Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli
Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is...
Saved in:
Published in | The American journal of clinical nutrition Vol. 82; no. 6; pp. 1283 - 1291 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
American Society for Clinical Nutrition
01.12.2005
American Society for Clinical Nutrition, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection.
We compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli).
Sixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine.
GSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli.
GSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed. |
---|---|
AbstractList | Background: Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection. Objective: We compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli). Design: Sixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine. Results:GSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli. Conclusions:GSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed. [PUBLICATION ABSTRACT] BACKGROUND: Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection. OBJECTIVE: We compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli). DESIGN: Sixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine. RESULTS:GSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli. CONCLUSIONS:GSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed. Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection.BACKGROUNDBroccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection.We compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli).OBJECTIVEWe compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli).Sixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine.DESIGNSixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine.GSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli.RESULTSGSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli.GSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed.CONCLUSIONSGSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed. Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as opposed rotrose whose GSTM1 gene has been deleted. Sulforaphane, the major isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate, is thought to be the main agent conferring protection. We compared sulforaphane metabolism in GSTM1-null and GSTM1-positive subjects after they consumed standard broccoli and high-glucosinolate broccoli (super broccoli). Sixteen subjects were recruited into a randomized, 3-phase crossover dietary trial of standard broccoli, super broccoli, and water. Liquid chromatography linked to tandem mass spectrometry was used to quantify sulforaphane and its thiol conjugates in plasma and urine. GSTM1-null subjects had slightly higher, but statistically significant, areas under the curve for sulforaphane metabolite concentrations in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after broccoli consumption, and a higher percentage of sulforaphane excretion 24 h after ingestion than did GSTM1-positive subjects. Consumption of high-glucosinolate broccoli led to a 3-fold greater increase in the areas under the curve and maximum concentrations of sulforaphane metabolites in plasma, a greater rate of urinary excretion of sulforaphane metabolites during the first 6 h after consumption, and a lower percentage of sulforaphane excretion after its ingestion than did the consumption of standard broccoli. GSTM1 genotypes have a significant effect on the metabolism of sulforaphane derived from standard or high-glucosinolate broccoli. It is possible that the difference in metabolism may explain the greater protection that GSTM1-positive persons gain from consuming broccoli. The potential consequences of consuming glucosinolate-enriched broccoli for GSTM1-null and -positive persons are discussed. |
Author | Smith, Julie A Al-janobi, Ahmed Atherton, Clare Hawkey, Christopher J Gasper, Amy V Bacon, James R Taylor, Moira A Fortun, Paul Mithen, Richard F Barrett, David A |
Author_xml | – sequence: 1 givenname: Amy V surname: Gasper fullname: Gasper, Amy V – sequence: 2 givenname: Ahmed surname: Al-janobi fullname: Al-janobi, Ahmed – sequence: 3 givenname: Julie A surname: Smith fullname: Smith, Julie A – sequence: 4 givenname: James R surname: Bacon fullname: Bacon, James R – sequence: 5 givenname: Paul surname: Fortun fullname: Fortun, Paul – sequence: 6 givenname: Clare surname: Atherton fullname: Atherton, Clare – sequence: 7 givenname: Moira A surname: Taylor fullname: Taylor, Moira A – sequence: 8 givenname: Christopher J surname: Hawkey fullname: Hawkey, Christopher J – sequence: 9 givenname: David A surname: Barrett fullname: Barrett, David A – sequence: 10 givenname: Richard F surname: Mithen fullname: Mithen, Richard F |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17345659$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16332662$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0k1r3DAQBmBREppN2muPxRSamzf6siQfS2iTQEIPbc9irJViLbLlSnYg_75ysiUQKD0JwfMO0sycoqMxjhahDwRvCW7ZBezNeKHoVmwJVewN2pCWqZpRLI_QBmNM65aI5gSd5rzHmFCuxFt0QgRjVAi6QQ9XYZlh7n0pW_2o5wRjdjZBttUdqaYYHoeYpt7noYJxVw12hi6G9RpdlZfgYoKphxJ2KQ5VnouCtHvCvb_v6_uwmJj9GAPMtupSNKbk36FjByHb94fzDP369vXn5XV9-_3q5vLLbW2YInMtnICu5R231nJDCXBuJZGNkEA5Vo52BCQ42bY7JSgxGKwhCkB1LbaKSHaGzp_rTin-Xmye9eCzsSGUF8cla6GUJILg_0IuacO5bAr89Aru45LG8glNGWk5xc2KPh7Q0g12p6fkB0iP-m_fC_h8AJANBFfabnx-cZLxRjRtcdtnZ1LMOVn3QrBeF0CvC6AV1UKvC1AC_FXA-DLfMt4yWh_-FfsD-RS18Q |
CODEN | AJCNAC |
CitedBy_id | crossref_primary_10_1007_s00394_020_02322_0 crossref_primary_10_3389_fnut_2024_1448130 crossref_primary_10_1158_0008_5472_CAN_07_6171 crossref_primary_10_1111_j_1365_2133_2011_10661_x crossref_primary_10_3390_nu11092245 crossref_primary_10_1021_jf3011195 crossref_primary_10_1007_s11095_011_0500_z crossref_primary_10_1016_j_foodchem_2012_01_085 crossref_primary_10_1208_s12248_013_9504_4 crossref_primary_10_1371_journal_pone_0051251 crossref_primary_10_1002_ptr_6923 crossref_primary_10_1016_j_freeradbiomed_2018_02_004 crossref_primary_10_3390_ijms24097852 crossref_primary_10_1017_S0007114511000274 crossref_primary_10_1093_jn_137_4_904 crossref_primary_10_18632_oncotarget_8968 crossref_primary_10_1002_mnfr_201501017 crossref_primary_10_1158_1940_6207_CAPR_16_0032 crossref_primary_10_3945_jn_114_197434 crossref_primary_10_1021_acs_jafc_6b02195 crossref_primary_10_1016_S1734_1140_12_70920_9 crossref_primary_10_1007_s40495_015_0024_z crossref_primary_10_3390_pharmaceutics13070958 crossref_primary_10_1016_j_coph_2014_05_010 crossref_primary_10_1039_D1FO03398K crossref_primary_10_1002_mnfr_201400550 crossref_primary_10_1039_c0fo00110d crossref_primary_10_1002_mnfr_201400674 crossref_primary_10_1002_ptr_8419 crossref_primary_10_1111_j_1753_4887_2012_00532_x crossref_primary_10_3390_nu14040768 crossref_primary_10_1016_j_canlet_2008_04_018 crossref_primary_10_1093_carcin_bgr255 crossref_primary_10_1007_s12975_024_01278_1 crossref_primary_10_13103_JFHS_2012_27_4_461 crossref_primary_10_1016_j_bcp_2010_10_005 crossref_primary_10_1016_j_lwt_2015_03_088 crossref_primary_10_1002_mnfr_201400104 crossref_primary_10_1016_j_phrs_2011_07_005 crossref_primary_10_1080_09637480802089751 crossref_primary_10_3390_molecules27051750 crossref_primary_10_1038_s41598_017_03629_5 crossref_primary_10_1155_2013_415078 crossref_primary_10_4163_jnh_2017_50_1_10 crossref_primary_10_1002_mnfr_201700965 crossref_primary_10_1002_biof_98 crossref_primary_10_1016_j_phymed_2014_12_012 crossref_primary_10_3389_fnut_2024_1409339 crossref_primary_10_1111_nure_12060 crossref_primary_10_1155_2018_1617202 crossref_primary_10_1080_01635581_2015_1053498 crossref_primary_10_3390_molecules24193593 crossref_primary_10_1016_j_jnutbio_2007_02_014 crossref_primary_10_1007_s00394_015_0930_1 crossref_primary_10_1093_jn_137_7_1718 crossref_primary_10_1016_j_foodchem_2017_04_098 crossref_primary_10_1002_art_38133 crossref_primary_10_1016_j_canlet_2012_05_016 crossref_primary_10_1021_acs_jafc_4c06178 crossref_primary_10_14712_18059694_2017_78 crossref_primary_10_1002_jsfa_3507 crossref_primary_10_1016_j_freeradbiomed_2011_01_009 crossref_primary_10_1007_s13580_011_0141_5 crossref_primary_10_1038_s41598_017_12855_w crossref_primary_10_3390_diseases4020022 crossref_primary_10_1093_mutage_geq045 crossref_primary_10_3389_fnut_2023_1204561 crossref_primary_10_3389_fnut_2020_575092 crossref_primary_10_3390_nu13010266 crossref_primary_10_1207_s15327914nc5501_7 crossref_primary_10_1016_j_phrs_2014_05_003 crossref_primary_10_1089_ars_2017_7358 crossref_primary_10_1016_j_clnu_2010_06_010 crossref_primary_10_1016_j_jff_2024_106161 crossref_primary_10_3390_ijms18091890 crossref_primary_10_3390_cancers5010131 crossref_primary_10_1111_1541_4337_12049 crossref_primary_10_1158_1055_9965_EPI_09_0589 crossref_primary_10_1002_mnfr_201701000 crossref_primary_10_1038_s41598_018_35455_8 crossref_primary_10_1089_ars_2014_6097 crossref_primary_10_3109_07388551_2011_604838 crossref_primary_10_1021_acs_jafc_8b04330 crossref_primary_10_1021_jf062109h crossref_primary_10_1002_mnfr_201500633 crossref_primary_10_1111_nph_12232 crossref_primary_10_1371_journal_pone_0138771 crossref_primary_10_1186_1475_2891_10_11 crossref_primary_10_1017_S0007114512000657 crossref_primary_10_1038_s41598_022_12347_6 crossref_primary_10_1152_ajplung_00170_2006 crossref_primary_10_1016_j_taap_2018_10_020 crossref_primary_10_1002_mc_22224 crossref_primary_10_1161_HYPERTENSIONAHA_121_16510 crossref_primary_10_1002_mnfr_201200225 crossref_primary_10_1016_j_lfs_2022_120554 crossref_primary_10_1016_j_foodchem_2008_01_032 crossref_primary_10_3390_nu15010031 crossref_primary_10_3390_ijms24031962 crossref_primary_10_1080_21691401_2017_1282501 crossref_primary_10_1017_S0007114512000554 crossref_primary_10_1093_ajcn_nqz122 crossref_primary_10_1007_s00394_019_02069_3 crossref_primary_10_4162_nrp_2015_9_1_49 crossref_primary_10_1158_1055_9965_EPI_08_0710 crossref_primary_10_1016_j_ejphar_2019_03_010 crossref_primary_10_1111_j_1749_6632_2012_06610_x crossref_primary_10_1080_19476337_2023_2173307 crossref_primary_10_1038_cddiscovery_2017_25 crossref_primary_10_1002_mnfr_201500457 crossref_primary_10_1002_mnfr_201800079 crossref_primary_10_1017_S0007114518002921 crossref_primary_10_1016_j_taap_2012_10_029 crossref_primary_10_1021_tx400427t crossref_primary_10_3390_nu15122742 crossref_primary_10_3109_03602532_2011_569551 crossref_primary_10_1517_14728222_12_6_729 crossref_primary_10_1002_ijc_24583 crossref_primary_10_1021_jf801989e crossref_primary_10_1021_acs_jafc_3c08452 crossref_primary_10_1105_tpc_111_083998 crossref_primary_10_1016_j_canlet_2009_04_004 crossref_primary_10_1039_b9ay00280d crossref_primary_10_1271_bbb_90731 crossref_primary_10_1186_s13148_015_0068_2 crossref_primary_10_1111_imcb_12686 crossref_primary_10_3390_antiox9060521 crossref_primary_10_1016_j_bcp_2025_116797 crossref_primary_10_1158_1055_9965_EPI_09_0660 crossref_primary_10_1016_j_scitotenv_2019_135624 crossref_primary_10_3390_antiox9080716 crossref_primary_10_1371_journal_pone_0293075 crossref_primary_10_1002_mnfr_201700911 crossref_primary_10_1371_journal_pone_0114764 crossref_primary_10_3390_molecules26123602 crossref_primary_10_1002_mnfr_201400863 crossref_primary_10_1021_acs_jafc_7b04641 crossref_primary_10_1517_17425255_2013_843668 crossref_primary_10_1016_j_jff_2020_104210 crossref_primary_10_3892_ijfn_2022_26 crossref_primary_10_1016_j_jaip_2016_03_012 crossref_primary_10_1080_07315724_2017_1360807 crossref_primary_10_1016_j_clnu_2019_03_022 crossref_primary_10_1371_journal_pone_0002568 crossref_primary_10_3389_fnut_2021_730906 crossref_primary_10_1007_s11101_008_9103_7 crossref_primary_10_1016_j_foodchem_2012_01_026 crossref_primary_10_26599_FMH_2025_9420060 crossref_primary_10_3109_03602532_2015_1058819 crossref_primary_10_1016_j_jchromb_2017_11_019 crossref_primary_10_1080_01635581_2014_864777 crossref_primary_10_1002_pro_3536 crossref_primary_10_1016_j_molmed_2012_04_003 crossref_primary_10_1186_1477_5956_8_67 crossref_primary_10_1111_j_1745_7254_2007_00679_x crossref_primary_10_1158_1940_6207_CAPR_10_0296 crossref_primary_10_3390_nu15092209 crossref_primary_10_1021_jf062398 crossref_primary_10_1124_mol_106_029264 crossref_primary_10_1016_j_jchromb_2006_07_007 crossref_primary_10_1002_mnfr_200700226 crossref_primary_10_1097_CEJ_0000000000000491 crossref_primary_10_3389_fpls_2022_1081321 crossref_primary_10_1021_jf201501x crossref_primary_10_1007_s00216_015_8482_z crossref_primary_10_1016_j_jnutbio_2022_108978 crossref_primary_10_34067_KID_0004552022 crossref_primary_10_1021_acs_jafc_8b01653 crossref_primary_10_1016_j_phymed_2024_155731 crossref_primary_10_1681_ASN_2019050449 crossref_primary_10_1002_em_20456 crossref_primary_10_1007_s10637_014_0189_z crossref_primary_10_1016_j_taap_2018_12_004 crossref_primary_10_1002_mnfr_201100507 crossref_primary_10_1016_j_drudis_2014_07_007 crossref_primary_10_1017_S002966511200119X crossref_primary_10_1371_journal_pone_0083283 crossref_primary_10_1039_D4FO03446E crossref_primary_10_1016_j_jnutbio_2012_06_004 crossref_primary_10_1152_ajpendo_00142_2011 crossref_primary_10_1017_S0029665115002177 crossref_primary_10_3390_toxins2040593 crossref_primary_10_1016_j_foodchem_2023_137108 crossref_primary_10_1016_j_taap_2013_03_029 crossref_primary_10_3390_molecules22111983 crossref_primary_10_1016_j_freeradbiomed_2013_08_182 crossref_primary_10_3892_or_2016_4942 crossref_primary_10_3945_ajcn_2009_26736D crossref_primary_10_1002_mnfr_200800065 crossref_primary_10_1016_j_canlet_2018_05_035 crossref_primary_10_1111_nbu_12207 crossref_primary_10_2174_1381612823666170111100531 crossref_primary_10_1002_prca_200780100 crossref_primary_10_1021_acs_jafc_7b03628 crossref_primary_10_1038_s41430_021_00970_x crossref_primary_10_1039_c1fo10114e crossref_primary_10_1159_000511888 crossref_primary_10_1038_embor_2010_215 crossref_primary_10_3390_nu10050585 crossref_primary_10_1016_j_fct_2011_08_019 crossref_primary_10_1021_jf061997d crossref_primary_10_1007_s12282_018_0866_4 crossref_primary_10_1021_jf202887c crossref_primary_10_1016_j_clnu_2018_04_012 crossref_primary_10_1017_S0029665107005459 crossref_primary_10_1002_mnfr_201600557 crossref_primary_10_1016_j_jff_2013_09_029 crossref_primary_10_1038_pcan_2014_6 crossref_primary_10_3390_nu14163263 crossref_primary_10_1158_1055_9965_EPI_10_0475 crossref_primary_10_1080_10408398_2010_503288 crossref_primary_10_3945_ajcn_113_065235 crossref_primary_10_1007_s11912_019_0782_6 |
Cites_doi | 10.1093/oxfordjournals.aje.a010124 10.1093/carcin/23.8.1399 10.1159/000028396 10.1002/1097-0215(20000901)87:5<728::AID-IJC16>3.0.CO;2-G 10.1016/S0090-9556(24)14877-5 10.1146/annurev.pharmtox.45.120403.095857 10.1016/S0140-6736(00)02631-3 10.1021/tx970080t 10.1016/S0278-6915(99)00082-4 10.1074/jbc.M313538200 10.1093/jn/134.5.1134 10.1006/bbrc.1995.1106 10.1093/carcin/bgg192 10.1158/0008-5472.CAN-04-1326 10.1093/jnci/92.1.61 10.1007/s10552-004-1093-1 10.1042/bj3110453 10.1207/S15327914NC382_5 10.1207/s15327914nc5002_11 10.1093/carcin/23.12.2055 10.1042/bj3060565 10.1007/s00122-002-1123-x 10.1093/carcin/17.2.277 10.1093/jn/135.8.1865 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright American Society for Clinical Nutrition, Inc. Dec 2005 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright American Society for Clinical Nutrition, Inc. Dec 2005 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7T7 7TS 8FD C1K FR3 K9. NAPCQ P64 7S9 L.6 7X8 |
DOI | 10.1093/ajcn/82.6.1283 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Physical Education Index Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Diet & Clinical Nutrition |
EISSN | 1938-3207 |
EndPage | 1291 |
ExternalDocumentID | 959659111 16332662 17345659 10_1093_ajcn_82_6_1283 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET -~X ..I .55 .GJ 0R~ 1HT 23M 2FS 2WC 3O- 4.4 48X 53G 5GY 5RE 5VS 6J9 85S 8R4 8R5 AABZA AACZT AAGQS AAHBH AAIKC AAJQQ AALRI AAMNW AAPGJ AAPQZ AAUQX AAUTI AAVAP AAWDT AAWTL AAXUO AAYOK AAYWO AAYXX ABBTP ABDNZ ABDPE ABIME ABJNI ABLJU ABOCM ABPTD ABWST ACFRR ACGFO ACGFS ACGOD ACNCT ACPRK ACPVT ACUFI ACUTJ ACVFH ADBBV ADCNI ADGZP ADHUB ADMTO ADRTK ADUKH ADVEK ADVLN AEGXH AENEX AETBJ AEUPX AFFDN AFFNX AFFZL AFJKZ AFOFC AFPUW AFRAH AFXAL AGCQF AGINJ AGKRT AGNAY AGQXC AGUTN AHMBA AI. AIAGR AIGII AITUG AJEEA AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANFBD APXCP AQDSO AQKUS BAWUL BAYMD BKOMP BTRTY C1A CDBKE CITATION DAKXR DIK E3Z EBS EIHJH EJD ENERS EX3 F5P F9R FDB FECEO FLUFQ FOEOM FOTVD FQBLK FRP GAUVT GJXCC GX1 H13 HF~ HZ~ IH2 J5H KBUDW KOP KQ8 KSI KSN L7B LPU MBLQV MHKGH MV1 MVM N4W NEJ NHB NHCRO NOMLY NOYVH NU- NVLIB O9- ODMLO OHT OK1 OVD P2P P6G PCD PQQKQ PRG Q2X R0Z RHI RNS ROL SJN TCN TEORI TMA TNT TR2 TWZ UBH UHB UKR VH1 W2D W8F WH7 WHG WOQ WOW X7M XOL XSW YBU YHG YOJ YQJ YR5 YRY YSK YV5 YYQ YZZ ZCA ZCG ZGI ZUP ZXP ~KM EFKBS IQODW A8Z ABSAR BCRHZ CGR CUY CVF ECM EIF NPM RHF ROX SV3 VXZ Z5M 7QP 7T7 7TS 8FD C1K FR3 K9. NAPCQ P64 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c381t-6f6ab94b4eee4c21a44e717567a2408f2b1a7af799d8621c0aec18aa8b90e8173 |
ISSN | 0002-9165 |
IngestDate | Thu Aug 07 15:12:24 EDT 2025 Thu Aug 07 14:06:10 EDT 2025 Fri Jul 25 03:30:16 EDT 2025 Wed Feb 19 02:24:37 EST 2025 Mon Jul 21 09:15:43 EDT 2025 Thu Jul 03 08:20:25 EDT 2025 Thu Apr 24 23:02:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Human Glucosinolate Vegetables GSTM1 Enzyme Transferases Metabolism Feeding super broccoli Broccoli Food intake Glutathione transferase Sulforaphane glucosinolates Isothiocyanates chemoprotection Polymorphism |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-6f6ab94b4eee4c21a44e717567a2408f2b1a7af799d8621c0aec18aa8b90e8173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
PMID | 16332662 |
PQID | 231942055 |
PQPubID | 41076 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_68871610 proquest_miscellaneous_47254475 proquest_journals_231942055 pubmed_primary_16332662 pascalfrancis_primary_17345659 crossref_primary_10_1093_ajcn_82_6_1283 crossref_citationtrail_10_1093_ajcn_82_6_1283 |
PublicationCentury | 2000 |
PublicationDate | 2005-12-01 |
PublicationDateYYYYMMDD | 2005-12-01 |
PublicationDate_xml | – month: 12 year: 2005 text: 2005-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | The American journal of clinical nutrition |
PublicationTitleAlternate | Am J Clin Nutr |
PublicationYear | 2005 |
Publisher | American Society for Clinical Nutrition American Society for Clinical Nutrition, Inc |
Publisher_xml | – name: American Society for Clinical Nutrition – name: American Society for Clinical Nutrition, Inc |
References | Basten (10.1093/ajcn/82.6.1283_bib37) 2002; 23 Traka (10.1093/ajcn/82.6.1283_bib17) 2005; 135 Meyer (10.1093/ajcn/82.6.1283_bib22) 1995; 306 Cotton (10.1093/ajcn/82.6.1283_bib24) 2000; 151 Maheo (10.1093/ajcn/82.6.1283_bib14) 1997; 57 Jackson (10.1093/ajcn/82.6.1283_bib34) 2004; 25 Seow (10.1093/ajcn/82.6.1283_bib25) 1998; 7 Cohen (10.1093/ajcn/82.6.1283_bib11) 2000; 92 Conaway (10.1093/ajcn/82.6.1283_bib33) 1999; 27 Getahun (10.1093/ajcn/82.6.1283_bib32) 1999; 8 Fahey (10.1093/ajcn/82.6.1283_bib13) 1999; 37 Ambrosone (10.1093/ajcn/82.6.1283_bib1) 2004; 134 Slattery (10.1093/ajcn/82.6.1283_bib39) 2000; 87 Joseph (10.1093/ajcn/82.6.1283_bib2) 2004; 50 Barcelo (10.1093/ajcn/82.6.1283_bib15) 1996; 17 Lin (10.1093/ajcn/82.6.1283_bib3) 1998; 7 Hayes (10.1093/ajcn/82.6.1283_bib20) 2005; 45 (10.1093/ajcn/82.6.1283_bib27) 2003 Gamet-Payrastre (10.1093/ajcn/82.6.1283_bib16) 2000; 60 Kassahun (10.1093/ajcn/82.6.1283_bib29) 1997; 10 London (10.1093/ajcn/82.6.1283_bib7) 2000; 356 (10.1093/ajcn/82.6.1283_bib12) 2004 Chung (10.1093/ajcn/82.6.1283_bib26) 1998; 7 Brooks (10.1093/ajcn/82.6.1283_bib38) 2001; 10 Mithen (10.1093/ajcn/82.6.1283_bib28) 2003; 106 10.1093/ajcn/82.6.1283_bib30 Seow (10.1093/ajcn/82.6.1283_bib8) 2002; 23 Zhang (10.1093/ajcn/82.6.1283_bib19) 1995; 206 Spitz (10.1093/ajcn/82.6.1283_bib4) 2000; 9 Fowke (10.1093/ajcn/82.6.1283_bib6) 2003; 63 Conaway (10.1093/ajcn/82.6.1283_bib18) 2000; 38 Wang (10.1093/ajcn/82.6.1283_bib5) 2004; 15 Zhao (10.1093/ajcn/82.6.1283_bib9) 2001; 10 (10.1093/ajcn/82.6.1283_bib31) 2005 Hayes (10.1093/ajcn/82.6.1283_bib23) 2000; 61 Giovannucci (10.1093/ajcn/82.6.1283_bib10) 2003; 12 Kolm (10.1093/ajcn/82.6.1283_bib21) 1995; 311 Myzak (10.1093/ajcn/82.6.1283_bib35) 2004; 64 Singh (10.1093/ajcn/82.6.1283_bib36) 2004; 279 Am J Clin Nutr. 2006 Mar;83(3):724 |
References_xml | – volume: 9 start-page: 1017 year: 2000 ident: 10.1093/ajcn/82.6.1283_bib4 article-title: Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transulfora-phaneerase polymorphisms in lung cancer risk publication-title: Cancer Epidemiol Biomarkers Prev – volume: 151 start-page: 7 year: 2000 ident: 10.1093/ajcn/82.6.1283_bib24 article-title: Glutathione S-transulfora-phaneerase polymorphisms and colorectal cancer: a HuGE review publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a010124 – volume: 23 start-page: 1399 year: 2002 ident: 10.1093/ajcn/82.6.1283_bib37 article-title: Sulforaphane and its glutathione conjugate but not sulforaphane nitrile induce UDP-glucuronosyl transulforaphaneerase (UGT1A1) and glutathione transulforaphaneerase (GSTA1) in cultured cells publication-title: Carcinogenesis doi: 10.1093/carcin/23.8.1399 – volume: 61 start-page: 154 year: 2000 ident: 10.1093/ajcn/82.6.1283_bib23 article-title: Glutathione S-transulforaphaneerase polymorphisms and their biological consequences publication-title: Pharmacology doi: 10.1159/000028396 – volume: 87 start-page: 728 year: 2000 ident: 10.1093/ajcn/82.6.1283_bib39 article-title: Interplay between dietary inducers of GST and the GSTM-1 genotype in colon cancer publication-title: Int J Cancer doi: 10.1002/1097-0215(20000901)87:5<728::AID-IJC16>3.0.CO;2-G – volume: 12 start-page: 1403 year: 2003 ident: 10.1093/ajcn/82.6.1283_bib10 article-title: A prospective study of cruciferous vegetables and prostate cancer publication-title: Cancer Epidemiol Biomarkers Prev – volume: 27 start-page: 13 year: 1999 ident: 10.1093/ajcn/82.6.1283_bib33 article-title: Disposition and pharmacokinetics of phenethyl isothiocyanate and 6-phenylhexyl isothiocyanate in F344 rats publication-title: Drug Metab Disp doi: 10.1016/S0090-9556(24)14877-5 – volume: 45 start-page: 51 year: 2005 ident: 10.1093/ajcn/82.6.1283_bib20 article-title: Glutathione transulforaphaneerases publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev.pharmtox.45.120403.095857 – volume: 356 start-page: 724 year: 2000 ident: 10.1093/ajcn/82.6.1283_bib7 article-title: Isothiocyanates, glutathione S-transulforaphaneerase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China publication-title: Lancet doi: 10.1016/S0140-6736(00)02631-3 – volume: 63 start-page: 3980 year: 2003 ident: 10.1093/ajcn/82.6.1283_bib6 article-title: Urinary isothiocyanate levels, brassica, and human breast cancer publication-title: Cancer Res – volume: 10 start-page: 1228 year: 1997 ident: 10.1093/ajcn/82.6.1283_bib29 article-title: Biotransulforaphaneormation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates publication-title: Chem Res Toxicol doi: 10.1021/tx970080t – volume: 8 start-page: 447 year: 1999 ident: 10.1093/ajcn/82.6.1283_bib32 article-title: Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress publication-title: Cancer Epidemiol Biomarkers Prev – year: 2003 ident: 10.1093/ajcn/82.6.1283_bib27 – volume: 37 start-page: 973 year: 1999 ident: 10.1093/ajcn/82.6.1283_bib13 article-title: Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes publication-title: Food Chem Toxicol doi: 10.1016/S0278-6915(99)00082-4 – volume: 279 start-page: 25813 year: 2004 ident: 10.1093/ajcn/82.6.1283_bib36 article-title: Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C publication-title: J Biol Chem doi: 10.1074/jbc.M313538200 – volume: 134 start-page: 1134 year: 2004 ident: 10.1093/ajcn/82.6.1283_bib1 article-title: Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype publication-title: J Nutr doi: 10.1093/jn/134.5.1134 – volume: 206 start-page: 748 year: 1995 ident: 10.1093/ajcn/82.6.1283_bib19 article-title: Reversible conjugation of isothiocyanates with glutathione catalyzed by human glutathione transulforaphaneerases publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1995.1106 – volume: 25 start-page: 219 year: 2004 ident: 10.1093/ajcn/82.6.1283_bib34 article-title: Sulforaphane: a naturally occurring mammary carcinoma mitotic inhibitor, which disrupts tubulin polymerization publication-title: Carcinogenesis doi: 10.1093/carcin/bgg192 – year: 2004 ident: 10.1093/ajcn/82.6.1283_bib12 – year: 2005 ident: 10.1093/ajcn/82.6.1283_bib31 – volume: 10 start-page: 949 year: 2001 ident: 10.1093/ajcn/82.6.1283_bib38 article-title: Potent induction of phase 2 enzymes in human prostate cells by sulforaphane publication-title: Cancer Epidemiol Biomarkers Prev – volume: 64 start-page: 5767 year: 2004 ident: 10.1093/ajcn/82.6.1283_bib35 article-title: A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-1326 – volume: 92 start-page: 61 year: 2000 ident: 10.1093/ajcn/82.6.1283_bib11 article-title: Fruit and vegetable intakes and prostate cancer risk publication-title: J Nat Cancer Inst doi: 10.1093/jnci/92.1.61 – volume: 7 start-page: 103 year: 1998 ident: 10.1093/ajcn/82.6.1283_bib26 article-title: A urinary biomarker for uptake of dietary isothiocyanates in humans publication-title: Cancer Epidemiol Biomarkers Prev – volume: 15 start-page: 977 year: 2004 ident: 10.1093/ajcn/82.6.1283_bib5 article-title: Dietary intake of Cruciferous vegetables, glutathione S-transulfora-phaneerase (GST) polymorphisms and lung cancer risk in a Caucasian population publication-title: Cancer Causes Control doi: 10.1007/s10552-004-1093-1 – volume: 311 start-page: 453 year: 1995 ident: 10.1093/ajcn/82.6.1283_bib21 article-title: Isothiocyanates as substrates for human glutathione transulforaphaneerases: structure-activity studies publication-title: Biochem J doi: 10.1042/bj3110453 – volume: 38 start-page: 168 year: 2000 ident: 10.1093/ajcn/82.6.1283_bib18 article-title: Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli publication-title: Nutr Cancer doi: 10.1207/S15327914NC382_5 – volume: 10 start-page: 1063 year: 2001 ident: 10.1093/ajcn/82.6.1283_bib9 article-title: Dietary isothiocyanates, glutathione S-transulforaphaneerase-M1,-T1 polymorphisms and lung cancer risk among Chinese women in Singapore publication-title: Cancer Epidemiol Biomarkers Prev – volume: 60 start-page: 1426 year: 2000 ident: 10.1093/ajcn/82.6.1283_bib16 article-title: Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells publication-title: Cancer Res – volume: 50 start-page: 206 year: 2004 ident: 10.1093/ajcn/82.6.1283_bib2 article-title: Cruciferous vegetables, genetic polymorphisms in glutathione S-transulforaphaneerases m1 and t1, and prostate cancer risk publication-title: Nutr Cancer doi: 10.1207/s15327914nc5002_11 – volume: 23 start-page: 2055 year: 2002 ident: 10.1093/ajcn/82.6.1283_bib8 article-title: Dietary isothiocyanates, glutathione S-transulforaphaneerase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study publication-title: Carcinogenesis doi: 10.1093/carcin/23.12.2055 – volume: 306 start-page: 565 year: 1995 ident: 10.1093/ajcn/82.6.1283_bib22 article-title: Forward and reverse catalysis and product sequestration by human glutathione S-transulforaphaneerases in the reaction of GSH with dietary aralkyl isothiocyanates publication-title: Biochem J doi: 10.1042/bj3060565 – volume: 106 start-page: 727 year: 2003 ident: 10.1093/ajcn/82.6.1283_bib28 article-title: Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells publication-title: Theor Appl Genet doi: 10.1007/s00122-002-1123-x – volume: 7 start-page: 775 year: 1998 ident: 10.1093/ajcn/82.6.1283_bib25 article-title: Urinary total isothiocyanate (ITC) in a population-based sample of middle-aged and older Chinese in Singapore: relationship with dietary total ITC and glutathione S-transulforaphaneerase M1/T1/P1 genotypes publication-title: Cancer Epidemiol Biomarkers Prev – volume: 7 start-page: 647 year: 1998 ident: 10.1093/ajcn/82.6.1283_bib3 article-title: Glutathione transulforaphaneerase null genotype, broccoli, and lower prevalence of colorectal adenomas publication-title: Cancer Epidemiol Biomarkers Prev – volume: 17 start-page: 277 year: 1996 ident: 10.1093/ajcn/82.6.1283_bib15 article-title: CYP2E1-mediated mechanism of anti-genotoxicity of the broccoli constituent sulforaphane publication-title: Carcinogenesis doi: 10.1093/carcin/17.2.277 – ident: 10.1093/ajcn/82.6.1283_bib30 – volume: 57 start-page: 3649 year: 1997 ident: 10.1093/ajcn/82.6.1283_bib14 article-title: Inhibition of cytochromes P-450 and induction of glutathione S-transulforaphaneerases by sulforaphane in primary human and rat hepatocytes publication-title: Cancer Res – volume: 135 start-page: 1865 year: 2005 ident: 10.1093/ajcn/82.6.1283_bib17 article-title: Transcriptome analysis of human colon caco-2 cells exposed to sulforaphane publication-title: J Nutr doi: 10.1093/jn/135.8.1865 – reference: - Am J Clin Nutr. 2006 Mar;83(3):724 |
SSID | ssj0012486 |
Score | 2.3377519 |
Snippet | Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1 allele, as... Background: Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1... BACKGROUND: Broccoli consumption is associated with a reduction in the risk of cancer, particularly in persons with a functional glutathione S-transferase M1... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1283 |
SubjectTerms | Adolescent Adult Alleles anticarcinogenic activity antinutritional factors Area Under Curve biochemical pathways Biological and medical sciences Brassica - chemistry Brassica oleracea var. italica broccoli chemical composition chemoprevention Comparative analysis Cross-Over Studies Double-Blind Method Female Food industries Fruit and vegetable industries Fundamental and applied biological sciences. Psychology Genetics Genotype & phenotype glucobrassicin Glucosinolates - administration & dosage Glucosinolates - metabolism glutathione transferase Glutathione Transferase - deficiency Glutathione Transferase - genetics Humans Isothiocyanates Male metabolic detoxification Metabolism Middle Aged Neoplasms - prevention & control nutrition-genotype interaction Polymorphism Polymorphism, Genetic randomized clinical trials Risk Factors structure-activity relationships Sulfoxides Thiocyanates - blood Thiocyanates - pharmacokinetics Thiocyanates - urine Vegetables |
Title | Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16332662 https://www.proquest.com/docview/231942055 https://www.proquest.com/docview/47254475 https://www.proquest.com/docview/68871610 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKkBASQjBghMHwA4KHKV2cOI7zWDFggLoXOmlvkW0crVObVmuKBD-I38nZSRwXOjR4idrETmTfF9-d890dQq8iTXMWaxJmmqiQqpiEsiRpSFPCJfRgXFmC7Ck7OaOfztPzweCnx1pa13KofmyNK_kfqcI5kKuJkv0Hybqbwgn4DfKFI0gYjjeS8Qe4uWEPLsBS_BLW1gbVV6CXDsfElF8Avx6msSuDMdc1SHxm_oKFuFrPwF4VywsBnW2QidtVMI1NGuOWzz6twP2t9aEEXQewmfr27KQPTKn8LBQu4LLqsv07oo8wucntkjT_3lNsR7PwUlQLackFo4t5G3Pl7_2YUG7t772qhjFgib4t8bHbv0g9Lki_JoORmvprMo897PkLLKjTxFPWYK2QrYqgSZIlLpVRdjwesmHf08-5_ZsudAzF5tt8Upg7FDwuWGH630K3Y3BHTKWM44-f3deqmNqKom4kLjlocmT6H7nnbxg_95ZiBYIomwIq13s41tKZPED3WxcFjxq8PUQDXe2i4Hiqa_wat3lkZ_i0E-wuujNuCRqP0DcPkngDknhMsA9JDCjDPSTxosQ-JLGBJO4gaRv_CUncQfIxOnv_bvL2JGxLe4QKTMQ6ZCUTMqeSaq3NAiEo1RlYsiwTJudeGUsiMlFmef4VXG6iIqEV4UJwmUeakyx5gnYqGMlThEXOSzD08rTkiqpUcFBC4ANwVuZSgsYKUNjNeaHavPem_Mqs2C7jAL1x7ZdNxpdrWx5siLBvniXGUcoDtN_JtGhfwVUBDlVO4yhNA_TSXYU13Xyog-ldrFcFzUziwOwvLRg3Gx0kCtBeA5X-2SwBj4zFz248jH10t38vn6Od-mqtX4ClXcsDC_NfKfzZWg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutathione+S-transferase+M1+polymorphism+and+metabolism+of+sulforaphane+from+standard+and+high-glucosinolate+broccoli&rft.jtitle=The+American+journal+of+clinical+nutrition&rft.au=Gasper%2C+Amy+V&rft.au=Al-janobi%2C+Ahmed&rft.au=Smith%2C+Julie+A&rft.au=Bacon%2C+James+R&rft.date=2005-12-01&rft.issn=0002-9165&rft.volume=82&rft.issue=6&rft.spage=1283&rft.epage=1291&rft_id=info:doi/10.1093%2Fajcn%2F82.6.1283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ajcn_82_6_1283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9165&client=summon |