Stomatal closure during water deficit is controlled by below-ground hydraulics
Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown. We used a novel root pressure chambe...
Saved in:
Published in | Annals of botany Vol. 129; no. 2; pp. 161 - 170 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
28.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown.
We used a novel root pressure chamber to measure, during soil drying, the relation between transpiration rate (E) and leaf xylem water pressure (ψleaf-x) in tomato shoots grafted onto two contrasting rootstocks, a long and a short one. In parallel, we also measured the E(ψleaf-x) relation without pressurization. A soil-plant hydraulic model was used to reproduce the measurements. We hypothesize that (1) stomata close when the E(ψleaf-x) relation becomes non-linear and (2) non-linearity occurs at higher soil water contents and lower transpiration rates in short-rooted plants.
The E(ψleaf-x) relation was linear in wet conditions and became non-linear as the soil dried. Changing below-ground traits (i.e. root system) significantly affected the E(ψleaf-x) relation during soil drying. Plants with shorter root systems required larger gradients in soil water pressure to sustain the same transpiration rate and exhibited an earlier non-linearity and stomatal closure.
We conclude that, during soil drying, stomatal regulation is controlled by below-ground hydraulics in a predictable way. The model suggests that the loss of hydraulic conductivity occurred in soil. These results prove that stomatal regulation is intimately tied to root and soil hydraulic conductances. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0305-7364 1095-8290 1095-8290 |
DOI: | 10.1093/aob/mcab141 |