Convergence of GMRES for Tridiagonal Toeplitz Matrices
We analyze the residuals of GMRES [Y. Saad and M. H. Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856--859], when the method is applied totridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This prob...
Saved in:
Published in | SIAM journal on matrix analysis and applications Vol. 26; no. 1; pp. 233 - 251 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We analyze the residuals of GMRES [Y. Saad and M. H. Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856--859], when the method is applied totridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This problem has been studied previously by Ipsen [BIT, 40 (2000), pp. 524--535] and Eiermann and Ernst [Private communication, 2002], but we formulate and prove our results in a different way. We then extend the (lower) bidiagonal Jordan blocks to tridiagonal Toeplitz matrices and study extensions of our bidiagonal analysis to the tridiagonal case. Intuitively, when a scaled Jordan block is extended to a tridiagonal Toeplitz matrix by a superdiagonal of small modulus (compared to the modulus of the subdiagonal), the GMRES residual norms for both matrices and the same initial residual should be close to each other. We confirm and quantify this intuitive statement. We also demonstrate principal difficulties of any GMRES convergence analysis which is based on eigenvector expansion of the initial residual when the eigenvector matrix is ill-conditioned. Such analyses are complicated by a cancellation of possibly huge components due to close eigenvectors, which can prevent achieving well-justified conclusions. |
---|---|
AbstractList | We analyze the residuals of GMRES [Y. Saad and M. H. Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856--859], when the method is applied totridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This problem has been studied previously by Ipsen [BIT, 40 (2000), pp. 524--535] and Eiermann and Ernst [Private communication, 2002], but we formulate and prove our results in a different way. We then extend the (lower) bidiagonal Jordan blocks to tridiagonal Toeplitz matrices and study extensions of our bidiagonal analysis to the tridiagonal case. Intuitively, when a scaled Jordan block is extended to a tridiagonal Toeplitz matrix by a superdiagonal of small modulus (compared to the modulus of the subdiagonal), the GMRES residual norms for both matrices and the same initial residual should be close to each other. We confirm and quantify this intuitive statement. We also demonstrate principal difficulties of any GMRES convergence analysis which is based on eigenvector expansion of the initial residual when the eigenvector matrix is ill-conditioned. Such analyses are complicated by a cancellation of possibly huge components due to close eigenvectors, which can prevent achieving well-justified conclusions. |
Author | Strakos, Z. Liesen, J. |
Author_xml | – sequence: 1 givenname: J. surname: Liesen fullname: Liesen, J. – sequence: 2 givenname: Z. surname: Strakos fullname: Strakos, Z. |
BookMark | eNplkMFLwzAYxYNMsJv-Ad6K92q-pEmao4w5hQ3B1XNJ2i-jozY16QT9612ZN0_v8H6893hzMut9j4TcAr0H4OphRwstcqULynOWa6kuSAJUi0yBZDOSTHY2-VdkHuOBUpC5hoTIpe-_MOyxrzH1Ll1v31a71PmQlqFtWrP3venS0uPQteNPujVjaGuM1-TSmS7izZ8uyPvTqlw-Z5vX9cvycZPVvIDxVI5OcauYLShKkYOV2hrLkFNAqOuCY25loxreNAakY4Vg1DbCaCMUGM4X5O6cOwT_ecQ4Vgd_DKdJsdKMK0YZnyA4Q3XwMQZ01RDaDxO-K6DV9E717x3-C5TeV88 |
CitedBy_id | crossref_primary_10_1002_gamm_201490008 crossref_primary_10_1007_s11075_013_9820_x crossref_primary_10_1080_00207160_2015_1009901 crossref_primary_10_1137_18M1192093 crossref_primary_10_1016_j_cam_2005_03_048 crossref_primary_10_1137_23M1604266 crossref_primary_10_1137_S1064827503430746 crossref_primary_10_1007_s00211_005_0603_8 crossref_primary_10_1016_j_laa_2009_05_009 crossref_primary_10_1002_nla_2067 crossref_primary_10_1007_s00211_008_0206_2 crossref_primary_10_1007_s11075_019_00720_y crossref_primary_10_1002_pamm_200310544 crossref_primary_10_1002_nla_499 crossref_primary_10_1007_s11075_014_9891_3 crossref_primary_10_1007_s13160_016_0220_1 crossref_primary_10_1137_13091066X crossref_primary_10_1007_s10543_007_0135_y crossref_primary_10_1137_140974213 crossref_primary_10_1137_17M1141291 crossref_primary_10_1016_j_amc_2023_127869 |
Cites_doi | 10.1137/0907058 10.1023/A:1022371814205 10.1137/S1064827500377988 10.1007/s002110050010 10.1137/S1064827500381239 10.1137/S0036144595295284 |
ContentType | Journal Article |
Copyright | [Copyright] © 2004 Society for Industrial and Applied Mathematics |
Copyright_xml | – notice: [Copyright] © 2004 Society for Industrial and Applied Mathematics |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
DOI | 10.1137/S0895479803424967 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database https://resources.nclive.org/materials ABI/INFORM Professional Advanced ProQuest Engineering Collection Biological Sciences ABI/INFORM Global (ProQuest) Agricultural Science Database Computing Database Military Database ProQuest research library ProQuest Science Journals Telecommunications Database Biological Science Database ProQuest Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database test Environmental Science Database Materials Science Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications Natural Science Collection Biological Science Collection Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1095-7162 |
EndPage | 251 |
ExternalDocumentID | 2596288221 10_1137_S0895479803424967 |
GroupedDBID | -~X .4S .DC 123 186 3V. 4.4 7WY 7X2 7XC 88A 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYXX ABDBF ABJCF ABKAD ABMZU ABTAH ABUWG ACGFO ACGOD ACIWK ACPRK ADBBV AEMOZ AENEX AFFNX AFKRA AFRAH AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D0L D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU ECS EDO EJD EMK EST ESX FA8 FRNLG G8K GNUQQ GROUPED_ABI_INFORM_COMPLETE GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M0L M0N M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TH9 TN5 TUS YNT ZKB ZY4 7XB 88K 8AL 8FK JQ2 L.- M2T MBDVC PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c381t-71ef73b72b80e6541b69bab2e301e1cc83e4b6d7d3dda16f28520bd5a9a571a33 |
IEDL.DBID | BENPR |
ISSN | 0895-4798 |
IngestDate | Thu Oct 10 22:08:34 EDT 2024 Fri Aug 23 00:59:10 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-71ef73b72b80e6541b69bab2e301e1cc83e4b6d7d3dda16f28520bd5a9a571a33 |
OpenAccessLink | http://page.math.tu-berlin.de/~liesen/Publicat/LieStr04.pdf |
PQID | 923720233 |
PQPubID | 666305 |
PageCount | 19 |
ParticipantIDs | proquest_journals_923720233 crossref_primary_10_1137_S0895479803424967 |
PublicationCentury | 2000 |
PublicationDate | 2004-01-01 |
PublicationDateYYYYMMDD | 2004-01-01 |
PublicationDate_xml | – month: 01 year: 2004 text: 2004-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | SIAM journal on matrix analysis and applications |
PublicationYear | 2004 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | R4 R12 R5 R6 R8 R9 Smith Gordon (R10) 1978 Stewart G. (R11) 1990 |
References_xml | – volume-title: Numerical solution of partial differential equations year: 1978 ident: R10 contributor: fullname: Smith Gordon – ident: R9 doi: 10.1137/0907058 – ident: R5 doi: 10.1023/A:1022371814205 – ident: R6 doi: 10.1137/S1064827500377988 – ident: R4 doi: 10.1007/s002110050010 – ident: R8 doi: 10.1137/S1064827500381239 – volume-title: Matrix perturbation theory year: 1990 ident: R11 contributor: fullname: Stewart G. – ident: R12 doi: 10.1137/S0036144595295284 |
SSID | ssj0016491 |
Score | 1.8360778 |
Snippet | We analyze the residuals of GMRES [Y. Saad and M. H. Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856--859], when the method is applied totridiagonal... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 233 |
SubjectTerms | Eigenvectors Norms |
Title | Convergence of GMRES for Tridiagonal Toeplitz Matrices |
URI | https://www.proquest.com/docview/923720233 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELVou8CA-BSlUHlgQrJIbCd2JgSoH0JKhVArdYvs-IJYmtKEhV-PnbgVCInVVpZ38d357vweQjeBO0CG5wRMKAnXsSQ6ZJpY00MSCWGocg-c01k8XfDnZbT0szmVH6vc-sTGUZsydzXyO5uICCf1ze7XH8SJRrnmqlfQ6KAetRcF2kW9x9Hs5XXXRoh5K5knk8iVkKRva4bMcUbbRbfmOPB40ujM_whMv_1yE2zGR-jQZ4n4oTXrMdqD1Qk6SHcUq9Upip_cvHjzdBJwWeBJarHENgXF8827NfqbS7HxvASbZdZfOG2o-KE6Q4vxaP40JV4EgeQ2mNZEhFAIpgXVMgAn2q3jRCtNwZ5MCPNcMrAIG2GYMSqMCyojGmgTqURFIlSMnaPuqlzBBcLcfmRAgaP847kpNCipecGZimkARdRHt1sEsnXLdZE1dwQmsj9w9dFgi1Hmf_sq2xnp8t_dAdpvB2BcJeMKdevNJ1zb2F7rIerI8WTo7fgNbfKh2w |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagDMCAeIpSHh6YkCya2ImdCaGKtkDTKZW6RXZ8QSxNacLCr8eXpBUIidVRlu_iu8s9vo-Q2z5eICsyBtZTTJhQMeNxw5zpIQqktL7GBed4Go5n4mUezNvZnLIdq1z7xNpR2yLDGvm9S0QkSn3zh-UHQ9EobK62ChrbZEdwF2dwUXw42jQRQtEI5qkowAKSapuaHkfGaHeIZ8iAJ6JaZf5HWPrtletQMzwkB22OSB8box6RLVgck_14Q7BanpBwgNPi9eIk0CKno9ghSV0CSpPVuzP5GybYNCnA5ZjVF41rIn4oT8ls-JQMxqyVQGCZC6UVkx7kkhvpG9UHlOw2YWS08cHdS_CyTHFw-FppubXaC3NfBX7f2EBHOpCe5vyMdBbFAs4JFe4lCxqQ8E9kNjeglRG54Dr0-5AHXXK3RiBdNkwXaf2HwGX6B64u6a0xStuPvkw3Jrr49-kN2R0n8SSdPE9fe2SvGYXBmsYl6VSrT7hyUb4y17UtvwGPKqKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+GMRES+for+Tridiagonal+Toeplitz+Matrices&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=Liesen%2C+J.&rft.au=Strakos%2C+Z.&rft.date=2004-01-01&rft.issn=0895-4798&rft.eissn=1095-7162&rft.volume=26&rft.issue=1&rft.spage=233&rft.epage=251&rft_id=info:doi/10.1137%2FS0895479803424967&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_S0895479803424967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon |