Tungsten disulfide (WS2) is a highly active co-catalyst in Fe(III)/H2O2 Fenton-like reactions for efficient acetaminophen degradation
The most important factor that restricts the decomposition of H2O2 in the Fe3+/H2O2 reaction is the slow cycling efficiency of reducing Fe3+ to Fe2+. In this study, the addition of tungsten disulfide (WS2) as a co-catalyst achieved a rapid cycling of the reaction rate-limiting step and a significant...
Saved in:
Published in | The Science of the total environment Vol. 871; p. 162151 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The most important factor that restricts the decomposition of H2O2 in the Fe3+/H2O2 reaction is the slow cycling efficiency of reducing Fe3+ to Fe2+. In this study, the addition of tungsten disulfide (WS2) as a co-catalyst achieved a rapid cycling of the reaction rate-limiting step and a significant enhancement of H2O2 decomposition, which resulted in the effective degradation of acetaminophen (APAP). Results show that 99.6% of APAP (5 mg L−1) could be degraded by H2O2/Fe3+/WS2 system within 2.5 min. The conversion of Fe3+ to Fe2+ occurred mainly on the surface of WS2 due to the redox reaction of the exposed W4+ active sites with Fe3+ after the unsaturated S atoms were bound to protons. Electron paramagnetic resonance (EPR) and radical quenching experiments evaluated the contribution of hydroxyl radical (•OH) and superoxide radical (O2•−) in the degradation of pollutants. WS2 showed good recoverability after four cycles of the reaction. This study provides a new perspective to improve the efficiency of Fe3+/H2O2 and provides a reference for the involvement of transition metal sulfides in advanced oxidation processes (AOPs).
[Display omitted]
•Addition of tungsten disulfide as a co-catalyst achieved a rapid Fe3+/Fe2+ cycling.•99.6 % of acetaminophen (5 mg L−1) could be degraded within 2.5 min by the system.•Fe3+/Fe2+ cycling was due to the redox reaction of exposed W4+ active site with Fe3+.•The contribution of hydroxyl radical (OH) and superoxide radical (O2−) was identified. |
---|---|
AbstractList | The most important factor that restricts the decomposition of H₂O₂ in the Fe³⁺/H₂O₂ reaction is the slow cycling efficiency of reducing Fe³⁺ to Fe²⁺. In this study, the addition of tungsten disulfide (WS₂) as a co-catalyst achieved a rapid cycling of the reaction rate-limiting step and a significant enhancement of H₂O₂ decomposition, which resulted in the effective degradation of acetaminophen (APAP). Results show that 99.6% of APAP (5 mg L⁻¹) could be degraded by H₂O₂/Fe³⁺/WS₂ system within 2.5 min. The conversion of Fe³⁺ to Fe²⁺ occurred mainly on the surface of WS₂ due to the redox reaction of the exposed W⁴⁺ active sites with Fe³⁺ after the unsaturated S atoms were bound to protons. Electron paramagnetic resonance (EPR) and radical quenching experiments evaluated the contribution of hydroxyl radical (•OH) and superoxide radical (O₂•⁻) in the degradation of pollutants. WS₂ showed good recoverability after four cycles of the reaction. This study provides a new perspective to improve the efficiency of Fe³⁺/H₂O₂ and provides a reference for the involvement of transition metal sulfides in advanced oxidation processes (AOPs). The most important factor that restricts the decomposition of H2O2 in the Fe3+/H2O2 reaction is the slow cycling efficiency of reducing Fe3+ to Fe2+. In this study, the addition of tungsten disulfide (WS2) as a co-catalyst achieved a rapid cycling of the reaction rate-limiting step and a significant enhancement of H2O2 decomposition, which resulted in the effective degradation of acetaminophen (APAP). Results show that 99.6% of APAP (5 mg L−1) could be degraded by H2O2/Fe3+/WS2 system within 2.5 min. The conversion of Fe3+ to Fe2+ occurred mainly on the surface of WS2 due to the redox reaction of the exposed W4+ active sites with Fe3+ after the unsaturated S atoms were bound to protons. Electron paramagnetic resonance (EPR) and radical quenching experiments evaluated the contribution of hydroxyl radical (•OH) and superoxide radical (O2•−) in the degradation of pollutants. WS2 showed good recoverability after four cycles of the reaction. This study provides a new perspective to improve the efficiency of Fe3+/H2O2 and provides a reference for the involvement of transition metal sulfides in advanced oxidation processes (AOPs). [Display omitted] •Addition of tungsten disulfide as a co-catalyst achieved a rapid Fe3+/Fe2+ cycling.•99.6 % of acetaminophen (5 mg L−1) could be degraded within 2.5 min by the system.•Fe3+/Fe2+ cycling was due to the redox reaction of exposed W4+ active site with Fe3+.•The contribution of hydroxyl radical (OH) and superoxide radical (O2−) was identified. The most important factor that restricts the decomposition of H2O2 in the Fe3+/H2O2 reaction is the slow cycling efficiency of reducing Fe3+ to Fe2+. In this study, the addition of tungsten disulfide (WS2) as a co-catalyst achieved a rapid cycling of the reaction rate-limiting step and a significant enhancement of H2O2 decomposition, which resulted in the effective degradation of acetaminophen (APAP). Results show that 99.6% of APAP (5 mg L-1) could be degraded by H2O2/Fe3+/WS2 system within 2.5 min. The conversion of Fe3+ to Fe2+ occurred mainly on the surface of WS2 due to the redox reaction of the exposed W4+ active sites with Fe3+ after the unsaturated S atoms were bound to protons. Electron paramagnetic resonance (EPR) and radical quenching experiments evaluated the contribution of hydroxyl radical (•OH) and superoxide radical (O2•-) in the degradation of pollutants. WS2 showed good recoverability after four cycles of the reaction. This study provides a new perspective to improve the efficiency of Fe3+/H2O2 and provides a reference for the involvement of transition metal sulfides in advanced oxidation processes (AOPs).The most important factor that restricts the decomposition of H2O2 in the Fe3+/H2O2 reaction is the slow cycling efficiency of reducing Fe3+ to Fe2+. In this study, the addition of tungsten disulfide (WS2) as a co-catalyst achieved a rapid cycling of the reaction rate-limiting step and a significant enhancement of H2O2 decomposition, which resulted in the effective degradation of acetaminophen (APAP). Results show that 99.6% of APAP (5 mg L-1) could be degraded by H2O2/Fe3+/WS2 system within 2.5 min. The conversion of Fe3+ to Fe2+ occurred mainly on the surface of WS2 due to the redox reaction of the exposed W4+ active sites with Fe3+ after the unsaturated S atoms were bound to protons. Electron paramagnetic resonance (EPR) and radical quenching experiments evaluated the contribution of hydroxyl radical (•OH) and superoxide radical (O2•-) in the degradation of pollutants. WS2 showed good recoverability after four cycles of the reaction. This study provides a new perspective to improve the efficiency of Fe3+/H2O2 and provides a reference for the involvement of transition metal sulfides in advanced oxidation processes (AOPs). |
ArticleNumber | 162151 |
Author | Li, Jun Zeng, Ganning He, Dongqin Zeng, Yifeng Pan, Xiangliang Wang, Dongli Luo, Hongwei |
Author_xml | – sequence: 1 givenname: Dongqin surname: He fullname: He, Dongqin organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 2 givenname: Dongli surname: Wang fullname: Wang, Dongli organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 3 givenname: Hongwei surname: Luo fullname: Luo, Hongwei email: hwluo@zjut.edu.cn organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 4 givenname: Yifeng surname: Zeng fullname: Zeng, Yifeng organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 5 givenname: Ganning surname: Zeng fullname: Zeng, Ganning organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 6 givenname: Jun surname: Li fullname: Li, Jun organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 7 givenname: Xiangliang surname: Pan fullname: Pan, Xiangliang email: panxl@zjut.edu.cn organization: Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China |
BookMark | eNqNkcFuGyEURVGVSnXSfkNZOotxgPEAs-giiprGUqQsmqpLhB5vbNwxuIAt-QPy32XqqotuUjYIcc9Fj3NJLkIMSMhHzhaccXmzXWTwJRYMx4Vgol1wKXjH35AZ16pvOBPygswYW-qml716Ry5z3rK6lOYz8vJ8COtcYep8PoyDd0jn37-Ka-oztXTj15vxRC0Uf0QKsQFb7HjKhfpA73G-Wq2ubx7Ek6iHUGJoRv8DacIJiCHTISaKw-DB1-tag8XufIj7zfQgrpN1dgq-J28HO2b88Ge_It_uPz_fPTSPT19Wd7ePDbSal0ZZrVpgwPqOAYJwjNk6kpMd75a9ZUJp0YOQtlNKDG3rpJOgweHgpEXo2isyP_fuU_x5wFzMzmfAcbQB4yEbodulaLnS8vWoUp3kvBeiRj-do5BizgkHU4X8nqsk60fDmZlMma35a8pMpszZVOXVP_w--Z1Np_8gb88k1k87ekxTDgOg8wmhGBf9qx2_AKrrta0 |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_215765 crossref_primary_10_1016_j_chemosphere_2023_138471 crossref_primary_10_1016_j_chemosphere_2024_142556 crossref_primary_10_1039_D4EN00155A crossref_primary_10_1016_j_jwpe_2025_107307 crossref_primary_10_1016_j_cej_2024_150038 crossref_primary_10_1016_j_scitotenv_2023_168833 crossref_primary_10_1016_j_seppur_2024_127056 crossref_primary_10_1016_j_jece_2023_111759 crossref_primary_10_1016_j_seppur_2024_128147 crossref_primary_10_1016_j_apcatb_2025_125256 crossref_primary_10_1007_s10967_024_09600_9 crossref_primary_10_1016_j_scitotenv_2024_170982 crossref_primary_10_1016_j_seppur_2024_127509 crossref_primary_10_1016_j_jwpe_2024_105591 crossref_primary_10_1016_j_jwpe_2024_106161 crossref_primary_10_1016_j_eti_2023_103520 crossref_primary_10_1016_j_jcis_2023_08_188 crossref_primary_10_1016_j_seppur_2023_125381 crossref_primary_10_1016_j_seppur_2024_126653 crossref_primary_10_1007_s11356_024_33064_9 crossref_primary_10_1016_j_seppur_2024_127345 crossref_primary_10_1016_j_jhazmat_2024_133806 crossref_primary_10_1016_j_seppur_2024_127886 crossref_primary_10_1016_j_seppur_2024_129426 crossref_primary_10_1016_j_seppur_2024_127803 |
Cites_doi | 10.1016/j.watres.2013.09.029 10.1016/j.watres.2018.08.048 10.1016/j.cej.2020.127191 10.1016/j.apcatb.2020.118767 10.1016/j.watres.2022.118989 10.1016/j.scitotenv.2022.157987 10.1021/acssuschemeng.5b00267 10.1002/anie.202105736 10.1016/j.watres.2012.09.020 10.1016/j.nanoen.2019.104083 10.1016/j.chemosphere.2019.125678 10.1016/j.scitotenv.2021.145389 10.1021/acs.jpcc.7b02522 10.1016/j.cej.2022.139812 10.1016/j.scitotenv.2018.07.235 10.1016/j.jhazmat.2019.121090 10.1016/j.cej.2022.135961 10.1016/j.chemosphere.2021.130104 10.1021/es035121o 10.1039/D2RA02469A 10.1021/acs.est.2c00464 10.1039/C5RA14915K 10.1016/j.cej.2022.139245 10.1016/j.chemosphere.2020.128067 10.1016/j.cclet.2021.08.054 10.1016/j.scitotenv.2017.03.039 10.1016/j.cej.2019.123158 10.1016/j.scitotenv.2021.147724 10.1016/j.seppur.2020.117023 10.1016/j.cej.2018.07.035 10.1016/j.jhazmat.2007.01.044 10.1016/j.scitotenv.2020.139335 10.1016/j.cej.2017.09.021 10.1021/acs.est.8b02403 10.1016/j.jwpe.2022.102744 10.1016/j.scitotenv.2020.137993 10.1016/j.apcatb.2021.119900 10.1016/j.molliq.2019.02.136 10.1016/j.cej.2015.02.090 10.1016/j.scitotenv.2021.149506 10.1016/j.watres.2018.03.042 10.1021/acs.est.5b03189 10.1016/j.cej.2018.03.092 10.1016/j.scitotenv.2022.157951 10.1016/j.cej.2020.128392 10.1016/j.chempr.2018.03.002 10.1016/j.envres.2021.111371 10.1016/j.seppur.2014.12.031 10.1016/j.cej.2017.11.059 10.1016/j.scitotenv.2019.05.385 10.1016/j.chemosphere.2019.124979 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2023.162151 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2023_162151 S0048969723007672 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SSH WUQ XPP ZXP ZY4 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c381t-7a873c0c0950cec2d00a697d651549a027829c26a5772f33d6d6c8cdefd6aec53 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Aug 22 20:23:59 EDT 2025 Thu Jul 10 19:33:09 EDT 2025 Tue Jul 01 02:08:33 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Fri Feb 23 02:35:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ferric ion Organics Decomposition Hydrogen peroxide Catalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-7a873c0c0950cec2d00a697d651549a027829c26a5772f33d6d6c8cdefd6aec53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2775611922 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2834231786 proquest_miscellaneous_2775611922 crossref_citationtrail_10_1016_j_scitotenv_2023_162151 crossref_primary_10_1016_j_scitotenv_2023_162151 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_162151 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 2023-05-00 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, He, Zhu, Wei (bb0030) 2020; 245 Li, Song, Fu, Tsang, Yang (bb0095) 2015; 271 Luo, Zhao, He, Ji, Cheng, Zhang, Pan (bb0135) 2019; 282 Li, Jia, Zhang, Qin, Wu, Zhou, Sun (bb0090) 2022; 33 Miklos, Remy, Jekel, Linden, Drewes, Hübner (bb0155) 2018; 139 Luo, Liu, He, Sun, Li, Pan (bb0120) 2022; 849 Xue, Diao (bb0245) 2017; 121 Luo, Cheng, Zeng, Luo, He, Pan (bb0105) 2020; 248 Wang, Wang (bb0195) 2021; 411 Wang, Chen, He, Yi, Zhang, Zhou, Xiang, Gao, Huang (bb0200) 2023; 451 Luo, Zeng, He, Pan (bb0130) 2021; 407 Xu, Song, Sheng, Luo, Li, Yao, Yu (bb0235) 2015; 142 Cai, Ling, Wang, Sun, Zhou, Chu, Li, Deng (bb0020) 2022; 223 Jiang, Garg, Waite (bb0070) 2015; 49 He, Zhang, Pei, Huang, Liu, Li, Yu (bb0050) 2020; 382 Luo, Zhou, Guo, Fang, Chen, Zhou (bb0140) 2021; 262 He, Wang, Rao, Dong, Zhang, Zhang, Gao, Deng (bb0065) 2022; 850 Qutob, Hussein, Alamry, Rafatullah (bb0170) 2022; 12 Fantauzzi, Elsener, Atzei, Rigoldi, Rossi (bb0040) 2015; 5 Jiang, Tang, Lu, Xue, Zhang, Qiu, Sui (bb0075) 2018; 344 Warner, Licha, Nödler (bb0205) 2019; 686 Ashraf, Liu, Yousaf, Arif, Ahmed, Irshad, Cheema, Rashid, Gulzaman (bb0010) 2021; 772 Chen, Shao, Li, Liang, Tang, Li (bb0025) 2022; 442 Yan, Lian, Huang, Liang, Yu, Yin, Zhang, Xing (bb0250) 2021; 60 Wang, Wang (bb0190) 2018; 334 Xiao, Ji, Zhu, Bao, Liu, Zhang, Xing (bb0215) 2020; 383 Luo, Zeng, Cheng, He, Pan (bb0125) 2021; 799 Xu, Song, Sheng, Luo, Li, Yao, Yu (bb0240) 2015; 3 Sharma, Bečanová, Scheringer, Sharma, Bharat, Whitehead, Klánová, Nizzetto (bb0175) 2019; 646 Weng, Yang, Zhang, Cheng, Wang, Song, Luo, Qin, Huang, Qin, Li (bb0210) 2023; 453 Xing, Xu, Dong, Bai, Zeng, Zhou, Zhang, Yin (bb0230) 2018; 4 Li, Ma, Deng, Li, Chen, Li, Chen, Wang (bb0080) 2020; 723 He, Cheng, Zeng, Luo, Luo, Li, Pan, Barceló, Crittenden (bb0055) 2020; 240 Guo, Wu, Yan, Yao, Song, Hua, Zhang, Kong, Li, Fang (bb0045) 2018; 147 Zhao, Lin, Ma, Dong (bb0260) 2018; 352 Yang, Su, Luo, Spinney, Cai, Xiao, Wei (bb0255) 2017; 590–591 Luo, Cheng, Zeng, Luo, Pan (bb0110) 2020; 732 Siedlecka, Więckowska, Stepnowski (bb0180) 2007; 147 Zhou, Zhang, He, Huang, Zhou, Yao, Lai (bb0265) 2021; 286 Dong, Ji, Shen, Xing, Zhang (bb0035) 2018; 52 Li, Zhao, Yu, Zhao, Su, Liu, Lin, Liu, Xu, Zhang (bb0085) 2019; 66 Pham, Doyle, Sedlak (bb0165) 2012; 46 Liu, He, Yang, Yao, Tang, Luo, Zhi, Wan, Wang, Zhou (bb0100) 2021; 200 Anipsitakis, Dionysiou (bb0005) 2004; 38 Xie, He, Zhou, Li, Liu, Du, Liu, Mu, Lai (bb0225) 2022; 56 Ma, Yi, Lai, Liu, Huo, An, Li, Fu, Li, Zhang, Qin, Liu, Yang (bb0150) 2021; 275 Xiao, Ji, Zhu, Bao, Liu, Zhang, Xing (bb0220) 2020; 383 Pan, Zhao, Liu, Li, Zhao, Yuan, Jiao, Zhang, Tang (bb0160) 2023; 452 Luo, Liu, Cheng, Zeng, He, Pan (bb0115) 2021; 787 Bi, Zhang, Chen, Yang, Wang (bb0015) 2020; 269 Takdastan, Kakavandi, Azizi, Golshan (bb0185) 2018; 331 Luo, Yuan, Tong, Liao, Xie, Xu (bb0145) 2014; 48 He, Sun, Bao, Chen, Luo, Li (bb0060) 2022; 47 Luo (10.1016/j.scitotenv.2023.162151_bb0125) 2021; 799 Ashraf (10.1016/j.scitotenv.2023.162151_bb0010) 2021; 772 Li (10.1016/j.scitotenv.2023.162151_bb0095) 2015; 271 Xie (10.1016/j.scitotenv.2023.162151_bb0225) 2022; 56 Bi (10.1016/j.scitotenv.2023.162151_bb0015) 2020; 269 Xiao (10.1016/j.scitotenv.2023.162151_bb0220) 2020; 383 Miklos (10.1016/j.scitotenv.2023.162151_bb0155) 2018; 139 Zhou (10.1016/j.scitotenv.2023.162151_bb0265) 2021; 286 Wang (10.1016/j.scitotenv.2023.162151_bb0200) 2023; 451 Xu (10.1016/j.scitotenv.2023.162151_bb0240) 2015; 3 Guo (10.1016/j.scitotenv.2023.162151_bb0045) 2018; 147 Xu (10.1016/j.scitotenv.2023.162151_bb0235) 2015; 142 Cai (10.1016/j.scitotenv.2023.162151_bb0020) 2022; 223 Fantauzzi (10.1016/j.scitotenv.2023.162151_bb0040) 2015; 5 He (10.1016/j.scitotenv.2023.162151_bb0050) 2020; 382 Anipsitakis (10.1016/j.scitotenv.2023.162151_bb0005) 2004; 38 Siedlecka (10.1016/j.scitotenv.2023.162151_bb0180) 2007; 147 Luo (10.1016/j.scitotenv.2023.162151_bb0145) 2014; 48 Liu (10.1016/j.scitotenv.2023.162151_bb0100) 2021; 200 Luo (10.1016/j.scitotenv.2023.162151_bb0115) 2021; 787 Li (10.1016/j.scitotenv.2023.162151_bb0080) 2020; 723 Wang (10.1016/j.scitotenv.2023.162151_bb0190) 2018; 334 Yang (10.1016/j.scitotenv.2023.162151_bb0255) 2017; 590–591 He (10.1016/j.scitotenv.2023.162151_bb0060) 2022; 47 Xiao (10.1016/j.scitotenv.2023.162151_bb0215) 2020; 383 He (10.1016/j.scitotenv.2023.162151_bb0055) 2020; 240 Yan (10.1016/j.scitotenv.2023.162151_bb0250) 2021; 60 Luo (10.1016/j.scitotenv.2023.162151_bb0130) 2021; 407 Luo (10.1016/j.scitotenv.2023.162151_bb0105) 2020; 248 He (10.1016/j.scitotenv.2023.162151_bb0065) 2022; 850 Dong (10.1016/j.scitotenv.2023.162151_bb0035) 2018; 52 Jiang (10.1016/j.scitotenv.2023.162151_bb0070) 2015; 49 Pan (10.1016/j.scitotenv.2023.162151_bb0160) 2023; 452 Luo (10.1016/j.scitotenv.2023.162151_bb0120) 2022; 849 Ma (10.1016/j.scitotenv.2023.162151_bb0150) 2021; 275 Qutob (10.1016/j.scitotenv.2023.162151_bb0170) 2022; 12 Warner (10.1016/j.scitotenv.2023.162151_bb0205) 2019; 686 Li (10.1016/j.scitotenv.2023.162151_bb0090) 2022; 33 Jiang (10.1016/j.scitotenv.2023.162151_bb0075) 2018; 344 Xue (10.1016/j.scitotenv.2023.162151_bb0245) 2017; 121 Weng (10.1016/j.scitotenv.2023.162151_bb0210) 2023; 453 Takdastan (10.1016/j.scitotenv.2023.162151_bb0185) 2018; 331 Chen (10.1016/j.scitotenv.2023.162151_bb0025) 2022; 442 Sharma (10.1016/j.scitotenv.2023.162151_bb0175) 2019; 646 Chen (10.1016/j.scitotenv.2023.162151_bb0030) 2020; 245 Luo (10.1016/j.scitotenv.2023.162151_bb0110) 2020; 732 Luo (10.1016/j.scitotenv.2023.162151_bb0135) 2019; 282 Pham (10.1016/j.scitotenv.2023.162151_bb0165) 2012; 46 Zhao (10.1016/j.scitotenv.2023.162151_bb0260) 2018; 352 Xing (10.1016/j.scitotenv.2023.162151_bb0230) 2018; 4 Li (10.1016/j.scitotenv.2023.162151_bb0085) 2019; 66 Wang (10.1016/j.scitotenv.2023.162151_bb0195) 2021; 411 Luo (10.1016/j.scitotenv.2023.162151_bb0140) 2021; 262 |
References_xml | – volume: 275 year: 2021 ident: bb0150 article-title: Critical review of advanced oxidation processes in organic wastewater treatment publication-title: Chemosphere – volume: 240 year: 2020 ident: bb0055 article-title: Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: theoretical and experimental studies publication-title: Chemosphere – volume: 772 year: 2021 ident: bb0010 article-title: Recent trends in advanced oxidation process-based degradation of erythromycin: pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems publication-title: Sci. Total Environ. – volume: 46 start-page: 6454 year: 2012 end-page: 6462 ident: bb0165 article-title: Kinetics and efficiency of H publication-title: Water Res. – volume: 590–591 start-page: 751 year: 2017 end-page: 760 ident: bb0255 article-title: Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study publication-title: Sci. Total Environ. – volume: 52 start-page: 11297 year: 2018 end-page: 11308 ident: bb0035 article-title: Enhancement of H publication-title: Environ. Sci. Technol. – volume: 12 start-page: 18373 year: 2022 end-page: 18396 ident: bb0170 article-title: A review on the degradation of acetaminophen by advanced oxidation process: pathway, by-products, biotoxicity, and density functional theory calculation publication-title: RSC Adv. – volume: 451 year: 2023 ident: bb0200 article-title: Activation of persulfate-based advanced oxidation processes by 1T-MoS publication-title: Chem. Eng. J. – volume: 3 start-page: 1756 year: 2015 end-page: 1763 ident: bb0240 article-title: Vitamin B publication-title: ACS Sustain. Chem. Eng. – volume: 686 start-page: 75 year: 2019 end-page: 89 ident: bb0205 article-title: Qualitative and quantitative use of micropollutants as source and process indicators.A review publication-title: Sci. Total Environ. – volume: 732 year: 2020 ident: bb0110 article-title: Enhanced decomposition of H publication-title: Sci. Total Environ. – volume: 56 start-page: 8784 year: 2022 end-page: 8795 ident: bb0225 article-title: Effects of molecular structure on organic contaminants' degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS publication-title: Environ. Sci. Technol. – volume: 147 start-page: 184 year: 2018 end-page: 194 ident: bb0045 article-title: Comparison of the UV/chlorine and UV/H publication-title: Water Res. – volume: 382 year: 2020 ident: bb0050 article-title: Degradation of benzoic acid in an advanced oxidation process: the effects of reducing agents publication-title: J. Hazard. Mater. – volume: 411 year: 2021 ident: bb0195 article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants publication-title: Chem. Eng. J. – volume: 331 start-page: 729 year: 2018 end-page: 743 ident: bb0185 article-title: Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol a publication-title: Chem. Eng. J. – volume: 646 start-page: 1459 year: 2019 end-page: 1467 ident: bb0175 article-title: Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin,India publication-title: Sci. Total Environ. – volume: 33 start-page: 2105 year: 2022 end-page: 2110 ident: bb0090 article-title: Efficient removal of tetracycline by H publication-title: Chin. Chem. Lett. – volume: 5 start-page: 75953 year: 2015 end-page: 75963 ident: bb0040 article-title: Exploiting XPS for the identification of sulfides and polysulfides publication-title: RSC Adv. – volume: 850 year: 2022 ident: bb0065 article-title: WS2 significantly enhances the degradation of sulfachloropyridazine by Fe(III)/persulfate publication-title: Sci. Total Environ. – volume: 407 year: 2021 ident: bb0130 article-title: Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: a review publication-title: Chem. Eng. J. – volume: 282 start-page: 13 year: 2019 end-page: 22 ident: bb0135 article-title: Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (PNP) as catalyzed by Fe@Fe publication-title: J. Mol. Liq. – volume: 344 start-page: 453 year: 2018 end-page: 461 ident: bb0075 article-title: Comparative studies of H publication-title: Chem. Eng. J. – volume: 286 year: 2021 ident: bb0265 article-title: Critical review of reductant-enhanced peroxide activation processes: trade-off between accelerated Fe publication-title: Appl. Catal. B Environ. – volume: 787 year: 2021 ident: bb0115 article-title: Fe(III) greatly promotes peroxymonosulfate activation by WS publication-title: Sci. Total Environ. – volume: 48 start-page: 190 year: 2014 end-page: 199 ident: bb0145 article-title: An integrated catalyst of Pd supported on magnetic Fe publication-title: Water Res. – volume: 262 year: 2021 ident: bb0140 article-title: WS publication-title: Chemosphere – volume: 142 start-page: 18 year: 2015 end-page: 24 ident: bb0235 article-title: Sunlight-mediated degradation of methyl orange sensitized by riboflavin: roles of reactive oxygen species publication-title: Sep. Purif. Technol. – volume: 49 start-page: 14076 year: 2015 end-page: 14084 ident: bb0070 article-title: Hydroquinone-mediated redox cycling of iron and concomitant oxidation of hydroquinone in oxic waters under acidic conditions: comparison with iron-natural organic matter interactions publication-title: Environ. Sci. Technol. – volume: 799 year: 2021 ident: bb0125 article-title: Activation of peroxymonosulfate by iron oxychloride with hydroxylamine for ciprofloxacin degradation and bacterial disinfection publication-title: Sci. Total Environ. – volume: 38 start-page: 3705 year: 2004 end-page: 3712 ident: bb0005 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. – volume: 248 year: 2020 ident: bb0105 article-title: Rapid removal of organic micropollutants by heterogeneous peroxymonosulfate catalysis over a wide pH range: performance, mechanism and economic analysis publication-title: Sep. Purif. Technol. – volume: 723 year: 2020 ident: bb0080 article-title: Comparison of acetaminophen degradation in UV-LED-based advance oxidation processes: reaction kinetics, radicals contribution, degradation pathways and acute toxicity assessment publication-title: Sci. Total Environ. – volume: 245 year: 2020 ident: bb0030 article-title: The effect of peroxymonosulfate in WS publication-title: Chemosphere – volume: 452 year: 2023 ident: bb0160 article-title: Enhancing ferric ion/sodium percarbonate Fenton-like reaction with tungsten disulfide cocatalyst for metronidazole decomposition over wide pH range publication-title: Chem. Eng. J. – volume: 383 year: 2020 ident: bb0215 article-title: Regeneration of zero-valent iron powder by the cocatalytic effect of WS publication-title: Chem. Eng. J. – volume: 121 start-page: 14413 year: 2017 end-page: 14425 ident: bb0245 article-title: Composite of few-layered MoS publication-title: J. Phys. Chem. C – volume: 849 year: 2022 ident: bb0120 article-title: Effects of aging on environmental behavior of plastic additives: migration, leaching, and ecotoxicity publication-title: Sci. Total Environ. – volume: 269 year: 2020 ident: bb0015 article-title: Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation publication-title: Appl. Catal. B Environ. – volume: 223 year: 2022 ident: bb0020 article-title: Insight into UV-LED/PS/Fe(III) and UV-LED/PMS/Fe(III) for p-arsanilic acid degradation and simultaneous arsenate immobilization publication-title: Water Res. – volume: 60 start-page: 17155 year: 2021 end-page: 17163 ident: bb0250 article-title: Constructing an acidic microenvironment by MoS publication-title: Angew. Chem. Int. Ed. – volume: 66 year: 2019 ident: bb0085 article-title: Few-layer transition metal dichalcogenides (MoS publication-title: Nano Energy – volume: 442 year: 2022 ident: bb0025 article-title: WS publication-title: Chem. Eng. J. – volume: 47 year: 2022 ident: bb0060 article-title: Rethinking the timing of flocculant addition during activated sludge dewatering publication-title: J. Water Process Eng. – volume: 139 start-page: 118 year: 2018 end-page: 131 ident: bb0155 article-title: Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review publication-title: Water Res. – volume: 334 start-page: 1502 year: 2018 end-page: 1517 ident: bb0190 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. – volume: 383 year: 2020 ident: bb0220 article-title: Regeneration of zero-valent iron powder by the cocatalytic effect of WS publication-title: Chem. Eng. J. – volume: 200 year: 2021 ident: bb0100 article-title: A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water publication-title: Environ. Res. – volume: 352 start-page: 343 year: 2018 end-page: 351 ident: bb0260 article-title: Catalytic activity of different iron oxides: insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems publication-title: Chem. Eng. J. – volume: 453 year: 2023 ident: bb0210 article-title: Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater publication-title: Chem. Eng. J. – volume: 4 start-page: 1359 year: 2018 end-page: 1372 ident: bb0230 article-title: Metal sulfides as excellent co-catalysts for H publication-title: Chem – volume: 271 start-page: 214 year: 2015 end-page: 222 ident: bb0095 article-title: The roles of halides in the acetaminophen degradation by UV/H publication-title: Chem. Eng. J. – volume: 147 start-page: 497 year: 2007 end-page: 502 ident: bb0180 article-title: Influence of inorganic ions on MTBE degradation by Fenton's reagent publication-title: J. Hazard. Mater. – volume: 48 start-page: 190 year: 2014 ident: 10.1016/j.scitotenv.2023.162151_bb0145 article-title: An integrated catalyst of Pd supported on magnetic Fe3O4 nanoparticles: simultaneous production of H2O2 and Fe2+ for efficient electro-Fenton degradation of organic contaminants publication-title: Water Res. doi: 10.1016/j.watres.2013.09.029 – volume: 147 start-page: 184 year: 2018 ident: 10.1016/j.scitotenv.2023.162151_bb0045 article-title: Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: kinetics, radical mechanism and energy requirements publication-title: Water Res. doi: 10.1016/j.watres.2018.08.048 – volume: 407 year: 2021 ident: 10.1016/j.scitotenv.2023.162151_bb0130 article-title: Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127191 – volume: 269 year: 2020 ident: 10.1016/j.scitotenv.2023.162151_bb0015 article-title: Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118767 – volume: 223 year: 2022 ident: 10.1016/j.scitotenv.2023.162151_bb0020 article-title: Insight into UV-LED/PS/Fe(III) and UV-LED/PMS/Fe(III) for p-arsanilic acid degradation and simultaneous arsenate immobilization publication-title: Water Res. doi: 10.1016/j.watres.2022.118989 – volume: 850 year: 2022 ident: 10.1016/j.scitotenv.2023.162151_bb0065 article-title: WS2 significantly enhances the degradation of sulfachloropyridazine by Fe(III)/persulfate publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.157987 – volume: 3 start-page: 1756 issue: 8 year: 2015 ident: 10.1016/j.scitotenv.2023.162151_bb0240 article-title: Vitamin B2-initiated hydroxyl radical generation under visible light in the presence of dissolved iron publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00267 – volume: 60 start-page: 17155 issue: 31 year: 2021 ident: 10.1016/j.scitotenv.2023.162151_bb0250 article-title: Constructing an acidic microenvironment by MoS2 in heterogeneous fenton reaction for pollutant control publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105736 – volume: 46 start-page: 6454 issue: 19 year: 2012 ident: 10.1016/j.scitotenv.2023.162151_bb0165 article-title: Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials publication-title: Water Res. doi: 10.1016/j.watres.2012.09.020 – volume: 66 year: 2019 ident: 10.1016/j.scitotenv.2023.162151_bb0085 article-title: Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: understanding the piezocatalytic effect publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104083 – volume: 245 year: 2020 ident: 10.1016/j.scitotenv.2023.162151_bb0030 article-title: The effect of peroxymonosulfate in WS2 nanosheets for the removal of diclofenac: information exposure and degradation pathway publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125678 – volume: 772 year: 2021 ident: 10.1016/j.scitotenv.2023.162151_bb0010 article-title: Recent trends in advanced oxidation process-based degradation of erythromycin: pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145389 – volume: 121 start-page: 14413 issue: 27 year: 2017 ident: 10.1016/j.scitotenv.2023.162151_bb0245 article-title: Composite of few-layered MoS2 grown on carbon black: tuning the ratio of terminal to total sulfur in MoS2 for hydrogen evolution reaction publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b02522 – volume: 453 year: 2023 ident: 10.1016/j.scitotenv.2023.162151_bb0210 article-title: Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139812 – volume: 646 start-page: 1459 year: 2019 ident: 10.1016/j.scitotenv.2023.162151_bb0175 article-title: Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin,India publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.235 – volume: 382 year: 2020 ident: 10.1016/j.scitotenv.2023.162151_bb0050 article-title: Degradation of benzoic acid in an advanced oxidation process: the effects of reducing agents publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121090 – volume: 442 year: 2022 ident: 10.1016/j.scitotenv.2023.162151_bb0025 article-title: WS2-cocatalyzed peroxymonosulfate activation via an enhanced Fe(III)/Fe(II) cycle toward efficient organic pollutant degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135961 – volume: 275 year: 2021 ident: 10.1016/j.scitotenv.2023.162151_bb0150 article-title: Critical review of advanced oxidation processes in organic wastewater treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130104 – volume: 38 start-page: 3705 issue: 13 year: 2004 ident: 10.1016/j.scitotenv.2023.162151_bb0005 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. doi: 10.1021/es035121o – volume: 12 start-page: 18373 issue: 29 year: 2022 ident: 10.1016/j.scitotenv.2023.162151_bb0170 article-title: A review on the degradation of acetaminophen by advanced oxidation process: pathway, by-products, biotoxicity, and density functional theory calculation publication-title: RSC Adv. doi: 10.1039/D2RA02469A – volume: 56 start-page: 8784 issue: 12 year: 2022 ident: 10.1016/j.scitotenv.2023.162151_bb0225 article-title: Effects of molecular structure on organic contaminants' degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c00464 – volume: 5 start-page: 75953 issue: 93 year: 2015 ident: 10.1016/j.scitotenv.2023.162151_bb0040 article-title: Exploiting XPS for the identification of sulfides and polysulfides publication-title: RSC Adv. doi: 10.1039/C5RA14915K – volume: 452 year: 2023 ident: 10.1016/j.scitotenv.2023.162151_bb0160 article-title: Enhancing ferric ion/sodium percarbonate Fenton-like reaction with tungsten disulfide cocatalyst for metronidazole decomposition over wide pH range publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139245 – volume: 262 year: 2021 ident: 10.1016/j.scitotenv.2023.162151_bb0140 article-title: WS2 as highly active co-catalyst for the regeneration of Fe(II) in the advanced oxidation processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128067 – volume: 33 start-page: 2105 issue: 4 year: 2022 ident: 10.1016/j.scitotenv.2023.162151_bb0090 article-title: Efficient removal of tetracycline by H2O2 activated with iron-doped biochar: performance, mechanism, and degradation pathways publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.08.054 – volume: 590–591 start-page: 751 year: 2017 ident: 10.1016/j.scitotenv.2023.162151_bb0255 article-title: Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.039 – volume: 383 year: 2020 ident: 10.1016/j.scitotenv.2023.162151_bb0220 article-title: Regeneration of zero-valent iron powder by the cocatalytic effect of WS2 in the environmental applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123158 – volume: 787 year: 2021 ident: 10.1016/j.scitotenv.2023.162151_bb0115 article-title: Fe(III) greatly promotes peroxymonosulfate activation by WS2 for efficient carbamazepine degradation and Escherichia coli disinfection publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147724 – volume: 248 year: 2020 ident: 10.1016/j.scitotenv.2023.162151_bb0105 article-title: Rapid removal of organic micropollutants by heterogeneous peroxymonosulfate catalysis over a wide pH range: performance, mechanism and economic analysis publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117023 – volume: 352 start-page: 343 year: 2018 ident: 10.1016/j.scitotenv.2023.162151_bb0260 article-title: Catalytic activity of different iron oxides: insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.035 – volume: 147 start-page: 497 issue: 1 year: 2007 ident: 10.1016/j.scitotenv.2023.162151_bb0180 article-title: Influence of inorganic ions on MTBE degradation by Fenton's reagent publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.01.044 – volume: 732 year: 2020 ident: 10.1016/j.scitotenv.2023.162151_bb0110 article-title: Enhanced decomposition of H2O2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139335 – volume: 331 start-page: 729 year: 2018 ident: 10.1016/j.scitotenv.2023.162151_bb0185 article-title: Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol a publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.021 – volume: 52 start-page: 11297 issue: 19 year: 2018 ident: 10.1016/j.scitotenv.2023.162151_bb0035 article-title: Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02403 – volume: 47 year: 2022 ident: 10.1016/j.scitotenv.2023.162151_bb0060 article-title: Rethinking the timing of flocculant addition during activated sludge dewatering publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2022.102744 – volume: 723 year: 2020 ident: 10.1016/j.scitotenv.2023.162151_bb0080 article-title: Comparison of acetaminophen degradation in UV-LED-based advance oxidation processes: reaction kinetics, radicals contribution, degradation pathways and acute toxicity assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137993 – volume: 286 year: 2021 ident: 10.1016/j.scitotenv.2023.162151_bb0265 article-title: Critical review of reductant-enhanced peroxide activation processes: trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.119900 – volume: 282 start-page: 13 year: 2019 ident: 10.1016/j.scitotenv.2023.162151_bb0135 article-title: Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (PNP) as catalyzed by Fe@Fe2O3 core-shell nanowires publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.02.136 – volume: 271 start-page: 214 year: 2015 ident: 10.1016/j.scitotenv.2023.162151_bb0095 article-title: The roles of halides in the acetaminophen degradation by UV/H2O2 treatment: kinetics, mechanisms, and products analysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.090 – volume: 799 year: 2021 ident: 10.1016/j.scitotenv.2023.162151_bb0125 article-title: Activation of peroxymonosulfate by iron oxychloride with hydroxylamine for ciprofloxacin degradation and bacterial disinfection publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149506 – volume: 139 start-page: 118 year: 2018 ident: 10.1016/j.scitotenv.2023.162151_bb0155 article-title: Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review publication-title: Water Res. doi: 10.1016/j.watres.2018.03.042 – volume: 49 start-page: 14076 issue: 24 year: 2015 ident: 10.1016/j.scitotenv.2023.162151_bb0070 article-title: Hydroquinone-mediated redox cycling of iron and concomitant oxidation of hydroquinone in oxic waters under acidic conditions: comparison with iron-natural organic matter interactions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03189 – volume: 344 start-page: 453 year: 2018 ident: 10.1016/j.scitotenv.2023.162151_bb0075 article-title: Comparative studies of H2O2/Fe(II)/formic acid, sodium percarbonate/Fe(II)/formic acid and calcium peroxide/Fe(II)/formic acid processes for degradation performance of carbon tetrachloride publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.092 – volume: 849 year: 2022 ident: 10.1016/j.scitotenv.2023.162151_bb0120 article-title: Effects of aging on environmental behavior of plastic additives: migration, leaching, and ecotoxicity publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.157951 – volume: 383 year: 2020 ident: 10.1016/j.scitotenv.2023.162151_bb0215 article-title: Regeneration of zero-valent iron powder by the cocatalytic effect of WS2 in the environmental applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123158 – volume: 411 year: 2021 ident: 10.1016/j.scitotenv.2023.162151_bb0195 article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128392 – volume: 4 start-page: 1359 issue: 6 year: 2018 ident: 10.1016/j.scitotenv.2023.162151_bb0230 article-title: Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes publication-title: Chem doi: 10.1016/j.chempr.2018.03.002 – volume: 200 year: 2021 ident: 10.1016/j.scitotenv.2023.162151_bb0100 article-title: A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water publication-title: Environ. Res. doi: 10.1016/j.envres.2021.111371 – volume: 142 start-page: 18 year: 2015 ident: 10.1016/j.scitotenv.2023.162151_bb0235 article-title: Sunlight-mediated degradation of methyl orange sensitized by riboflavin: roles of reactive oxygen species publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2014.12.031 – volume: 334 start-page: 1502 year: 2018 ident: 10.1016/j.scitotenv.2023.162151_bb0190 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.059 – volume: 451 year: 2023 ident: 10.1016/j.scitotenv.2023.162151_bb0200 article-title: Activation of persulfate-based advanced oxidation processes by 1T-MoS2 for the degradation of imidacloprid: performance and mechanism publication-title: Chem. Eng. J. – volume: 686 start-page: 75 year: 2019 ident: 10.1016/j.scitotenv.2023.162151_bb0205 article-title: Qualitative and quantitative use of micropollutants as source and process indicators.A review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.05.385 – volume: 240 year: 2020 ident: 10.1016/j.scitotenv.2023.162151_bb0055 article-title: Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: theoretical and experimental studies publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124979 |
SSID | ssj0000781 |
Score | 2.526605 |
Snippet | The most important factor that restricts the decomposition of H2O2 in the Fe3+/H2O2 reaction is the slow cycling efficiency of reducing Fe3+ to Fe2+. In this... The most important factor that restricts the decomposition of H₂O₂ in the Fe³⁺/H₂O₂ reaction is the slow cycling efficiency of reducing Fe³⁺ to Fe²⁺. In this... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 162151 |
SubjectTerms | acetaminophen Catalyst Decomposition disulfides electron paramagnetic resonance spectroscopy environment Ferric ion Hydrogen peroxide hydroxyl radicals Organics oxidation reaction kinetics superoxide anion tungsten |
Title | Tungsten disulfide (WS2) is a highly active co-catalyst in Fe(III)/H2O2 Fenton-like reactions for efficient acetaminophen degradation |
URI | https://dx.doi.org/10.1016/j.scitotenv.2023.162151 https://www.proquest.com/docview/2775611922 https://www.proquest.com/docview/2834231786 |
Volume | 871 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBelYzAYZctW1m4rGuzQHpzYsiwpu5XSkCysg62lvQlZksFb6pTaGeSyW__vvmfZLR1sPexkJEuy0NN772fpfRDyMXFOGeYUIDdZRNx7EeWgGCKgNy-gzimO_s5fTsT0jH--yC42yFHvC4NmlZ3sDzK9ldZdzahbzdFVWaKPL1djgVmz8DpJohzmXOIuH_6-N_PAYDbhlhkYG1o_sPGCcZslYNNfQ8wiPkwEKsC_aag_ZHWrgCYvyFaHHOlhmNxLsuGrAXkackmuB2T7-N5lDZp1PFsPyPNwMkeDw9ErcnMK_A20ragr69WiKJ2n--ff2QEta2ooxi9erKlp5SC1y6g94FnXDS0rOvH7s9nsYDRlXxkU2vzDi_KnpwA9WweJmgIIpr6NSwGvYRjfmMuywugF8EGMTBGSOL0mZ5Pj06Np1CVjiCzQromkUTK1sQVIFltvmYtjA8vpMJU6Hxu8wGRjy4TJAK8XaeqEE1ZZ5wsnjLdZuk02q2Xl3xBqY594WWS5ygT8Xua59C73jKs0KRIbsx0iegJo20Uqx4QZC92bpP3Qd5TTSDkdKLdD4ruOVyFYx-NdPvUU1g_2nQaV8njnD_2e0MCVeNViKr9c1ZpJCcAU0DP7RxuF0RcTqcTu_0ziLXmGpWCE-Y5sNtcr_x6AUpPvtZywR54czubTE3zOv53PbwEc8RX9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VWyGQKgQLFeXTSBzaQ7qJk9heblXVVULb5cBW9GY5tiMFlmzVZJH2B_C_GcdJqyJBDxzj2I7l8cy82J55AB8iY4SiRiBy42WQWMuCAh1DgPJOSiwzInHxzudzll0kny7Tyy04HmJh3LXK3vZ7m95Z675k0s_m5KqqXIxvIqbMsWa54ySOdnjbZadKR7B9lJ9m81uDzIUnzktQt7HBnWte2HW7Qnj689ARiR9GzPnAvzmpP8x154NmT-BxDx7JkR_fU9iy9RgeeDrJzRh2T26j1rBar7bNGHb85hzxMUfP4NcCVRzFWxNTNetlWRlL9r9-oQekaogiLoXxckNUZwqJXgXdHs-maUlVk5ndz_P8YJLRzxQfOgriZfXdEkSfXYxEQxAHE9ulpsDX2I1t1Y-qdgkM8IMuOYXncXoOF7OTxXEW9HwMgUbxtQFXgsc61IjKQm01NWGocDqNY1NPpsqdYdKppkylCNnLODbMMC20saVhyuo03oVRvartCyA6tJHlZVqIlOEfZlFwawpLExFHZaRDugdsEIDUfbJyx5mxlMOttG_yRnLSSU56ye1BeNPwyufruL_Jx0HC8s7Sk-hV7m_8flgTEhXTnbao2q7WjaScIzZFAE3_UUe4BIwRF-zl_wziHTzMFudn8iyfn76CR-6Nv5P5Gkbt9dq-QdzUFm97vfgN2aAXCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tungsten+disulfide+%28WS2%29+is+a+highly+active+co-catalyst+in+Fe%28III%29%2FH2O2+Fenton-like+reactions+for+efficient+acetaminophen+degradation&rft.jtitle=The+Science+of+the+total+environment&rft.au=He%2C+Dongqin&rft.au=Wang%2C+Dongli&rft.au=Luo%2C+Hongwei&rft.au=Zeng%2C+Yifeng&rft.date=2023-05-01&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=871&rft.spage=162151&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.162151&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |