Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli

Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of clinical nutrition Vol. 82; no. 6; pp. 1283 - 1291
Main Authors Gasper, Amy V, Al-janobi, Ahmed, Smith, Julie A, Bacon, James R, Fortun, Paul, Atherton, Clare, Taylor, Moira A, Hawkey, Christopher J, Barrett, David A, Mithen, Richard F
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Society for Clinical Nutrition 01.12.2005
American Society for Clinical Nutrition, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection. We compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli). Sixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine. GSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli. GSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed.
AbstractList Background: Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection. Objective: We compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli). Design: Sixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine. Results:GSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli. Conclusions:GSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed. [PUBLICATION ABSTRACT]
BACKGROUND: Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection. OBJECTIVE: We compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli). DESIGN: Sixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine. RESULTS:GSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli. CONCLUSIONS:GSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed.
Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection.BACKGROUNDBroccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection.We compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli).OBJECTIVEWe compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli).Sixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine.DESIGNSixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine.GSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli.RESULTSGSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli.GSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed.CONCLUSIONSGSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed.
Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection. We compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli). Sixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine. GSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli. GSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed.
Author Smith, Julie A
Al-janobi, Ahmed
Atherton, Clare
Hawkey, Christopher J
Gasper, Amy V
Bacon, James R
Taylor, Moira A
Fortun, Paul
Mithen, Richard F
Barrett, David A
Author_xml – sequence: 1
  givenname: Amy V
  surname: Gasper
  fullname: Gasper, Amy V
– sequence: 2
  givenname: Ahmed
  surname: Al-janobi
  fullname: Al-janobi, Ahmed
– sequence: 3
  givenname: Julie A
  surname: Smith
  fullname: Smith, Julie A
– sequence: 4
  givenname: James R
  surname: Bacon
  fullname: Bacon, James R
– sequence: 5
  givenname: Paul
  surname: Fortun
  fullname: Fortun, Paul
– sequence: 6
  givenname: Clare
  surname: Atherton
  fullname: Atherton, Clare
– sequence: 7
  givenname: Moira A
  surname: Taylor
  fullname: Taylor, Moira A
– sequence: 8
  givenname: Christopher J
  surname: Hawkey
  fullname: Hawkey, Christopher J
– sequence: 9
  givenname: David A
  surname: Barrett
  fullname: Barrett, David A
– sequence: 10
  givenname: Richard F
  surname: Mithen
  fullname: Mithen, Richard F
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17345659$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16332662$$D View this record in MEDLINE/PubMed
BookMark eNqF0k1r3DAQBmBREppN2muPxRSamzf6siQfS2iTQEIPbc9irJViLbLlSnYg_75ysiUQKD0JwfMO0sycoqMxjhahDwRvCW7ZBezNeKHoVmwJVewN2pCWqZpRLI_QBmNM65aI5gSd5rzHmFCuxFt0QgRjVAi6QQ9XYZlh7n0pW_2o5wRjdjZBttUdqaYYHoeYpt7noYJxVw12hi6G9RpdlZfgYoKphxJ2KQ5VnouCtHvCvb_v6_uwmJj9GAPMtupSNKbk36FjByHb94fzDP369vXn5XV9-_3q5vLLbW2YInMtnICu5R231nJDCXBuJZGNkEA5Vo52BCQ42bY7JSgxGKwhCkB1LbaKSHaGzp_rTin-Xmye9eCzsSGUF8cla6GUJILg_0IuacO5bAr89Aru45LG8glNGWk5xc2KPh7Q0g12p6fkB0iP-m_fC_h8AJANBFfabnx-cZLxRjRtcdtnZ1LMOVn3QrBeF0CvC6AV1UKvC1AC_FXA-DLfMt4yWh_-FfsD-RS18Q
CODEN AJCNAC
CitedBy_id crossref_primary_10_1007_s00394_020_02322_0
crossref_primary_10_3389_fnut_2024_1448130
crossref_primary_10_1158_0008_5472_CAN_07_6171
crossref_primary_10_1111_j_1365_2133_2011_10661_x
crossref_primary_10_3390_nu11092245
crossref_primary_10_1021_jf3011195
crossref_primary_10_1007_s11095_011_0500_z
crossref_primary_10_1016_j_foodchem_2012_01_085
crossref_primary_10_1208_s12248_013_9504_4
crossref_primary_10_1371_journal_pone_0051251
crossref_primary_10_1002_ptr_6923
crossref_primary_10_1016_j_freeradbiomed_2018_02_004
crossref_primary_10_3390_ijms24097852
crossref_primary_10_1017_S0007114511000274
crossref_primary_10_1093_jn_137_4_904
crossref_primary_10_18632_oncotarget_8968
crossref_primary_10_1002_mnfr_201501017
crossref_primary_10_1158_1940_6207_CAPR_16_0032
crossref_primary_10_3945_jn_114_197434
crossref_primary_10_1021_acs_jafc_6b02195
crossref_primary_10_1016_S1734_1140_12_70920_9
crossref_primary_10_1007_s40495_015_0024_z
crossref_primary_10_3390_pharmaceutics13070958
crossref_primary_10_1016_j_coph_2014_05_010
crossref_primary_10_1039_D1FO03398K
crossref_primary_10_1002_mnfr_201400550
crossref_primary_10_1039_c0fo00110d
crossref_primary_10_1002_mnfr_201400674
crossref_primary_10_1002_ptr_8419
crossref_primary_10_1111_j_1753_4887_2012_00532_x
crossref_primary_10_3390_nu14040768
crossref_primary_10_1016_j_canlet_2008_04_018
crossref_primary_10_1093_carcin_bgr255
crossref_primary_10_1007_s12975_024_01278_1
crossref_primary_10_13103_JFHS_2012_27_4_461
crossref_primary_10_1016_j_bcp_2010_10_005
crossref_primary_10_1016_j_lwt_2015_03_088
crossref_primary_10_1002_mnfr_201400104
crossref_primary_10_1016_j_phrs_2011_07_005
crossref_primary_10_1080_09637480802089751
crossref_primary_10_3390_molecules27051750
crossref_primary_10_1038_s41598_017_03629_5
crossref_primary_10_1155_2013_415078
crossref_primary_10_4163_jnh_2017_50_1_10
crossref_primary_10_1002_mnfr_201700965
crossref_primary_10_1002_biof_98
crossref_primary_10_1016_j_phymed_2014_12_012
crossref_primary_10_3389_fnut_2024_1409339
crossref_primary_10_1111_nure_12060
crossref_primary_10_1155_2018_1617202
crossref_primary_10_1080_01635581_2015_1053498
crossref_primary_10_3390_molecules24193593
crossref_primary_10_1016_j_jnutbio_2007_02_014
crossref_primary_10_1007_s00394_015_0930_1
crossref_primary_10_1093_jn_137_7_1718
crossref_primary_10_1016_j_foodchem_2017_04_098
crossref_primary_10_1002_art_38133
crossref_primary_10_1016_j_canlet_2012_05_016
crossref_primary_10_1021_acs_jafc_4c06178
crossref_primary_10_14712_18059694_2017_78
crossref_primary_10_1002_jsfa_3507
crossref_primary_10_1016_j_freeradbiomed_2011_01_009
crossref_primary_10_1007_s13580_011_0141_5
crossref_primary_10_1038_s41598_017_12855_w
crossref_primary_10_3390_diseases4020022
crossref_primary_10_1093_mutage_geq045
crossref_primary_10_3389_fnut_2023_1204561
crossref_primary_10_3389_fnut_2020_575092
crossref_primary_10_3390_nu13010266
crossref_primary_10_1207_s15327914nc5501_7
crossref_primary_10_1016_j_phrs_2014_05_003
crossref_primary_10_1089_ars_2017_7358
crossref_primary_10_1016_j_clnu_2010_06_010
crossref_primary_10_1016_j_jff_2024_106161
crossref_primary_10_3390_ijms18091890
crossref_primary_10_3390_cancers5010131
crossref_primary_10_1111_1541_4337_12049
crossref_primary_10_1158_1055_9965_EPI_09_0589
crossref_primary_10_1002_mnfr_201701000
crossref_primary_10_1038_s41598_018_35455_8
crossref_primary_10_1089_ars_2014_6097
crossref_primary_10_3109_07388551_2011_604838
crossref_primary_10_1021_acs_jafc_8b04330
crossref_primary_10_1021_jf062109h
crossref_primary_10_1002_mnfr_201500633
crossref_primary_10_1111_nph_12232
crossref_primary_10_1371_journal_pone_0138771
crossref_primary_10_1186_1475_2891_10_11
crossref_primary_10_1017_S0007114512000657
crossref_primary_10_1038_s41598_022_12347_6
crossref_primary_10_1152_ajplung_00170_2006
crossref_primary_10_1016_j_taap_2018_10_020
crossref_primary_10_1002_mc_22224
crossref_primary_10_1161_HYPERTENSIONAHA_121_16510
crossref_primary_10_1002_mnfr_201200225
crossref_primary_10_1016_j_lfs_2022_120554
crossref_primary_10_1016_j_foodchem_2008_01_032
crossref_primary_10_3390_nu15010031
crossref_primary_10_3390_ijms24031962
crossref_primary_10_1080_21691401_2017_1282501
crossref_primary_10_1017_S0007114512000554
crossref_primary_10_1093_ajcn_nqz122
crossref_primary_10_1007_s00394_019_02069_3
crossref_primary_10_4162_nrp_2015_9_1_49
crossref_primary_10_1158_1055_9965_EPI_08_0710
crossref_primary_10_1016_j_ejphar_2019_03_010
crossref_primary_10_1111_j_1749_6632_2012_06610_x
crossref_primary_10_1080_19476337_2023_2173307
crossref_primary_10_1038_cddiscovery_2017_25
crossref_primary_10_1002_mnfr_201500457
crossref_primary_10_1002_mnfr_201800079
crossref_primary_10_1017_S0007114518002921
crossref_primary_10_1016_j_taap_2012_10_029
crossref_primary_10_1021_tx400427t
crossref_primary_10_3390_nu15122742
crossref_primary_10_3109_03602532_2011_569551
crossref_primary_10_1517_14728222_12_6_729
crossref_primary_10_1002_ijc_24583
crossref_primary_10_1021_jf801989e
crossref_primary_10_1021_acs_jafc_3c08452
crossref_primary_10_1105_tpc_111_083998
crossref_primary_10_1016_j_canlet_2009_04_004
crossref_primary_10_1039_b9ay00280d
crossref_primary_10_1271_bbb_90731
crossref_primary_10_1186_s13148_015_0068_2
crossref_primary_10_1111_imcb_12686
crossref_primary_10_3390_antiox9060521
crossref_primary_10_1016_j_bcp_2025_116797
crossref_primary_10_1158_1055_9965_EPI_09_0660
crossref_primary_10_1016_j_scitotenv_2019_135624
crossref_primary_10_3390_antiox9080716
crossref_primary_10_1371_journal_pone_0293075
crossref_primary_10_1002_mnfr_201700911
crossref_primary_10_1371_journal_pone_0114764
crossref_primary_10_3390_molecules26123602
crossref_primary_10_1002_mnfr_201400863
crossref_primary_10_1021_acs_jafc_7b04641
crossref_primary_10_1517_17425255_2013_843668
crossref_primary_10_1016_j_jff_2020_104210
crossref_primary_10_3892_ijfn_2022_26
crossref_primary_10_1016_j_jaip_2016_03_012
crossref_primary_10_1080_07315724_2017_1360807
crossref_primary_10_1016_j_clnu_2019_03_022
crossref_primary_10_1371_journal_pone_0002568
crossref_primary_10_3389_fnut_2021_730906
crossref_primary_10_1007_s11101_008_9103_7
crossref_primary_10_1016_j_foodchem_2012_01_026
crossref_primary_10_26599_FMH_2025_9420060
crossref_primary_10_3109_03602532_2015_1058819
crossref_primary_10_1016_j_jchromb_2017_11_019
crossref_primary_10_1080_01635581_2014_864777
crossref_primary_10_1002_pro_3536
crossref_primary_10_1016_j_molmed_2012_04_003
crossref_primary_10_1186_1477_5956_8_67
crossref_primary_10_1111_j_1745_7254_2007_00679_x
crossref_primary_10_1158_1940_6207_CAPR_10_0296
crossref_primary_10_3390_nu15092209
crossref_primary_10_1021_jf062398
crossref_primary_10_1124_mol_106_029264
crossref_primary_10_1016_j_jchromb_2006_07_007
crossref_primary_10_1002_mnfr_200700226
crossref_primary_10_1097_CEJ_0000000000000491
crossref_primary_10_3389_fpls_2022_1081321
crossref_primary_10_1021_jf201501x
crossref_primary_10_1007_s00216_015_8482_z
crossref_primary_10_1016_j_jnutbio_2022_108978
crossref_primary_10_34067_KID_0004552022
crossref_primary_10_1021_acs_jafc_8b01653
crossref_primary_10_1016_j_phymed_2024_155731
crossref_primary_10_1681_ASN_2019050449
crossref_primary_10_1002_em_20456
crossref_primary_10_1007_s10637_014_0189_z
crossref_primary_10_1016_j_taap_2018_12_004
crossref_primary_10_1002_mnfr_201100507
crossref_primary_10_1016_j_drudis_2014_07_007
crossref_primary_10_1017_S002966511200119X
crossref_primary_10_1371_journal_pone_0083283
crossref_primary_10_1039_D4FO03446E
crossref_primary_10_1016_j_jnutbio_2012_06_004
crossref_primary_10_1152_ajpendo_00142_2011
crossref_primary_10_1017_S0029665115002177
crossref_primary_10_3390_toxins2040593
crossref_primary_10_1016_j_foodchem_2023_137108
crossref_primary_10_1016_j_taap_2013_03_029
crossref_primary_10_3390_molecules22111983
crossref_primary_10_1016_j_freeradbiomed_2013_08_182
crossref_primary_10_3892_or_2016_4942
crossref_primary_10_3945_ajcn_2009_26736D
crossref_primary_10_1002_mnfr_200800065
crossref_primary_10_1016_j_canlet_2018_05_035
crossref_primary_10_1111_nbu_12207
crossref_primary_10_2174_1381612823666170111100531
crossref_primary_10_1002_prca_200780100
crossref_primary_10_1021_acs_jafc_7b03628
crossref_primary_10_1038_s41430_021_00970_x
crossref_primary_10_1039_c1fo10114e
crossref_primary_10_1159_000511888
crossref_primary_10_1038_embor_2010_215
crossref_primary_10_3390_nu10050585
crossref_primary_10_1016_j_fct_2011_08_019
crossref_primary_10_1021_jf061997d
crossref_primary_10_1007_s12282_018_0866_4
crossref_primary_10_1021_jf202887c
crossref_primary_10_1016_j_clnu_2018_04_012
crossref_primary_10_1017_S0029665107005459
crossref_primary_10_1002_mnfr_201600557
crossref_primary_10_1016_j_jff_2013_09_029
crossref_primary_10_1038_pcan_2014_6
crossref_primary_10_3390_nu14163263
crossref_primary_10_1158_1055_9965_EPI_10_0475
crossref_primary_10_1080_10408398_2010_503288
crossref_primary_10_3945_ajcn_113_065235
crossref_primary_10_1007_s11912_019_0782_6
Cites_doi 10.1093/oxfordjournals.aje.a010124
10.1093/carcin/23.8.1399
10.1159/000028396
10.1002/1097-0215(20000901)87:5<728::AID-IJC16>3.0.CO;2-G
10.1016/S0090-9556(24)14877-5
10.1146/annurev.pharmtox.45.120403.095857
10.1016/S0140-6736(00)02631-3
10.1021/tx970080t
10.1016/S0278-6915(99)00082-4
10.1074/jbc.M313538200
10.1093/jn/134.5.1134
10.1006/bbrc.1995.1106
10.1093/carcin/bgg192
10.1158/0008-5472.CAN-04-1326
10.1093/jnci/92.1.61
10.1007/s10552-004-1093-1
10.1042/bj3110453
10.1207/S15327914NC382_5
10.1207/s15327914nc5002_11
10.1093/carcin/23.12.2055
10.1042/bj3060565
10.1007/s00122-002-1123-x
10.1093/carcin/17.2.277
10.1093/jn/135.8.1865
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright American Society for Clinical Nutrition, Inc. Dec 2005
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright American Society for Clinical Nutrition, Inc. Dec 2005
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T7
7TS
8FD
C1K
FR3
K9.
NAPCQ
P64
7S9
L.6
7X8
DOI 10.1093/ajcn/82.6.1283
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Physical Education Index
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Diet & Clinical Nutrition
EISSN 1938-3207
EndPage 1291
ExternalDocumentID 959659111
16332662
17345659
10_1093_ajcn_82_6_1283
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
-~X
..I
.55
.GJ
0R~
1HT
23M
2FS
2WC
3O-
4.4
48X
53G
5GY
5RE
5VS
6J9
85S
8R4
8R5
AABZA
AACZT
AAGQS
AAHBH
AAIKC
AAJQQ
AALRI
AAMNW
AAPGJ
AAPQZ
AAUQX
AAUTI
AAVAP
AAWDT
AAWTL
AAXUO
AAYOK
AAYWO
AAYXX
ABBTP
ABDNZ
ABDPE
ABIME
ABJNI
ABLJU
ABOCM
ABPTD
ABWST
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ACPVT
ACUFI
ACUTJ
ACVFH
ADBBV
ADCNI
ADGZP
ADHUB
ADMTO
ADRTK
ADUKH
ADVEK
ADVLN
AEGXH
AENEX
AETBJ
AEUPX
AFFDN
AFFNX
AFFZL
AFJKZ
AFOFC
AFPUW
AFRAH
AFXAL
AGCQF
AGINJ
AGKRT
AGNAY
AGQXC
AGUTN
AHMBA
AI.
AIAGR
AIGII
AITUG
AJEEA
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANFBD
APXCP
AQDSO
AQKUS
BAWUL
BAYMD
BKOMP
BTRTY
C1A
CDBKE
CITATION
DAKXR
DIK
E3Z
EBS
EIHJH
EJD
ENERS
EX3
F5P
F9R
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FRP
GAUVT
GJXCC
GX1
H13
HF~
HZ~
IH2
J5H
KBUDW
KOP
KQ8
KSI
KSN
L7B
LPU
MBLQV
MHKGH
MV1
MVM
N4W
NEJ
NHB
NHCRO
NOMLY
NOYVH
NU-
NVLIB
O9-
ODMLO
OHT
OK1
OVD
P2P
P6G
PCD
PQQKQ
PRG
Q2X
R0Z
RHI
RNS
ROL
SJN
TCN
TEORI
TMA
TNT
TR2
TWZ
UBH
UHB
UKR
VH1
W2D
W8F
WH7
WHG
WOQ
WOW
X7M
XOL
XSW
YBU
YHG
YOJ
YQJ
YR5
YRY
YSK
YV5
YYQ
YZZ
ZCA
ZCG
ZGI
ZUP
ZXP
~KM
EFKBS
IQODW
A8Z
ABSAR
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
RHF
ROX
SV3
VXZ
Z5M
7QP
7T7
7TS
8FD
C1K
FR3
K9.
NAPCQ
P64
7S9
L.6
7X8
ID FETCH-LOGICAL-c381t-6f6ab94b4eee4c21a44e717567a2408f2b1a7af799d8621c0aec18aa8b90e8173
ISSN 0002-9165
IngestDate Thu Aug 07 15:12:24 EDT 2025
Thu Aug 07 14:06:10 EDT 2025
Fri Jul 25 03:30:16 EDT 2025
Wed Feb 19 02:24:37 EST 2025
Mon Jul 21 09:15:43 EDT 2025
Thu Jul 03 08:20:25 EDT 2025
Thu Apr 24 23:02:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Human
Glucosinolate
Vegetables
GSTM1
Enzyme
Transferases
Metabolism
Feeding
super broccoli
Broccoli
Food intake
Glutathione transferase
Sulforaphane
glucosinolates
Isothiocyanates
chemoprotection
Polymorphism
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-6f6ab94b4eee4c21a44e717567a2408f2b1a7af799d8621c0aec18aa8b90e8173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
PMID 16332662
PQID 231942055
PQPubID 41076
PageCount 9
ParticipantIDs proquest_miscellaneous_68871610
proquest_miscellaneous_47254475
proquest_journals_231942055
pubmed_primary_16332662
pascalfrancis_primary_17345659
crossref_primary_10_1093_ajcn_82_6_1283
crossref_citationtrail_10_1093_ajcn_82_6_1283
PublicationCentury 2000
PublicationDate 2005-12-01
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: 2005-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle The American journal of clinical nutrition
PublicationTitleAlternate Am J Clin Nutr
PublicationYear 2005
Publisher American Society for Clinical Nutrition
American Society for Clinical Nutrition, Inc
Publisher_xml – name: American Society for Clinical Nutrition
– name: American Society for Clinical Nutrition, Inc
References Basten (10.1093/ajcn/82.6.1283_bib37) 2002; 23
Traka (10.1093/ajcn/82.6.1283_bib17) 2005; 135
Meyer (10.1093/ajcn/82.6.1283_bib22) 1995; 306
Cotton (10.1093/ajcn/82.6.1283_bib24) 2000; 151
Maheo (10.1093/ajcn/82.6.1283_bib14) 1997; 57
Jackson (10.1093/ajcn/82.6.1283_bib34) 2004; 25
Seow (10.1093/ajcn/82.6.1283_bib25) 1998; 7
Cohen (10.1093/ajcn/82.6.1283_bib11) 2000; 92
Conaway (10.1093/ajcn/82.6.1283_bib33) 1999; 27
Getahun (10.1093/ajcn/82.6.1283_bib32) 1999; 8
Fahey (10.1093/ajcn/82.6.1283_bib13) 1999; 37
Ambrosone (10.1093/ajcn/82.6.1283_bib1) 2004; 134
Slattery (10.1093/ajcn/82.6.1283_bib39) 2000; 87
Joseph (10.1093/ajcn/82.6.1283_bib2) 2004; 50
Barcelo (10.1093/ajcn/82.6.1283_bib15) 1996; 17
Lin (10.1093/ajcn/82.6.1283_bib3) 1998; 7
Hayes (10.1093/ajcn/82.6.1283_bib20) 2005; 45
(10.1093/ajcn/82.6.1283_bib27) 2003
Gamet-Payrastre (10.1093/ajcn/82.6.1283_bib16) 2000; 60
Kassahun (10.1093/ajcn/82.6.1283_bib29) 1997; 10
London (10.1093/ajcn/82.6.1283_bib7) 2000; 356
(10.1093/ajcn/82.6.1283_bib12) 2004
Chung (10.1093/ajcn/82.6.1283_bib26) 1998; 7
Brooks (10.1093/ajcn/82.6.1283_bib38) 2001; 10
Mithen (10.1093/ajcn/82.6.1283_bib28) 2003; 106
10.1093/ajcn/82.6.1283_bib30
Seow (10.1093/ajcn/82.6.1283_bib8) 2002; 23
Zhang (10.1093/ajcn/82.6.1283_bib19) 1995; 206
Spitz (10.1093/ajcn/82.6.1283_bib4) 2000; 9
Fowke (10.1093/ajcn/82.6.1283_bib6) 2003; 63
Conaway (10.1093/ajcn/82.6.1283_bib18) 2000; 38
Wang (10.1093/ajcn/82.6.1283_bib5) 2004; 15
Zhao (10.1093/ajcn/82.6.1283_bib9) 2001; 10
(10.1093/ajcn/82.6.1283_bib31) 2005
Hayes (10.1093/ajcn/82.6.1283_bib23) 2000; 61
Giovannucci (10.1093/ajcn/82.6.1283_bib10) 2003; 12
Kolm (10.1093/ajcn/82.6.1283_bib21) 1995; 311
Myzak (10.1093/ajcn/82.6.1283_bib35) 2004; 64
Singh (10.1093/ajcn/82.6.1283_bib36) 2004; 279
Am J Clin Nutr. 2006 Mar;83(3):724
References_xml – volume: 9
  start-page: 1017
  year: 2000
  ident: 10.1093/ajcn/82.6.1283_bib4
  article-title: Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transulfora-phaneerase polymorphisms in lung cancer risk
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 151
  start-page: 7
  year: 2000
  ident: 10.1093/ajcn/82.6.1283_bib24
  article-title: Glutathione S-transulfora-phaneerase polymorphisms and colorectal cancer: a HuGE review
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a010124
– volume: 23
  start-page: 1399
  year: 2002
  ident: 10.1093/ajcn/82.6.1283_bib37
  article-title: Sulforaphane and its glutathione conjugate but not sulforaphane nitrile induce UDP-glucuronosyl transulforaphaneerase (UGT1A1) and glutathione transulforaphaneerase (GSTA1) in cultured cells
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/23.8.1399
– volume: 61
  start-page: 154
  year: 2000
  ident: 10.1093/ajcn/82.6.1283_bib23
  article-title: Glutathione S-transulforaphaneerase polymorphisms and their biological consequences
  publication-title: Pharmacology
  doi: 10.1159/000028396
– volume: 87
  start-page: 728
  year: 2000
  ident: 10.1093/ajcn/82.6.1283_bib39
  article-title: Interplay between dietary inducers of GST and the GSTM-1 genotype in colon cancer
  publication-title: Int J Cancer
  doi: 10.1002/1097-0215(20000901)87:5<728::AID-IJC16>3.0.CO;2-G
– volume: 12
  start-page: 1403
  year: 2003
  ident: 10.1093/ajcn/82.6.1283_bib10
  article-title: A prospective study of cruciferous vegetables and prostate cancer
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 27
  start-page: 13
  year: 1999
  ident: 10.1093/ajcn/82.6.1283_bib33
  article-title: Disposition and pharmacokinetics of phenethyl isothiocyanate and 6-phenylhexyl isothiocyanate in F344 rats
  publication-title: Drug Metab Disp
  doi: 10.1016/S0090-9556(24)14877-5
– volume: 45
  start-page: 51
  year: 2005
  ident: 10.1093/ajcn/82.6.1283_bib20
  article-title: Glutathione transulforaphaneerases
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev.pharmtox.45.120403.095857
– volume: 356
  start-page: 724
  year: 2000
  ident: 10.1093/ajcn/82.6.1283_bib7
  article-title: Isothiocyanates, glutathione S-transulforaphaneerase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02631-3
– volume: 63
  start-page: 3980
  year: 2003
  ident: 10.1093/ajcn/82.6.1283_bib6
  article-title: Urinary isothiocyanate levels, brassica, and human breast cancer
  publication-title: Cancer Res
– volume: 10
  start-page: 1228
  year: 1997
  ident: 10.1093/ajcn/82.6.1283_bib29
  article-title: Biotransulforaphaneormation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx970080t
– volume: 8
  start-page: 447
  year: 1999
  ident: 10.1093/ajcn/82.6.1283_bib32
  article-title: Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress
  publication-title: Cancer Epidemiol Biomarkers Prev
– year: 2003
  ident: 10.1093/ajcn/82.6.1283_bib27
– volume: 37
  start-page: 973
  year: 1999
  ident: 10.1093/ajcn/82.6.1283_bib13
  article-title: Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes
  publication-title: Food Chem Toxicol
  doi: 10.1016/S0278-6915(99)00082-4
– volume: 279
  start-page: 25813
  year: 2004
  ident: 10.1093/ajcn/82.6.1283_bib36
  article-title: Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M313538200
– volume: 134
  start-page: 1134
  year: 2004
  ident: 10.1093/ajcn/82.6.1283_bib1
  article-title: Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype
  publication-title: J Nutr
  doi: 10.1093/jn/134.5.1134
– volume: 206
  start-page: 748
  year: 1995
  ident: 10.1093/ajcn/82.6.1283_bib19
  article-title: Reversible conjugation of isothiocyanates with glutathione catalyzed by human glutathione transulforaphaneerases
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1995.1106
– volume: 25
  start-page: 219
  year: 2004
  ident: 10.1093/ajcn/82.6.1283_bib34
  article-title: Sulforaphane: a naturally occurring mammary carcinoma mitotic inhibitor, which disrupts tubulin polymerization
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgg192
– year: 2004
  ident: 10.1093/ajcn/82.6.1283_bib12
– year: 2005
  ident: 10.1093/ajcn/82.6.1283_bib31
– volume: 10
  start-page: 949
  year: 2001
  ident: 10.1093/ajcn/82.6.1283_bib38
  article-title: Potent induction of phase 2 enzymes in human prostate cells by sulforaphane
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 64
  start-page: 5767
  year: 2004
  ident: 10.1093/ajcn/82.6.1283_bib35
  article-title: A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-1326
– volume: 92
  start-page: 61
  year: 2000
  ident: 10.1093/ajcn/82.6.1283_bib11
  article-title: Fruit and vegetable intakes and prostate cancer risk
  publication-title: J Nat Cancer Inst
  doi: 10.1093/jnci/92.1.61
– volume: 7
  start-page: 103
  year: 1998
  ident: 10.1093/ajcn/82.6.1283_bib26
  article-title: A urinary biomarker for uptake of dietary isothiocyanates in humans
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 15
  start-page: 977
  year: 2004
  ident: 10.1093/ajcn/82.6.1283_bib5
  article-title: Dietary intake of Cruciferous vegetables, glutathione S-transulfora-phaneerase (GST) polymorphisms and lung cancer risk in a Caucasian population
  publication-title: Cancer Causes Control
  doi: 10.1007/s10552-004-1093-1
– volume: 311
  start-page: 453
  year: 1995
  ident: 10.1093/ajcn/82.6.1283_bib21
  article-title: Isothiocyanates as substrates for human glutathione transulforaphaneerases: structure-activity studies
  publication-title: Biochem J
  doi: 10.1042/bj3110453
– volume: 38
  start-page: 168
  year: 2000
  ident: 10.1093/ajcn/82.6.1283_bib18
  article-title: Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli
  publication-title: Nutr Cancer
  doi: 10.1207/S15327914NC382_5
– volume: 10
  start-page: 1063
  year: 2001
  ident: 10.1093/ajcn/82.6.1283_bib9
  article-title: Dietary isothiocyanates, glutathione S-transulforaphaneerase-M1,-T1 polymorphisms and lung cancer risk among Chinese women in Singapore
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 60
  start-page: 1426
  year: 2000
  ident: 10.1093/ajcn/82.6.1283_bib16
  article-title: Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells
  publication-title: Cancer Res
– volume: 50
  start-page: 206
  year: 2004
  ident: 10.1093/ajcn/82.6.1283_bib2
  article-title: Cruciferous vegetables, genetic polymorphisms in glutathione S-transulforaphaneerases m1 and t1, and prostate cancer risk
  publication-title: Nutr Cancer
  doi: 10.1207/s15327914nc5002_11
– volume: 23
  start-page: 2055
  year: 2002
  ident: 10.1093/ajcn/82.6.1283_bib8
  article-title: Dietary isothiocyanates, glutathione S-transulforaphaneerase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/23.12.2055
– volume: 306
  start-page: 565
  year: 1995
  ident: 10.1093/ajcn/82.6.1283_bib22
  article-title: Forward and reverse catalysis and product sequestration by human glutathione S-transulforaphaneerases in the reaction of GSH with dietary aralkyl isothiocyanates
  publication-title: Biochem J
  doi: 10.1042/bj3060565
– volume: 106
  start-page: 727
  year: 2003
  ident: 10.1093/ajcn/82.6.1283_bib28
  article-title: Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-002-1123-x
– volume: 7
  start-page: 775
  year: 1998
  ident: 10.1093/ajcn/82.6.1283_bib25
  article-title: Urinary total isothiocyanate (ITC) in a population-based sample of middle-aged and older Chinese in Singapore: relationship with dietary total ITC and glutathione S-transulforaphaneerase M1/T1/P1 genotypes
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 7
  start-page: 647
  year: 1998
  ident: 10.1093/ajcn/82.6.1283_bib3
  article-title: Glutathione transulforaphaneerase null genotype, broccoli, and lower prevalence of colorectal adenomas
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 17
  start-page: 277
  year: 1996
  ident: 10.1093/ajcn/82.6.1283_bib15
  article-title: CYP2E1-mediated mechanism of anti-genotoxicity of the broccoli constituent sulforaphane
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/17.2.277
– ident: 10.1093/ajcn/82.6.1283_bib30
– volume: 57
  start-page: 3649
  year: 1997
  ident: 10.1093/ajcn/82.6.1283_bib14
  article-title: Inhibition of cytochromes P-450 and induction of glutathione S-transulforaphaneerases by sulforaphane in primary human and rat hepatocytes
  publication-title: Cancer Res
– volume: 135
  start-page: 1865
  year: 2005
  ident: 10.1093/ajcn/82.6.1283_bib17
  article-title: Transcriptome analysis of human colon caco-2 cells exposed to sulforaphane
  publication-title: J Nutr
  doi: 10.1093/jn/135.8.1865
– reference: - Am J Clin Nutr. 2006 Mar;83(3):724
SSID ssj0012486
Score 2.3377519
Snippet Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as...
Background: Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1...
BACKGROUND: Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1283
SubjectTerms Adolescent
Adult
Alleles
anticarcinogenic activity
antinutritional factors
Area Under Curve
biochemical pathways
Biological and medical sciences
Brassica - chemistry
Brassica oleracea var. italica
broccoli
chemical composition
chemoprevention
Comparative analysis
Cross-Over Studies
Double-Blind Method
Female
Food industries
Fruit and vegetable industries
Fundamental and applied biological sciences. Psychology
Genetics
Genotype & phenotype
glucobrassicin
Glucosinolates - administration & dosage
Glucosinolates - metabolism
glutathione transferase
Glutathione Transferase - deficiency
Glutathione Transferase - genetics
Humans
Isothiocyanates
Male
metabolic detoxification
Metabolism
Middle Aged
Neoplasms - prevention & control
nutrition-genotype interaction
Polymorphism
Polymorphism, Genetic
randomized clinical trials
Risk Factors
structure-activity relationships
Sulfoxides
Thiocyanates - blood
Thiocyanates - pharmacokinetics
Thiocyanates - urine
Vegetables
Title Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli
URI https://www.ncbi.nlm.nih.gov/pubmed/16332662
https://www.proquest.com/docview/231942055
https://www.proquest.com/docview/47254475
https://www.proquest.com/docview/68871610
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKkBASQjBghMHwA4KHKV2cOI7zWDFggLoXOmlvkW0crVObVmuKBD-I38nZSRwXOjR4idrETmTfF9-d890dQq8iTXMWaxJmmqiQqpiEsiRpSFPCJfRgXFmC7Ck7OaOfztPzweCnx1pa13KofmyNK_kfqcI5kKuJkv0Hybqbwgn4DfKFI0gYjjeS8Qe4uWEPLsBS_BLW1gbVV6CXDsfElF8Avx6msSuDMdc1SHxm_oKFuFrPwF4VywsBnW2QidtVMI1NGuOWzz6twP2t9aEEXQewmfr27KQPTKn8LBQu4LLqsv07oo8wucntkjT_3lNsR7PwUlQLackFo4t5G3Pl7_2YUG7t772qhjFgib4t8bHbv0g9Lki_JoORmvprMo897PkLLKjTxFPWYK2QrYqgSZIlLpVRdjwesmHf08-5_ZsudAzF5tt8Upg7FDwuWGH630K3Y3BHTKWM44-f3deqmNqKom4kLjlocmT6H7nnbxg_95ZiBYIomwIq13s41tKZPED3WxcFjxq8PUQDXe2i4Hiqa_wat3lkZ_i0E-wuujNuCRqP0DcPkngDknhMsA9JDCjDPSTxosQ-JLGBJO4gaRv_CUncQfIxOnv_bvL2JGxLe4QKTMQ6ZCUTMqeSaq3NAiEo1RlYsiwTJudeGUsiMlFmef4VXG6iIqEV4UJwmUeakyx5gnYqGMlThEXOSzD08rTkiqpUcFBC4ANwVuZSgsYKUNjNeaHavPem_Mqs2C7jAL1x7ZdNxpdrWx5siLBvniXGUcoDtN_JtGhfwVUBDlVO4yhNA_TSXYU13Xyog-ldrFcFzUziwOwvLRg3Gx0kCtBeA5X-2SwBj4zFz248jH10t38vn6Od-mqtX4ClXcsDC_NfKfzZWg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutathione+S-transferase+M1+polymorphism+and+metabolism+of+sulforaphane+from+standard+and+high-glucosinolate+broccoli&rft.jtitle=The+American+journal+of+clinical+nutrition&rft.au=Gasper%2C+Amy+V&rft.au=Al-janobi%2C+Ahmed&rft.au=Smith%2C+Julie+A&rft.au=Bacon%2C+James+R&rft.date=2005-12-01&rft.issn=0002-9165&rft.volume=82&rft.issue=6&rft.spage=1283&rft.epage=1291&rft_id=info:doi/10.1093%2Fajcn%2F82.6.1283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ajcn_82_6_1283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9165&client=summon