Using witness trees to assess forest change in southeastern Ohio publication-title: Can. J. Forest Res.-Rev. Can. De Recherche Forestiere – volume: 35 start-page: 249 year: 2005 end-page: 257 ident: b0160 article-title: Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon publication-title: Acta Amazonica – volume: 70 start-page: 66 year: 2012 end-page: 77 ident: b0055 article-title: Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: an assessment of predictions between regions publication-title: Isprs J. Photogrammetry Remote Sens. – volume: 54 start-page: 535 year: 2004 ident: 10.1016/j.isprsjprs.2014.08.014_b0045 article-title: Landsat’s role in ecological applications of remote sensing publication-title: Bioscience doi: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 – volume: 50 start-page: 551 year: 2004 ident: 10.1016/j.isprsjprs.2014.08.014_b0195 article-title: Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA publication-title: Forest Sci. doi: 10.1093/forestscience/50.4.551 – volume: 31 start-page: 786 year: 1995 ident: 10.1016/j.isprsjprs.2014.08.014_b0025 article-title: Neural networks – a comprehensive foundation – Haykin, S publication-title: Inf. Process. Manage. doi: 10.1016/0306-4573(95)90003-9 – volume: 3 start-page: 1427 year: 2011 ident: 10.1016/j.isprsjprs.2014.08.014_b0180 article-title: Evaluating the remote sensing and inventory-based estimation of biomass in the Western Carpathians publication-title: Remote Sens. doi: 10.3390/rs3071427 – ident: 10.1016/j.isprsjprs.2014.08.014_b0235 – volume: 114 start-page: 1325 year: 2010 ident: 10.1016/j.isprsjprs.2014.08.014_b0220 article-title: Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.12.012 – volume: 139 start-page: 277 year: 2013 ident: 10.1016/j.isprsjprs.2014.08.014_b0175 article-title: Monitoring coniferous forest biomass change using a Landsat trajectory-based approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.010 – volume: 35 start-page: 826 year: 1995 ident: 10.1016/j.isprsjprs.2014.08.014_b0225 article-title: Neural-network studies. 1. Comparison of overfitting and overtraining publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00027a006 – volume: 11 start-page: 155 year: 1981 ident: 10.1016/j.isprsjprs.2014.08.014_b0115 article-title: Biomass distribution and above-ground and below-ground production in young and mature Abies-Amabilis zone ecosystems of the Washington Cascades publication-title: Can. J. Forest Res. doi: 10.1139/x81-021 – volume: 41 start-page: 1056 year: 2003 ident: 10.1016/j.isprsjprs.2014.08.014_b0205 article-title: Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003) publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.811693 – volume: 70 start-page: 66 year: 2012 ident: 10.1016/j.isprsjprs.2014.08.014_b0055 article-title: Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: an assessment of predictions between regions publication-title: Isprs J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2012.03.011 – volume: 114 start-page: 1053 year: 2010 ident: 10.1016/j.isprsjprs.2014.08.014_b0200 article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.12.018 – volume: 86 start-page: 542 year: 2003 ident: 10.1016/j.isprsjprs.2014.08.014_b0125 article-title: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00131-7 – volume: 74 start-page: 1262 year: 2010 ident: 10.1016/j.isprsjprs.2014.08.014_b0105 article-title: Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2010.04.007 – ident: 10.1016/j.isprsjprs.2014.08.014_b0255 doi: 10.2737/NRS-GTR-61 – volume: 226 start-page: 129 year: 2006 ident: 10.1016/j.isprsjprs.2014.08.014_b0140 article-title: A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2006.01.030 – volume: 2012 start-page: 16 year: 2012 ident: 10.1016/j.isprsjprs.2014.08.014_b0165 article-title: Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates publication-title: Int. J. Forestry Res. doi: 10.1155/2012/436537 – volume: 121 start-page: 69 year: 2012 ident: 10.1016/j.isprsjprs.2014.08.014_b0250 article-title: Exploiting tree shadows on snow for estimating forest basal area using Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.008 – volume: 115 start-page: 968 year: 2011 ident: 10.1016/j.isprsjprs.2014.08.014_b0215 article-title: Improved forest biomass estimates using ALOS AVNIR-2 texture indices publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.11.010 – year: 2012 ident: 10.1016/j.isprsjprs.2014.08.014_b0145 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.isprsjprs.2014.08.014_b0030 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 117 start-page: 366 year: 2012 ident: 10.1016/j.isprsjprs.2014.08.014_b0010 article-title: Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.012 – ident: 10.1016/j.isprsjprs.2014.08.014_b0155 – volume: 112 start-page: 1658 year: 2008 ident: 10.1016/j.isprsjprs.2014.08.014_b0015 article-title: Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.08.021 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.isprsjprs.2014.08.014_b0150 article-title: Classification and regression by random forest publication-title: R News – volume: 43 start-page: 188 year: 1991 ident: 10.1016/j.isprsjprs.2014.08.014_b0170 article-title: Modeling the seasonal Co2 uptake by land vegetation using the global vegetation index publication-title: Tellus B doi: 10.1034/j.1600-0889.1991.00012.x – volume: 320 start-page: 1456 year: 2008 ident: 10.1016/j.isprsjprs.2014.08.014_b0035 article-title: Managing forests for climate change mitigation publication-title: Science doi: 10.1126/science.1155458 – volume: 223 start-page: 200 year: 2006 ident: 10.1016/j.isprsjprs.2014.08.014_b0070 article-title: Forest vegetation change in southeast Ohio: do older forests serve as useful models for predicting the successional trajectory of future forests? publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2005.11.001 – volume: 30 start-page: 257 year: 2010 ident: 10.1016/j.isprsjprs.2014.08.014_b0075 article-title: The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI publication-title: Acta Ecol. Sin. doi: 10.1016/j.chnaes.2010.08.005 – volume: 94 start-page: 491 year: 2005 ident: 10.1016/j.isprsjprs.2014.08.014_b0135 article-title: Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.12.001 – volume: 61 start-page: 229 year: 1997 ident: 10.1016/j.isprsjprs.2014.08.014_b0095 article-title: Estimating the leaf area index of North Central Wisconsin forests using the Landsat Thematic Mapper publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00005-9 – volume: 33 start-page: 1846 year: 2003 ident: 10.1016/j.isprsjprs.2014.08.014_b0100 article-title: Mapping aboveground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec publication-title: Can. J. Forest Res.-Rev. Can. De Recherche Forestiere doi: 10.1139/x03-099 – volume: 80 start-page: 460 year: 2002 ident: 10.1016/j.isprsjprs.2014.08.014_b0090 article-title: Phenological differences in Tasseled Cap indices improve deciduous forest classification publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00324-8 – volume: 11 start-page: 945 year: 2005 ident: 10.1016/j.isprsjprs.2014.08.014_b0130 article-title: Aboveground forest biomass and the global carbon balance publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2005.00955.x – volume: 69 start-page: 121 year: 2012 ident: 10.1016/j.isprsjprs.2014.08.014_b0230 article-title: Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest publication-title: Isprs J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2012.02.009 – volume: 12 start-page: 147 year: 2003 ident: 10.1016/j.isprsjprs.2014.08.014_b0065 article-title: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships publication-title: Glob. Ecol. Biogeogr. doi: 10.1046/j.1466-822X.2003.00010.x – volume: 35 start-page: 249 year: 2005 ident: 10.1016/j.isprsjprs.2014.08.014_b0160 article-title: Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon publication-title: Acta Amazonica doi: 10.1590/S0044-59672005000200015 – volume: 45 start-page: 165 year: 1993 ident: 10.1016/j.isprsjprs.2014.08.014_b0005 article-title: Evaluating landsat thematic mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(93)90040-5 – volume: 31 start-page: 1708 year: 2001 ident: 10.1016/j.isprsjprs.2014.08.014_b0085 article-title: Using witness trees to assess forest change in southeastern Ohio publication-title: Can. J. Forest Res.-Rev. Can. De Recherche Forestiere doi: 10.1139/x01-111 – volume: 111 start-page: 132 year: 2013 ident: 10.1016/j.isprsjprs.2014.08.014_b0040 article-title: Web application to access and visualize US forest inventory and analysis program down woody materials data publication-title: J. Forest. doi: 10.5849/jof.12-071 – volume: 84 start-page: 393 year: 2003 ident: 10.1016/j.isprsjprs.2014.08.014_b0060 article-title: Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00130-X – year: 1989 ident: 10.1016/j.isprsjprs.2014.08.014_b0245 – start-page: 6 year: 2011 ident: 10.1016/j.isprsjprs.2014.08.014_b0020 article-title: Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra? publication-title: Environ. Res. Lett. – volume: 42 start-page: 235 year: 1999 ident: 10.1016/j.isprsjprs.2014.08.014_b0080 article-title: Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia publication-title: J. Arid Environ. doi: 10.1006/jare.1999.0505 – volume: 45 start-page: 573 year: 1999 ident: 10.1016/j.isprsjprs.2014.08.014_b0190 article-title: Assessing tree and stand biomass: a review with examples and critical comparisons publication-title: Forest Sci. doi: 10.1093/forestscience/45.4.573 – volume: 48 start-page: 141 year: 2011 ident: 10.1016/j.isprsjprs.2014.08.014_b0110 article-title: A review of remote sensing of forest biomass and biofuel: options for small-area applications publication-title: GIsci. Remote Sens. doi: 10.2747/1548-1603.48.2.141 – volume: 18 start-page: 1 year: 2007 ident: 10.1016/j.isprsjprs.2014.08.014_b0185 article-title: The pls package: principal component and partial least squares regression in R publication-title: J. Stat. Software doi: 10.18637/jss.v018.i02 – year: 2002 ident: 10.1016/j.isprsjprs.2014.08.014_b0240 – volume: 84 start-page: 561 year: 2003 ident: 10.1016/j.isprsjprs.2014.08.014_b0050 article-title: An improved strategy for regression of biophysical variables and Landsat ETM+ data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00173-6 – volume: 2 start-page: 30 year: 2010 ident: 10.1016/j.isprsjprs.2014.08.014_b0120 article-title: Neuralnet: training of neural networks publication-title: The R J. doi: 10.32614/RJ-2010-006 – volume: 1 start-page: 184 year: 2009 ident: 10.1016/j.isprsjprs.2014.08.014_b0210 article-title: Comparison of Topographic correction methods publication-title: Remote Sens. doi: 10.3390/rs1030184 |
SSID | ssj0001568 |
Score | 2.5593944 |
Snippet | Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting. Landsat data have been widely used to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 222 |
SubjectTerms | Aboveground biomass Accuracy autumn Biomass carbon footprint Empirical analysis Empirical model Estimates Forest inventory and analysis Forests Landsat NDVI normalized difference vegetation index Ohio remote sensing Saturation Seasonal time-series Seasons time series analysis |
Title | Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2014.08.014 https://www.proquest.com/docview/1677904702 https://www.proquest.com/docview/2116867638 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iB_UgrrgOEbzWadM0Tb0NozJuc3G9hbRJdETqYEfBi7_d97qMCwwePJTSNinl5a3p994jZI-jHYliBoIkIUBhYewlaWI8P0nhURYJXVbbv-iL3jU_vYvupki3yYVBWGWt-yudXmrr-k67pmZ7OBi0L30IHRi4-xAiYLoo6mHOY-Ty_Y8vmEdQpcPhYA9H_8B4DYrhS_EIB2K8eFnLM-CTLNQvXV0aoONFslB7jrRTfdwSmbL5Mpn_Vk9wmczWLc0f3lfI7Xi7gIJfCu-jsNxvFrM4ckMx6x7cZoo1NqrkRYoI-HuKe4bonNNzzAHWI9o_vDmh2IHeQ2a1xSq5Pj666va8uouCl4E1HnmxlYmQmZXSgXg6Z7iOnTYi04Fl3MHJMCOdBVeC6SyIrZYpM0ECgp1I4dJwjUznz7ldRxiUb1wYOWvQ8GvMRmc2CI0RoY78jG8Q0VBOZXWJcex08aQaLNmjGpNcIckV9sAMYKI_njisqmz8PeWgWRr1g2EU2IK_J-82i6lAnPAfic7t82uhAoEFGHnss8ljIGYWUoBilpv_-YgtMgdXUQUD2ibTo5dXuwMezihtlSzcIjOdk7Ne_xMML_2L |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jO0wP4id-G8FrWZu2aeptTGXTuYtTdwtpk-iG1OE2wf_e99Z2OGF48FAKTV8JL3lf6fu9R8hFgHYkjBgIkoAAhfmREyexdtw4gaE05Gpebf--x9uPwe0gHFRIq8TCYFploftznT7X1sWTRsHNxng4bDy4EDowcPchREC4KOjhGlanCquk1uzctXsLhezliDh830GCpTSv4WT8MRnBhWlewbycpxesMlK_1PXcBt1sko3CeaTNfH5bpGKybbL-o6TgNqkXXc1fv3bI8-LEgIJrCt-jsOKfBoEcmaYIvAfPmWKZjRy_SDEJ_oXisSH657SLMGA1pb2rpw7FJvQO7lcz2SWPN9f9VtspGik4KRjkqRMZEXORGiEsSKi1OlCRVZqnyjMssHDTTAtrwJtgKvUio0TCtBeDbMeC28TfI9XsPTP7mAnlauuH1mi0_QoB6cx4vtbcV6GbBgeEl5yTaVFlHJtdvMkynWwkFyyXyHKJbTA9IHQXhOO80MbfJJfl0silPSPBHPxNfF4upgSJwt8kKjPvs4n0ONZgDCKXrX4HwmYuOOhmcfifSZyRert_35XdTu_uiKzBSJhnBR2T6vRjZk7A4Zkmp8WG_gat7gBL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+forest+aboveground+biomass+estimation+using+seasonal+Landsat+NDVI+time-series&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Zhu%2C+Xiaolin&rft.au=Liu%2C+Desheng&rft.date=2015-04-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=102&rft.spage=222&rft.epage=231&rft_id=info:doi/10.1016%2Fj.isprsjprs.2014.08.014&rft.externalDocID=S0924271614002202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |