Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems

•Chromosome representation in genetic algorithm (GA) is important but rarely examined.•In modeling chromosome representation, incomplete scheme might be better than complete scheme.•Using incomplete scheme, the mapping from chromosome to solution may not be invertible.•Shadow chromosomes are heurist...

Full description

Saved in:
Bibliographic Details
Published inRobotics and computer-integrated manufacturing Vol. 58; pp. 196 - 207
Main Authors Lin, Chi-Shiuan, Lee, I-Ling, Wu, Muh-Cherng
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Chromosome representation in genetic algorithm (GA) is important but rarely examined.•In modeling chromosome representation, incomplete scheme might be better than complete scheme.•Using incomplete scheme, the mapping from chromosome to solution may not be invertible.•Shadow chromosomes are heuristically generated by quality solutions, not by genetic operators.•GAs with shadow chromosomes and incomplete scheme might be better in solving high-dimensional space search problem. Two conjectures, the use of incomplete chromosome representations and shadow chromosomes may improve the performance of genetic algorithms (GAs), are examined in this study. The examination entails testing distributed flexible job shop scheduling (DFJS) problems subject to preventive maintenance (PM) that involve four scheduling decisions. Genetic algorithms based on a complete chromosome representation that explicitly models the four decisions have been developed previously. By contrast, herein, two incomplete chromosome representations are proposed, whereby the conjectured advantages are two-fold. First, an incomplete chromosome representation models two scheduling decisions, and the remaining two are decoded by heuristic rules designed to ensure the load balance of manufacturing resources. Therefore, scheduling solutions with load imbalance will not be generated, which will help prevent the execution of ineffective searches. Second, a novel method of generating new chromosomes is developed and employed, instead of using traditional genetic operations. These chromosomes, called shadow chromosomes, are generated from good quality scheduling solutions and they may improve performance. Based on these two conjectures, four GAs are proposed. Numerical experiments reveal that each proposed GA outperforms the prior GAs substantially and the two conjectures are thus well justified. These findings shed light on the application of the two conjectures for developing metaheuristic algorithms to solve other high-dimensional space search problems.
AbstractList Two conjectures, the use of incomplete chromosome representations and shadow chromosomes may improve the performance of genetic algorithms (GAs), are examined in this study. The examination entails testing distributed flexible job shop scheduling (DFJS) problems subject to preventive maintenance (PM) that involve four scheduling decisions. Genetic algorithms based on a complete chromosome representation that explicitly models the four decisions have been developed previously. By contrast, herein, two incomplete chromosome representations are proposed, whereby the conjectured advantages are two-fold. First, an incomplete chromosome representation models two scheduling decisions, and the remaining two are decoded by heuristic rules designed to ensure the load balance of manufacturing resources. Therefore, scheduling solutions with load imbalance will not be generated, which will help prevent the execution of ineffective searches. Second, a novel method of generating new chromosomes is developed and employed, instead of using traditional genetic operations. These chromosomes, called shadow chromosomes, are generated from good quality scheduling solutions and they may improve performance. Based on these two conjectures, four GAs are proposed. Numerical experiments reveal that each proposed GA outperforms the prior GAs substantially and the two conjectures are thus well justified. These findings shed light on the application of the two conjectures for developing metaheuristic algorithms to solve other high-dimensional space search problems.
•Chromosome representation in genetic algorithm (GA) is important but rarely examined.•In modeling chromosome representation, incomplete scheme might be better than complete scheme.•Using incomplete scheme, the mapping from chromosome to solution may not be invertible.•Shadow chromosomes are heuristically generated by quality solutions, not by genetic operators.•GAs with shadow chromosomes and incomplete scheme might be better in solving high-dimensional space search problem. Two conjectures, the use of incomplete chromosome representations and shadow chromosomes may improve the performance of genetic algorithms (GAs), are examined in this study. The examination entails testing distributed flexible job shop scheduling (DFJS) problems subject to preventive maintenance (PM) that involve four scheduling decisions. Genetic algorithms based on a complete chromosome representation that explicitly models the four decisions have been developed previously. By contrast, herein, two incomplete chromosome representations are proposed, whereby the conjectured advantages are two-fold. First, an incomplete chromosome representation models two scheduling decisions, and the remaining two are decoded by heuristic rules designed to ensure the load balance of manufacturing resources. Therefore, scheduling solutions with load imbalance will not be generated, which will help prevent the execution of ineffective searches. Second, a novel method of generating new chromosomes is developed and employed, instead of using traditional genetic operations. These chromosomes, called shadow chromosomes, are generated from good quality scheduling solutions and they may improve performance. Based on these two conjectures, four GAs are proposed. Numerical experiments reveal that each proposed GA outperforms the prior GAs substantially and the two conjectures are thus well justified. These findings shed light on the application of the two conjectures for developing metaheuristic algorithms to solve other high-dimensional space search problems.
Author Wu, Muh-Cherng
Lin, Chi-Shiuan
Lee, I-Ling
Author_xml – sequence: 1
  givenname: Chi-Shiuan
  surname: Lin
  fullname: Lin, Chi-Shiuan
– sequence: 2
  givenname: I-Ling
  surname: Lee
  fullname: Lee, I-Ling
– sequence: 3
  givenname: Muh-Cherng
  orcidid: 0000-0001-5882-0587
  surname: Wu
  fullname: Wu, Muh-Cherng
  email: mcwu@mail.nctu.edu.tw
BookMark eNp9kMFq3DAQhkVJoJukL9CToGc7I2ll2dBLCW1SSOilPQtZGu9qsaWtxpvQt6_N9lByyGnm8H__MN8Vu0g5IWMfBdQCRHN7qIuPUy1BdDWIGkC_YxvRmq6SWpkLtgGjmkq3W_2eXREdAEButdqwlycscSaeB36imHbc70ueMuUJecFjQcI0uznmRNylwGnvQn75L0U8Jr7DhHP03I27vNTtJ-JDLpzy-Lx2kt9jOI3reiy5H3GiG3Y5uJHww795zX59-_rz7qF6_HH__e7LY-VVK-ZK925ZQm-CAjB9E8BoD9IH7zqnTCe3zaA61w1-2zWub4dWqt5IpYdWgdReXbNP597l8O8T0mwP-VTSctJKKbVUUiqzpOQ55UsmKjjYY4mTK3-sALsKtge7CrarYAvCLoIXqH0F-XhWNRcXx7fRz2cUl9efIxZLPmLyGGJBP9uQ41v4Xxxem-c
CitedBy_id crossref_primary_10_1016_j_cie_2024_109911
crossref_primary_10_3390_en16041609
crossref_primary_10_1142_S2196888824500222
crossref_primary_10_1007_s10901_020_09815_8
crossref_primary_10_1016_j_cie_2022_108786
crossref_primary_10_32604_cmes_2024_049756
crossref_primary_10_23919_CSMS_2022_0010
crossref_primary_10_1080_25725084_2024_2408699
crossref_primary_10_1016_j_rcim_2021_102198
crossref_primary_10_1016_j_cor_2022_105731
crossref_primary_10_1016_j_cie_2020_106347
crossref_primary_10_1515_remav_2020_0027
crossref_primary_10_3390_su16031079
crossref_primary_10_1007_s13042_019_01043_z
Cites_doi 10.1016/j.rcim.2008.04.001
10.1016/j.rcim.2005.11.005
10.1016/j.ijpe.2012.11.005
10.1016/S0377-2217(98)00367-1
10.1016/j.cor.2015.02.014
10.1016/j.engappai.2008.11.004
10.1023/A:1018909801944
10.1109/TASE.2016.2618767
10.1007/s002360050143
10.1016/j.rcim.2014.03.008
10.1007/BF01719250
10.1016/j.cor.2009.11.017
10.1007/s00170-010-2621-7
10.1016/j.rcim.2009.07.005
10.1016/j.rcim.2018.09.007
10.1115/1.4035962
10.1016/j.ejor.2009.01.008
10.1016/j.ijpe.2007.01.014
10.1080/00207543.2012.677070
10.1016/j.rcim.2014.08.010
10.1007/s10845-005-0021-x
10.1016/j.cie.2016.10.019
10.1016/j.eswa.2010.12.043
10.1007/s10845-015-1083-z
10.1016/j.rcim.2017.06.002
10.1109/TR.2005.845967
10.1007/s11750-017-0445-4
10.1016/j.rcim.2009.04.005
10.1016/j.rcim.2016.09.004
10.1016/j.cie.2009.04.014
10.1016/j.apm.2013.07.038
10.3233/JIFS-161385
10.1016/j.rcim.2007.02.018
10.1016/j.cie.2010.05.016
10.1016/j.cor.2016.11.021
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Aug 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Aug 2019
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.rcim.2019.01.005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1879-2537
EndPage 207
ExternalDocumentID 10_1016_j_rcim_2019_01_005
S0736584518305283
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SP
7TB
8FD
EFKBS
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c381t-5bac38db7d3007b6d075c02cdca9a379246f39a9fc496ab8f823b7235f83025c3
IEDL.DBID .~1
ISSN 0736-5845
IngestDate Fri Jul 25 05:21:14 EDT 2025
Tue Jul 01 02:40:43 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Fri Feb 23 02:26:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chromosome representation
Scheduling and preventive maintenance
Genetic algorithm
Shadow chromosome
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-5bac38db7d3007b6d075c02cdca9a379246f39a9fc496ab8f823b7235f83025c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5882-0587
PQID 2225232237
PQPubID 2045404
PageCount 12
ParticipantIDs proquest_journals_2225232237
crossref_primary_10_1016_j_rcim_2019_01_005
crossref_citationtrail_10_1016_j_rcim_2019_01_005
elsevier_sciencedirect_doi_10_1016_j_rcim_2019_01_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Robotics and computer-integrated manufacturing
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Candell, Karim (bib0002) 2009; 25
Ashayeri (bib0001) 2007; 23
Xia, Xi, Pan, Fang, Gebraeel (bib0008) 2017; 139
Ma, Chu, Zuo (bib0016) 2010; 58
Sanlaville, Schmidt (bib0014) 1998; 35
Palmarini, Erkoyuncu, Roy, Torabmostaedi (bib0010) 2018; 49
Liao, Chen, Yang (bib0028) 2017; 32
Dong, Axinte, Palmer, Cobos, Raffles, Rabani, Kell (bib0009) 2017; 44
Moradi, Ghomi, Zandieh (bib0019) 2010; 51
Li, Pan, Tasgetiren (bib0022) 2014; 38
Schmidt (bib0015) 2000; 121
Chung, Chan, Chan (bib0032) 2009; 22
Wu, Lin, Lin, Chen (bib0035) 2017; 80
El Khoukhi, Boukachour, Alaoui (bib0023) 2017; 106
Liu, Dong, Chen, Lv, Ye (bib0012) 2019; 55
Bierwirth (bib0036) 1995; 17
Kwon, Chiou, Stepanskíy (bib0003) 2009; 25
Xia, Dong, Xiao, Du, Pan, Xi (bib0011) 2018; 178
Dogmus, Erdem, Patoglu (bib0006) 2015; 33
Moradi, Ghomi, Zandieh (bib0029) 2011; 38
Lee, Lei, Pinedo (bib0013) 1997; 70
Mokhtari, Dadgar (bib0030) 2015; 61
De Giovanni, Pezzella (bib0033) 2010; 200
Sun, Xi, Du, Pan (bib0004) 2010; 26
Wu, Lin (bib0037) 2018
Gao, Gen, Sun (bib0017) 2006; 17
Xia, Tao, Xi (bib0007) 2017; 14
Wang, Yu (bib0020) 2010; 59
Salmasnia, Mirabadi-Dastjerd (bib0025) 2017; 25
Berrichi, Yalaoui, Amodeo, Mezghiche (bib0026) 2010; 37
Agheli, Qu, Nestinger (bib0005) 2014; 30
Zribi, El Kamel, Borne (bib0018) 2008; 112
Li, Pan (bib0021) 2013; 145
Cassady, Kutanoglu (bib0024) 2005; 54
Wong, Chan, Chung (bib0027) 2013; 51
Chan, Chung, Chan, Finke, Tiwari (bib0031) 2006; 22
Lu, Wu, Tan, Peng, Chen (bib0034) 2018; 29
Palmarini (10.1016/j.rcim.2019.01.005_bib0010) 2018; 49
Mokhtari (10.1016/j.rcim.2019.01.005_bib0030) 2015; 61
Gao (10.1016/j.rcim.2019.01.005_bib0017) 2006; 17
Schmidt (10.1016/j.rcim.2019.01.005_bib0015) 2000; 121
Agheli (10.1016/j.rcim.2019.01.005_bib0005) 2014; 30
El Khoukhi (10.1016/j.rcim.2019.01.005_bib0023) 2017; 106
Xia (10.1016/j.rcim.2019.01.005_bib0011) 2018; 178
Li (10.1016/j.rcim.2019.01.005_bib0021) 2013; 145
Salmasnia (10.1016/j.rcim.2019.01.005_bib0025) 2017; 25
Sun (10.1016/j.rcim.2019.01.005_bib0004) 2010; 26
Dong (10.1016/j.rcim.2019.01.005_bib0009) 2017; 44
De Giovanni (10.1016/j.rcim.2019.01.005_bib0033) 2010; 200
Moradi (10.1016/j.rcim.2019.01.005_bib0029) 2011; 38
Kwon (10.1016/j.rcim.2019.01.005_bib0003) 2009; 25
Liu (10.1016/j.rcim.2019.01.005_bib0012) 2019; 55
Ma (10.1016/j.rcim.2019.01.005_bib0016) 2010; 58
Zribi (10.1016/j.rcim.2019.01.005_bib0018) 2008; 112
Wu (10.1016/j.rcim.2019.01.005_bib0037)
Cassady (10.1016/j.rcim.2019.01.005_bib0024) 2005; 54
Ashayeri (10.1016/j.rcim.2019.01.005_bib0001) 2007; 23
Dogmus (10.1016/j.rcim.2019.01.005_bib0006) 2015; 33
Berrichi (10.1016/j.rcim.2019.01.005_bib0026) 2010; 37
Chan (10.1016/j.rcim.2019.01.005_bib0031) 2006; 22
Xia (10.1016/j.rcim.2019.01.005_bib0007) 2017; 14
Bierwirth (10.1016/j.rcim.2019.01.005_bib0036) 1995; 17
Xia (10.1016/j.rcim.2019.01.005_bib0008) 2017; 139
Moradi (10.1016/j.rcim.2019.01.005_bib0019) 2010; 51
Candell (10.1016/j.rcim.2019.01.005_bib0002) 2009; 25
Wu (10.1016/j.rcim.2019.01.005_bib0035) 2017; 80
Chung (10.1016/j.rcim.2019.01.005_bib0032) 2009; 22
Sanlaville (10.1016/j.rcim.2019.01.005_bib0014) 1998; 35
Wang (10.1016/j.rcim.2019.01.005_bib0020) 2010; 59
Wong (10.1016/j.rcim.2019.01.005_bib0027) 2013; 51
Lee (10.1016/j.rcim.2019.01.005_bib0013) 1997; 70
Li (10.1016/j.rcim.2019.01.005_bib0022) 2014; 38
Liao (10.1016/j.rcim.2019.01.005_bib0028) 2017; 32
Lu (10.1016/j.rcim.2019.01.005_bib0034) 2018; 29
References_xml – volume: 22
  start-page: 493
  year: 2006
  end-page: 504
  ident: bib0031
  article-title: Solving distributed FMS scheduling problems subject to maintenance: genetic algorithms approach
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 25
  start-page: 937
  year: 2009
  end-page: 944
  ident: bib0002
  article-title: eMaintenance—information logistics for maintenance support
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 33
  start-page: 100
  year: 2015
  end-page: 109
  ident: bib0006
  article-title: RehabRobo-Onto: design, development and maintenance of a rehabilitation robotics ontology on the cloud
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 30
  start-page: 478
  year: 2014
  end-page: 488
  ident: bib0005
  article-title: SHeRo: scalable hexapod robot for maintenance, repair, and operations
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 200
  start-page: 395
  year: 2010
  end-page: 408
  ident: bib0033
  article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 35
  start-page: 795
  year: 1998
  end-page: 811
  ident: bib0014
  article-title: Machine scheduling with availability constraints
  publication-title: Acta Infor.
– volume: 26
  start-page: 145
  year: 2010
  end-page: 155
  ident: bib0004
  article-title: Tool maintenance optimization for multi-station machining systems with economic consideration of quality loss and obsolescence
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 106
  start-page: 236
  year: 2017
  end-page: 255
  ident: bib0023
  article-title: The “Dual-Ants Colony”: a novel hybrid approach for the flexible job shop scheduling problem with preventive maintenance
  publication-title: Comput. Ind. Eng.
– volume: 121
  start-page: 1
  year: 2000
  end-page: 15
  ident: bib0015
  article-title: Scheduling with limited machine availability1
  publication-title: Eur. J. Oper. Res.
– volume: 145
  start-page: 4
  year: 2013
  end-page: 17
  ident: bib0021
  article-title: Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities
  publication-title: Int. J. Prod. Econ.
– volume: 51
  start-page: 883
  year: 2013
  end-page: 896
  ident: bib0027
  article-title: A joint production scheduling approach considering multiple resources and preventive maintenance tasks
  publication-title: Int. J. Prod. Res.
– volume: 61
  start-page: 31
  year: 2015
  end-page: 45
  ident: bib0030
  article-title: Scheduling optimization of a stochastic flexible job-shop system with time-varying machine failure rate
  publication-title: Comput. Oper. Res.
– volume: 59
  start-page: 436
  year: 2010
  end-page: 447
  ident: bib0020
  article-title: An effective heuristic for flexible job-shop scheduling problem with maintenance activities
  publication-title: Comput. Ind. Eng.
– volume: 17
  start-page: 87
  year: 1995
  end-page: 92
  ident: bib0036
  article-title: A generalized permutation approach to job shop scheduling with genetic algorithms
  publication-title: Oper. Res. Spektrum.
– volume: 51
  start-page: 325
  year: 2010
  end-page: 339
  ident: bib0019
  article-title: An efficient architecture for scheduling flexible job-shop with machine availability constraints
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 32
  start-page: 913
  year: 2017
  end-page: 923
  ident: bib0028
  article-title: Joint optimization of preventive maintenance and production scheduling for parallel machines system
  publication-title: J. Intell. Fuzzy Syst.
– volume: 25
  start-page: 552
  year: 2009
  end-page: 559
  ident: bib0003
  article-title: Remote, condition-based maintenance for web-enabled robotic system
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 14
  start-page: 139
  year: 2017
  end-page: 148
  ident: bib0007
  article-title: Operation process rebuilding (OPR)-oriented maintenance policy for changeable system structures
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 17
  start-page: 493
  year: 2006
  end-page: 507
  ident: bib0017
  article-title: Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm
  publication-title: J. Intell. Manuf.
– volume: 49
  start-page: 215
  year: 2018
  end-page: 228
  ident: bib0010
  article-title: A systematic review of augmented reality applications in maintenance
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 55
  start-page: 173
  year: 2019
  end-page: 182
  ident: bib0012
  article-title: Single-machine-based joint optimization of predictive maintenance planning and production scheduling
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 23
  start-page: 614
  year: 2007
  end-page: 623
  ident: bib0001
  article-title: Development of computer-aided maintenance resources planning (CAMRP): a case of multiple CNC machining centers
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 29
  start-page: 19
  year: 2018
  end-page: 34
  ident: bib0034
  article-title: A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems
  publication-title: J. Intell. Manuf.
– volume: 22
  start-page: 1005
  year: 2009
  end-page: 1014
  ident: bib0032
  article-title: A modified genetic algorithm approach for scheduling of perfect maintenance in distributed production scheduling
  publication-title: Eng. Appl. Artif. Intell.
– volume: 44
  start-page: 218
  year: 2017
  end-page: 229
  ident: bib0009
  article-title: Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 38
  start-page: 7169
  year: 2011
  end-page: 7178
  ident: bib0029
  article-title: Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem
  publication-title: Expert Syst. Appl.
– volume: 58
  start-page: 199
  year: 2010
  end-page: 211
  ident: bib0016
  article-title: A survey of scheduling with deterministic machine availability constraints
  publication-title: Comput. Ind. Eng.
– volume: 54
  start-page: 304
  year: 2005
  end-page: 309
  ident: bib0024
  article-title: Integrating preventive maintenance planning and production scheduling for a single machine
  publication-title: IEEE Trans. Reliab.
– volume: 178
  start-page: 255
  year: 2018
  end-page: 268
  ident: bib0011
  article-title: Recent advances in prognostics and health management for advanced manufacturing paradigms
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 25
  start-page: 544
  year: 2017
  end-page: 578
  ident: bib0025
  article-title: Joint production and preventive maintenance scheduling for a single degraded machine by considering machine failures
  publication-title: TOP.
– volume: 80
  start-page: 101
  year: 2017
  end-page: 112
  ident: bib0035
  article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems
  publication-title: Comput. Oper. Res.
– volume: 37
  start-page: 1584
  year: 2010
  end-page: 1596
  ident: bib0026
  article-title: Bi-objective ant colony optimization approach to optimize production and maintenance scheduling
  publication-title: Comput. Oper. Res.
– volume: 139
  year: 2017
  ident: bib0008
  article-title: Lease-oriented opportunistic maintenance for multi-unit leased systems under product-service paradigm
  publication-title: J. Manuf. Sci. Eng.
– volume: 112
  start-page: 151
  year: 2008
  end-page: 160
  ident: bib0018
  article-title: Minimizing the makespan for the MPM job-shop with availability constraints
  publication-title: Int. J. Prod. Econ.
– volume: 70
  start-page: 1
  year: 1997
  end-page: 41
  ident: bib0013
  article-title: Current trends in deterministic scheduling
  publication-title: Ann. Oper. Res.
– volume: 38
  start-page: 1111
  year: 2014
  end-page: 1132
  ident: bib0022
  article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
  publication-title: Appl. Math. Modell.
– year: 2018
  ident: bib0037
– volume: 25
  start-page: 552
  issue: 3
  year: 2009
  ident: 10.1016/j.rcim.2019.01.005_bib0003
  article-title: Remote, condition-based maintenance for web-enabled robotic system
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2008.04.001
– volume: 22
  start-page: 493
  issue: 5–6
  year: 2006
  ident: 10.1016/j.rcim.2019.01.005_bib0031
  article-title: Solving distributed FMS scheduling problems subject to maintenance: genetic algorithms approach
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2005.11.005
– volume: 145
  start-page: 4
  issue: 1
  year: 2013
  ident: 10.1016/j.rcim.2019.01.005_bib0021
  article-title: Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2012.11.005
– volume: 121
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.rcim.2019.01.005_bib0015
  article-title: Scheduling with limited machine availability1
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(98)00367-1
– volume: 61
  start-page: 31
  year: 2015
  ident: 10.1016/j.rcim.2019.01.005_bib0030
  article-title: Scheduling optimization of a stochastic flexible job-shop system with time-varying machine failure rate
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.02.014
– volume: 22
  start-page: 1005
  issue: 7
  year: 2009
  ident: 10.1016/j.rcim.2019.01.005_bib0032
  article-title: A modified genetic algorithm approach for scheduling of perfect maintenance in distributed production scheduling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2008.11.004
– volume: 70
  start-page: 1
  year: 1997
  ident: 10.1016/j.rcim.2019.01.005_bib0013
  article-title: Current trends in deterministic scheduling
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1018909801944
– volume: 14
  start-page: 139
  issue: 1
  year: 2017
  ident: 10.1016/j.rcim.2019.01.005_bib0007
  article-title: Operation process rebuilding (OPR)-oriented maintenance policy for changeable system structures
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2618767
– volume: 35
  start-page: 795
  issue: 9
  year: 1998
  ident: 10.1016/j.rcim.2019.01.005_bib0014
  article-title: Machine scheduling with availability constraints
  publication-title: Acta Infor.
  doi: 10.1007/s002360050143
– volume: 30
  start-page: 478
  issue: 5
  year: 2014
  ident: 10.1016/j.rcim.2019.01.005_bib0005
  article-title: SHeRo: scalable hexapod robot for maintenance, repair, and operations
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2014.03.008
– volume: 17
  start-page: 87
  issue: 2–3
  year: 1995
  ident: 10.1016/j.rcim.2019.01.005_bib0036
  article-title: A generalized permutation approach to job shop scheduling with genetic algorithms
  publication-title: Oper. Res. Spektrum.
  doi: 10.1007/BF01719250
– volume: 37
  start-page: 1584
  issue: 9
  year: 2010
  ident: 10.1016/j.rcim.2019.01.005_bib0026
  article-title: Bi-objective ant colony optimization approach to optimize production and maintenance scheduling
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.11.017
– volume: 51
  start-page: 325
  issue: 1–4
  year: 2010
  ident: 10.1016/j.rcim.2019.01.005_bib0019
  article-title: An efficient architecture for scheduling flexible job-shop with machine availability constraints
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2621-7
– volume: 26
  start-page: 145
  issue: 2
  year: 2010
  ident: 10.1016/j.rcim.2019.01.005_bib0004
  article-title: Tool maintenance optimization for multi-station machining systems with economic consideration of quality loss and obsolescence
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2009.07.005
– volume: 55
  start-page: 173
  year: 2019
  ident: 10.1016/j.rcim.2019.01.005_bib0012
  article-title: Single-machine-based joint optimization of predictive maintenance planning and production scheduling
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2018.09.007
– volume: 139
  issue: 7
  year: 2017
  ident: 10.1016/j.rcim.2019.01.005_bib0008
  article-title: Lease-oriented opportunistic maintenance for multi-unit leased systems under product-service paradigm
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4035962
– volume: 200
  start-page: 395
  issue: 2
  year: 2010
  ident: 10.1016/j.rcim.2019.01.005_bib0033
  article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.01.008
– volume: 112
  start-page: 151
  issue: 1
  year: 2008
  ident: 10.1016/j.rcim.2019.01.005_bib0018
  article-title: Minimizing the makespan for the MPM job-shop with availability constraints
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2007.01.014
– volume: 51
  start-page: 883
  issue: 3
  year: 2013
  ident: 10.1016/j.rcim.2019.01.005_bib0027
  article-title: A joint production scheduling approach considering multiple resources and preventive maintenance tasks
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2012.677070
– ident: 10.1016/j.rcim.2019.01.005_bib0037
– volume: 33
  start-page: 100
  year: 2015
  ident: 10.1016/j.rcim.2019.01.005_bib0006
  article-title: RehabRobo-Onto: design, development and maintenance of a rehabilitation robotics ontology on the cloud
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2014.08.010
– volume: 17
  start-page: 493
  issue: 4
  year: 2006
  ident: 10.1016/j.rcim.2019.01.005_bib0017
  article-title: Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-005-0021-x
– volume: 106
  start-page: 236
  year: 2017
  ident: 10.1016/j.rcim.2019.01.005_bib0023
  article-title: The “Dual-Ants Colony”: a novel hybrid approach for the flexible job shop scheduling problem with preventive maintenance
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.10.019
– volume: 38
  start-page: 7169
  issue: 6
  year: 2011
  ident: 10.1016/j.rcim.2019.01.005_bib0029
  article-title: Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.043
– volume: 29
  start-page: 19
  issue: 1
  year: 2018
  ident: 10.1016/j.rcim.2019.01.005_bib0034
  article-title: A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1083-z
– volume: 49
  start-page: 215
  year: 2018
  ident: 10.1016/j.rcim.2019.01.005_bib0010
  article-title: A systematic review of augmented reality applications in maintenance
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2017.06.002
– volume: 54
  start-page: 304
  issue: 2
  year: 2005
  ident: 10.1016/j.rcim.2019.01.005_bib0024
  article-title: Integrating preventive maintenance planning and production scheduling for a single machine
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2005.845967
– volume: 25
  start-page: 544
  issue: 3
  year: 2017
  ident: 10.1016/j.rcim.2019.01.005_bib0025
  article-title: Joint production and preventive maintenance scheduling for a single degraded machine by considering machine failures
  publication-title: TOP.
  doi: 10.1007/s11750-017-0445-4
– volume: 25
  start-page: 937
  issue: 6
  year: 2009
  ident: 10.1016/j.rcim.2019.01.005_bib0002
  article-title: eMaintenance—information logistics for maintenance support
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2009.04.005
– volume: 44
  start-page: 218
  year: 2017
  ident: 10.1016/j.rcim.2019.01.005_bib0009
  article-title: Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2016.09.004
– volume: 58
  start-page: 199
  issue: 2
  year: 2010
  ident: 10.1016/j.rcim.2019.01.005_bib0016
  article-title: A survey of scheduling with deterministic machine availability constraints
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2009.04.014
– volume: 38
  start-page: 1111
  issue: 3
  year: 2014
  ident: 10.1016/j.rcim.2019.01.005_bib0022
  article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2013.07.038
– volume: 32
  start-page: 913
  issue: 1
  year: 2017
  ident: 10.1016/j.rcim.2019.01.005_bib0028
  article-title: Joint optimization of preventive maintenance and production scheduling for parallel machines system
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-161385
– volume: 23
  start-page: 614
  issue: 6
  year: 2007
  ident: 10.1016/j.rcim.2019.01.005_bib0001
  article-title: Development of computer-aided maintenance resources planning (CAMRP): a case of multiple CNC machining centers
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2007.02.018
– volume: 59
  start-page: 436
  issue: 3
  year: 2010
  ident: 10.1016/j.rcim.2019.01.005_bib0020
  article-title: An effective heuristic for flexible job-shop scheduling problem with maintenance activities
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2010.05.016
– volume: 178
  start-page: 255
  year: 2018
  ident: 10.1016/j.rcim.2019.01.005_bib0011
  article-title: Recent advances in prognostics and health management for advanced manufacturing paradigms
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 80
  start-page: 101
  year: 2017
  ident: 10.1016/j.rcim.2019.01.005_bib0035
  article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.11.021
SSID ssj0002453
Score 2.3280199
Snippet •Chromosome representation in genetic algorithm (GA) is important but rarely examined.•In modeling chromosome representation, incomplete scheme might be better...
Two conjectures, the use of incomplete chromosome representations and shadow chromosomes may improve the performance of genetic algorithms (GAs), are examined...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 196
SubjectTerms Chromosome representation
Chromosomes
Decisions
Genetic algorithm
Genetic algorithms
Heuristic methods
Job shop scheduling
Job shops
Mathematical models
Performance enhancement
Preventive maintenance
Production scheduling
Representations
Resource scheduling
Scheduling and preventive maintenance
Shadow chromosome
Shadows
Title Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems
URI https://dx.doi.org/10.1016/j.rcim.2019.01.005
https://www.proquest.com/docview/2225232237
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN4YvejBR9X4bPbgzWBhYaEcTWNTX43xkfS22QfYGgtNqenN3-4MLL5ievDEQmY3ZGd25huYByEnCQ-NDP3IATAcOwEYAUd6nnZ4mxkXlKZi5d_z237YewquBnywRDp1LgyGVVrdX-n0UlvbJy27m63JaNR6AOFE88lBKF0sUYIZ7EGEUn72_hXmwYKqEiUQO0htE2eqGK-pHmE2uheXpTuxhd3fxumXmi5tT3eTrFvQSM-r99oiS0nWIBt1QwZqz2eDrH2rLrhN5rcwmBU0TylGtz9TPcTYuyIfJ7SsZVnnHWUFlZmhxVCafP6NqqCjjIKAYZ4jla_POSw3HBcUcC4FkcVPERScYzBWmNNObW-aYoc8dS8eOz3H9llwNNjrmcOVhIFRkfEBMajQAIzQLtNGy1j6EXhoYerHMk51EIdStdM281XEfJ5i8TCu_V2ynOVZskcouispoColkyhIpWlLlykWJTIwcaBTvk-8eoOFtkXIsRfGq6ijzV4EMkUgU4TrCWDKPjn9nDOpSnAspOY138QPQRJgIxbOO6qZLOwxLgQ6wwA5mR8d_HPZQ7KKd1XI4BFZnk3fkmOAMTPVLOW0SVbOO_c3d3i9vO71PwCMN_U7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEJ74OKgH38a3PXgzuFAoLEdjNOtjvaiJt6YPcNesYGSNN3-7M1B8xXjwRmDakM505ivMfAOwn4nYqjhMPATDqRdhEPBUEBhPdLn10WlqXv8971_Fvdvo_E7cTcBxWwtDaZXO9zc-vfbW7k7HrWbnaTjsXKNxUvgUaJQ-UZRMwnSE25faGBy-feZ58KihokRpj8Rd5UyT5PVshlSOHqQ1dyf1sPs9Ov3w03XwOV2EeYca2VHzYkswkRXLsNB2ZGBugy7D3Bd6wRV47ePFuGJlzii9_Z6ZASXfVeVjxmoyy7bwqKiYKiyrBsqWr1-kKjYsGFoYFToyNbovcbrBY8UQ6DK0WfoWwfB0jNGKitqZa05TrcLt6cnNcc9zjRY8gwF77Amt8MLqxIYIGXRsEUcYnxtrVKrCBI9ocR6mKs1NlMZKd_MuD3XCQ5ETe5gw4RpMFWWRrQOj80qOsEqrLIlyZbvK55onmYpsGplcbEDQLrA0joWcmmGMZJtu9iBJKZKUIv1AolI24OBjzFPDwfGntGj1Jr9ZksQg8ee47VbJ0u3jStJpGDEnD5PNf067BzO9m_6lvDy7utiCWXrS5A9uw9T4-SXbQUwz1ru1zb4DeL31NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Merits+of+using+chromosome+representations+and+shadow+chromosomes+in+genetic+algorithms+for+solving+scheduling+problems&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Lin%2C+Chi-Shiuan&rft.au=Lee%2C+I-Ling&rft.au=Wu%2C+Muh-Cherng&rft.date=2019-08-01&rft.pub=Elsevier+BV&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=58&rft.spage=196&rft_id=info:doi/10.1016%2Fj.rcim.2019.01.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon