Stomatal closure during water deficit is controlled by below-ground hydraulics
Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown. We used a novel root pressure chambe...
Saved in:
Published in | Annals of botany Vol. 129; no. 2; pp. 161 - 170 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
28.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown.
We used a novel root pressure chamber to measure, during soil drying, the relation between transpiration rate (E) and leaf xylem water pressure (ψleaf-x) in tomato shoots grafted onto two contrasting rootstocks, a long and a short one. In parallel, we also measured the E(ψleaf-x) relation without pressurization. A soil-plant hydraulic model was used to reproduce the measurements. We hypothesize that (1) stomata close when the E(ψleaf-x) relation becomes non-linear and (2) non-linearity occurs at higher soil water contents and lower transpiration rates in short-rooted plants.
The E(ψleaf-x) relation was linear in wet conditions and became non-linear as the soil dried. Changing below-ground traits (i.e. root system) significantly affected the E(ψleaf-x) relation during soil drying. Plants with shorter root systems required larger gradients in soil water pressure to sustain the same transpiration rate and exhibited an earlier non-linearity and stomatal closure.
We conclude that, during soil drying, stomatal regulation is controlled by below-ground hydraulics in a predictable way. The model suggests that the loss of hydraulic conductivity occurred in soil. These results prove that stomatal regulation is intimately tied to root and soil hydraulic conductances. |
---|---|
AbstractList | Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown.BACKGROUND AND AIMSStomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown.We used a novel root pressure chamber to measure, during soil drying, the relation between transpiration rate (E) and leaf xylem water pressure (ψleaf-x) in tomato shoots grafted onto two contrasting rootstocks, a long and a short one. In parallel, we also measured the E(ψleaf-x) relation without pressurization. A soil-plant hydraulic model was used to reproduce the measurements. We hypothesize that (1) stomata close when the E(ψleaf-x) relation becomes non-linear and (2) non-linearity occurs at higher soil water contents and lower transpiration rates in short-rooted plants.METHODSWe used a novel root pressure chamber to measure, during soil drying, the relation between transpiration rate (E) and leaf xylem water pressure (ψleaf-x) in tomato shoots grafted onto two contrasting rootstocks, a long and a short one. In parallel, we also measured the E(ψleaf-x) relation without pressurization. A soil-plant hydraulic model was used to reproduce the measurements. We hypothesize that (1) stomata close when the E(ψleaf-x) relation becomes non-linear and (2) non-linearity occurs at higher soil water contents and lower transpiration rates in short-rooted plants.The E(ψleaf-x) relation was linear in wet conditions and became non-linear as the soil dried. Changing below-ground traits (i.e. root system) significantly affected the E(ψleaf-x) relation during soil drying. Plants with shorter root systems required larger gradients in soil water pressure to sustain the same transpiration rate and exhibited an earlier non-linearity and stomatal closure.KEY RESULTSThe E(ψleaf-x) relation was linear in wet conditions and became non-linear as the soil dried. Changing below-ground traits (i.e. root system) significantly affected the E(ψleaf-x) relation during soil drying. Plants with shorter root systems required larger gradients in soil water pressure to sustain the same transpiration rate and exhibited an earlier non-linearity and stomatal closure.We conclude that, during soil drying, stomatal regulation is controlled by below-ground hydraulics in a predictable way. The model suggests that the loss of hydraulic conductivity occurred in soil. These results prove that stomatal regulation is intimately tied to root and soil hydraulic conductances.CONCLUSIONSWe conclude that, during soil drying, stomatal regulation is controlled by below-ground hydraulics in a predictable way. The model suggests that the loss of hydraulic conductivity occurred in soil. These results prove that stomatal regulation is intimately tied to root and soil hydraulic conductances. Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown. We used a novel root pressure chamber to measure, during soil drying, the relation between transpiration rate (E) and leaf xylem water pressure (ψleaf-x) in tomato shoots grafted onto two contrasting rootstocks, a long and a short one. In parallel, we also measured the E(ψleaf-x) relation without pressurization. A soil-plant hydraulic model was used to reproduce the measurements. We hypothesize that (1) stomata close when the E(ψleaf-x) relation becomes non-linear and (2) non-linearity occurs at higher soil water contents and lower transpiration rates in short-rooted plants. The E(ψleaf-x) relation was linear in wet conditions and became non-linear as the soil dried. Changing below-ground traits (i.e. root system) significantly affected the E(ψleaf-x) relation during soil drying. Plants with shorter root systems required larger gradients in soil water pressure to sustain the same transpiration rate and exhibited an earlier non-linearity and stomatal closure. We conclude that, during soil drying, stomatal regulation is controlled by below-ground hydraulics in a predictable way. The model suggests that the loss of hydraulic conductivity occurred in soil. These results prove that stomatal regulation is intimately tied to root and soil hydraulic conductances. |
Author | Cai, Gaochao Litig, Or Abdalla, Mohanned Ahmed, Mutez Ali Wankmüller, Fabian Javaux, Mathieu Carminati, Andrea Schwartz, Nimrod |
AuthorAffiliation | 4 Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich , Zürich , Switzerland 5 Department of Soil and Water Science, The Hebrew University of Jerusalem , Rehovot , Israel 7 Agrosphere (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany 6 Earth and Life Institute-Environmental Science, Université catholique de Louvain , Louvain-la-Neuve , Belgium 3 Department of Land, Air and Water Resources, University of California Davis , Davis , USA 1 Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth , Bayreuth , Germany 2 Department of Horticulture, Faculty of Agriculture, University of Khartoum , Khartoum North , Sudan |
AuthorAffiliation_xml | – name: 2 Department of Horticulture, Faculty of Agriculture, University of Khartoum , Khartoum North , Sudan – name: 5 Department of Soil and Water Science, The Hebrew University of Jerusalem , Rehovot , Israel – name: 4 Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich , Zürich , Switzerland – name: 1 Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth , Bayreuth , Germany – name: 6 Earth and Life Institute-Environmental Science, Université catholique de Louvain , Louvain-la-Neuve , Belgium – name: 7 Agrosphere (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany – name: 3 Department of Land, Air and Water Resources, University of California Davis , Davis , USA |
Author_xml | – sequence: 1 givenname: Mohanned orcidid: 0000-0002-4220-8761 surname: Abdalla fullname: Abdalla, Mohanned organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany, Department of Horticulture, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan – sequence: 2 givenname: Mutez Ali orcidid: 0000-0002-7402-1571 surname: Ahmed fullname: Ahmed, Mutez Ali organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany, Department of Land, Air and Water Resources, University of California Davis, Davis, USA – sequence: 3 givenname: Gaochao orcidid: 0000-0003-4484-1146 surname: Cai fullname: Cai, Gaochao organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany – sequence: 4 givenname: Fabian surname: Wankmüller fullname: Wankmüller, Fabian organization: Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland – sequence: 5 givenname: Nimrod surname: Schwartz fullname: Schwartz, Nimrod organization: Department of Soil and Water Science, The Hebrew University of Jerusalem, Rehovot, Israel – sequence: 6 givenname: Or surname: Litig fullname: Litig, Or organization: Department of Soil and Water Science, The Hebrew University of Jerusalem, Rehovot, Israel – sequence: 7 givenname: Mathieu orcidid: 0000-0002-6168-5467 surname: Javaux fullname: Javaux, Mathieu organization: Earth and Life Institute-Environmental Science, Université catholique de Louvain, Louvain-la-Neuve, Belgium, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany – sequence: 8 givenname: Andrea surname: Carminati fullname: Carminati, Andrea organization: Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34871349$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdtLHTEQxkOx1OPlqe-Sx4JsTTbZXF6EIlYLUh_U55DL7DElu9FkVzn_fVc8lVr6NDDzm2-G79tDO2MeAaHPlHylRLMTm93J4K2jnH5Aq6XVNarVZAetCCNdI5ngu2iv1l-EkFZo-gntMq4kZVyv0M-bKQ92sgn7lOtcAIe5xHGNn-0EBQfoo48TjhX7PE4lpwQBuw12kPJzsy55HgO-34Ri5xR9PUAfe5sqHG7rPrr7fn57dtlcXV_8OPt21Xim6NQIzS3QXnJPWK-0lKGFnjuuW5AKwImeUeVICMw7Do5LTUnn-64N2krgku2j01fdh9kNEDwsv9lkHkocbNmYbKN5PxnjvVnnJ6OkFkKoReDLVqDkxxnqZIZYPaRkR8hzNa0gslOCt3RBj_6-9Xbkj4kLcPwK-JJrLdC_IZSYl4jMEpHZRrTQ9B96MdhO8cVeG9N_d34DG_OYgQ |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1084355 crossref_primary_10_1029_2024WR037084 crossref_primary_10_3390_agronomy14030414 crossref_primary_10_3390_plants13202908 crossref_primary_10_1093_aob_mcac147 crossref_primary_10_1093_jxb_erad221 crossref_primary_10_1016_j_sajb_2024_04_012 crossref_primary_10_1111_jac_12782 crossref_primary_10_3389_fpls_2024_1393991 crossref_primary_10_3389_fpls_2023_1140938 crossref_primary_10_58816_duzceod_1598233 crossref_primary_10_1093_plphys_kiac422 crossref_primary_10_1093_plphys_kiac229 crossref_primary_10_1016_j_jhydrol_2023_129767 crossref_primary_10_1093_aobpla_plaf005 crossref_primary_10_1007_s11104_024_06481_5 crossref_primary_10_1093_jxb_erad052 crossref_primary_10_1038_s41598_024_60947_1 crossref_primary_10_1016_j_jhydrol_2023_129161 crossref_primary_10_1111_tpj_15839 crossref_primary_10_3390_s22228645 crossref_primary_10_1111_nph_20020 crossref_primary_10_3389_fpls_2024_1319938 crossref_primary_10_1007_s11104_022_05656_2 crossref_primary_10_3390_ijms25042385 crossref_primary_10_1111_nph_19463 crossref_primary_10_1093_plphys_kiac240 crossref_primary_10_1093_jxb_erad249 crossref_primary_10_1007_s00468_023_02426_0 crossref_primary_10_1016_j_scienta_2023_112624 crossref_primary_10_1093_treephys_tpae158 crossref_primary_10_1111_pce_14259 crossref_primary_10_1093_aob_mcae193 crossref_primary_10_1038_s41588_024_01761_3 crossref_primary_10_1007_s11104_022_05818_2 crossref_primary_10_1016_j_agwat_2024_108741 crossref_primary_10_1093_forsci_fxad005 crossref_primary_10_3389_fpls_2022_1079283 crossref_primary_10_1111_jac_12721 crossref_primary_10_3390_plants12071551 crossref_primary_10_1093_jxb_erad312 crossref_primary_10_1093_jxb_erad510 crossref_primary_10_1038_s41598_024_80261_0 crossref_primary_10_1111_nph_19017 crossref_primary_10_1111_pce_14538 crossref_primary_10_1111_pce_14536 crossref_primary_10_5194_bg_21_5495_2024 crossref_primary_10_1111_pce_14469 crossref_primary_10_1002_pld3_582 crossref_primary_10_5194_soil_11_67_2025 crossref_primary_10_1016_j_stress_2024_100549 crossref_primary_10_1111_pce_15274 crossref_primary_10_1002_eco_2761 |
Cites_doi | 10.1111/pce.13939 10.1093/plphys/kiab271 10.1111/nph.16419 10.1111/ele.12851 10.1016/j.jhydrol.2015.05.020 10.1371/journal.pone.0185481 10.1104/pp.16.01643 10.1111/nph.16572 10.1111/nph.14450 10.1111/pce.13722 10.1016/j.tplants.2020.04.003 10.1007/BF00378909 10.1111/nph.16485 10.1016/S0065-2504(08)60119-1 10.1038/s41586-018-0240-x 10.1111/nph.13354 10.1093/plphys/kiab207 10.1038/s41467-019-11006-1 10.1007/s11104-019-04408-z 10.1073/pnas.1615144113 10.2136/vzj2007.0083 10.1111/nph.14715 10.1111/j.1365-3040.2005.01407.x 10.1093/jxb/31.1.333 10.2136/vzj2013.02.0039 10.2136/vzj2008.0116 10.1046/j.1365-3040.2001.00715.x 10.1104/pp.113.221424 10.1038/s41559-017-0238-z 10.1126/science.148.3668.339 10.1111/nph.16082 10.1111/nph.15899 10.1111/nph.16177 10.1126/science.abc3710 10.1093/jxb/eraa392 10.1073/pnas.1604088113 10.1038/s41477-020-00760-6 10.17660/ActaHortic.2020.1300.17 10.1038/nature01843 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021 |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/aob/mcab141 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1095-8290 |
EndPage | 170 |
ExternalDocumentID | PMC8796668 34871349 10_1093_aob_mcab141 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 02WIL1489 |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 1TH 1~5 23M 2WC 4.4 482 48X 4G. 5GY 5VS 5WA 5WD 6J9 7-5 70D 79B A8Z AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAXTN AAYXX ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACIWK ACNCT ACPRK ACUFI ACUHS ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHGBF AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CITATION COF CS3 CZ4 DAKXR DILTD D~K E3Z EBD EBS EDH EE~ EMOBN ESX F5P F9B FDB FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HYE HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY O-L O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX RPM RUSNO RW1 RXO SV3 TCN TLC TN5 TR2 UPT W8F WH7 WOQ X7H Y6R YAYTL YKOAZ YSK YXANX YZZ ZKX ~02 ~91 ~KM AACTN ADRIX AFXEN CGR CUY CVF ECM EIF NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c381t-694ae1f74c03f8977d2ef4b492e78eeb6f318b0dd3cb4eb479105cf52d9a7e473 |
ISSN | 0305-7364 1095-8290 |
IngestDate | Thu Aug 21 18:38:37 EDT 2025 Fri Jul 11 08:10:01 EDT 2025 Wed Feb 19 02:25:42 EST 2025 Tue Jul 01 03:04:17 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | water stress hydraulic limitations root system hydraulic signal modelling Solanum lycopersicum |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-694ae1f74c03f8977d2ef4b492e78eeb6f318b0dd3cb4eb479105cf52d9a7e473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6168-5467 0000-0002-4220-8761 0000-0003-4484-1146 0000-0002-7402-1571 |
OpenAccessLink | https://academic.oup.com/aob/article-pdf/129/2/161/42322312/mcab141.pdf |
PMID | 34871349 |
PQID | 2607586421 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8796668 proquest_miscellaneous_2607586421 pubmed_primary_34871349 crossref_primary_10_1093_aob_mcab141 crossref_citationtrail_10_1093_aob_mcab141 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-28 |
PublicationDateYYYYMMDD | 2022-01-28 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: US |
PublicationTitle | Annals of botany |
PublicationTitleAlternate | Ann Bot |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Huber (2022012813413506400_CIT0022) 2019; 224 de Jong van Lier (2022012813413506400_CIT0025) 2013; 12 Deans (2022012813413506400_CIT0014) 2020; 6 Eller (2022012813413506400_CIT0015) 2020; 226 Bourbia (2022012813413506400_CIT0005) 2021; 186 Rodriguez-Dominguez (2022012813413506400_CIT0030) 2020; 225 Cai (2022012813413506400_CIT0008) 2020; 1300 Henry (2022012813413506400_CIT0020) 2019; 10 Wolf (2022012813413506400_CIT0040) 2016; 113 Carminati (2022012813413506400_CIT0011) 2017; 216 Scoffoni (2022012813413506400_CIT0034) 2014; 164 Notaguchi (2022012813413506400_CIT0027) 2020; 369 Jarvis (2022012813413506400_CIT0023) 1986 de Jong van Lier (2022012813413506400_CIT0024) 2008; 7 Wolz (2022012813413506400_CIT0041) 2017; 1 Williams (2022012813413506400_CIT0039) 2001; 24 Gollan (2022012813413506400_CIT0018) 1986; 13 Peters (2022012813413506400_CIT0029) 2015; 527 Bartlett (2022012813413506400_CIT0004) 2016; 113 Grossiord (2022012813413506400_CIT0019) 2020; 226 Corso (2022012813413506400_CIT0013) 2020; 43 Skelton (2022012813413506400_CIT0036) 2017; 214 Rosskopf (2022012813413506400_CIT0031) 2018 Choat (2022012813413506400_CIT0012) 2018; 558 Schröder (2022012813413506400_CIT0033) 2009; 8 Passioura (2022012813413506400_CIT0028) 1980; 31 Cai (2022012813413506400_CIT0007) 2020; 447 Carminati (2022012813413506400_CIT0010) 2020; 25 Buckley (2022012813413506400_CIT0006) 2019; 224 Anderegg (2022012813413506400_CIT0003) 2017; 12 Abdalla (2022012813413506400_CIT0001) 2021; 44 Scoffoni (2022012813413506400_CIT0035) 2017; 173 Wang (2022012813413506400_CIT0038) 2020; 227 Albuquerque (2022012813413506400_CIT0002) 2020; 71 Fisher (2022012813413506400_CIT0016) 2006; 29 Scholander (2022012813413506400_CIT0032) 1965; 148 Hetherington (2022012813413506400_CIT0021) 2003; 424 Martin-StPaul (2022012813413506400_CIT0026) 2017; 20 Sperry (2022012813413506400_CIT0037) 2015; 207 Gollan (2022012813413506400_CIT0017) 1985; 65 Cai (2022012813413506400_CIT0009) 2021; 187 |
References_xml | – volume: 44 start-page: 425 year: 2021 ident: 2022012813413506400_CIT0001 article-title: Stomatal closure of tomato under drought is driven by an increase in soil-root hydraulic resistance publication-title: Plant, Cell & Environment doi: 10.1111/pce.13939 – volume: 187 start-page: 858 year: 2021 ident: 2022012813413506400_CIT0009 article-title: Soil textures rather than root hairs dominate water uptake and soil-plant hydraulics under drought publication-title: Plant Physiology doi: 10.1093/plphys/kiab271 – volume: 226 start-page: 1622 year: 2020 ident: 2022012813413506400_CIT0015 article-title: Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate publication-title: New Phytologist doi: 10.1111/nph.16419 – volume: 20 start-page: 1437 year: 2017 ident: 2022012813413506400_CIT0026 article-title: Plant resistance to drought depends on timely stomatal closure publication-title: Ecology Letters doi: 10.1111/ele.12851 – volume: 527 start-page: 531 year: 2015 ident: 2022012813413506400_CIT0029 article-title: Revisiting the simplified evaporation method: identification of hydraulic functions considering vapor, film and corner flow publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2015.05.020 – volume: 12 start-page: e0185481 year: 2017 ident: 2022012813413506400_CIT0003 article-title: Plant water potential improves prediction of empirical stomatal models publication-title: PLoS ONE doi: 10.1371/journal.pone.0185481 – volume: 173 start-page: 1197 year: 2017 ident: 2022012813413506400_CIT0035 article-title: Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration publication-title: Plant Physiology doi: 10.1104/pp.16.01643 – volume: 227 start-page: 311 year: 2020 ident: 2022012813413506400_CIT0038 article-title: A theoretical and empirical assessment of stomatal optimization modeling publication-title: New Phytologist doi: 10.1111/nph.16572 – volume: 214 start-page: 561 year: 2017 ident: 2022012813413506400_CIT0036 article-title: Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation publication-title: New Phytologist doi: 10.1111/nph.14450 – volume: 43 start-page: 854 year: 2020 ident: 2022012813413506400_CIT0013 article-title: Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat publication-title: Plant, Cell & Environment doi: 10.1111/pce.13722 – volume: 25 start-page: 868 year: 2020 ident: 2022012813413506400_CIT0010 article-title: Soil rather than xylem vulnerability controls stomatal response to drought publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2020.04.003 – volume: 65 start-page: 356 year: 1985 ident: 2022012813413506400_CIT0017 article-title: The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content: III. In the sclerophyllous woody species Nerium oleander publication-title: Oecologia doi: 10.1007/BF00378909 – volume: 226 start-page: 1550 year: 2020 ident: 2022012813413506400_CIT0019 article-title: Plant responses to rising vapor pressure deficit publication-title: New Phytologist doi: 10.1111/nph.16485 – start-page: 1 volume-title: Advances in ecological research, Vol. 15 year: 1986 ident: 2022012813413506400_CIT0023 article-title: Stomatal control of transpiration: scaling up from leaf to region doi: 10.1016/S0065-2504(08)60119-1 – volume: 558 start-page: 531 year: 2018 ident: 2022012813413506400_CIT0012 article-title: Triggers of tree mortality under drought publication-title: Nature doi: 10.1038/s41586-018-0240-x – volume: 207 start-page: 14 year: 2015 ident: 2022012813413506400_CIT0037 article-title: What plant hydraulics can tell us about responses to climate-change droughts publication-title: New Phytologist doi: 10.1111/nph.13354 – volume: 186 start-page: 1908 year: 2021 ident: 2022012813413506400_CIT0005 article-title: Herb and conifer roots show similar high sensitivity to water deficit publication-title: Plant Physiology doi: 10.1093/plphys/kiab207 – volume: 10 start-page: 1 year: 2019 ident: 2022012813413506400_CIT0020 article-title: A stomatal safety-efficiency trade-off constrains responses to leaf dehydration publication-title: Nature Communications doi: 10.1038/s41467-019-11006-1 – volume: 447 start-page: 565 year: 2020 ident: 2022012813413506400_CIT0007 article-title: Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying publication-title: Plant and Soil doi: 10.1007/s11104-019-04408-z – volume: 113 start-page: E7222 year: 2016 ident: 2022012813413506400_CIT0040 article-title: Optimal stomatal behavior with competition for water and risk of hydraulic impairment publication-title: Proceedings of the National Academy of Sciences of the USA doi: 10.1073/pnas.1615144113 – volume: 7 start-page: 1065 year: 2008 ident: 2022012813413506400_CIT0024 article-title: Macroscopic root water uptake distribution using a matric flux potential approach publication-title: Vadose Zone Journal doi: 10.2136/vzj2007.0083 – volume: 216 start-page: 771 year: 2017 ident: 2022012813413506400_CIT0011 article-title: Root hairs enable high transpiration rates in drying soils publication-title: New Phytologist doi: 10.1111/nph.14715 – volume: 29 start-page: 151 year: 2006 ident: 2022012813413506400_CIT0016 article-title: Evidence from Amazonian forests is consistent with isohydric control of leaf water potential publication-title: Plant, Cell & Environment doi: 10.1111/j.1365-3040.2005.01407.x – volume: 31 start-page: 333 year: 1980 ident: 2022012813413506400_CIT0028 article-title: The transport of water from soil to shoot in wheat seedlings publication-title: Journal of Experimental Botany doi: 10.1093/jxb/31.1.333 – volume: 12 start-page: vzj2013.02.0039 year: 2013 ident: 2022012813413506400_CIT0025 article-title: Modeling water potentials and flows in the soil–plant system comparing hydraulic resistances and transpiration reduction functions publication-title: Vadose Zone Journal doi: 10.2136/vzj2013.02.0039 – volume: 8 start-page: 783 year: 2009 ident: 2022012813413506400_CIT0033 article-title: Implementation of a microscopic soil–root hydraulic conductivity drop function in a three-dimensional soil–root architecture water transfer model publication-title: Vadose Zone Journal doi: 10.2136/vzj2008.0116 – volume: 24 start-page: 679 year: 2001 ident: 2022012813413506400_CIT0039 article-title: Evaluating different soil and plant hydraulic constraints on tree function using a model and sap flow data from ponderosa pine publication-title: Plant, Cell & Environment doi: 10.1046/j.1365-3040.2001.00715.x – volume: 164 start-page: 1772 year: 2014 ident: 2022012813413506400_CIT0034 article-title: Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance publication-title: Plant Physiology doi: 10.1104/pp.113.221424 – volume: 1 start-page: 1292 year: 2017 ident: 2022012813413506400_CIT0041 article-title: Diversity in stomatal function is integral to modelling plant carbon and water fluxes publication-title: Nature Ecology & Evolution doi: 10.1038/s41559-017-0238-z – volume: 148 start-page: 339 year: 1965 ident: 2022012813413506400_CIT0032 article-title: Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants publication-title: Science doi: 10.1126/science.148.3668.339 – year: 2018 ident: 2022012813413506400_CIT0031 article-title: Crop-specific grafting methods, rootstocks and scheduling-tomato. In: Kubota C, Miles C, Zhao X, eds. Grafting Manual: How to Produce Grafted Vegetable Plants. SCRI Vegetable Grafting Org., 1–13. – volume: 224 start-page: 675 year: 2019 ident: 2022012813413506400_CIT0022 article-title: Signal coordination before, during and after stomatal closure in response to drought stress publication-title: New Phytologist doi: 10.1111/nph.16082 – volume: 13 start-page: 459 year: 1986 ident: 2022012813413506400_CIT0018 article-title: Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves publication-title: Australian Journal of Plant Physiology – volume: 224 start-page: 21 year: 2019 ident: 2022012813413506400_CIT0006 article-title: How do stomata respond to water status? publication-title: New Phytologist doi: 10.1111/nph.15899 – volume: 225 start-page: 126 year: 2020 ident: 2022012813413506400_CIT0030 article-title: Declining root water transport drives stomatal closure in olive under moderate water stress publication-title: New Phytologist doi: 10.1111/nph.16177 – volume: 369 start-page: 698 year: 2020 ident: 2022012813413506400_CIT0027 article-title: Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases publication-title: Science doi: 10.1126/science.abc3710 – volume: 71 start-page: 7286 year: 2020 ident: 2022012813413506400_CIT0002 article-title: Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eraa392 – volume: 113 start-page: 13098 year: 2016 ident: 2022012813413506400_CIT0004 article-title: The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought publication-title: Proceedings of the National Academy of Sciences of the USA doi: 10.1073/pnas.1604088113 – volume: 6 start-page: 1116 year: 2020 ident: 2022012813413506400_CIT0014 article-title: Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations publication-title: Nature Plants doi: 10.1038/s41477-020-00760-6 – volume: 1300 start-page: 131 year: 2020 ident: 2022012813413506400_CIT0008 article-title: Measurement of leaf xylem water potential and transpiration during soil drying using a root pressure chamber system publication-title: Acta Horticulturae doi: 10.17660/ActaHortic.2020.1300.17 – volume: 424 start-page: 901 year: 2003 ident: 2022012813413506400_CIT0021 article-title: The role of stomata in sensing and driving environmental change publication-title: Nature doi: 10.1038/nature01843 |
SSID | ssj0002691 |
Score | 2.5641036 |
Snippet | Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 161 |
SubjectTerms | Original Plant Leaves - physiology Plant Roots - physiology Plant Stomata - physiology Plant Transpiration - physiology Soil Water - physiology Xylem - physiology |
Title | Stomatal closure during water deficit is controlled by below-ground hydraulics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34871349 https://www.proquest.com/docview/2607586421 https://pubmed.ncbi.nlm.nih.gov/PMC8796668 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbcpEOXou-6L7BApgZKJIoSpdFOmwYFmqUJkE3gS7ARWSoSGUGC_vgeRVKyYw9pF8KQeIKtOx_v-R1Ce2UqwjKJ0yAPOTgokaYBl5IFqVZcpozoTHVon6fpyTn9cZFcjEZ_VrtLWnEg77b2lfwPV-Ea8NV0yf4DZ_uHwgX4DPyFFTgM64N4_KttFt30D1k1JtLnmw5vuB38bdAhWjOy3BWkV9bcFLpqbgLTz1Gr_dmtuuLLyhe9b-Aqi6b1-qLLEikTee_CqM2MGyXd35otbOD057LVd_uTaj7kN7qSge-8kTPeDCH8-nJh8vTTI9-OeMyFl1YXiCCmosM3drsGrDAJWGxByQ-01adgwQUmV7umcF2MY77i-Fr1GVlgdncSR3akyIaStwBYvBGwLiQXEY2G08xn8O8dcn3poU26xwWQF474Edol4GSAltydTL9Oj_uTnKR24qL_Ya6_E8gPgfzQka9bNBtuyv1q2xXz5ewZeur8DjyxQvQcjXT9Aj2edsx9iU69JGEnSdhKEu4kCTtJwvNrPEgSFrd4VZLwIEmv0Pnxt7Ojk8BN2ggkWGxtkOaU66hkVIZxmYFLoIguqaA50SzTWqQlqH4RKhVLQbWgDIzMRJYJUTlnmrL4Ndqpm1q_RTglrCSKaaXzjKqE5JSyUDCSaikyHuox-uLfViEdDL2ZhlIVWzgzRnv95t8WfWX7ts_-tRegHU3Ki9e6WV4X4K2DQ2yaucfojWVD_6AYfHUDzjlGbI1B_QaDvL5-p57POgT2jOXg9mfvHvb13qMnw__lA9ppr5b6I5iyrfjkJO4v2yOmWw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stomatal+closure+during+water+deficit+is+controlled+by+below-ground+hydraulics&rft.jtitle=Annals+of+botany&rft.au=Abdalla%2C+Mohanned&rft.au=Ahmed%2C+Mutez+Ali&rft.au=Cai%2C+Gaochao&rft.au=Wankm%C3%BCller%2C+Fabian&rft.date=2022-01-28&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=129&rft.issue=2&rft.spage=161&rft.epage=170&rft_id=info:doi/10.1093%2Faob%2Fmcab141&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_aob_mcab141 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon |