Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems
•Chromosome representation in genetic algorithm (GA) is important but rarely examined.•In modeling chromosome representation, incomplete scheme might be better than complete scheme.•Using incomplete scheme, the mapping from chromosome to solution may not be invertible.•Shadow chromosomes are heurist...
Saved in:
Published in | Robotics and computer-integrated manufacturing Vol. 58; pp. 196 - 207 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.08.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Chromosome representation in genetic algorithm (GA) is important but rarely examined.•In modeling chromosome representation, incomplete scheme might be better than complete scheme.•Using incomplete scheme, the mapping from chromosome to solution may not be invertible.•Shadow chromosomes are heuristically generated by quality solutions, not by genetic operators.•GAs with shadow chromosomes and incomplete scheme might be better in solving high-dimensional space search problem.
Two conjectures, the use of incomplete chromosome representations and shadow chromosomes may improve the performance of genetic algorithms (GAs), are examined in this study. The examination entails testing distributed flexible job shop scheduling (DFJS) problems subject to preventive maintenance (PM) that involve four scheduling decisions. Genetic algorithms based on a complete chromosome representation that explicitly models the four decisions have been developed previously. By contrast, herein, two incomplete chromosome representations are proposed, whereby the conjectured advantages are two-fold. First, an incomplete chromosome representation models two scheduling decisions, and the remaining two are decoded by heuristic rules designed to ensure the load balance of manufacturing resources. Therefore, scheduling solutions with load imbalance will not be generated, which will help prevent the execution of ineffective searches. Second, a novel method of generating new chromosomes is developed and employed, instead of using traditional genetic operations. These chromosomes, called shadow chromosomes, are generated from good quality scheduling solutions and they may improve performance. Based on these two conjectures, four GAs are proposed. Numerical experiments reveal that each proposed GA outperforms the prior GAs substantially and the two conjectures are thus well justified. These findings shed light on the application of the two conjectures for developing metaheuristic algorithms to solve other high-dimensional space search problems. |
---|---|
AbstractList | Two conjectures, the use of incomplete chromosome representations and shadow chromosomes may improve the performance of genetic algorithms (GAs), are examined in this study. The examination entails testing distributed flexible job shop scheduling (DFJS) problems subject to preventive maintenance (PM) that involve four scheduling decisions. Genetic algorithms based on a complete chromosome representation that explicitly models the four decisions have been developed previously. By contrast, herein, two incomplete chromosome representations are proposed, whereby the conjectured advantages are two-fold. First, an incomplete chromosome representation models two scheduling decisions, and the remaining two are decoded by heuristic rules designed to ensure the load balance of manufacturing resources. Therefore, scheduling solutions with load imbalance will not be generated, which will help prevent the execution of ineffective searches. Second, a novel method of generating new chromosomes is developed and employed, instead of using traditional genetic operations. These chromosomes, called shadow chromosomes, are generated from good quality scheduling solutions and they may improve performance. Based on these two conjectures, four GAs are proposed. Numerical experiments reveal that each proposed GA outperforms the prior GAs substantially and the two conjectures are thus well justified. These findings shed light on the application of the two conjectures for developing metaheuristic algorithms to solve other high-dimensional space search problems. •Chromosome representation in genetic algorithm (GA) is important but rarely examined.•In modeling chromosome representation, incomplete scheme might be better than complete scheme.•Using incomplete scheme, the mapping from chromosome to solution may not be invertible.•Shadow chromosomes are heuristically generated by quality solutions, not by genetic operators.•GAs with shadow chromosomes and incomplete scheme might be better in solving high-dimensional space search problem. Two conjectures, the use of incomplete chromosome representations and shadow chromosomes may improve the performance of genetic algorithms (GAs), are examined in this study. The examination entails testing distributed flexible job shop scheduling (DFJS) problems subject to preventive maintenance (PM) that involve four scheduling decisions. Genetic algorithms based on a complete chromosome representation that explicitly models the four decisions have been developed previously. By contrast, herein, two incomplete chromosome representations are proposed, whereby the conjectured advantages are two-fold. First, an incomplete chromosome representation models two scheduling decisions, and the remaining two are decoded by heuristic rules designed to ensure the load balance of manufacturing resources. Therefore, scheduling solutions with load imbalance will not be generated, which will help prevent the execution of ineffective searches. Second, a novel method of generating new chromosomes is developed and employed, instead of using traditional genetic operations. These chromosomes, called shadow chromosomes, are generated from good quality scheduling solutions and they may improve performance. Based on these two conjectures, four GAs are proposed. Numerical experiments reveal that each proposed GA outperforms the prior GAs substantially and the two conjectures are thus well justified. These findings shed light on the application of the two conjectures for developing metaheuristic algorithms to solve other high-dimensional space search problems. |
Author | Wu, Muh-Cherng Lin, Chi-Shiuan Lee, I-Ling |
Author_xml | – sequence: 1 givenname: Chi-Shiuan surname: Lin fullname: Lin, Chi-Shiuan – sequence: 2 givenname: I-Ling surname: Lee fullname: Lee, I-Ling – sequence: 3 givenname: Muh-Cherng orcidid: 0000-0001-5882-0587 surname: Wu fullname: Wu, Muh-Cherng email: mcwu@mail.nctu.edu.tw |
BookMark | eNp9kMFq3DAQhkVJoJukL9CToGc7I2ll2dBLCW1SSOilPQtZGu9qsaWtxpvQt6_N9lByyGnm8H__MN8Vu0g5IWMfBdQCRHN7qIuPUy1BdDWIGkC_YxvRmq6SWpkLtgGjmkq3W_2eXREdAEButdqwlycscSaeB36imHbc70ueMuUJecFjQcI0uznmRNylwGnvQn75L0U8Jr7DhHP03I27vNTtJ-JDLpzy-Lx2kt9jOI3reiy5H3GiG3Y5uJHww795zX59-_rz7qF6_HH__e7LY-VVK-ZK925ZQm-CAjB9E8BoD9IH7zqnTCe3zaA61w1-2zWub4dWqt5IpYdWgdReXbNP597l8O8T0mwP-VTSctJKKbVUUiqzpOQ55UsmKjjYY4mTK3-sALsKtge7CrarYAvCLoIXqH0F-XhWNRcXx7fRz2cUl9efIxZLPmLyGGJBP9uQ41v4Xxxem-c |
CitedBy_id | crossref_primary_10_1016_j_cie_2024_109911 crossref_primary_10_3390_en16041609 crossref_primary_10_1142_S2196888824500222 crossref_primary_10_1007_s10901_020_09815_8 crossref_primary_10_1016_j_cie_2022_108786 crossref_primary_10_32604_cmes_2024_049756 crossref_primary_10_23919_CSMS_2022_0010 crossref_primary_10_1080_25725084_2024_2408699 crossref_primary_10_1016_j_rcim_2021_102198 crossref_primary_10_1016_j_cor_2022_105731 crossref_primary_10_1016_j_cie_2020_106347 crossref_primary_10_1515_remav_2020_0027 crossref_primary_10_3390_su16031079 crossref_primary_10_1007_s13042_019_01043_z |
Cites_doi | 10.1016/j.rcim.2008.04.001 10.1016/j.rcim.2005.11.005 10.1016/j.ijpe.2012.11.005 10.1016/S0377-2217(98)00367-1 10.1016/j.cor.2015.02.014 10.1016/j.engappai.2008.11.004 10.1023/A:1018909801944 10.1109/TASE.2016.2618767 10.1007/s002360050143 10.1016/j.rcim.2014.03.008 10.1007/BF01719250 10.1016/j.cor.2009.11.017 10.1007/s00170-010-2621-7 10.1016/j.rcim.2009.07.005 10.1016/j.rcim.2018.09.007 10.1115/1.4035962 10.1016/j.ejor.2009.01.008 10.1016/j.ijpe.2007.01.014 10.1080/00207543.2012.677070 10.1016/j.rcim.2014.08.010 10.1007/s10845-005-0021-x 10.1016/j.cie.2016.10.019 10.1016/j.eswa.2010.12.043 10.1007/s10845-015-1083-z 10.1016/j.rcim.2017.06.002 10.1109/TR.2005.845967 10.1007/s11750-017-0445-4 10.1016/j.rcim.2009.04.005 10.1016/j.rcim.2016.09.004 10.1016/j.cie.2009.04.014 10.1016/j.apm.2013.07.038 10.3233/JIFS-161385 10.1016/j.rcim.2007.02.018 10.1016/j.cie.2010.05.016 10.1016/j.cor.2016.11.021 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV Aug 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Aug 2019 |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1016/j.rcim.2019.01.005 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1879-2537 |
EndPage | 207 |
ExternalDocumentID | 10_1016_j_rcim_2019_01_005 S0736584518305283 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 7TB 8FD EFKBS FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c381t-5bac38db7d3007b6d075c02cdca9a379246f39a9fc496ab8f823b7235f83025c3 |
IEDL.DBID | .~1 |
ISSN | 0736-5845 |
IngestDate | Fri Jul 25 05:21:14 EDT 2025 Tue Jul 01 02:40:43 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Fri Feb 23 02:26:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chromosome representation Scheduling and preventive maintenance Genetic algorithm Shadow chromosome |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-5bac38db7d3007b6d075c02cdca9a379246f39a9fc496ab8f823b7235f83025c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5882-0587 |
PQID | 2225232237 |
PQPubID | 2045404 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2225232237 crossref_primary_10_1016_j_rcim_2019_01_005 crossref_citationtrail_10_1016_j_rcim_2019_01_005 elsevier_sciencedirect_doi_10_1016_j_rcim_2019_01_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Robotics and computer-integrated manufacturing |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Candell, Karim (bib0002) 2009; 25 Ashayeri (bib0001) 2007; 23 Xia, Xi, Pan, Fang, Gebraeel (bib0008) 2017; 139 Ma, Chu, Zuo (bib0016) 2010; 58 Sanlaville, Schmidt (bib0014) 1998; 35 Palmarini, Erkoyuncu, Roy, Torabmostaedi (bib0010) 2018; 49 Liao, Chen, Yang (bib0028) 2017; 32 Dong, Axinte, Palmer, Cobos, Raffles, Rabani, Kell (bib0009) 2017; 44 Moradi, Ghomi, Zandieh (bib0019) 2010; 51 Li, Pan, Tasgetiren (bib0022) 2014; 38 Schmidt (bib0015) 2000; 121 Chung, Chan, Chan (bib0032) 2009; 22 Wu, Lin, Lin, Chen (bib0035) 2017; 80 El Khoukhi, Boukachour, Alaoui (bib0023) 2017; 106 Liu, Dong, Chen, Lv, Ye (bib0012) 2019; 55 Bierwirth (bib0036) 1995; 17 Kwon, Chiou, Stepanskíy (bib0003) 2009; 25 Xia, Dong, Xiao, Du, Pan, Xi (bib0011) 2018; 178 Dogmus, Erdem, Patoglu (bib0006) 2015; 33 Moradi, Ghomi, Zandieh (bib0029) 2011; 38 Lee, Lei, Pinedo (bib0013) 1997; 70 Mokhtari, Dadgar (bib0030) 2015; 61 De Giovanni, Pezzella (bib0033) 2010; 200 Sun, Xi, Du, Pan (bib0004) 2010; 26 Wu, Lin (bib0037) 2018 Gao, Gen, Sun (bib0017) 2006; 17 Xia, Tao, Xi (bib0007) 2017; 14 Wang, Yu (bib0020) 2010; 59 Salmasnia, Mirabadi-Dastjerd (bib0025) 2017; 25 Berrichi, Yalaoui, Amodeo, Mezghiche (bib0026) 2010; 37 Agheli, Qu, Nestinger (bib0005) 2014; 30 Zribi, El Kamel, Borne (bib0018) 2008; 112 Li, Pan (bib0021) 2013; 145 Cassady, Kutanoglu (bib0024) 2005; 54 Wong, Chan, Chung (bib0027) 2013; 51 Chan, Chung, Chan, Finke, Tiwari (bib0031) 2006; 22 Lu, Wu, Tan, Peng, Chen (bib0034) 2018; 29 Palmarini (10.1016/j.rcim.2019.01.005_bib0010) 2018; 49 Mokhtari (10.1016/j.rcim.2019.01.005_bib0030) 2015; 61 Gao (10.1016/j.rcim.2019.01.005_bib0017) 2006; 17 Schmidt (10.1016/j.rcim.2019.01.005_bib0015) 2000; 121 Agheli (10.1016/j.rcim.2019.01.005_bib0005) 2014; 30 El Khoukhi (10.1016/j.rcim.2019.01.005_bib0023) 2017; 106 Xia (10.1016/j.rcim.2019.01.005_bib0011) 2018; 178 Li (10.1016/j.rcim.2019.01.005_bib0021) 2013; 145 Salmasnia (10.1016/j.rcim.2019.01.005_bib0025) 2017; 25 Sun (10.1016/j.rcim.2019.01.005_bib0004) 2010; 26 Dong (10.1016/j.rcim.2019.01.005_bib0009) 2017; 44 De Giovanni (10.1016/j.rcim.2019.01.005_bib0033) 2010; 200 Moradi (10.1016/j.rcim.2019.01.005_bib0029) 2011; 38 Kwon (10.1016/j.rcim.2019.01.005_bib0003) 2009; 25 Liu (10.1016/j.rcim.2019.01.005_bib0012) 2019; 55 Ma (10.1016/j.rcim.2019.01.005_bib0016) 2010; 58 Zribi (10.1016/j.rcim.2019.01.005_bib0018) 2008; 112 Wu (10.1016/j.rcim.2019.01.005_bib0037) Cassady (10.1016/j.rcim.2019.01.005_bib0024) 2005; 54 Ashayeri (10.1016/j.rcim.2019.01.005_bib0001) 2007; 23 Dogmus (10.1016/j.rcim.2019.01.005_bib0006) 2015; 33 Berrichi (10.1016/j.rcim.2019.01.005_bib0026) 2010; 37 Chan (10.1016/j.rcim.2019.01.005_bib0031) 2006; 22 Xia (10.1016/j.rcim.2019.01.005_bib0007) 2017; 14 Bierwirth (10.1016/j.rcim.2019.01.005_bib0036) 1995; 17 Xia (10.1016/j.rcim.2019.01.005_bib0008) 2017; 139 Moradi (10.1016/j.rcim.2019.01.005_bib0019) 2010; 51 Candell (10.1016/j.rcim.2019.01.005_bib0002) 2009; 25 Wu (10.1016/j.rcim.2019.01.005_bib0035) 2017; 80 Chung (10.1016/j.rcim.2019.01.005_bib0032) 2009; 22 Sanlaville (10.1016/j.rcim.2019.01.005_bib0014) 1998; 35 Wang (10.1016/j.rcim.2019.01.005_bib0020) 2010; 59 Wong (10.1016/j.rcim.2019.01.005_bib0027) 2013; 51 Lee (10.1016/j.rcim.2019.01.005_bib0013) 1997; 70 Li (10.1016/j.rcim.2019.01.005_bib0022) 2014; 38 Liao (10.1016/j.rcim.2019.01.005_bib0028) 2017; 32 Lu (10.1016/j.rcim.2019.01.005_bib0034) 2018; 29 |
References_xml | – volume: 22 start-page: 493 year: 2006 end-page: 504 ident: bib0031 article-title: Solving distributed FMS scheduling problems subject to maintenance: genetic algorithms approach publication-title: Robot. Comput. Integr. Manuf. – volume: 25 start-page: 937 year: 2009 end-page: 944 ident: bib0002 article-title: eMaintenance—information logistics for maintenance support publication-title: Rob. Comput. Integr. Manuf. – volume: 33 start-page: 100 year: 2015 end-page: 109 ident: bib0006 article-title: RehabRobo-Onto: design, development and maintenance of a rehabilitation robotics ontology on the cloud publication-title: Rob. Comput. Integr. Manuf. – volume: 30 start-page: 478 year: 2014 end-page: 488 ident: bib0005 article-title: SHeRo: scalable hexapod robot for maintenance, repair, and operations publication-title: Rob. Comput. Integr. Manuf. – volume: 200 start-page: 395 year: 2010 end-page: 408 ident: bib0033 article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem publication-title: Eur. J. Oper. Res. – volume: 35 start-page: 795 year: 1998 end-page: 811 ident: bib0014 article-title: Machine scheduling with availability constraints publication-title: Acta Infor. – volume: 26 start-page: 145 year: 2010 end-page: 155 ident: bib0004 article-title: Tool maintenance optimization for multi-station machining systems with economic consideration of quality loss and obsolescence publication-title: Rob. Comput. Integr. Manuf. – volume: 106 start-page: 236 year: 2017 end-page: 255 ident: bib0023 article-title: The “Dual-Ants Colony”: a novel hybrid approach for the flexible job shop scheduling problem with preventive maintenance publication-title: Comput. Ind. Eng. – volume: 121 start-page: 1 year: 2000 end-page: 15 ident: bib0015 article-title: Scheduling with limited machine availability1 publication-title: Eur. J. Oper. Res. – volume: 145 start-page: 4 year: 2013 end-page: 17 ident: bib0021 article-title: Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities publication-title: Int. J. Prod. Econ. – volume: 51 start-page: 883 year: 2013 end-page: 896 ident: bib0027 article-title: A joint production scheduling approach considering multiple resources and preventive maintenance tasks publication-title: Int. J. Prod. Res. – volume: 61 start-page: 31 year: 2015 end-page: 45 ident: bib0030 article-title: Scheduling optimization of a stochastic flexible job-shop system with time-varying machine failure rate publication-title: Comput. Oper. Res. – volume: 59 start-page: 436 year: 2010 end-page: 447 ident: bib0020 article-title: An effective heuristic for flexible job-shop scheduling problem with maintenance activities publication-title: Comput. Ind. Eng. – volume: 17 start-page: 87 year: 1995 end-page: 92 ident: bib0036 article-title: A generalized permutation approach to job shop scheduling with genetic algorithms publication-title: Oper. Res. Spektrum. – volume: 51 start-page: 325 year: 2010 end-page: 339 ident: bib0019 article-title: An efficient architecture for scheduling flexible job-shop with machine availability constraints publication-title: Int. J. Adv. Manuf. Technol. – volume: 32 start-page: 913 year: 2017 end-page: 923 ident: bib0028 article-title: Joint optimization of preventive maintenance and production scheduling for parallel machines system publication-title: J. Intell. Fuzzy Syst. – volume: 25 start-page: 552 year: 2009 end-page: 559 ident: bib0003 article-title: Remote, condition-based maintenance for web-enabled robotic system publication-title: Rob. Comput. Integr. Manuf. – volume: 14 start-page: 139 year: 2017 end-page: 148 ident: bib0007 article-title: Operation process rebuilding (OPR)-oriented maintenance policy for changeable system structures publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 17 start-page: 493 year: 2006 end-page: 507 ident: bib0017 article-title: Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm publication-title: J. Intell. Manuf. – volume: 49 start-page: 215 year: 2018 end-page: 228 ident: bib0010 article-title: A systematic review of augmented reality applications in maintenance publication-title: Rob. Comput. Integr. Manuf. – volume: 55 start-page: 173 year: 2019 end-page: 182 ident: bib0012 article-title: Single-machine-based joint optimization of predictive maintenance planning and production scheduling publication-title: Rob. Comput. Integr. Manuf. – volume: 23 start-page: 614 year: 2007 end-page: 623 ident: bib0001 article-title: Development of computer-aided maintenance resources planning (CAMRP): a case of multiple CNC machining centers publication-title: Rob. Comput. Integr. Manuf. – volume: 29 start-page: 19 year: 2018 end-page: 34 ident: bib0034 article-title: A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems publication-title: J. Intell. Manuf. – volume: 22 start-page: 1005 year: 2009 end-page: 1014 ident: bib0032 article-title: A modified genetic algorithm approach for scheduling of perfect maintenance in distributed production scheduling publication-title: Eng. Appl. Artif. Intell. – volume: 44 start-page: 218 year: 2017 end-page: 229 ident: bib0009 article-title: Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines publication-title: Rob. Comput. Integr. Manuf. – volume: 38 start-page: 7169 year: 2011 end-page: 7178 ident: bib0029 article-title: Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem publication-title: Expert Syst. Appl. – volume: 58 start-page: 199 year: 2010 end-page: 211 ident: bib0016 article-title: A survey of scheduling with deterministic machine availability constraints publication-title: Comput. Ind. Eng. – volume: 54 start-page: 304 year: 2005 end-page: 309 ident: bib0024 article-title: Integrating preventive maintenance planning and production scheduling for a single machine publication-title: IEEE Trans. Reliab. – volume: 178 start-page: 255 year: 2018 end-page: 268 ident: bib0011 article-title: Recent advances in prognostics and health management for advanced manufacturing paradigms publication-title: Rob. Comput. Integr. Manuf. – volume: 25 start-page: 544 year: 2017 end-page: 578 ident: bib0025 article-title: Joint production and preventive maintenance scheduling for a single degraded machine by considering machine failures publication-title: TOP. – volume: 80 start-page: 101 year: 2017 end-page: 112 ident: bib0035 article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems publication-title: Comput. Oper. Res. – volume: 37 start-page: 1584 year: 2010 end-page: 1596 ident: bib0026 article-title: Bi-objective ant colony optimization approach to optimize production and maintenance scheduling publication-title: Comput. Oper. Res. – volume: 139 year: 2017 ident: bib0008 article-title: Lease-oriented opportunistic maintenance for multi-unit leased systems under product-service paradigm publication-title: J. Manuf. Sci. Eng. – volume: 112 start-page: 151 year: 2008 end-page: 160 ident: bib0018 article-title: Minimizing the makespan for the MPM job-shop with availability constraints publication-title: Int. J. Prod. Econ. – volume: 70 start-page: 1 year: 1997 end-page: 41 ident: bib0013 article-title: Current trends in deterministic scheduling publication-title: Ann. Oper. Res. – volume: 38 start-page: 1111 year: 2014 end-page: 1132 ident: bib0022 article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities publication-title: Appl. Math. Modell. – year: 2018 ident: bib0037 – volume: 25 start-page: 552 issue: 3 year: 2009 ident: 10.1016/j.rcim.2019.01.005_bib0003 article-title: Remote, condition-based maintenance for web-enabled robotic system publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2008.04.001 – volume: 22 start-page: 493 issue: 5–6 year: 2006 ident: 10.1016/j.rcim.2019.01.005_bib0031 article-title: Solving distributed FMS scheduling problems subject to maintenance: genetic algorithms approach publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2005.11.005 – volume: 145 start-page: 4 issue: 1 year: 2013 ident: 10.1016/j.rcim.2019.01.005_bib0021 article-title: Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2012.11.005 – volume: 121 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.rcim.2019.01.005_bib0015 article-title: Scheduling with limited machine availability1 publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(98)00367-1 – volume: 61 start-page: 31 year: 2015 ident: 10.1016/j.rcim.2019.01.005_bib0030 article-title: Scheduling optimization of a stochastic flexible job-shop system with time-varying machine failure rate publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.02.014 – volume: 22 start-page: 1005 issue: 7 year: 2009 ident: 10.1016/j.rcim.2019.01.005_bib0032 article-title: A modified genetic algorithm approach for scheduling of perfect maintenance in distributed production scheduling publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2008.11.004 – volume: 70 start-page: 1 year: 1997 ident: 10.1016/j.rcim.2019.01.005_bib0013 article-title: Current trends in deterministic scheduling publication-title: Ann. Oper. Res. doi: 10.1023/A:1018909801944 – volume: 14 start-page: 139 issue: 1 year: 2017 ident: 10.1016/j.rcim.2019.01.005_bib0007 article-title: Operation process rebuilding (OPR)-oriented maintenance policy for changeable system structures publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2618767 – volume: 35 start-page: 795 issue: 9 year: 1998 ident: 10.1016/j.rcim.2019.01.005_bib0014 article-title: Machine scheduling with availability constraints publication-title: Acta Infor. doi: 10.1007/s002360050143 – volume: 30 start-page: 478 issue: 5 year: 2014 ident: 10.1016/j.rcim.2019.01.005_bib0005 article-title: SHeRo: scalable hexapod robot for maintenance, repair, and operations publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2014.03.008 – volume: 17 start-page: 87 issue: 2–3 year: 1995 ident: 10.1016/j.rcim.2019.01.005_bib0036 article-title: A generalized permutation approach to job shop scheduling with genetic algorithms publication-title: Oper. Res. Spektrum. doi: 10.1007/BF01719250 – volume: 37 start-page: 1584 issue: 9 year: 2010 ident: 10.1016/j.rcim.2019.01.005_bib0026 article-title: Bi-objective ant colony optimization approach to optimize production and maintenance scheduling publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.11.017 – volume: 51 start-page: 325 issue: 1–4 year: 2010 ident: 10.1016/j.rcim.2019.01.005_bib0019 article-title: An efficient architecture for scheduling flexible job-shop with machine availability constraints publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2621-7 – volume: 26 start-page: 145 issue: 2 year: 2010 ident: 10.1016/j.rcim.2019.01.005_bib0004 article-title: Tool maintenance optimization for multi-station machining systems with economic consideration of quality loss and obsolescence publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2009.07.005 – volume: 55 start-page: 173 year: 2019 ident: 10.1016/j.rcim.2019.01.005_bib0012 article-title: Single-machine-based joint optimization of predictive maintenance planning and production scheduling publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2018.09.007 – volume: 139 issue: 7 year: 2017 ident: 10.1016/j.rcim.2019.01.005_bib0008 article-title: Lease-oriented opportunistic maintenance for multi-unit leased systems under product-service paradigm publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4035962 – volume: 200 start-page: 395 issue: 2 year: 2010 ident: 10.1016/j.rcim.2019.01.005_bib0033 article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.01.008 – volume: 112 start-page: 151 issue: 1 year: 2008 ident: 10.1016/j.rcim.2019.01.005_bib0018 article-title: Minimizing the makespan for the MPM job-shop with availability constraints publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2007.01.014 – volume: 51 start-page: 883 issue: 3 year: 2013 ident: 10.1016/j.rcim.2019.01.005_bib0027 article-title: A joint production scheduling approach considering multiple resources and preventive maintenance tasks publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2012.677070 – ident: 10.1016/j.rcim.2019.01.005_bib0037 – volume: 33 start-page: 100 year: 2015 ident: 10.1016/j.rcim.2019.01.005_bib0006 article-title: RehabRobo-Onto: design, development and maintenance of a rehabilitation robotics ontology on the cloud publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2014.08.010 – volume: 17 start-page: 493 issue: 4 year: 2006 ident: 10.1016/j.rcim.2019.01.005_bib0017 article-title: Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm publication-title: J. Intell. Manuf. doi: 10.1007/s10845-005-0021-x – volume: 106 start-page: 236 year: 2017 ident: 10.1016/j.rcim.2019.01.005_bib0023 article-title: The “Dual-Ants Colony”: a novel hybrid approach for the flexible job shop scheduling problem with preventive maintenance publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.10.019 – volume: 38 start-page: 7169 issue: 6 year: 2011 ident: 10.1016/j.rcim.2019.01.005_bib0029 article-title: Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.043 – volume: 29 start-page: 19 issue: 1 year: 2018 ident: 10.1016/j.rcim.2019.01.005_bib0034 article-title: A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems publication-title: J. Intell. Manuf. doi: 10.1007/s10845-015-1083-z – volume: 49 start-page: 215 year: 2018 ident: 10.1016/j.rcim.2019.01.005_bib0010 article-title: A systematic review of augmented reality applications in maintenance publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2017.06.002 – volume: 54 start-page: 304 issue: 2 year: 2005 ident: 10.1016/j.rcim.2019.01.005_bib0024 article-title: Integrating preventive maintenance planning and production scheduling for a single machine publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2005.845967 – volume: 25 start-page: 544 issue: 3 year: 2017 ident: 10.1016/j.rcim.2019.01.005_bib0025 article-title: Joint production and preventive maintenance scheduling for a single degraded machine by considering machine failures publication-title: TOP. doi: 10.1007/s11750-017-0445-4 – volume: 25 start-page: 937 issue: 6 year: 2009 ident: 10.1016/j.rcim.2019.01.005_bib0002 article-title: eMaintenance—information logistics for maintenance support publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2009.04.005 – volume: 44 start-page: 218 year: 2017 ident: 10.1016/j.rcim.2019.01.005_bib0009 article-title: Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2016.09.004 – volume: 58 start-page: 199 issue: 2 year: 2010 ident: 10.1016/j.rcim.2019.01.005_bib0016 article-title: A survey of scheduling with deterministic machine availability constraints publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2009.04.014 – volume: 38 start-page: 1111 issue: 3 year: 2014 ident: 10.1016/j.rcim.2019.01.005_bib0022 article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2013.07.038 – volume: 32 start-page: 913 issue: 1 year: 2017 ident: 10.1016/j.rcim.2019.01.005_bib0028 article-title: Joint optimization of preventive maintenance and production scheduling for parallel machines system publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-161385 – volume: 23 start-page: 614 issue: 6 year: 2007 ident: 10.1016/j.rcim.2019.01.005_bib0001 article-title: Development of computer-aided maintenance resources planning (CAMRP): a case of multiple CNC machining centers publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2007.02.018 – volume: 59 start-page: 436 issue: 3 year: 2010 ident: 10.1016/j.rcim.2019.01.005_bib0020 article-title: An effective heuristic for flexible job-shop scheduling problem with maintenance activities publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2010.05.016 – volume: 178 start-page: 255 year: 2018 ident: 10.1016/j.rcim.2019.01.005_bib0011 article-title: Recent advances in prognostics and health management for advanced manufacturing paradigms publication-title: Rob. Comput. Integr. Manuf. – volume: 80 start-page: 101 year: 2017 ident: 10.1016/j.rcim.2019.01.005_bib0035 article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.11.021 |
SSID | ssj0002453 |
Score | 2.3280199 |
Snippet | •Chromosome representation in genetic algorithm (GA) is important but rarely examined.•In modeling chromosome representation, incomplete scheme might be better... Two conjectures, the use of incomplete chromosome representations and shadow chromosomes may improve the performance of genetic algorithms (GAs), are examined... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 196 |
SubjectTerms | Chromosome representation Chromosomes Decisions Genetic algorithm Genetic algorithms Heuristic methods Job shop scheduling Job shops Mathematical models Performance enhancement Preventive maintenance Production scheduling Representations Resource scheduling Scheduling and preventive maintenance Shadow chromosome Shadows |
Title | Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems |
URI | https://dx.doi.org/10.1016/j.rcim.2019.01.005 https://www.proquest.com/docview/2225232237 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN4YvejBR9X4bPbgzWBhYaEcTWNTX43xkfS22QfYGgtNqenN3-4MLL5ievDEQmY3ZGd25huYByEnCQ-NDP3IATAcOwEYAUd6nnZ4mxkXlKZi5d_z237YewquBnywRDp1LgyGVVrdX-n0UlvbJy27m63JaNR6AOFE88lBKF0sUYIZ7EGEUn72_hXmwYKqEiUQO0htE2eqGK-pHmE2uheXpTuxhd3fxumXmi5tT3eTrFvQSM-r99oiS0nWIBt1QwZqz2eDrH2rLrhN5rcwmBU0TylGtz9TPcTYuyIfJ7SsZVnnHWUFlZmhxVCafP6NqqCjjIKAYZ4jla_POSw3HBcUcC4FkcVPERScYzBWmNNObW-aYoc8dS8eOz3H9llwNNjrmcOVhIFRkfEBMajQAIzQLtNGy1j6EXhoYerHMk51EIdStdM281XEfJ5i8TCu_V2ynOVZskcouispoColkyhIpWlLlykWJTIwcaBTvk-8eoOFtkXIsRfGq6ijzV4EMkUgU4TrCWDKPjn9nDOpSnAspOY138QPQRJgIxbOO6qZLOwxLgQ6wwA5mR8d_HPZQ7KKd1XI4BFZnk3fkmOAMTPVLOW0SVbOO_c3d3i9vO71PwCMN_U7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEJ74OKgH38a3PXgzuFAoLEdjNOtjvaiJt6YPcNesYGSNN3-7M1B8xXjwRmDakM505ivMfAOwn4nYqjhMPATDqRdhEPBUEBhPdLn10WlqXv8971_Fvdvo_E7cTcBxWwtDaZXO9zc-vfbW7k7HrWbnaTjsXKNxUvgUaJQ-UZRMwnSE25faGBy-feZ58KihokRpj8Rd5UyT5PVshlSOHqQ1dyf1sPs9Ov3w03XwOV2EeYca2VHzYkswkRXLsNB2ZGBugy7D3Bd6wRV47ePFuGJlzii9_Z6ZASXfVeVjxmoyy7bwqKiYKiyrBsqWr1-kKjYsGFoYFToyNbovcbrBY8UQ6DK0WfoWwfB0jNGKitqZa05TrcLt6cnNcc9zjRY8gwF77Amt8MLqxIYIGXRsEUcYnxtrVKrCBI9ocR6mKs1NlMZKd_MuD3XCQ5ETe5gw4RpMFWWRrQOj80qOsEqrLIlyZbvK55onmYpsGplcbEDQLrA0joWcmmGMZJtu9iBJKZKUIv1AolI24OBjzFPDwfGntGj1Jr9ZksQg8ee47VbJ0u3jStJpGDEnD5PNf067BzO9m_6lvDy7utiCWXrS5A9uw9T4-SXbQUwz1ru1zb4DeL31NA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Merits+of+using+chromosome+representations+and+shadow+chromosomes+in+genetic+algorithms+for+solving+scheduling+problems&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Lin%2C+Chi-Shiuan&rft.au=Lee%2C+I-Ling&rft.au=Wu%2C+Muh-Cherng&rft.date=2019-08-01&rft.pub=Elsevier+BV&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=58&rft.spage=196&rft_id=info:doi/10.1016%2Fj.rcim.2019.01.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon |