Stomatal closure during water deficit is controlled by below-ground hydraulics

Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown. We used a novel root pressure chambe...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 129; no. 2; pp. 161 - 170
Main Authors Abdalla, Mohanned, Ahmed, Mutez Ali, Cai, Gaochao, Wankmüller, Fabian, Schwartz, Nimrod, Litig, Or, Javaux, Mathieu, Carminati, Andrea
Format Journal Article
LanguageEnglish
Published England Oxford University Press 28.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown. We used a novel root pressure chamber to measure, during soil drying, the relation between transpiration rate (E) and leaf xylem water pressure (ψleaf-x) in tomato shoots grafted onto two contrasting rootstocks, a long and a short one. In parallel, we also measured the E(ψleaf-x) relation without pressurization. A soil-plant hydraulic model was used to reproduce the measurements. We hypothesize that (1) stomata close when the E(ψleaf-x) relation becomes non-linear and (2) non-linearity occurs at higher soil water contents and lower transpiration rates in short-rooted plants. The E(ψleaf-x) relation was linear in wet conditions and became non-linear as the soil dried. Changing below-ground traits (i.e. root system) significantly affected the E(ψleaf-x) relation during soil drying. Plants with shorter root systems required larger gradients in soil water pressure to sustain the same transpiration rate and exhibited an earlier non-linearity and stomatal closure. We conclude that, during soil drying, stomatal regulation is controlled by below-ground hydraulics in a predictable way. The model suggests that the loss of hydraulic conductivity occurred in soil. These results prove that stomatal regulation is intimately tied to root and soil hydraulic conductances.
AbstractList Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown.BACKGROUND AND AIMSStomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown.We used a novel root pressure chamber to measure, during soil drying, the relation between transpiration rate (E) and leaf xylem water pressure (ψleaf-x) in tomato shoots grafted onto two contrasting rootstocks, a long and a short one. In parallel, we also measured the E(ψleaf-x) relation without pressurization. A soil-plant hydraulic model was used to reproduce the measurements. We hypothesize that (1) stomata close when the E(ψleaf-x) relation becomes non-linear and (2) non-linearity occurs at higher soil water contents and lower transpiration rates in short-rooted plants.METHODSWe used a novel root pressure chamber to measure, during soil drying, the relation between transpiration rate (E) and leaf xylem water pressure (ψleaf-x) in tomato shoots grafted onto two contrasting rootstocks, a long and a short one. In parallel, we also measured the E(ψleaf-x) relation without pressurization. A soil-plant hydraulic model was used to reproduce the measurements. We hypothesize that (1) stomata close when the E(ψleaf-x) relation becomes non-linear and (2) non-linearity occurs at higher soil water contents and lower transpiration rates in short-rooted plants.The E(ψleaf-x) relation was linear in wet conditions and became non-linear as the soil dried. Changing below-ground traits (i.e. root system) significantly affected the E(ψleaf-x) relation during soil drying. Plants with shorter root systems required larger gradients in soil water pressure to sustain the same transpiration rate and exhibited an earlier non-linearity and stomatal closure.KEY RESULTSThe E(ψleaf-x) relation was linear in wet conditions and became non-linear as the soil dried. Changing below-ground traits (i.e. root system) significantly affected the E(ψleaf-x) relation during soil drying. Plants with shorter root systems required larger gradients in soil water pressure to sustain the same transpiration rate and exhibited an earlier non-linearity and stomatal closure.We conclude that, during soil drying, stomatal regulation is controlled by below-ground hydraulics in a predictable way. The model suggests that the loss of hydraulic conductivity occurred in soil. These results prove that stomatal regulation is intimately tied to root and soil hydraulic conductances.CONCLUSIONSWe conclude that, during soil drying, stomatal regulation is controlled by below-ground hydraulics in a predictable way. The model suggests that the loss of hydraulic conductivity occurred in soil. These results prove that stomatal regulation is intimately tied to root and soil hydraulic conductances.
Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown. We used a novel root pressure chamber to measure, during soil drying, the relation between transpiration rate (E) and leaf xylem water pressure (ψleaf-x) in tomato shoots grafted onto two contrasting rootstocks, a long and a short one. In parallel, we also measured the E(ψleaf-x) relation without pressurization. A soil-plant hydraulic model was used to reproduce the measurements. We hypothesize that (1) stomata close when the E(ψleaf-x) relation becomes non-linear and (2) non-linearity occurs at higher soil water contents and lower transpiration rates in short-rooted plants. The E(ψleaf-x) relation was linear in wet conditions and became non-linear as the soil dried. Changing below-ground traits (i.e. root system) significantly affected the E(ψleaf-x) relation during soil drying. Plants with shorter root systems required larger gradients in soil water pressure to sustain the same transpiration rate and exhibited an earlier non-linearity and stomatal closure. We conclude that, during soil drying, stomatal regulation is controlled by below-ground hydraulics in a predictable way. The model suggests that the loss of hydraulic conductivity occurred in soil. These results prove that stomatal regulation is intimately tied to root and soil hydraulic conductances.
Author Cai, Gaochao
Litig, Or
Abdalla, Mohanned
Ahmed, Mutez Ali
Wankmüller, Fabian
Javaux, Mathieu
Carminati, Andrea
Schwartz, Nimrod
AuthorAffiliation 4 Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich , Zürich , Switzerland
5 Department of Soil and Water Science, The Hebrew University of Jerusalem , Rehovot , Israel
7 Agrosphere (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany
6 Earth and Life Institute-Environmental Science, Université catholique de Louvain , Louvain-la-Neuve , Belgium
3 Department of Land, Air and Water Resources, University of California Davis , Davis , USA
1 Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth , Bayreuth , Germany
2 Department of Horticulture, Faculty of Agriculture, University of Khartoum , Khartoum North , Sudan
AuthorAffiliation_xml – name: 2 Department of Horticulture, Faculty of Agriculture, University of Khartoum , Khartoum North , Sudan
– name: 5 Department of Soil and Water Science, The Hebrew University of Jerusalem , Rehovot , Israel
– name: 4 Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich , Zürich , Switzerland
– name: 1 Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth , Bayreuth , Germany
– name: 6 Earth and Life Institute-Environmental Science, Université catholique de Louvain , Louvain-la-Neuve , Belgium
– name: 7 Agrosphere (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany
– name: 3 Department of Land, Air and Water Resources, University of California Davis , Davis , USA
Author_xml – sequence: 1
  givenname: Mohanned
  orcidid: 0000-0002-4220-8761
  surname: Abdalla
  fullname: Abdalla, Mohanned
  organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany, Department of Horticulture, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan
– sequence: 2
  givenname: Mutez Ali
  orcidid: 0000-0002-7402-1571
  surname: Ahmed
  fullname: Ahmed, Mutez Ali
  organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany, Department of Land, Air and Water Resources, University of California Davis, Davis, USA
– sequence: 3
  givenname: Gaochao
  orcidid: 0000-0003-4484-1146
  surname: Cai
  fullname: Cai, Gaochao
  organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
– sequence: 4
  givenname: Fabian
  surname: Wankmüller
  fullname: Wankmüller, Fabian
  organization: Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
– sequence: 5
  givenname: Nimrod
  surname: Schwartz
  fullname: Schwartz, Nimrod
  organization: Department of Soil and Water Science, The Hebrew University of Jerusalem, Rehovot, Israel
– sequence: 6
  givenname: Or
  surname: Litig
  fullname: Litig, Or
  organization: Department of Soil and Water Science, The Hebrew University of Jerusalem, Rehovot, Israel
– sequence: 7
  givenname: Mathieu
  orcidid: 0000-0002-6168-5467
  surname: Javaux
  fullname: Javaux, Mathieu
  organization: Earth and Life Institute-Environmental Science, Université catholique de Louvain, Louvain-la-Neuve, Belgium, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
– sequence: 8
  givenname: Andrea
  surname: Carminati
  fullname: Carminati, Andrea
  organization: Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34871349$$D View this record in MEDLINE/PubMed
BookMark eNptkdtLHTEQxkOx1OPlqe-Sx4JsTTbZXF6EIlYLUh_U55DL7DElu9FkVzn_fVc8lVr6NDDzm2-G79tDO2MeAaHPlHylRLMTm93J4K2jnH5Aq6XVNarVZAetCCNdI5ngu2iv1l-EkFZo-gntMq4kZVyv0M-bKQ92sgn7lOtcAIe5xHGNn-0EBQfoo48TjhX7PE4lpwQBuw12kPJzsy55HgO-34Ri5xR9PUAfe5sqHG7rPrr7fn57dtlcXV_8OPt21Xim6NQIzS3QXnJPWK-0lKGFnjuuW5AKwImeUeVICMw7Do5LTUnn-64N2krgku2j01fdh9kNEDwsv9lkHkocbNmYbKN5PxnjvVnnJ6OkFkKoReDLVqDkxxnqZIZYPaRkR8hzNa0gslOCt3RBj_6-9Xbkj4kLcPwK-JJrLdC_IZSYl4jMEpHZRrTQ9B96MdhO8cVeG9N_d34DG_OYgQ
CitedBy_id crossref_primary_10_3389_fpls_2023_1084355
crossref_primary_10_1029_2024WR037084
crossref_primary_10_3390_agronomy14030414
crossref_primary_10_3390_plants13202908
crossref_primary_10_1093_aob_mcac147
crossref_primary_10_1093_jxb_erad221
crossref_primary_10_1016_j_sajb_2024_04_012
crossref_primary_10_1111_jac_12782
crossref_primary_10_3389_fpls_2024_1393991
crossref_primary_10_3389_fpls_2023_1140938
crossref_primary_10_58816_duzceod_1598233
crossref_primary_10_1093_plphys_kiac422
crossref_primary_10_1093_plphys_kiac229
crossref_primary_10_1016_j_jhydrol_2023_129767
crossref_primary_10_1093_aobpla_plaf005
crossref_primary_10_1007_s11104_024_06481_5
crossref_primary_10_1093_jxb_erad052
crossref_primary_10_1038_s41598_024_60947_1
crossref_primary_10_1016_j_jhydrol_2023_129161
crossref_primary_10_1111_tpj_15839
crossref_primary_10_3390_s22228645
crossref_primary_10_1111_nph_20020
crossref_primary_10_3389_fpls_2024_1319938
crossref_primary_10_1007_s11104_022_05656_2
crossref_primary_10_3390_ijms25042385
crossref_primary_10_1111_nph_19463
crossref_primary_10_1093_plphys_kiac240
crossref_primary_10_1093_jxb_erad249
crossref_primary_10_1007_s00468_023_02426_0
crossref_primary_10_1016_j_scienta_2023_112624
crossref_primary_10_1093_treephys_tpae158
crossref_primary_10_1111_pce_14259
crossref_primary_10_1093_aob_mcae193
crossref_primary_10_1038_s41588_024_01761_3
crossref_primary_10_1007_s11104_022_05818_2
crossref_primary_10_1016_j_agwat_2024_108741
crossref_primary_10_1093_forsci_fxad005
crossref_primary_10_3389_fpls_2022_1079283
crossref_primary_10_1111_jac_12721
crossref_primary_10_3390_plants12071551
crossref_primary_10_1093_jxb_erad312
crossref_primary_10_1093_jxb_erad510
crossref_primary_10_1038_s41598_024_80261_0
crossref_primary_10_1111_nph_19017
crossref_primary_10_1111_pce_14538
crossref_primary_10_1111_pce_14536
crossref_primary_10_5194_bg_21_5495_2024
crossref_primary_10_1111_pce_14469
crossref_primary_10_1002_pld3_582
crossref_primary_10_5194_soil_11_67_2025
crossref_primary_10_1016_j_stress_2024_100549
crossref_primary_10_1111_pce_15274
crossref_primary_10_1002_eco_2761
Cites_doi 10.1111/pce.13939
10.1093/plphys/kiab271
10.1111/nph.16419
10.1111/ele.12851
10.1016/j.jhydrol.2015.05.020
10.1371/journal.pone.0185481
10.1104/pp.16.01643
10.1111/nph.16572
10.1111/nph.14450
10.1111/pce.13722
10.1016/j.tplants.2020.04.003
10.1007/BF00378909
10.1111/nph.16485
10.1016/S0065-2504(08)60119-1
10.1038/s41586-018-0240-x
10.1111/nph.13354
10.1093/plphys/kiab207
10.1038/s41467-019-11006-1
10.1007/s11104-019-04408-z
10.1073/pnas.1615144113
10.2136/vzj2007.0083
10.1111/nph.14715
10.1111/j.1365-3040.2005.01407.x
10.1093/jxb/31.1.333
10.2136/vzj2013.02.0039
10.2136/vzj2008.0116
10.1046/j.1365-3040.2001.00715.x
10.1104/pp.113.221424
10.1038/s41559-017-0238-z
10.1126/science.148.3668.339
10.1111/nph.16082
10.1111/nph.15899
10.1111/nph.16177
10.1126/science.abc3710
10.1093/jxb/eraa392
10.1073/pnas.1604088113
10.1038/s41477-020-00760-6
10.17660/ActaHortic.2020.1300.17
10.1038/nature01843
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/aob/mcab141
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 170
ExternalDocumentID PMC8796668
34871349
10_1093_aob_mcab141
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 02WIL1489
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
1TH
1~5
23M
2WC
4.4
482
48X
4G.
5GY
5VS
5WA
5WD
6J9
7-5
70D
79B
A8Z
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAXTN
AAYXX
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EMOBN
ESX
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
O-L
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TCN
TLC
TN5
TR2
UPT
W8F
WH7
WOQ
X7H
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
AACTN
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c381t-694ae1f74c03f8977d2ef4b492e78eeb6f318b0dd3cb4eb479105cf52d9a7e473
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 18:38:37 EDT 2025
Fri Jul 11 08:10:01 EDT 2025
Wed Feb 19 02:25:42 EST 2025
Tue Jul 01 03:04:17 EDT 2025
Thu Apr 24 23:09:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords water stress
hydraulic limitations
root system
hydraulic signal
modelling
Solanum lycopersicum
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-694ae1f74c03f8977d2ef4b492e78eeb6f318b0dd3cb4eb479105cf52d9a7e473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6168-5467
0000-0002-4220-8761
0000-0003-4484-1146
0000-0002-7402-1571
OpenAccessLink https://academic.oup.com/aob/article-pdf/129/2/161/42322312/mcab141.pdf
PMID 34871349
PQID 2607586421
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8796668
proquest_miscellaneous_2607586421
pubmed_primary_34871349
crossref_primary_10_1093_aob_mcab141
crossref_citationtrail_10_1093_aob_mcab141
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-28
PublicationDateYYYYMMDD 2022-01-28
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: US
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Huber (2022012813413506400_CIT0022) 2019; 224
de Jong van Lier (2022012813413506400_CIT0025) 2013; 12
Deans (2022012813413506400_CIT0014) 2020; 6
Eller (2022012813413506400_CIT0015) 2020; 226
Bourbia (2022012813413506400_CIT0005) 2021; 186
Rodriguez-Dominguez (2022012813413506400_CIT0030) 2020; 225
Cai (2022012813413506400_CIT0008) 2020; 1300
Henry (2022012813413506400_CIT0020) 2019; 10
Wolf (2022012813413506400_CIT0040) 2016; 113
Carminati (2022012813413506400_CIT0011) 2017; 216
Scoffoni (2022012813413506400_CIT0034) 2014; 164
Notaguchi (2022012813413506400_CIT0027) 2020; 369
Jarvis (2022012813413506400_CIT0023) 1986
de Jong van Lier (2022012813413506400_CIT0024) 2008; 7
Wolz (2022012813413506400_CIT0041) 2017; 1
Williams (2022012813413506400_CIT0039) 2001; 24
Gollan (2022012813413506400_CIT0018) 1986; 13
Peters (2022012813413506400_CIT0029) 2015; 527
Bartlett (2022012813413506400_CIT0004) 2016; 113
Grossiord (2022012813413506400_CIT0019) 2020; 226
Corso (2022012813413506400_CIT0013) 2020; 43
Skelton (2022012813413506400_CIT0036) 2017; 214
Rosskopf (2022012813413506400_CIT0031) 2018
Choat (2022012813413506400_CIT0012) 2018; 558
Schröder (2022012813413506400_CIT0033) 2009; 8
Passioura (2022012813413506400_CIT0028) 1980; 31
Cai (2022012813413506400_CIT0007) 2020; 447
Carminati (2022012813413506400_CIT0010) 2020; 25
Buckley (2022012813413506400_CIT0006) 2019; 224
Anderegg (2022012813413506400_CIT0003) 2017; 12
Abdalla (2022012813413506400_CIT0001) 2021; 44
Scoffoni (2022012813413506400_CIT0035) 2017; 173
Wang (2022012813413506400_CIT0038) 2020; 227
Albuquerque (2022012813413506400_CIT0002) 2020; 71
Fisher (2022012813413506400_CIT0016) 2006; 29
Scholander (2022012813413506400_CIT0032) 1965; 148
Hetherington (2022012813413506400_CIT0021) 2003; 424
Martin-StPaul (2022012813413506400_CIT0026) 2017; 20
Sperry (2022012813413506400_CIT0037) 2015; 207
Gollan (2022012813413506400_CIT0017) 1985; 65
Cai (2022012813413506400_CIT0009) 2021; 187
References_xml – volume: 44
  start-page: 425
  year: 2021
  ident: 2022012813413506400_CIT0001
  article-title: Stomatal closure of tomato under drought is driven by an increase in soil-root hydraulic resistance
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.13939
– volume: 187
  start-page: 858
  year: 2021
  ident: 2022012813413506400_CIT0009
  article-title: Soil textures rather than root hairs dominate water uptake and soil-plant hydraulics under drought
  publication-title: Plant Physiology
  doi: 10.1093/plphys/kiab271
– volume: 226
  start-page: 1622
  year: 2020
  ident: 2022012813413506400_CIT0015
  article-title: Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate
  publication-title: New Phytologist
  doi: 10.1111/nph.16419
– volume: 20
  start-page: 1437
  year: 2017
  ident: 2022012813413506400_CIT0026
  article-title: Plant resistance to drought depends on timely stomatal closure
  publication-title: Ecology Letters
  doi: 10.1111/ele.12851
– volume: 527
  start-page: 531
  year: 2015
  ident: 2022012813413506400_CIT0029
  article-title: Revisiting the simplified evaporation method: identification of hydraulic functions considering vapor, film and corner flow
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2015.05.020
– volume: 12
  start-page: e0185481
  year: 2017
  ident: 2022012813413506400_CIT0003
  article-title: Plant water potential improves prediction of empirical stomatal models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0185481
– volume: 173
  start-page: 1197
  year: 2017
  ident: 2022012813413506400_CIT0035
  article-title: Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration
  publication-title: Plant Physiology
  doi: 10.1104/pp.16.01643
– volume: 227
  start-page: 311
  year: 2020
  ident: 2022012813413506400_CIT0038
  article-title: A theoretical and empirical assessment of stomatal optimization modeling
  publication-title: New Phytologist
  doi: 10.1111/nph.16572
– volume: 214
  start-page: 561
  year: 2017
  ident: 2022012813413506400_CIT0036
  article-title: Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation
  publication-title: New Phytologist
  doi: 10.1111/nph.14450
– volume: 43
  start-page: 854
  year: 2020
  ident: 2022012813413506400_CIT0013
  article-title: Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.13722
– volume: 25
  start-page: 868
  year: 2020
  ident: 2022012813413506400_CIT0010
  article-title: Soil rather than xylem vulnerability controls stomatal response to drought
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2020.04.003
– volume: 65
  start-page: 356
  year: 1985
  ident: 2022012813413506400_CIT0017
  article-title: The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content: III. In the sclerophyllous woody species Nerium oleander
  publication-title: Oecologia
  doi: 10.1007/BF00378909
– volume: 226
  start-page: 1550
  year: 2020
  ident: 2022012813413506400_CIT0019
  article-title: Plant responses to rising vapor pressure deficit
  publication-title: New Phytologist
  doi: 10.1111/nph.16485
– start-page: 1
  volume-title: Advances in ecological research, Vol. 15
  year: 1986
  ident: 2022012813413506400_CIT0023
  article-title: Stomatal control of transpiration: scaling up from leaf to region
  doi: 10.1016/S0065-2504(08)60119-1
– volume: 558
  start-page: 531
  year: 2018
  ident: 2022012813413506400_CIT0012
  article-title: Triggers of tree mortality under drought
  publication-title: Nature
  doi: 10.1038/s41586-018-0240-x
– volume: 207
  start-page: 14
  year: 2015
  ident: 2022012813413506400_CIT0037
  article-title: What plant hydraulics can tell us about responses to climate-change droughts
  publication-title: New Phytologist
  doi: 10.1111/nph.13354
– volume: 186
  start-page: 1908
  year: 2021
  ident: 2022012813413506400_CIT0005
  article-title: Herb and conifer roots show similar high sensitivity to water deficit
  publication-title: Plant Physiology
  doi: 10.1093/plphys/kiab207
– volume: 10
  start-page: 1
  year: 2019
  ident: 2022012813413506400_CIT0020
  article-title: A stomatal safety-efficiency trade-off constrains responses to leaf dehydration
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-11006-1
– volume: 447
  start-page: 565
  year: 2020
  ident: 2022012813413506400_CIT0007
  article-title: Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying
  publication-title: Plant and Soil
  doi: 10.1007/s11104-019-04408-z
– volume: 113
  start-page: E7222
  year: 2016
  ident: 2022012813413506400_CIT0040
  article-title: Optimal stomatal behavior with competition for water and risk of hydraulic impairment
  publication-title: Proceedings of the National Academy of Sciences of the USA
  doi: 10.1073/pnas.1615144113
– volume: 7
  start-page: 1065
  year: 2008
  ident: 2022012813413506400_CIT0024
  article-title: Macroscopic root water uptake distribution using a matric flux potential approach
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2007.0083
– volume: 216
  start-page: 771
  year: 2017
  ident: 2022012813413506400_CIT0011
  article-title: Root hairs enable high transpiration rates in drying soils
  publication-title: New Phytologist
  doi: 10.1111/nph.14715
– volume: 29
  start-page: 151
  year: 2006
  ident: 2022012813413506400_CIT0016
  article-title: Evidence from Amazonian forests is consistent with isohydric control of leaf water potential
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2005.01407.x
– volume: 31
  start-page: 333
  year: 1980
  ident: 2022012813413506400_CIT0028
  article-title: The transport of water from soil to shoot in wheat seedlings
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/31.1.333
– volume: 12
  start-page: vzj2013.02.0039
  year: 2013
  ident: 2022012813413506400_CIT0025
  article-title: Modeling water potentials and flows in the soil–plant system comparing hydraulic resistances and transpiration reduction functions
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2013.02.0039
– volume: 8
  start-page: 783
  year: 2009
  ident: 2022012813413506400_CIT0033
  article-title: Implementation of a microscopic soil–root hydraulic conductivity drop function in a three-dimensional soil–root architecture water transfer model
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2008.0116
– volume: 24
  start-page: 679
  year: 2001
  ident: 2022012813413506400_CIT0039
  article-title: Evaluating different soil and plant hydraulic constraints on tree function using a model and sap flow data from ponderosa pine
  publication-title: Plant, Cell & Environment
  doi: 10.1046/j.1365-3040.2001.00715.x
– volume: 164
  start-page: 1772
  year: 2014
  ident: 2022012813413506400_CIT0034
  article-title: Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.221424
– volume: 1
  start-page: 1292
  year: 2017
  ident: 2022012813413506400_CIT0041
  article-title: Diversity in stomatal function is integral to modelling plant carbon and water fluxes
  publication-title: Nature Ecology & Evolution
  doi: 10.1038/s41559-017-0238-z
– volume: 148
  start-page: 339
  year: 1965
  ident: 2022012813413506400_CIT0032
  article-title: Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants
  publication-title: Science
  doi: 10.1126/science.148.3668.339
– year: 2018
  ident: 2022012813413506400_CIT0031
  article-title: Crop-specific grafting methods, rootstocks and scheduling-tomato. In: Kubota C, Miles C, Zhao X, eds. Grafting Manual: How to Produce Grafted Vegetable Plants. SCRI Vegetable Grafting Org., 1–13.
– volume: 224
  start-page: 675
  year: 2019
  ident: 2022012813413506400_CIT0022
  article-title: Signal coordination before, during and after stomatal closure in response to drought stress
  publication-title: New Phytologist
  doi: 10.1111/nph.16082
– volume: 13
  start-page: 459
  year: 1986
  ident: 2022012813413506400_CIT0018
  article-title: Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves
  publication-title: Australian Journal of Plant Physiology
– volume: 224
  start-page: 21
  year: 2019
  ident: 2022012813413506400_CIT0006
  article-title: How do stomata respond to water status?
  publication-title: New Phytologist
  doi: 10.1111/nph.15899
– volume: 225
  start-page: 126
  year: 2020
  ident: 2022012813413506400_CIT0030
  article-title: Declining root water transport drives stomatal closure in olive under moderate water stress
  publication-title: New Phytologist
  doi: 10.1111/nph.16177
– volume: 369
  start-page: 698
  year: 2020
  ident: 2022012813413506400_CIT0027
  article-title: Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases
  publication-title: Science
  doi: 10.1126/science.abc3710
– volume: 71
  start-page: 7286
  year: 2020
  ident: 2022012813413506400_CIT0002
  article-title: Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eraa392
– volume: 113
  start-page: 13098
  year: 2016
  ident: 2022012813413506400_CIT0004
  article-title: The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought
  publication-title: Proceedings of the National Academy of Sciences of the USA
  doi: 10.1073/pnas.1604088113
– volume: 6
  start-page: 1116
  year: 2020
  ident: 2022012813413506400_CIT0014
  article-title: Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations
  publication-title: Nature Plants
  doi: 10.1038/s41477-020-00760-6
– volume: 1300
  start-page: 131
  year: 2020
  ident: 2022012813413506400_CIT0008
  article-title: Measurement of leaf xylem water potential and transpiration during soil drying using a root pressure chamber system
  publication-title: Acta Horticulturae
  doi: 10.17660/ActaHortic.2020.1300.17
– volume: 424
  start-page: 901
  year: 2003
  ident: 2022012813413506400_CIT0021
  article-title: The role of stomata in sensing and driving environmental change
  publication-title: Nature
  doi: 10.1038/nature01843
SSID ssj0002691
Score 2.5641036
Snippet Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 161
SubjectTerms Original
Plant Leaves - physiology
Plant Roots - physiology
Plant Stomata - physiology
Plant Transpiration - physiology
Soil
Water - physiology
Xylem - physiology
Title Stomatal closure during water deficit is controlled by below-ground hydraulics
URI https://www.ncbi.nlm.nih.gov/pubmed/34871349
https://www.proquest.com/docview/2607586421
https://pubmed.ncbi.nlm.nih.gov/PMC8796668
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbcpEOXou-6L7BApgZKJIoSpdFOmwYFmqUJkE3gS7ARWSoSGUGC_vgeRVKyYw9pF8KQeIKtOx_v-R1Ce2UqwjKJ0yAPOTgokaYBl5IFqVZcpozoTHVon6fpyTn9cZFcjEZ_VrtLWnEg77b2lfwPV-Ea8NV0yf4DZ_uHwgX4DPyFFTgM64N4_KttFt30D1k1JtLnmw5vuB38bdAhWjOy3BWkV9bcFLpqbgLTz1Gr_dmtuuLLyhe9b-Aqi6b1-qLLEikTee_CqM2MGyXd35otbOD057LVd_uTaj7kN7qSge-8kTPeDCH8-nJh8vTTI9-OeMyFl1YXiCCmosM3drsGrDAJWGxByQ-01adgwQUmV7umcF2MY77i-Fr1GVlgdncSR3akyIaStwBYvBGwLiQXEY2G08xn8O8dcn3poU26xwWQF474Edol4GSAltydTL9Oj_uTnKR24qL_Ya6_E8gPgfzQka9bNBtuyv1q2xXz5ewZeur8DjyxQvQcjXT9Aj2edsx9iU69JGEnSdhKEu4kCTtJwvNrPEgSFrd4VZLwIEmv0Pnxt7Ojk8BN2ggkWGxtkOaU66hkVIZxmYFLoIguqaA50SzTWqQlqH4RKhVLQbWgDIzMRJYJUTlnmrL4Ndqpm1q_RTglrCSKaaXzjKqE5JSyUDCSaikyHuox-uLfViEdDL2ZhlIVWzgzRnv95t8WfWX7ts_-tRegHU3Ki9e6WV4X4K2DQ2yaucfojWVD_6AYfHUDzjlGbI1B_QaDvL5-p57POgT2jOXg9mfvHvb13qMnw__lA9ppr5b6I5iyrfjkJO4v2yOmWw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stomatal+closure+during+water+deficit+is+controlled+by+below-ground+hydraulics&rft.jtitle=Annals+of+botany&rft.au=Abdalla%2C+Mohanned&rft.au=Ahmed%2C+Mutez+Ali&rft.au=Cai%2C+Gaochao&rft.au=Wankm%C3%BCller%2C+Fabian&rft.date=2022-01-28&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=129&rft.issue=2&rft.spage=161&rft.epage=170&rft_id=info:doi/10.1093%2Faob%2Fmcab141&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_aob_mcab141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon